| δύο σημείων τῶν Β Ε κλάσαι τὴν ΒΝΞΕ καθόλου τῇ δοθείσῃ εὐθείᾳ ἴσην τῶν κλασμάτων τὸ πλῆθος δοθὲν ἔχουσαν . | ||
| ΒΓ . Διὰ τοῦ δοθέντος ἄρα σημείου τοῦ Α τῇ δοθείσῃ εὐθείᾳ τῇ ΒΓ παράλληλος εὐθεῖα γραμμὴ ἦκται ἡ ΕΑΖ |
| : ὁμοίως καὶ ἐὰν ὁ τοῦ μητρικοῦ κλῆρος ἐν τῷ διαμέτρῳ εὑρεθῇ καὶ ὁ τοῦ διαμέτρου τοῦ κλήρου τῆς μητρὸς | ||
| ἐστὶ τῷ ΑΖ . Ἐὰν παραβολῆς εὐθεῖα ἐπιψαύουσα συμπίπτῃ τῇ διαμέτρῳ , καὶ ἀπὸ τῆς ἁφῆς εὐθεῖα καταχθῇ ἐπὶ τὴν |
| Α , καὶ τῇ ΓΔ παράλληλος ἤχθω ἐν τῇ ἑτέρᾳ τομῇ ἡ ΕΖ , καὶ τετμήσθω δίχα κατὰ τὸ Η | ||
| τυχόντα σημεῖα , καὶ ἀπ ' αὐτῶν ἀχθῶσιν ἐν τῇ τομῇ παρὰ τὰς ἐφαπτομένας τέμνουσαι ἀλλήλας τε καὶ τὴν γραμμήν |
| τὴν ἔγγιον τῆς ἀπωτέρω , ἐλαχίστην δὲ τὴν πρὸς τῇ ἐφαπτομένῃ , καθ ' ἣν ἡ μέση κίνησίς ἐστιν , | ||
| συμπτώσει τῶν ἐφαπτομένων διαφέρει τῷ ἀπολαμβανομένῳ τριγώνῳ πρός τε τῇ ἐφαπτομένῃ καὶ τῇ διὰ τῆς ἁφῆς ἀγομένῃ διαμέτρῳ . ἔστωσαν |
| Ἰστέον , ὡς τὰ μεγέθη τριχῶς : ἢ γὰρ ἐν γραμμῇ ἢ ἐν ἐπιφανείᾳ ἢ ἐν σώματι . ἐν γοῦν | ||
| δὲ τῷ τρίτῳ τῶν γεωγραφικῶν καθιστάμενος τὸν τῆς οἰκουμένης πίνακα γραμμῇ τινι διαιρεῖ δίχα ἀπὸ δύσεως ἐπ ' ἀνατολὴν παραλλήλῳ |
| τῶν ὄντων . Ἆρ ' οὖν τῇ ἐπινοίᾳ καὶ τῇ ἐπιβολῇ ἢ καὶ τῇ ὑποστάσει ; Σκεπτέον δὲ ὧδε : | ||
| τῶν δ ' ὀδόντων ἤδη παρακυψάντων χρῆσθαι τρυφερῶν ἐρίων καθαρῶν ἐπιβολῇ τραχήλου καὶ κεφαλῆς καὶ σιαγόνων ἐμβροχῇ τε τῶν αὐτῶν |
| , ὑποβαλόντεϲ κοπάριον ἢ μηλωτίδα διὰ τοῦ ϲτομίου ἐκτέμωμεν ἁπλῇ διαιρέϲει τὸ ὑποκείμενον δέρμα : εἰ δὲ εἰϲ τὸ βάθοϲ | ||
| κατὰ τὴν μεϲότητα τοῦ βλεφάρου πρὸϲ τὸν ταρϲὸν τόποϲ ἐπιπολαίῳ διαιρέϲει . μετὰ δὲ τὴν ϲημείωϲιν ἐκϲτρέψαν - τεϲ τὸ |
| συμπίπτουσα τῇ ΗΑ κατὰ τὸ Κ , ἡ δὲ ΗΛ συμπίπτουσα τῇ ΒΚ κατὰ τὸ Μ . ἐπεὶ οὖν ἴση | ||
| ἀχθῇ πρὸς ὁποιανοῦν τῶν τομῶν , καὶ ταύτῃ παράλληλος ἀχθῇ συμπίπτουσα ταῖς ἐφεξῆς τρισὶ τομαῖς , τὸ περιεχόμενον ὑπὸ τῶν |
| πολυχρονίως ἡ πανήγυρις τελεσθήσεται . ἄλλως : ἐν ταύτῃ πρῶτον ἀγομένῃ τῇ ἑορτῇ τῶν Ὀλυμπίων παρέστησαν αἱ Μοῖραι καὶ ὁ | ||
