| γὰρ ἐκ τοῦ πόλου αὐτοῦ ἴση ἐστὶ τῇ τοῦ τετραγώνου πλευρᾷ τοῦ ἐγγραφομένου εἰς τὸν μέγιστον κύκλον . καὶ ἐπεζεύχθωσαν | ||
| ἡμῶν δὲ εἷς [ καὶ ] ὁ κυβερνήτης , τρίγλης πλευρᾷ διαπαρεὶς τὸ μετάφρενον . ἐκείνην μὲν οὖν τὴν ἡμέραν |
| : ὁμοίως καὶ ἐὰν ὁ τοῦ μητρικοῦ κλῆρος ἐν τῷ διαμέτρῳ εὑρεθῇ καὶ ὁ τοῦ διαμέτρου τοῦ κλήρου τῆς μητρὸς | ||
| ἐστὶ τῷ ΑΖ . Ἐὰν παραβολῆς εὐθεῖα ἐπιψαύουσα συμπίπτῃ τῇ διαμέτρῳ , καὶ ἀπὸ τῆς ἁφῆς εὐθεῖα καταχθῇ ἐπὶ τὴν |
| ΜΞ ἐστιν ἡ ῥητὸν καὶ μέσον δυναμένη . ἐπεὶ γὰρ ἀσύμμετρός ἐστιν ἡ ΑΗ τῇ ΗΕ , ἀσύμμετρον ἄρα ἐστὶ | ||
| εἰσὶ σύμμετροι αἱ ΜΝ , ΝΞ ] . καὶ ἐπεὶ ἀσύμμετρός ἐστιν ἡ ΑΕ τῇ ΕΔ μήκει , ἀλλ ' |
| τὴν ἔγγιον τῆς ἀπωτέρω , ἐλαχίστην δὲ τὴν πρὸς τῇ ἐφαπτομένῃ , καθ ' ἣν ἡ μέση κίνησίς ἐστιν , | ||
| συμπτώσει τῶν ἐφαπτομένων διαφέρει τῷ ἀπολαμβανομένῳ τριγώνῳ πρός τε τῇ ἐφαπτομένῃ καὶ τῇ διὰ τῆς ἁφῆς ἀγομένῃ διαμέτρῳ . ἔστωσαν |
| συμπίπτουσα τῇ ΗΑ κατὰ τὸ Κ , ἡ δὲ ΗΛ συμπίπτουσα τῇ ΒΚ κατὰ τὸ Μ . ἐπεὶ οὖν ἴση | ||
| ἀχθῇ πρὸς ὁποιανοῦν τῶν τομῶν , καὶ ταύτῃ παράλληλος ἀχθῇ συμπίπτουσα ταῖς ἐφεξῆς τρισὶ τομαῖς , τὸ περιεχόμενον ὑπὸ τῶν |
| Ἰστέον , ὡς τὰ μεγέθη τριχῶς : ἢ γὰρ ἐν γραμμῇ ἢ ἐν ἐπιφανείᾳ ἢ ἐν σώματι . ἐν γοῦν | ||
| δὲ τῷ τρίτῳ τῶν γεωγραφικῶν καθιστάμενος τὸν τῆς οἰκουμένης πίνακα γραμμῇ τινι διαιρεῖ δίχα ἀπὸ δύσεως ἐπ ' ἀνατολὴν παραλλήλῳ |
| ἐπὶ κλίνης τὰς φυσικὰς ἀνάγκας ἐπλήρου . Ἑνδεκάτῃ ἐπὶ τῇ ἐπιφανείᾳ τὸ παρυφιστάμενον ἐνήχετο λευκὸν μέν , ὑπόγλισχρον δὲ καὶ | ||
| ὀρθὰς οὖσαν τῇ ΒΓ , καὶ πεποίηκε τομὴν ἐν τῇ ἐπιφανείᾳ τὴν ΔΕΖ , ἡ δὲ διάμετρος ἡ ΜΕ ἐκβαλλομένη |
| Α , καὶ τῇ ΓΔ παράλληλος ἤχθω ἐν τῇ ἑτέρᾳ τομῇ ἡ ΕΖ , καὶ τετμήσθω δίχα κατὰ τὸ Η | ||
| τυχόντα σημεῖα , καὶ ἀπ ' αὐτῶν ἀχθῶσιν ἐν τῇ τομῇ παρὰ τὰς ἐφαπτομένας τέμνουσαι ἀλλήλας τε καὶ τὴν γραμμήν |
| ΖΕ ἴσαι εἰσὶν ἑκατέρα ἑκατέρᾳ . καὶ βάσις ἡ ΒΕ βάσει τῇ ΕΔ ἐστιν ἴση : τὸ γὰρ Ε σημεῖον | ||
| ὑπὸ ΔΗΖ ἴση : καὶ βάσις μὲν ἄρα ἡ ΒΖ βάσει τῇ ΔΖ ἴση ἐστίν , γωνία δὲ ἡ ὑπὸ |
| εἰδέναι ὅτι ἐν τῇδε τῇ διαφορᾷ καὶ οὐκ ἐν τῇ ἀντικειμένῃ αὐτῇ πᾶν αὐτὸ περιέχεται . οἷον ὅταν ἄνθρωπον προθείς | ||
| ἀπὸ τοῦ Ζ ἐπὶ τὸ Γ ἐπιζευγνυμένη ἐκβαλλομένη συμπεσεῖται τῇ ἀντικειμένῃ τομῇ , καὶ ἡ ἀπὸ τῆς συμπτώσεως ἐπὶ τὸ |
| , ΒΕΓ τρίγωνα . ἔστιν ἄρα , ὡς τὸ ἀπὸ ΤΝ πρὸς τὸ ἀπὸ ΤΟ , οὕτως τὸ ἀπὸ ΒΕ | ||
| διελθὸν ἐπὶ τὸ Ξ παραγίγνεται : ὁμοία ἄρα ἐστὶν ἡ ΤΝ τῇ ΞΡ . Ἔστω τῆς μὲν ΤΜ ἡμίσεια ἡ |
| διὰ τῶν ἐπιπέδων εὑρεῖν ἔστιν εὐθεῖαν ἴσην τῇ τοῦ κύκλου περιφερείᾳ χρησάμενον τοῖς ἐπὶ τῆς ἕλικος εἰρημένοις θεωρήμασιν . Σοφίας | ||
| πάλιν , ἐπεὶ ὁμοία ἐστὶν ἡ ΘΗ περιφέρεια τῇ ΠΝ περιφερείᾳ , ἐν ᾧ ἄρα χρόνῳ τὸ Θ ἐπὶ τὸ |
| οὐ χρή . ἔπειτα τὰϲ κόμαϲ ξυρῷ ἀφαιρέοντα ϲικύην τῇ κορυφῇ προϲβάλλειν προτέρην : τὴν δὲ ἑτέρην [ τὴν ] | ||
| , περιφανέστατα δὲ τῆς Αἰνειάδος Ἀφροδίτης ὁ βωμὸς ἐπὶ τῇ κορυφῇ τοῦ Ἐλύμου ἱδρυμένος καὶ ἱερὸν Αἰνείου ἱδρυμένον ἐν Αἰγέστῃ |