| Ω κάθετος ἀγομένη ἴση ἐστὶ τῇ ἀπὸ τοῦ Χ καθέτῳ ἀγομένῃ ἐπὶ τὸ τοῦ ΑΒΓ κύκλου ἐπίπεδον , τὰ Ω |
| συντονοῦνται , φίλων κούφων δούλων , μονογενῆ δὲ τῇ ἰδίᾳ εὐθείᾳ , πτερά πτερῶν , ξυρά ξυρῶν , ὀστᾶ ὀστῶν | ||
| . Πρὸς ἄρα τῷ δοθέντι σημείῳ τῷ Α τῇ δοθείσῃ εὐθείᾳ τῇ ΒΓ ἴση εὐθεῖα κεῖται ἡ ΑΛ : ὅπερ |
| ἐπὶ κλίνης τὰς φυσικὰς ἀνάγκας ἐπλήρου . Ἑνδεκάτῃ ἐπὶ τῇ ἐπιφανείᾳ τὸ παρυφιστάμενον ἐνήχετο λευκὸν μέν , ὑπόγλισχρον δὲ καὶ | ||
| ὀρθὰς οὖσαν τῇ ΒΓ , καὶ πεποίηκε τομὴν ἐν τῇ ἐπιφανείᾳ τὴν ΔΕΖ , ἡ δὲ διάμετρος ἡ ΜΕ ἐκβαλλομένη |
| γὰρ ἐκ τοῦ πόλου αὐτοῦ ἴση ἐστὶ τῇ τοῦ τετραγώνου πλευρᾷ τοῦ ἐγγραφομένου εἰς τὸν μέγιστον κύκλον . καὶ ἐπεζεύχθωσαν | ||
| ἡμῶν δὲ εἷς [ καὶ ] ὁ κυβερνήτης , τρίγλης πλευρᾷ διαπαρεὶς τὸ μετάφρενον . ἐκείνην μὲν οὖν τὴν ἡμέραν |
| τὸν αὐχένα κατὰ νῶτα δαφοινὸς καὶ γένεια καθιεὶς ὑπ ' ὀρθῇ καὶ πριονωτῇ τῇ λοφιᾷ βλέπων τε δεινῶς δεδορκὸς καὶ | ||
| ποιεῖν ἐμφερὲϲ ταῖϲ τοῦ Κ δύο κεραίαιϲ ταῖϲ πρὸϲ τῇ ὀρθῇ γραμμῇ ϲημαίνουϲι δραχμήν , ⋖ , τὴν ϲυνωνύμωϲ καὶ |
| ἐκβεβλήσθω ἡ ΑΒΕ , καὶ κείσθω ἡ ΒΕ ἴση τῇ ἡμισείᾳ τῆς ἐκ τοῦ κέντρου , καὶ ἐν τῷ ὀρθῷ | ||
| αὐτὰς ἐνθέρμους καταβάπτομεν εἰς γλεῦκος καὶ θάλασσαν ἑψημένην ἐφ ' ἡμισείᾳ , καὶ ἀνελόμενοι ἐπιτιθέμεθα εἰς τὴν ληνὸν νύκτα καὶ |
| ΑΗΒ γωνία καθ ' ὑπόθεσιν ἴση ἐστὶν τῇ ὑπὸ ΔΘΕ γωνίᾳ : ὅμοιον ἄρα ἐστὶν τὸ ΑΒΗ τρίγωνον τῷ ΔΕΘ | ||
| περιέχωσι , τὸ δὲ Δ σημεῖον ᾖ ἐν τῇ ἐφεξῆς γωνίᾳ τῆς ὑπὸ τῶν ἀσυμπτώτων περιεχομένης , ἡ ἀπὸ τῆς |
| ἢ ἑτέρᾳ αἰσθήσει κρινούσῃ τὴν ὄψιν . εἰ μὲν δὴ ἑτέρᾳ καὶ οὐ τῇ ὄψει , δύο ἔσονται αἰσθήσεις τοῦ | ||
| , οὐκ ἔσται δυὰς κατὰ τὴν παράθεσιν τῆς ἑτέρας τῇ ἑτέρᾳ , ὡς οὐδὲ πρὶν τῆς συνόδου ἐτύγχανεν . εἰ |
| ὀνομάτων εἰς τὸ δηλοῦν ἀλλήλοις ἃ ἐννοούμεθα , κρείττονί τινι συναφῇ τῶν ψυχῶν συναπτομένων καὶ μεταδιδουσῶν ἀλλήλαις τῶν οἰκείων διανοημάτων | ||
| πασῶν σύστημα ἠλέγχετο τῆς διὰ πέντε καὶ διὰ τεσσάρων ἐν συναφῇ , ὡς ὁ διπλάσιος λόγος ἤτοι ἡμιολίου τε καὶ |
| ΖΕ ἴσαι εἰσὶν ἑκατέρα ἑκατέρᾳ . καὶ βάσις ἡ ΒΕ βάσει τῇ ΕΔ ἐστιν ἴση : τὸ γὰρ Ε σημεῖον | ||