| δύο σημείων τῶν Β Ε κλάσαι τὴν ΒΝΞΕ καθόλου τῇ δοθείσῃ εὐθείᾳ ἴσην τῶν κλασμάτων τὸ πλῆθος δοθὲν ἔχουσαν . | ||
| ΒΓ . Διὰ τοῦ δοθέντος ἄρα σημείου τοῦ Α τῇ δοθείσῃ εὐθείᾳ τῇ ΒΓ παράλληλος εὐθεῖα γραμμὴ ἦκται ἡ ΕΑΖ |
| ὀνομάτων εἰς τὸ δηλοῦν ἀλλήλοις ἃ ἐννοούμεθα , κρείττονί τινι συναφῇ τῶν ψυχῶν συναπτομένων καὶ μεταδιδουσῶν ἀλλήλαις τῶν οἰκείων διανοημάτων | ||
| πασῶν σύστημα ἠλέγχετο τῆς διὰ πέντε καὶ διὰ τεσσάρων ἐν συναφῇ , ὡς ὁ διπλάσιος λόγος ἤτοι ἡμιολίου τε καὶ |
| , οὐδὲ ἄλλο τι τῶν τοιούτων . πρόδηλον οὖν ὡς ὁμόλογος ἥ τε ἀποκοπή , οὐδέν τε ἐμπόδιον ἐπιγινομένου τοῦ | ||
| καὶ ἔστιν οὕτως ἅπας ὁ περὶ εὐδαιμονίας λόγος πρὸς ἑαυτὸν ὁμόλογος , τῶν προηγουμένων καὶ ἐφεπομένων μηδαμῇ διαφωνούντων πρὸς ἄλληλα |
| ἐκβεβλήσθω ἡ ΑΒΕ , καὶ κείσθω ἡ ΒΕ ἴση τῇ ἡμισείᾳ τῆς ἐκ τοῦ κέντρου , καὶ ἐν τῷ ὀρθῷ | ||
| αὐτὰς ἐνθέρμους καταβάπτομεν εἰς γλεῦκος καὶ θάλασσαν ἑψημένην ἐφ ' ἡμισείᾳ , καὶ ἀνελόμενοι ἐπιτιθέμεθα εἰς τὴν ληνὸν νύκτα καὶ |
| τὰς αἰσθήσεις . ̈ . , Π . , Ἐμπεδοκλῆς ἐλλείψει τροφῆς τὴν ὄρεξιν [ . γίνεσθαι ] . . | ||
| : μὴ σπεῖραι παίδων ἄλοκα : παρὰ τὸ αὖλαξ : ἐλλείψει τοῦ υ : καὶ τροπῆ τοῦ α εἰς ο |
| ΓΑΔ . λέγω , ὅτι ἡ ΓΑΔ τῇ Β οὐ συμπεσεῖται . ἤχθω ἀπὸ τοῦ Α ἐφαπτομένη ἡ ΕΑΖ . | ||
| Η σημεῖον κέντρον ἐστὶ τῆς ΑΒ τομῆς , ἡ ΓΖ συμπεσεῖται τῇ ΑΒ , εἴτε μή ἐστιν , ὑποκείσθω τὸ |
| . ἐπεὶ δὲ βούλονταί τινες ὑπεναντίαν ἀμφοτέραις ἀριθμητικῇ τε καὶ γεωμετρικῇ ταύτην ἐκδέχεσθαι , ἔφαμεν δὲ ἡμεῖς τῇ ἀριθμητικῇ μόνῃ | ||
| α˙ωιϚιγ˙τκα / . β . Εὑρεῖν τρεῖς ἀριθμοὺς ἐν τῇ γεωμετρικῇ ἀναλογίᾳ , ὅπως ἕκαστος αὐτῶν προσλαβὼν τὸν δοθέντα ποιῇ |
| τουτέστι ΔΕ , ΕΖ , ἐλάττους ἔσονται τῶν ΜΞ , ΞΛ , τουτέστι τῆς ΜΝ : ἀλλ ' ἡ ΜΝ | ||
| τουτέστιν αἱ ΔΕ , ΕΖ , δύο ταῖς ΜΞ , ΞΛ , τουτέστι τῇ ΜΝ , ἴσαι εἰσίν . ἀλλὰ |
| ἐκ μὲν τῆς πρὸς μεσημβρίαν πλευρᾶς συνάπτει τῇ καταλεγομένῃ νῦν ζώνῃ ἀραιᾷ σφόδρα οὔσῃ κατὰ τὴν συναφήν , ἄρχεται δὲ | ||
| τῆς Αἰθιοπίας φεύγειν , αἰσθομένης δὲ τῆς μητρὸς καὶ τῇ ζώνῃ τὸν τράχηλον αὐτοῦ σφιγγούσης , ταύτῃ μηδὲ καθ ' |
| εὐθείας κέντροις τοῖς πέρασιν αὐτῆς , διαστήματι δὲ τῇ ἀγομένῃ καθέτῳ ἀπὸ τῆς διχοτομίας αὐτῆς ἐπὶ τὴν παράλληλον αὐτῇ πλευρὰν | ||
| ὅπερ ἄτοπον . Ἐδείχθη γὰρ ἡ ΘΚ κάθετος τῇ ΜΝ καθέτῳ ἴση , αἵτινες κάθετοι ἤχθησαν ἀπὸ τῶν ἐπισταθεισῶν μετεώρων |
| Εἰ μὲν οὖν σύμμετρός ἐστιν ἡ ΒΖΕ περιφέρεια τῇ ΑΒΓ περιμέτρῳ τοῦ κύκλου , ἐπεὶ διαιρεθείσης τῆς ΑΒΓ περιμέτρου τοῦ | ||
| τῶν περὶ Μαιῶτιν καὶ τὸν ὅλον Πόντον ᾠκισμένων ἐθνῶν ἐν περιμέτρῳ τρισμυρίων σταδίων . Ῥωμαίων δὲ στρατηγὸς μὲν Παμφυλίας Κόιντος |
| τὴν οἰκουμένην ἐν σφαίρᾳ καταγράφειν . Ἔκθεσις τῶν ἐντασσομένων τῇ καταγραφῇ μεσημβρινῶν καὶ παραλλήλων . Μέθοδος εἰς τὴν ἐν ἐπιπέδῳ | ||