| ὑπὸ ΔΗΖ ἴση : καὶ βάσις μὲν ἄρα ἡ ΒΖ βάσει τῇ ΔΖ ἴση ἐστίν , γωνία δὲ ἡ ὑπὸ |
| . α . Εὑρεῖν τρίγωνον ὀρθογώνιον ὅπως ὁ ἐν τῇ ὑποτεινούσῃ λείψας τὸν ἐν ἑκατέρᾳ τῶν ὀρθῶν ποιῇ κύβον . | ||
| ἐν τῷ ἐμβαδῷ ʂ α , τὸν δὲ ἐν τῇ ὑποτεινούσῃ Μο κυβικῶν # ʂ α , ἔρχεται ζητεῖν τίς |
| οὐ χρή . ἔπειτα τὰϲ κόμαϲ ξυρῷ ἀφαιρέοντα ϲικύην τῇ κορυφῇ προϲβάλλειν προτέρην : τὴν δὲ ἑτέρην [ τὴν ] | ||
| , περιφανέστατα δὲ τῆς Αἰνειάδος Ἀφροδίτης ὁ βωμὸς ἐπὶ τῇ κορυφῇ τοῦ Ἐλύμου ἱδρυμένος καὶ ἱερὸν Αἰνείου ἱδρυμένον ἐν Αἰγέστῃ |
| τῶν τοιούτων θετέον ὡς ἐναντίαν τῇ τὸ ἀγαθὸν ἀγαθὸν εἶναι λεγούσῃ : ἐναντία γάρ ἐστι τῇ τοιαύτῃ ἡ ἀπόφασις αὐτῆς | ||
| . μήποτε δὲ καὶ ὡς ἀδύνατον τοῦτό φησιν ἑπόμενον τῇ λεγούσῃ ὑποθέσει καὶ ἐκ τοῦ πρότερον γεγονότος , ἤγουν τοῦ |
| εἰδέναι ὅτι ἐν τῇδε τῇ διαφορᾷ καὶ οὐκ ἐν τῇ ἀντικειμένῃ αὐτῇ πᾶν αὐτὸ περιέχεται . οἷον ὅταν ἄνθρωπον προθείς | ||
| ἀπὸ τοῦ Ζ ἐπὶ τὸ Γ ἐπιζευγνυμένη ἐκβαλλομένη συμπεσεῖται τῇ ἀντικειμένῃ τομῇ , καὶ ἡ ἀπὸ τῆς συμπτώσεως ἐπὶ τὸ |
| τομῆς κατὰ τὸ πέρας τῆς διαμέτρου παράλληλος ἔσται τῇ δίχα τεμνομένῃ εὐθείᾳ . ἔστωσαν ἀντικείμεναι τομαὶ αἱ Α , Β | ||
| συζυγὴς αὐτῇ ἡ ἀπὸ τοῦ κέντρου ἀγομένη παράλληλος τῇ δίχα τεμνομένῃ . ἔστωσαν ἀντικείμεναι τομαὶ αἱ Α , Β , |
| ὡς ι τὸ πλῆθος . διὸ καὶ περιλαβεῖν ταύτας μιᾷ προτάσει ἐνδεχόμενον εὑρόντες οὕτως ἐγράψαμεν : ἐὰν ὑπτίου ἢ παρυπτίου | ||
| , ἐν δὲ τῷ τρίτῳ καὶ τετάρτῳ καὶ ἕκτῳ καθολικῇ προτάσει εἶναι πάντως : μὴ γινομένης δὲ τῆς ἀποδείξεως δι |
| . ἐπεὶ δὲ βούλονταί τινες ὑπεναντίαν ἀμφοτέραις ἀριθμητικῇ τε καὶ γεωμετρικῇ ταύτην ἐκδέχεσθαι , ἔφαμεν δὲ ἡμεῖς τῇ ἀριθμητικῇ μόνῃ | ||
| α˙ωιϚιγ˙τκα / . β . Εὑρεῖν τρεῖς ἀριθμοὺς ἐν τῇ γεωμετρικῇ ἀναλογίᾳ , ὅπως ἕκαστος αὐτῶν προσλαβὼν τὸν δοθέντα ποιῇ |
| τομῆς ἀγαγεῖν ἐφαπτομένην , ἥτις πρὸς τῇ διὰ τῆς ἁφῆς ἠγμένῃ διαμέτρῳ ἴσην περιέξει γωνίαν τῇ δοθείσῃ ὀξείᾳ . ἔστω | ||
| τεταγμένως κατηγμένην συμπίπτῃ τῇ διὰ τῆς ἁφῆς καὶ τοῦ κέντρου ἠγμένῃ εὐθείᾳ , καὶ ποιηθῇ , ὡς τὸ τμῆμα τῆς |