| γεωγραφήσοντα τὰ μὲν διὰ τῶν ἀκριβεστέρων τηρήσεων εἰλημμένα προϋποτίθεσθαι τῇ καταγραφῇ καθάπερ θεμελίους , τὰ δ ' ἀπὸ τῶν ἄλλων |
| κατὰ τὴν ἀνατολικὴν πλευρὰν , καθ ' ἣν συνῆπται τῇ Βελγικῇ κατὰ τὸν Σηκοάναν ποταμὸν , ὡς εἶναι τοῦ μήκους | ||
| Ἰάτινον κγʹ μζʹ ∠ ʹʹ Μεθ ' οὓς πρὸς τῇ Βελγικῇ Οὐαδικάσιοι καὶ πόλις Νοιόμαγος κδʹ γʹʹ μϚʹ ∠ ʹʹ |
| ἐφ ' ἧς τὸ μεῖζον ὄνομα σύμμετρόν ἐστι τῇ ἐκκειμένῃ ῥητῇ , δευτέραν δέ , ἐφ ' ἧς τὸ ἔλασσον | ||
| ἄλλαι εὐθεῖαι , αἳ μήκει μὲν ἀσύμμετροί εἰσι τῇ ἐκκειμένῃ ῥητῇ , δυνάμει δὲ μόνον σύμμετροι , καὶ διὰ τοῦτο |
| ἡμῖν ἕτερόν ποτε σύμφωνον , ὅπερ ἂν τῇ ἕκτῃ χαρισαίμεθα συζυγίᾳ , ἐξ ἀνάγκης διὰ γυμνοῦ τοῦ ω ἡ ἕκτη | ||
| . Μ . Ν . Ρ . τῇ πέμπτῃ ταῦτα συζυγίᾳ προσανατίθεσο καὶ ἴδε μοι τὸν ἀριθμὸν τῶν συμφώνων , |
| Αἰγόκερῳ προσνεύσει Κριῷ , ἐν Ὑδροχόῳ προσνεύσει Ἰχθύσι . δευτέρᾳ διχοτομίᾳ ἀποκρούσασα ἐν Ἰχθύσι προσνεύσει Ὑδροχόῳ , ἐν Κριῷ προσνεύσει | ||
| οὕτως μὲν αἱ στερήσεις ποιήσουσι διαφοράν , ἐν δὲ τῇ διχοτομίᾳ οὐ ποιήσουσιν . Ὅτι δ ' οὐκ ἐνδέχεται τῶν |
| Τί σοι χαρίσωμαι ; Γυμνὸν ἀποδύσαντά με κέλευε πρὸς τῇ σανίδι δεῖν τὸν τοξότην , ἵνα μὴ ' ν κροκωτοῖς | ||
| τοῦτο τὸ ξύλον ἔχει κατὰ τὰ πέρατα ἐπιπεπηγότα τῇ ὑπτίᾳ σανίδι ἕτερα ξύλα ποδιαῖα τῷ μήκει , τῷ δ ' |
| ιδ ∠ ʹιβ , καὶ διέστηκεν Ἀλεξανδρείας πρὸς δύσεις ὥρας γεʹ . Τῆς δὲ Ἀχαΐας αἱ μὲν Βοιώτιαι Θῆβαι τὴν | ||
| ἐνιαυτοῦ , ὁ χρόνος ἐστὶν ἐν ᾧ ὁ ἥλιος τὴν γεʹ περιφέρειαν διαπορεύεται . Καὶ ἐπεὶ τοῦ δʹ ἄστρου ἀνατέλλοντος |
| ΕΜΠΕΠΤΑΣ , ὁ αὐτός φησι , πύρινος ἄρτος κοῖλος καὶ σύμμετρος , ὅμοιος ταῖς λεγομέναις κρηπῖσιν , εἰς ἃς ἐντίθεται | ||
| ΗΘ , ῥητή ἐστι καὶ ἡ ΑΒ ἡ τρίπηχυς καὶ σύμμετρος μήκει τῇ προτεθείσῃ πηχυαίᾳ τῇ ΗΘ : ὁ γὰρ |
| ζητούμενον καὶ δῆλόν πως . ἔσται γὰρ καὶ ὡς ἡ ΚΜα πρὸς ΣΜβ , οὕτως ἡ ΣΜβ πρὸς ΤΜΓ καὶ | ||
| ἡ ΤΜΓπρὸς τὴν ΡΜδ . καὶ ἴση ἐστὶν ἡ μὲν ΚΜα τῇ ΒΔ , ἡ δὲ ΚΡ τῇ ΑΒ , |
| τι ἢ ἀπ ' ἄλλου τὸ αὐτό , οὐχ ἡ ἀντικειμένη , ἀλλ ' ἔσται ἐκείνης ἑτέρα , τοῦτο δέ | ||
| φερόμενον : ἡ γὰρ ὅλη φορὰ οὐθὲν ἧττον ἑκατέρα ἑκατέρᾳ ἀντικειμένη ἐπ ' ἄπειρον νοεῖται . Καὶ μὴν καὶ ἰσοταχεῖς |
| ὀκταέδρου δὲ τρίγωνον τὸ ΣΡΠ ἔστω , καὶ ὁμοίως ἡ ΧΨ κάθετος , ἣν δεῖ ἐλάσσονα δεῖξαι τῆς ΥΩ καθέτου | ||
| ἀπὸ τῆς ΚΓ μείζονα λόγον ἔχει ἤπερ ιβʹ τὰ ἀπὸ ΧΨ πρὸς ιεʹ τὰ ἀπὸ ΩΦ : ὥστε καὶ λϚʹ |
| τῶν ὄντων . Ἆρ ' οὖν τῇ ἐπινοίᾳ καὶ τῇ ἐπιβολῇ ἢ καὶ τῇ ὑποστάσει ; Σκεπτέον δὲ ὧδε : | ||
| τῶν δ ' ὀδόντων ἤδη παρακυψάντων χρῆσθαι τρυφερῶν ἐρίων καθαρῶν ἐπιβολῇ τραχήλου καὶ κεφαλῆς καὶ σιαγόνων ἐμβροχῇ τε τῶν αὐτῶν |
| ἡ διὰ τῆς ιʹ μοίρας τῶν Χηλῶν καὶ τοῦ Κριοῦ διάμετρος ἡ ΑΖΒΓ , καὶ ὑποκείσθω καθάπερ ἐπὶ τῆς προτέρας | ||
| τετμημένον τῷ ἐπιπέδῳ , ὑφ ' οὗ γέγονεν ἡ ΕΔ διάμετρος τῆς τοῦ κυλίνδρου τομῆς , ἔσται καὶ ἐν τῷ |
| τὸν ἰσημερινὸν οἰκήσεως : αὕτη δέ ἐστιν ἐν μέσῃ τῇ διακεκαυμένῃ ζώνῃ . Καί φησιν οἰκεῖσθαι τοὺς τόπους καὶ εὐκρατοτέραν | ||