| τὰς αἰσθήσεις . ̈ . , Π . , Ἐμπεδοκλῆς ἐλλείψει τροφῆς τὴν ὄρεξιν [ . γίνεσθαι ] . . | ||
| : μὴ σπεῖραι παίδων ἄλοκα : παρὰ τὸ αὖλαξ : ἐλλείψει τοῦ υ : καὶ τροπῆ τοῦ α εἰς ο |
| τῇ μείζονι καθόλου καταφατικῇ ἀναγκαίᾳ καὶ τῇ ἐλάττονι ἐπὶ μέρους καταφατικῇ ἐνδεχομένῃ . εἰ δὲ ἡ ἐλάττων ἀποφατικὴ οὖσα ἀναγκαία | ||
| ἐπὶ μέρους ἐνδεχόμενον καταφατικὸν ἔχον συμπέρασμα ἐπὶ τῇ μείζονι καθόλου καταφατικῇ ἀναγκαίᾳ καὶ τῇ ἐλάττονι ἐπὶ μέρους καταφατικῇ ἐνδεχομένῃ . |
| τῆς παραγωγῆς οὐκ ἐν τῷ συμπεράσματι ἀλλ ' ἐν τῇ ἀντιφάσει , ἥτις εἶχε τὸ διττόν : τὸ γὰρ ἆρ | ||
| τῆς διαλεκτικῆς περὶ τὸν ἀποφαντικὸν εἰλεῖσθαι λόγον τῷ συνηγορεῖν τῇ ἀντιφάσει καὶ τοῖς ἀντικειμένοις : διὰ τοῦτο οὖν καὶ τὰ |
| τὸν ἰσημερινὸν οἰκήσεως : αὕτη δέ ἐστιν ἐν μέσῃ τῇ διακεκαυμένῃ ζώνῃ . Καί φησιν οἰκεῖσθαι τοὺς τόπους καὶ εὐκρατοτέραν | ||
| τε καὶ φωτισμῶν τοῦ ἀέρος . Ἐν μὲν γὰρ τῇ διακεκαυμένῃ ἴσαι διὰ παντὸς αἱ νύκτες ταῖς ἡμέραις , ἐν |
| Τί σοι χαρίσωμαι ; Γυμνὸν ἀποδύσαντά με κέλευε πρὸς τῇ σανίδι δεῖν τὸν τοξότην , ἵνα μὴ ' ν κροκωτοῖς | ||
| τοῦτο τὸ ξύλον ἔχει κατὰ τὰ πέρατα ἐπιπεπηγότα τῇ ὑπτίᾳ σανίδι ἕτερα ξύλα ποδιαῖα τῷ μήκει , τῷ δ ' |
| εἰς ἀθυμίαν ἐνέπεσεν . οὐ μὴν ἀλλ ' ἐν τῇ προειρημένῃ πόλει μείνας ἡμέρας τινὰς καὶ τὸ στρατόπεδον ἐκ τῆς | ||
| μὲν προφερόμενος μόνην ἀντιτιθεμένην αὑτῷ φάσιν ἕξει τὴν ἀντικειμένην τῇ προειρημένῃ : ἀποδεικνὺς δὲ διὰ λόγου ἀκούσεται , ὅτι δεῖ |
| πολὺ ἔλαττον τῶν τρισχιλίων καὶ μάλιστα πρὸς τῇ Πυρήνῃ τῇ ποιούσῃ τὴν ἑῴαν πλευράν : ὄρος γὰρ διηνεκὲς ἀπὸ νότου | ||
| ὅπερ ἔδει δεῖξαι . Τῇ μετὰ μέσου μέσον τὸ ὅλον ποιούσῃ μία μόνη προσαρμόζει εὐθεῖα δυνάμει ἀσύμμετρος οὖσα τῇ ὅλῃ |
| τῇ χρόᾳ καὶ τῇ ϲυϲτάϲει τῇ τοῦ πολύποδοϲ τοῦ θαλαττίου ϲαρκί , ἐκ παχέων καὶ γλίϲχρων χυμῶν ἔχει τὴν γένεϲιν | ||
| τὴν μὲν ὀξεῖαν αὐτοῦ πλευρὰν τῇ ἔϲωθεν τοῦ δέρματοϲ ὑφηρμόϲθαι ϲαρκί , τὴν δὲ ἀμβλεῖαν τῷ ὀϲτέῳ , διωθήϲωμεν αὐτὸ |
| καὶ ὕποπτον ἐν πᾶσιν ἄνδρα σημαίνει . ὁπόσοι δὲ ἐν ῥινὶ φθέγγονται , ψευδεῖς , κακοήθεις , βάσκανοι , πήμασιν | ||