| τε καὶ φωτισμῶν τοῦ ἀέρος . Ἐν μὲν γὰρ τῇ διακεκαυμένῃ ἴσαι διὰ παντὸς αἱ νύκτες ταῖς ἡμέραις , ἐν |
| ʹ γʹ νο νγ Ϛʹ δʹ τῶν ἐν τῇ ἑξῆς διαστάσει γ ὁ ἑπόμενος . . . . . . | ||
| κζʹ , ἐπὶ δὲ τοῦ δευτέρου τὸ κατὰ Ἀριστόξενον ἐν διαστάσει μοιρῶν κδʹ καὶ γʹ καὶ γʹ , ἐπὶ δὲ |
| οἱ ΣΤ , ΡΥ . ἐπεὶ οὖν ἴση ἐστὶν ἡ ΣΗ τῇ ΘΡ , καὶ σύμμετρός ἐστιν ἡ ΗΘ ἑκατέρᾳ | ||
| . Ἐπεζεύχθωσαν γὰρ αἱ ΔΥ , ΥΕ , ΒΣ , ΣΗ . καὶ ἐπεὶ παράλληλός ἐστιν ἡ ΔΞ τῇ ΟΕ |
| τῇ μείζονι καθόλου καταφατικῇ ἀναγκαίᾳ καὶ τῇ ἐλάττονι ἐπὶ μέρους καταφατικῇ ἐνδεχομένῃ . εἰ δὲ ἡ ἐλάττων ἀποφατικὴ οὖσα ἀναγκαία | ||
| ἐπὶ μέρους ἐνδεχόμενον καταφατικὸν ἔχον συμπέρασμα ἐπὶ τῇ μείζονι καθόλου καταφατικῇ ἀναγκαίᾳ καὶ τῇ ἐλάττονι ἐπὶ μέρους καταφατικῇ ἐνδεχομένῃ . |
| ὄντος πρὸς τῷ νʹ [ διὰ τὸ ἴσην εἶναι τὴν ζηʹ περιφέρειαν τῇ λνʹ περιφερείᾳ ] : καὶ ἔσται ὁ | ||
| τῷ ηʹ ] : λέγω ὅτι τοῦ ἡλίου διαπορευομένου τὴν ζηʹ περιφέρειαν τὸ εʹ ἄστρον οὐ φαίνεται . Ἔστω γὰρ |
| ΘΠ τοῖς # δ , καὶ τῇ γενομένῃ διαστάσει τῆς ΘΠ τοῖς # μϚ ἴσην θῶμεν τὴν ΘΤ , καὶ | ||
| , καὶ τριῶν οὐσῶν περιφερειῶν ὁμοιογενῶν ἀνίσων τῶν ΚΘ , ΘΠ , ΗΘ εἰλήφθω τις περιφέρεια ἡ ΘΡ μείζων μὲν |
| ἐν ψωρώδει κύϲτει . ἐπεὶ δὲ καὶ ὑγρόν ἐϲτι τῇ κράϲει τὸ μετρίωϲ γλυκύ , κατὰ λόγον ἄδιψόν ἐϲτι . | ||
| διὰ ταῦτα ξηραίνειν μὲν θέλων τὸ ϲῶμα τῶν ξηροτέρων τῇ κράϲει ζῴων δώϲειϲ τὴν ϲάρκα , θερμαίνειν δὲ βουλόμενοϲ τῶν |
| ἢ ἑτέρᾳ αἰσθήσει κρινούσῃ τὴν ὄψιν . εἰ μὲν δὴ ἑτέρᾳ καὶ οὐ τῇ ὄψει , δύο ἔσονται αἰσθήσεις τοῦ | ||
| , οὐκ ἔσται δυὰς κατὰ τὴν παράθεσιν τῆς ἑτέρας τῇ ἑτέρᾳ , ὡς οὐδὲ πρὶν τῆς συνόδου ἐτύγχανεν . εἰ |
| τῆς δευτέρας συζυγοῦς διαμέτρου , ὡς δὲ τὸ ὑπὸ τῶν ΠΣ , ΣΑ , τουτέστι τὸ ὑπὸ τῶν ΓΣ , | ||
| δύσις ἡ Ρ , καὶ κείσθω τῇ ΡΝ ἴση ἡ ΠΣ [ καθ ' ὑπόθεσιν , καὶ ἔστω ἐπὶ τοῦ |
| καὶ βορειοτέρῳ ποδί , ἔσχατος δὲ ὁ ἐν ἄκρᾳ τῇ οὐρᾷ . Μεσουρανεῖ δὲ τῶν ἄλλων πρῶτος μὲν ὁ ἐν | ||
| ; οὐ γὰρ πρὸ μοίρας ἡ τύχη βιάζεται . ἔσαινεν οὐρᾷ μ ' ὦτα κυλλαίνων κάτω γλώσσης ἀπαυστὶ στάζε μυξώδης |
| ἐστι καὶ ὀξύτονον , καὶ ὅτι κοινόν ἐστι καὶ τῇ κλίσει τῶν θηλυκῶν ἠκολούθησε : τὰ γὰρ εἰς υξ θηλυκὰ | ||
| σπινθήρ καὶ Ἐλευθήρ : καὶ τὸ μὲν πατήρ ἠκολούθησε τῇ κλίσει τοῦ μήτηρ καὶ θυγάτηρ , τὸ δὲ ἀστήρ , |
| τὸν αὐχένα κατὰ νῶτα δαφοινὸς καὶ γένεια καθιεὶς ὑπ ' ὀρθῇ καὶ πριονωτῇ τῇ λοφιᾷ βλέπων τε δεινῶς δεδορκὸς καὶ | ||
| ποιεῖν ἐμφερὲϲ ταῖϲ τοῦ Κ δύο κεραίαιϲ ταῖϲ πρὸϲ τῇ ὀρθῇ γραμμῇ ϲημαίνουϲι δραχμήν , ⋖ , τὴν ϲυνωνύμωϲ καὶ |
| . ὁμοῦ οὖν τῶν τεσσάρων ὅρων τάξει τούτων σκθʹ ρμθʹ ρλαʹ ρκαʹ ὁ μὲν πρῶτος καὶ δεύτερος συνάμφω ἔσονται τρίτου | ||
| τῶν τξʹ , ἀφαιρῶ τὸν αὐτὸν σκθʹ καὶ λείπεταί μοι ρλαʹ , ὅν φημι εἶναι τρίτον ὅρον ἐν τῇ ἐκθέσει |
| διαγομένη εὐθεῖα μήτε τὴν τομὴν τέμνῃ κατὰ δύο σημεῖα μήτε παράλληλος ᾖ τῇ ἀσυμπτώτῳ , συμπεσεῖται μὲν τῇ ἀντικειμένῃ τομῇ | ||
| κατὰ μῆκος τῆς φάλαγγος δεύτερον ζυγόν , καὶ ὁ τούτῳ παράλληλος ὑπ ' αὐτὸν τρίτον , καὶ τέταρτόν ἐστι τὸ |
| , ὑποβαλόντεϲ κοπάριον ἢ μηλωτίδα διὰ τοῦ ϲτομίου ἐκτέμωμεν ἁπλῇ διαιρέϲει τὸ ὑποκείμενον δέρμα : εἰ δὲ εἰϲ τὸ βάθοϲ | ||
| κατὰ τὴν μεϲότητα τοῦ βλεφάρου πρὸϲ τὸν ταρϲὸν τόποϲ ἐπιπολαίῳ διαιρέϲει . μετὰ δὲ τὴν ϲημείωϲιν ἐκϲτρέψαν - τεϲ τὸ |
| πολὺ ἔλαττον τῶν τρισχιλίων καὶ μάλιστα πρὸς τῇ Πυρήνῃ τῇ ποιούσῃ τὴν ἑῴαν πλευράν : ὄρος γὰρ διηνεκὲς ἀπὸ νότου | ||
| ὅπερ ἔδει δεῖξαι . Τῇ μετὰ μέσου μέσον τὸ ὅλον ποιούσῃ μία μόνη προσαρμόζει εὐθεῖα δυνάμει ἀσύμμετρος οὖσα τῇ ὅλῃ |
| ἴση ἄρα καὶ ἡ ΒΜ τῇ ΜΘ . ὧν ἡ ΕΜ τῇ ΜΚ ἴση ἐστίν : λοιπὴ ἄρα ἡ ΒΕ | ||
| ἐπικύκλων εὐθεῖαι , ἐπὶ μὲν τὰ ἀπόγεια αἱ ΕΗ καὶ ΕΜ , ἐπὶ δὲ τὰ περίγεια αἱ ΕΚ καὶ ΕΞ |
| καλοῦσιν , ἐν ἐκείνῃ τῇ αἰτίᾳ περιλαμβάνεται τῇ καὶ πρότερον εἰρημένῃ περὶ τῶν ἀκάρπων ὅτι διὰ πυκνότητα καὶ ἰσχὺν καὶ | ||
| τοῦ ἐκκέντρου πάντοτε τὴν θέσιν ἔχον , τὴν ἴσην τῇ εἰρημένῃ πάροδον , ὥστε ἐν ὅλοις πρώτοις νυχθημέροις λζ πρὸς |
| ἡ φίλησις γίνηται : καὶ τὸ δίκαιον δὲ ἐν τῇ ἰσότητι σώζεται . ἀλλ ' οὐχ ὁμοίως ἔχει τὸ ἴσον | ||
| πάθεσιν εἴκουσι . παυσάσθωσαν οἷοί εἰσι , καὶ ἀγαπήσουσι πάντας ἰσότητι ἀρετῆς . τί δὲ οἴεσθε , ὦ ἄνθρωποι , |
| θέλῃ ἀφίστασθαι , σικύην προσβαλὼν ἀφαιρέειν τοῦ αἵματος , κατακεντῶν ἀκίδι τριγώνῳ ἐς τὰ γούνατα , ἢν ἐν τοῖσι γούνασιν | ||
| ἁλιεὺς ἢ τρώσῃ τὸν παῖδα αὐτῆς τῇ τριαίνῃ ἢ τῇ ἀκίδι βάλῃ * * ἡ μὲν ἀκὶς τὰ ἄνω τέτρηται |
| α # Μο β : ὅθεν ὁ ʂ γίνεται μονάδος δγ / . τὰ λοιπὰ δῆλα . κδ . Εὑρεῖν | ||
| , ὅτι ἡ δγ μείζων ἐστὶ τῆς εα τῇ τε δγ καὶ τῇ γζ . εἰ τοίνυν δεήσει τῶν ἄκρων |
| ἅμα ἐθεώρησεν ὁ Ἀντίοχος , γέγονεν ἡ ἀρτηρία αὐτοῦ ἐν ἀνωμαλίᾳ : ὁ γὰρ Ἐρασίστρατος ἔμεινε σφυγμολογῶν αὐτὸν ἀπ ' | ||
| , διὰ τῆς ἰδίας εἰκόνος τὸν τῶν ἀνθρώπων βίον ἐν ἀνωμαλίᾳ δεικνυμένη . Ἡ δὲ μέθοδος τοῦ πολεύοντος καὶ διέποντος |
| λι : τινὲϲ δὲ τὴν ἑτέραν τοῦ λ γραμμὴν ἄλλῃ λοξῇ τέμνοντεϲ δηλοῦϲι τὴν λίτραν , # . τὸ δὲ | ||
| οὕτω ] σφαιρῶν , ὁμαλῇ καὶ ἁπλῇ καὶ τεταγμένῃ , λοξῇ δὲ καὶ διὰ βραδυτῆτα μόνον ὑπολειπομένῃ τῶν ἀπλανῶν ἢ |
| ; Ποιοῦσι δὲ τὸν ἀπὸ τοῦ ξΚ , οὗ ἡ πλευρὰ ἡ ξΚ , λιποῦσα δυάδα τῆς ΝΚ , ποιεῖ | ||
| νῶτον τοῦ στρατοπέδου φράξασθαι τοῖς σταυροῖς , μετὰ δὲ τὰ πλευρὰ ἀμφότερα . ἐπεὶ δὲ ἥ τε νὺξ ἐπέλαβε καὶ |
| καλείσθω ἀποτομὴ δευτέρα . Ἐὰν δὲ μηδετέρα σύμμετρος ᾖ τῇ ἐκκειμένῃ ῥητῇ μήκει , ἡ δὲ ὅλη τῆς προσαρμοζούσης μεῖζον | ||
| ἀπὸ συμμέτρου ἑαυτῇ , καὶ ἡ ΑΕ σύμμετρός ἐστι τῇ ἐκκειμένῃ ῥητῇ τῇ ΑΒ μήκει . τετμήσθω δὴ ἡ ΕΔ |
| δολιχόσκιον ἔγχος , καὶ βάλεν Ἀτρεΐδαο κατ ' ἀσπίδα πάντοσε ἴσην , οὐδ ' ἔρρηξεν χαλκός , ἀνεγνάμφθη δέ οἱ | ||
| [ . εἶναι τὴν σελήνην ] . , Π . ἴσην τῶι ἡλίωι [ . εἶναι τὴν σελήνην ] : |
| φορὰ καὶ τῶν ἐν αὐτῷ ὄντων ἁπάντων νοῦ κινήσει καὶ περιφορᾷ καὶ λογισμοῖς ὁμοίαν φύσιν ἔχει καὶ συγγενῶς ἔρχεται , | ||