| ἀντίληψιν τῆς φωνῆς ἀπεργάζεσθαι . ἀλλὰ καὶ αἱ ὀδμαὶ τῇ ῥινὶ καὶ οἱ χυμοὶ αὖ τῇ γλώττῃ προσπίπτουσιν , καὶ |
| περιέχουσιν ἴσας γωνίας : ὅμοιον ἄρα τὸ ΔΑΓ τρίγωνον τῷ ΗΑΒ τριγώνῳ ἐπιζευχθείσης τῆς ΒΗ . ἡ ἄρα ὑπὸ ΑΓΔ | ||
| πρὸς ΗΒ . ἐπεὶ οὖν δύο τρίγωνα τὰ ΒΘΗ , ΗΑΒ μίαν γωνίαν μιᾷ γωνίᾳ ἴσην ἔχει : ὀρθαὶ γὰρ |
| διὰ τῶν ἐπιπέδων εὑρεῖν ἔστιν εὐθεῖαν ἴσην τῇ τοῦ κύκλου περιφερείᾳ χρησάμενον τοῖς ἐπὶ τῆς ἕλικος εἰρημένοις θεωρήμασιν . Σοφίας | ||
| πάλιν , ἐπεὶ ὁμοία ἐστὶν ἡ ΘΗ περιφέρεια τῇ ΠΝ περιφερείᾳ , ἐν ᾧ ἄρα χρόνῳ τὸ Θ ἐπὶ τὸ |
| κατὰ τὴν ἀνατολικὴν πλευρὰν , καθ ' ἣν συνῆπται τῇ Βελγικῇ κατὰ τὸν Σηκοάναν ποταμὸν , ὡς εἶναι τοῦ μήκους | ||
| Ἰάτινον κγʹ μζʹ ∠ ʹʹ Μεθ ' οὓς πρὸς τῇ Βελγικῇ Οὐαδικάσιοι καὶ πόλις Νοιόμαγος κδʹ γʹʹ μϚʹ ∠ ʹʹ |
| ΜΞ ἐστιν ἡ ῥητὸν καὶ μέσον δυναμένη . ἐπεὶ γὰρ ἀσύμμετρός ἐστιν ἡ ΑΗ τῇ ΗΕ , ἀσύμμετρον ἄρα ἐστὶ | ||
| εἰσὶ σύμμετροι αἱ ΜΝ , ΝΞ ] . καὶ ἐπεὶ ἀσύμμετρός ἐστιν ἡ ΑΕ τῇ ΕΔ μήκει , ἀλλ ' |
| ἡ ἀπὸ δεδομένου σημείου πρὸς θέσει εὐθείᾳ ἀγομένη εὐθεῖα ἐν δεδομένῃ γωνίᾳ . ιεʹ . Παρὰ θέσει ἐστὶν ἡ διὰ | ||
| τοῦ βίου , καὶ ὅσα δὲ ἄλλα . πετεινὰ τῇ δεδομένῃ αὐτοῖς φωνῇ κελαδεῖ , καὶ οὐδέν ἐστιν ἄφωνον ἐν |
| ἀνάγκη μὴ παντί . ὥστε τοὺς κεχρημένους τῇ εἰς ἀδύνατον ἀπαγωγῇ ἐφ ' ἑκατέρᾳ τῶν προτάσεων τούτων ἀμφότερα δεῖ λαμβάνειν | ||
| ὡς ἣν πεποιήμεθα δεῖξιν , ἔοικε μὲν τῇ εἰς ἀδύνατον ἀπαγωγῇ , οὐ μὴν ἡ αὐτή ἐστιν ἐκείνῃ . οὔτε |
| ἡμῖν ἕτερόν ποτε σύμφωνον , ὅπερ ἂν τῇ ἕκτῃ χαρισαίμεθα συζυγίᾳ , ἐξ ἀνάγκης διὰ γυμνοῦ τοῦ ω ἡ ἕκτη | ||
| . Μ . Ν . Ρ . τῇ πέμπτῃ ταῦτα συζυγίᾳ προσανατίθεσο καὶ ἴδε μοι τὸν ἀριθμὸν τῶν συμφώνων , |
| Ὁ ϲταθμὸϲ βάρει μετρούμενοϲ κρίνεται , τὸ δὲ μέτρον ἀγγείου κοιλότητι : τὸ δὲ ἀγγεῖον ἢ ξηροῦ ποϲοῦ μέτρον ἐϲτὶν | ||
| , δελφῖνες λεγόμενοι διὰ τὸ ἐν τῇ δελφύϊ ἢ τῇ κοιλότητι τῆς γῆς αὐτοὺς σύρεσθαι , συνεκόμισαν αὐτῷ τὴν τοιαύτην |
| τὸ δὲ πάθος παριστάνει . ὅταν γοῦν ἁπλῶς τὰ τῇ προφορᾷ ταὐτὰ καὶ τῷ πράγματι θήσομεν , ἀπατώμεθα : χαλεπὸν | ||