| κέντρου τάξιν ἐπέχει πρὸς τὸν κόσμον . Ἐν μιᾷ κόσμου περιφορᾷ ὁ μὲν διὰ τῶν πόλων τῆς σφαίρας κύκλος δὶς |
| ΒΖ , ΔΓ : καὶ ἡ ΒΓ ἄρα ἀσύμμετρός ἐστι συναμφοτέραις ταῖς ΒΖ , ΔΓ . ὥστε καὶ λοιπῇ τῇ | ||
| ΘΒ ἐν γωνίᾳ τῇ ὑπὸ ΛΑΓ , ἥ ἐστιν ἴση συναμφοτέραις ταῖς ὑπὸ ΒΑΓ ΒΘΔ . καὶ ἔστι τοῦτο καθολικώτερον |
| τὰ μὲν οὖν πλεῖστα τούτων φύσει ἔχουσι , τὰ δὲ ἠγμέναι ἀνεπιστημόνως δύσχρηστοί εἰσιν : αἱ τοιαῦται μὲν οὖν κύνες | ||
| καὶ ἐπεὶ ἐν κύκλῳ τῷ ΑΒΓΔ [ ] δύο παράλληλοι ἠγμέναι εἰσὶν αἱ ΕΖ , ΓΔ , ἴση ἄρα ἐστὶν |
| ἐγγεγράφθω τὸ ΑΒΓΔΕ . λέγω , ὅτι ἡ τοῦ ΑΒΓΔΕ πενταγώνου πλευρὰ δύναται τήν τε τοῦ ἑξαγώνου καὶ τὴν τοῦ | ||
| καὶ ἐγγεγράφθω εἰς αὐτὸν τριγώνου μὲν πλευρὰ ἡ ΒΕ , πενταγώνου δὲ ἡ ΓΔ , καὶ ἔστωσαν παράλληλοι , καὶ |
| ἐν ξυλόχοισιν ὀρέστεροι ἀγρευτῆρες εἷλον ἀναλκείην ἐλάφων εὐαγρέϊ τέχνῃ , μηρίνθῳ στέψαντες ἅπαν δρίος : ἀμφὶ δὲ κούφων ὀρνίθων δήσαντο | ||
| ἀλλ ' ἵνα μὴ ἀποκάμῃς „ φησί „ νηχόμενος , μηρίνθῳ λεπτῇ τὸν σὸν πόδα τῷ ἐμαυτοῦ προσαρτήσω ” . |
| , ταύτης τὴν λαμπρότητα ἀφανῆ ποιήσει . πάντων γὰρ τῇ ὑπεροχῇ διαφέρει . ” καταπλαγεὶς δὲ Νεκτεναβὼ τὴν εὐστοχίαν τῶν | ||
| τῶν ἐκκειμένων ὅρων . Ἐὰν ὦσιν ὁσοιδηποτοῦν ὅροι ἐν ἴσῃ ὑπεροχῇ , ἑξῆς ἀλλήλων κείμενοι , περισσοὶ τὸ πλῆθος , |
| πόδας βʹ , ἔστω κανὼν ἔχων τὸ μῆκος πόδας [ δζʹ ] , τὸ δὲ πλάτος καὶ τὸ ὕψος πόδα | ||
| . Εἰ γὰρ μὴ ἔστιν ὁμοία ἡ γεʹ περιφέρεια τῇ δζʹ , ἔστω ὁμοία ἡ γεʹ τῇ δηʹ : ἐν |
| ἴση ἐστὶν ἡ μὲν ΚΜα τῇ ΒΔ , ἡ δὲ ΚΡ τῇ ΑΒ , ἡ δὲ ΒΕ τῇ ΚΘ , | ||
| τῇ μὲν ΑΓ ἴσην θῶμεν τὴν ΓΔ , τῇ δὲ ΚΡ ἴσην τὴν ΡΧ , καὶ τὰ αὐτὰ κατασκευάσωμεν , |
| ἐστιν , ἔστιν ἄρα , ὡς ἡ ΕΚ πρὸς τὴν ΚΞ , οὕτως ἡ ΕΑ πρὸς τὴν ΑΖ . ἐπεὶ | ||
| ΡΤ . ἐπεὶ δὲ ζητῶ τίς περιφέρεια ἡ ΕΚ τῇ ΚΞ , ζητήσω ἄρα τίς γωνία ἡ ὑπὸ ΕΟΚ τῇ |
| τομῆς κατὰ τὸ πέρας τῆς διαμέτρου παράλληλος ἔσται τῇ δίχα τεμνομένῃ εὐθείᾳ . ἔστωσαν ἀντικείμεναι τομαὶ αἱ Α , Β | ||
| συζυγὴς αὐτῇ ἡ ἀπὸ τοῦ κέντρου ἀγομένη παράλληλος τῇ δίχα τεμνομένῃ . ἔστωσαν ἀντικείμεναι τομαὶ αἱ Α , Β , |
| ἡ ΑΖ ἐφάψεται τῶν τομῶν ἀμφοτέρων , καὶ ἡ ΔΖ ἐκβαλλομένη τεμεῖ τὰς τομὰς μεταξὺ τῶν Α , Β κατὰ | ||
| καὶ συμπιπτέτω αὐτῇ εὐθεῖα ἡ ΓΔΕ κατὰ τὸ Δ καὶ ἐκβαλλομένη ἐφ ' ἑκάτερα ἐκτὸς πιπτέτω τῆς τομῆς . λέγω |
| ὁ ἀνὴρ ὡς μοναδικῇ προσελθὼν τῇ παρὰ τῶν πρεσβυτέρων ἀνυμνηθείσῃ δεκάδι : ὥσπερ οὖν καὶ τὰ ἑξῆς αὐτῷ κατὰ τὴν | ||
| τοῦ δὶς τέσσαρα , γεννᾷ δ ' οὐδένα τῶν ἐν δεκάδι : ὁ δ ' αὖ τέσσαρα τὴν ἀμφοῖν καὶ |
| ὡς τῆς ὕλης ὑποστατική , εἴπερ ἀνάλογον ἕστηκε τῇ ἀορίστῳ δυάδι . ἔπειτα τίς ἀνάγκη τῆς αὐτῆς ὕλης οὔσης τὰ | ||
| σνϚψκθ / . καὶ ἐὰν δυάδα μερίσωμεν εἰς τὸν τοῦδε δυάδι ἐλάσσονα , εὑρήσομεν τὸν ʂ μονάδος σιζφιβ / , |
| εἰς ἀθυμίαν ἐνέπεσεν . οὐ μὴν ἀλλ ' ἐν τῇ προειρημένῃ πόλει μείνας ἡμέρας τινὰς καὶ τὸ στρατόπεδον ἐκ τῆς | ||
| μὲν προφερόμενος μόνην ἀντιτιθεμένην αὑτῷ φάσιν ἕξει τὴν ἀντικειμένην τῇ προειρημένῃ : ἀποδεικνὺς δὲ διὰ λόγου ἀκούσεται , ὅτι δεῖ |
| δὲ οὕτως ὥστε ἵστασθαι μέχρι τοῦ γένους . οἷον τῇ τριάδι ὑπάρχει μὲν [ ἀριθμὸς καὶ ] τὸ ὄν , | ||
| ἀριθμός ἐστιν , οἱ δὲ δεύτεροι κοινῇ μὲν διαφορᾷ χρώμενοι τριάδι , τάξει δὲ οἱ ἐπιμόριοι ἀφ ' ἡμιολίου ἀρχόμενοι |
| ἡ μονὰς ἢ τῇ τετράδι ἢ τῇ ἐξ ἀμφοτέρων ἀποτελουμένῃ πεντάδι . οὔτε δὲ ἑαυτῇ προστίθεται διὰ τὸ τὸ μὲν | ||
| ἀπὸ μονάδος τετράδι διαφερόντων , καὶ ἑπταγωνικὸς ὁ ἐκ τῶν πεντάδι καὶ ἑξῆς ἀκολούθως , καὶ κατὰ δυάδος ὑπεροχὴν τῶν |
| τῇ χρόᾳ καὶ τῇ ϲυϲτάϲει τῇ τοῦ πολύποδοϲ τοῦ θαλαττίου ϲαρκί , ἐκ παχέων καὶ γλίϲχρων χυμῶν ἔχει τὴν γένεϲιν | ||
| τὴν μὲν ὀξεῖαν αὐτοῦ πλευρὰν τῇ ἔϲωθεν τοῦ δέρματοϲ ὑφηρμόϲθαι ϲαρκί , τὴν δὲ ἀμβλεῖαν τῷ ὀϲτέῳ , διωθήϲωμεν αὐτὸ |
| καὶ ὁ τοῦ ΣΤ ἄρα πόλος μεταξὺ τῶν ΕΖ , ΝΑ κύκλων ἐστίν : ὁ ἄρα ἕτερος αὐτοῦ πόλος μεταξὺ | ||
| . καί εἰσι τοῦ αὐτοῦ κύκλου : ἴση ἄρα ἡ ΝΑ περιφέρεια τῇ ΑΒ περιφερείᾳ : ὅπερ ἐστὶν ἀδύνατον . |
| ὀρθίως ἡ τέμνουσα τῇ τεμνομένῃ , κατ ' ἀνάγκην ὀφείλει στιγμῇ ἑαυτῆς ἐπιζεύγνυσθαι τῇ κατὰ τὴν διαιρουμένην γραμμὴν στιγμῇ . | ||
| τοῦτο συμβαίνει τοῖς περὶ τῆς τετράδος ἀξιώμασιν . εἰ γὰρ στιγμῇ μὲν ἡ μονὰς ἀνάλογος , γραμμῇ δὲ ἡ δυάς |
| λόγου δύναμιν δείκνυσι τὴν ῥητορικήν , ὅτι πρᾶγμά ἐστιν ἐν μεσότητι θεωρούμενον , ᾧ ἔξεστι χρήσασθαι καὶ καλῶς καὶ κακῶς | ||
| τοῦ ἴσου καὶ τοῦ προσήκοντος , ἐμπεριεχομένη ἀριθμοῦ τετραγώνου περισσοῦ μεσότητι . πρῶτον δὴ ἐκθετέον στιχηδὸν τοὺς μέχρι τούτου ἀριθμοὺς |
| , κέχρηται δὲ ἤδη τὸ πρότερον εἶδος τῇ τοῦ πηλίκου ἀναλογίᾳ δὲ χρήσεται καὶ τοῦτο τῇ τοῦ ποσοῦ ὡς ἂν | ||
| τοῦτον ὁ βασιλεὺς πρὸς τὸν λαόν καὶ χρήσασθαι οὕτω τῇ ἀναλογίᾳ , μὴ εἴποι οὕτως ἀλλὰ ποιμένα καλέσαι λαῶν τὸν |
| πέλας ἀγκυλοκώλων . κἀν Θάσῳ ὀψώνει τρίγλην , κοὐ χείρονα λήψει ταύτην : ἐν δὲ Τέῳ χείρω , κεδνὴ δὲ | ||
| αἳ παρῆσαν αὐτῷ , κομίσαντες ἐσκόπουν ὅπως μετριώτατα ἢ ὁμήρων λήψει ἢ ἄλλῳ τῳ τρόπῳ καταπαύσουσι τὴν ἐπιβουλήν . καὶ |
| ὅθεν καὶ ϲύνθετον τὸ ὄνομα ἔχει . ἔϲτι δὲ τῇ χρόᾳ τεφρώδηϲ | , ϲτόμα ἔχει ἐπίμηκεϲ , λεπτῇ καὶ | ||
| πλῆθος ἀκρίδων ἀμύθητον , τοῖς τε μεγέθεσι διαλλάττον καὶ τῇ χρόᾳ τοῦ πτερώματος εἰδεχθὲς καὶ ῥυπαρόν . ἐκ τούτου δαψιλεῖς |
| ὡς ἂν κάθετος ἀπὸ τῆς κορυφῆς ἐπὶ τὴν βάσιν τοῦ ἀμβλυγωνίου : δῆλον οὖν , φησίν , ἐκ τῆς παιδικῆς | ||
| τὴν ἐπὶ πᾶν διάστασιν αὐτοῖς ἐνδίδωσι , καὶ ὁ τοῦ ἀμβλυγωνίου λόγος εἰς μέγεθος αὔξει καὶ παντοίαν ἔκτασιν τὰ εἴδη |
| κατὰ συμβεβηκός . διότι γὰρ συμβέβηκε τῇ ἐπιθυμίᾳ συνελθεῖν τῇ μερικῇ δόξῃ καὶ καταναγκάσαι τὴν γεῦσιν γεύσασθαι τοῦδε τοῦ γλυκέος | ||
| : ἄν τις τῇ καθόλου χρῆται καὶ θεωρῇ , τῇ μερικῇ δὲ οὐ χρῆται , οὐδὲν τῆς ἐπιστήμης ἀπώνατο . |
| τι σῶμα ὅμοιον ἀεὶ διὰ παντὸς φαίνεται ἡμῖν ἐν τῇ σελήνῃ . τί δὲ καὶ τὸ συνεχὲς τοῦ σώματος τούτου | ||