| τὸ τοῦ νόμου ῥητὸν , ἀλλ ' ἓν μὲν τῇ προφορᾷ , διττὸν δὲ τῇ ἐννοίᾳ : ἄλλο γὰρ ἡ |
| κατὰ συμβεβηκός . διότι γὰρ συμβέβηκε τῇ ἐπιθυμίᾳ συνελθεῖν τῇ μερικῇ δόξῃ καὶ καταναγκάσαι τὴν γεῦσιν γεύσασθαι τοῦδε τοῦ γλυκέος | ||
| : ἄν τις τῇ καθόλου χρῆται καὶ θεωρῇ , τῇ μερικῇ δὲ οὐ χρῆται , οὐδὲν τῆς ἐπιστήμης ἀπώνατο . |
| Εἰ μὲν οὖν σύμμετρός ἐστιν ἡ ΒΖΕ περιφέρεια τῇ ΑΒΓ περιμέτρῳ τοῦ κύκλου , ἐπεὶ διαιρεθείσης τῆς ΑΒΓ περιμέτρου τοῦ | ||
| τῶν περὶ Μαιῶτιν καὶ τὸν ὅλον Πόντον ᾠκισμένων ἐθνῶν ἐν περιμέτρῳ τρισμυρίων σταδίων . Ῥωμαίων δὲ στρατηγὸς μὲν Παμφυλίας Κόιντος |
| χέον . νικητικὸν τὸ στέμμα συγκομίσομαι πάλιν νικήσας τὸν νικήσαντα πλοκῇ τρέψας τε δείξω οἶκον ἔκλαμπρον μένειν εἰς αὐτὸν ὡς | ||
| δὲ πᾶν τὸ ἔργον ὑπάρχουσι πυκναὶ θύραι , τῇ μὲν πλοκῇ ταρσώδεις , τὰς στροφὰς δ ' ἔχουσαι πρὸς τὰς |
| ὁ πρόϲφατοϲ λευκὸϲ πλήρηϲ διόλου πυκνὸϲ ξηρὸϲ ἀτερηδόνιϲτοϲ ἄβρωμοϲ τῇ γεύϲει δηκτικὸϲ πυρώδηϲ . δολοῦϲι δὲ αὐτὸν ἔνιοι ῥίζαν ἑλενίου | ||
| ξηραὶ καὶ λευκαὶ καὶ τεταμέναι καὶ ἄβρωτοι πυρώδειϲ ἐν τῇ γεύϲει καὶ ἀρωματίζουϲαι . ὁ δὲ ὀπὸϲ τοῦ πάνακοϲ ἄχρηϲτόϲ |
| ΓΑΔ . λέγω , ὅτι ἡ ΓΑΔ τῇ Β οὐ συμπεσεῖται . ἤχθω ἀπὸ τοῦ Α ἐφαπτομένη ἡ ΕΑΖ . | ||
| Η σημεῖον κέντρον ἐστὶ τῆς ΑΒ τομῆς , ἡ ΓΖ συμπεσεῖται τῇ ΑΒ , εἴτε μή ἐστιν , ὑποκείσθω τὸ |
| ὀρθίως ἡ τέμνουσα τῇ τεμνομένῃ , κατ ' ἀνάγκην ὀφείλει στιγμῇ ἑαυτῆς ἐπιζεύγνυσθαι τῇ κατὰ τὴν διαιρουμένην γραμμὴν στιγμῇ . | ||
| τοῦτο συμβαίνει τοῖς περὶ τῆς τετράδος ἀξιώμασιν . εἰ γὰρ στιγμῇ μὲν ἡ μονὰς ἀνάλογος , γραμμῇ δὲ ἡ δυάς |
| , οὐδὲ ἄλλο τι τῶν τοιούτων . πρόδηλον οὖν ὡς ὁμόλογος ἥ τε ἀποκοπή , οὐδέν τε ἐμπόδιον ἐπιγινομένου τοῦ | ||
| καὶ ἔστιν οὕτως ἅπας ὁ περὶ εὐδαιμονίας λόγος πρὸς ἑαυτὸν ὁμόλογος , τῶν προηγουμένων καὶ ἐφεπομένων μηδαμῇ διαφωνούντων πρὸς ἄλληλα |
| τὰς ἀρχὰς ὡς πρὸς τὰ ἀντικείμενα μέρη πρὸς τῇ καταλλήλῳ φλιᾷ . πάλιν τε ὁμοίως τῷ βραχίονι καρχήσιος βρόχος περιτιθέσθω | ||
| περιτιθέσθω . τούτου αἱ ἀρχαὶ ἀγέσθωσαν κάτω καὶ ἀποδιδόσθωσαν τῇ φλιᾷ πρὸς κράτημα : αἱ δὲ τῶν κάλων ἀρχαὶ τῷ |
| τὰ παρακείμενα ὀρθογώνια παρὰ τὴν ἑτέραν εὐθεῖαν πλάτος ἔχοντα τὴν ἀπολαμβανομένην ὑπ ' αὐτῶν πρὸς τῇ κορυφῇ τῆς τομῆς ἐλλείποντα | ||
| ἀνάλογον πλάτος ἔχον τὴν ὑπ ' αὐτῆς τῆς τεταγμένως ἀχθείσης ἀπολαμβανομένην πρὸς τῇ τομῇ ἐλλεῖπον εἴδει ὁμοίῳ τῷ περιεχομένῳ ὑπὸ |
| ἡ φίλησις γίνηται : καὶ τὸ δίκαιον δὲ ἐν τῇ ἰσότητι σώζεται . ἀλλ ' οὐχ ὁμοίως ἔχει τὸ ἴσον | ||
| πάθεσιν εἴκουσι . παυσάσθωσαν οἷοί εἰσι , καὶ ἀγαπήσουσι πάντας ἰσότητι ἀρετῆς . τί δὲ οἴεσθε , ὦ ἄνθρωποι , |
| Τῷ ἄρα δοθέντι τριγώνῳ τῷ ΑΒΓ ἴσον παραλληλό - γραμμον συνέσταται τὸ ΖΕΓΗ ἐν γωνίᾳ τῇ ὑπὸ ΓΕΖ , ἥτις | ||
| τῇ δοθείσῃ γωνίᾳ εὐθυγράμμῳ τῇ ὑπὸ ΔΓΕ ἴση γωνία εὐθύγραμμος συνέσταται ἡ ὑπὸ ΖΑΗ : ὅπερ ἔδει ποιῆσαι . Ἐὰν |
| , τὴν χειρουργίαν παραιτητέον , χρηστέον δὲ τῇ πρὸ βραχέος ῥηθείσῃ ἀγωγῇ . Εἰ δὲ σύρρηξις μεταξὺ τῶν ἐντέρων καὶ | ||
| καὶ περὶ μὲν τούτων μὴ ἀγνοήσειν ὑπολαμβάνομεν τοὺς χρωμένους τῇ ῥηθείσῃ συμβουλίᾳ : περὶ δὲ τῶν ἐξ ἀρχῆς ῥητέον . |
| : ὅτε μὲν γὰρ λέγομεν τόδε οὕτως ἔχειν , ἐν καταφάσει λέγομεν , ὅτε δὲ μὴ ἔχειν , ἐν ἀποφάσει | ||
| ἀλλ ' , ὥσπερ αὐτός φησιν , ἀντεστραμμένως τῇ μὲν καταφάσει τὴν ἀπόφασιν τῇ δὲ ἀποφάσει τὴν κατάφασιν , καὶ |
| καλοῦσιν , ἐν ἐκείνῃ τῇ αἰτίᾳ περιλαμβάνεται τῇ καὶ πρότερον εἰρημένῃ περὶ τῶν ἀκάρπων ὅτι διὰ πυκνότητα καὶ ἰσχὺν καὶ | ||
| τοῦ ἐκκέντρου πάντοτε τὴν θέσιν ἔχον , τὴν ἴσην τῇ εἰρημένῃ πάροδον , ὥστε ἐν ὅλοις πρώτοις νυχθημέροις λζ πρὸς |
| δολιχόσκιον ἔγχος , καὶ βάλεν Ἀτρεΐδαο κατ ' ἀσπίδα πάντοσε ἴσην , οὐδ ' ἔρρηξεν χαλκός , ἀνεγνάμφθη δέ οἱ | ||
| [ . εἶναι τὴν σελήνην ] . , Π . ἴσην τῶι ἡλίωι [ . εἶναι τὴν σελήνην ] : |
| εὐθείας κέντροις τοῖς πέρασιν αὐτῆς , διαστήματι δὲ τῇ ἀγομένῃ καθέτῳ ἀπὸ τῆς διχοτομίας αὐτῆς ἐπὶ τὴν παράλληλον αὐτῇ πλευρὰν | ||
| ὅπερ ἄτοπον . Ἐδείχθη γὰρ ἡ ΘΚ κάθετος τῇ ΜΝ καθέτῳ ἴση , αἵτινες κάθετοι ἤχθησαν ἀπὸ τῶν ἐπισταθεισῶν μετεώρων |