| , πάντα δὲ ἀέρα ἀνιπταμένη , συνθέουσα ἡλίῳ , συμπεριφερομένη σελήνῃ , συνδεδεμένη τῷ τῶν ἄλλων ἄστρων χορῷ , καὶ |
| , ὡς εἶναι τὸ μὲν ἑκούσιον . οἱ πύκται , κλίμαξ εἰσεφέρετο , ὥστε διαστάντας καὶ χώραν λαβόντας μένειν ἐν | ||
| καὶ λοξὰ τῇ θέσει ἔχουσα κλιμάκια , ἀλλ ' ἔστω κλίμαξ ἰσοπαχὴς ἔχουσα τετράγωνα τὰ κλιμάκια . χάριν δὲ τοῦ |
| ΒΖ τῷ ΧΦΨ : καὶ ὁ ΧΦΨ ἄρα πρὸς τὸν ΞΚΟ κέκλιται ὡς ἐπὶ τὰ Ξ μέρη . καὶ ἐπεὶ | ||
| , ΒΖ κοινῇ τομῇ . ἡ δὲ κοινὴ τομὴ τῶν ΞΚΟ , ΒΖ ἐστιν ἡ ἀπὸ τοῦ Ο σημείου διάμετρος |
| τομῆς ἀγαγεῖν ἐφαπτομένην , ἥτις πρὸς τῇ διὰ τῆς ἁφῆς ἠγμένῃ διαμέτρῳ ἴσην περιέξει γωνίαν τῇ δοθείσῃ ὀξείᾳ . ἔστω | ||
| τεταγμένως κατηγμένην συμπίπτῃ τῇ διὰ τῆς ἁφῆς καὶ τοῦ κέντρου ἠγμένῃ εὐθείᾳ , καὶ ποιηθῇ , ὡς τὸ τμῆμα τῆς |
| ἀφλεγμάντων εἰλεῶν , φησὶν Ἀρχιγένης , καὶ τῇ διὰ καλαμίνθης ἡμετέρᾳ ἱερᾷ , δραχμὰς δύο , ἐνίοτε δὲ καὶ τρεῖς | ||
| τε ἥλιον καὶ τὴν σελήνην τὴν κορυφὴν ἔχῃ πρὸς τῇ ἡμετέρᾳ ὄψει . λέγω ὅτι γίγνεται τὰ διὰ τῆς προτάσεως |
| ἐκ πλειόνων ἀρωμάτων εἴληφε τὴν σύστασιν : δυςμετάβλητα γὰρ τῇ συστάσει πάντα τὰ ἀρώματα ταῖς δυνάμεσι καὶ ταῖς οὐσίαις : | ||
| πάντα συμμέτρῳ ἀνθρώπῳ , ὑπόξανθον ἢ ὑπόπυρρον , καὶ τῇ συστάσει σύμμετρον , ἀναλόγως ἔχον καὶ τὸ ποσὸν τοῦ πινομένου |
| . Ποιείσθω οὖν κατὰ τὸ Λ , καὶ κείσθω τῇ ΛΖ περιφερείᾳ ἴση περιφέρεια ἡ ΜΗ . Ἐπεὶ οὖν ὁ | ||
| καὶ ἡμέρας χρόνος ἐστίν , ἐν ᾧ ὁ ἥλιος τὴν ΛΖ περιφέρειαν διαπορεύεται , καὶ ἔστιν ἴση ἡ ΛΖ τῇ |
| Ὁ ϲταθμὸϲ βάρει μετρούμενοϲ κρίνεται , τὸ δὲ μέτρον ἀγγείου κοιλότητι : τὸ δὲ ἀγγεῖον ἢ ξηροῦ ποϲοῦ μέτρον ἐϲτὶν | ||
| , δελφῖνες λεγόμενοι διὰ τὸ ἐν τῇ δελφύϊ ἢ τῇ κοιλότητι τῆς γῆς αὐτοὺς σύρεσθαι , συνεκόμισαν αὐτῷ τὴν τοιαύτην |
| κατ ' ἀγκῶνα διάρθρωσιν , αὐτόν τε μέσην ἐνθεῖναι τῇ καμπῇ τὴν χεῖρα : κατὰ δὲ τὴν ἐκτεταμένης τῆς διαρθρώσεως | ||
| Κασίου , ὃ ἔστι Πηλούσιον . Ὕσπληγγι δνοφερῇ ] τῇ καμπῇ καὶ τῇ ἀφετηρίᾳ τῇ μελαίνῃ καὶ τῇ ὁρμῇ . |
| τὸ ΜΖ : πολλῷ ἄρα τὸ ΜΖ μεῖζόν ἐστι τοῦ ΞΚ . καὶ ἐπεὶ τὰ ΞΝ , ΝΛ , ΛΚ | ||
| , ἡ δὲ ΞΛ τῆς ΠΡ , ὅλη ἄρα ἡ ΞΚ ὅλης τῆς ΚΡ ἐστὶ διπλῆ . Πάλιν ἐπεὶ διπλῆ |
| τῶν τοιούτων θετέον ὡς ἐναντίαν τῇ τὸ ἀγαθὸν ἀγαθὸν εἶναι λεγούσῃ : ἐναντία γάρ ἐστι τῇ τοιαύτῃ ἡ ἀπόφασις αὐτῆς | ||
| . μήποτε δὲ καὶ ὡς ἀδύνατον τοῦτό φησιν ἑπόμενον τῇ λεγούσῃ ὑποθέσει καὶ ἐκ τοῦ πρότερον γεγονότος , ἤγουν τοῦ |
| οὐκ αὔξει αὐτὴν οὐδὲ ἀφαιρούμενον μειοῖ , καὶ ἡ γραμμὴ ἀπλατὴς οὖσα πλάτει προστιθεμένη πλάτος οὐ ποιεῖ , καὶ ἡ | ||
| γεωμετρίας , ὅτι ἀμερὲς τὸ σημεῖον καὶ ὅτι ἡ γραμμὴ ἀπλατὴς ὑπάρχει , καὶ καθόλου φάναι πᾶσα ἐπιστήμη διανοητική , |
| οὕτως , οἱ δὲ Πυθαγόρειοι τὸ μὲν σημεῖον ἀνάλογον ἐλάμβανον μονάδι , δυάδι δὲ τὴν γραμμὴν καὶ τριάδι τὸ ἐπίπεδον | ||
| πρὸ γὰρ τοῦ ζ ὁ Ϛ , ὃς ἄρτιος : μονάδι οὖν διαφέρει τοῦ ἀρτίου . ὡσαύτως καὶ ὁ ἄρτιος |