| δύναται τὸ ὑπὸ ΒΑΚ ἴσος ἐστὶν τῇ ὑπὸ τῆς ΓΔ γινομένῃ ἐπιφανείᾳ . ὁμοίως δὲ καὶ ὁ κύκλος οὗ ἡ | ||
| μετενσωματουμένῃ καὶ τῇ ἐκ σώματος ἀερίνου ἢ πυρίνου εἰς γήινον γινομένῃ , ἣν δὴ μετενσωμάτωσιν οὐ λέγουσιν εἶναι , ὅτι |
| γὰρ ἀλλήλοις κἀν τῷ νέμειν συνῆφθαι φιλίᾳ ῥᾳδίως λυθῆναι μὴ δυναμένῃ , ἤδη δὲ καὶ ἡλικίαν ἔχειν ὡς συγκαθεύδειν μετ | ||
| δὲ εὐχαριστεῖν μηδὲν ἔξω τούτου πλέον τῶν εἰς ἀμοιβὴν ἀντιπαρασχεῖν δυναμένῃ : ὃ γὰρ ἂν θελήσῃ τῶν ἄλλων ἀντιχαρίσασθαι , |
| συζυγίαι . καὶ τοῦτο δῆλον ἔσται πάλιν τῇ τῶν ὅρων παραθέσει , τὸ μὲν παντὶ διὰ ζώου καὶ ἀνθρώπου καὶ | ||
| συλλογιστικὴ ἡ συζυγία : συνάγει γὰρ αὕτη τῇ τῶν ὅρων παραθέσει καὶ τὸ παντὶ καὶ τὸ μηδενί . τοῦ μὲν |
| πάϲαϲ ἰᾶται μετὰ γάλακτοϲ ἐπιχριϲθείϲ . τὰϲ δὲ ἐν τῇ γλώϲϲῃ διακοπὰϲ λεῖοϲ ξηρὸϲ ἐπιπαϲϲόμενοϲ ἰᾶται : καθόλου γὰρ ξηραντικὸϲ | ||
| τε βραδέωϲ ἄρξαϲθαι τῆϲ διαλέκτου καὶ τῷ τὸν ὑπὸ τῇ γλώϲϲῃ δεϲμὸν πλείονα τοῦ ϲυμμέτρου φαίνεϲθαι μὴ προηγηϲαμένηϲ ἑλκώϲεωϲ διαγινώϲκονται |
| τὸ λίθον ἔχειν ἐν τῇ κύστει τὴν τίκτουσαν καὶ τῇ θλίψει τοῦ τραχήλου τῆς ὑστέρας δυσχέρεια γίνεται , ἢ παρὰ | ||
| ἐγὼ πλησίον σου εὑρεθήσομαι ἑστώς , ὑπερασπιστής σου ἐν πάσηι θλίψει καὶ κινδύνωι γενησόμενος . τὰ δὲ σημεῖα ταῦτα ἅπερ |
| ἀμφοτέρων νοεῖσθαι σύνοδον . καὶ εἰ μὲν αὐτοτελῶς καὶ ἰδίᾳ προσχρώμενον δυνάμει ποιεῖν τι πέφυκεν , ὤφειλε διὰ παντὸς ἑαυτὸ | ||
| πάθους : τῇ μὲν ὕλῃ τοῦ πλάσματος πρὸς τὸ πάθος προσχρώμενον , τῇ δὲ τοῦ ἤθους ἀρετῇ ἀπό τε τῆς |
| , ἵν ' ὑπάρχῃ καὶ ταῦτα παρ ' ἡμῖν ἐν βιβλιοθήκῃ σὺν τοῖς ἄλλοις βασιλικοῖς βιβλίοις . Καλῶς οὖν ποιήσεις | ||
| ' ἐστίν : ἐν γὰρ ἀποσπάσματι εὑρεῖν Ἀριστοφάνη ἐν τῇ βιβλιοθήκῃ . τινὲς δέ φασιν αὐτὸ Κυδίδου Ἑρμιονέως τηλέπορόν τι |
| τόπῳ τῷ ἀντικρὺ τοῦ Β , φαινόμενον δὲ πρὸς τῇ συμπτώσει . Οὐκέτι ὁρᾶται . , ] οὐκοῦν ἐν τοῖς | ||
| εἱμαρμένης οὐδὲν γίνεται , ἀλλὰ καὶ οἱ ἐν πολέμῳ καὶ συμπτώσει καὶ ἐμπρησμῷ καὶ ναυαγίῳ ἢ καὶ κατὰ ἄλλην αἰτίαν |
| ὑπὸ δοθείσης καὶ τῆς ΔΖ : τὸ Ζ ἄρα πρὸς παραβολῇ : δοθὲν ἄρα τὸ Ζ . ἀναλο . . | ||
| τοῦ κέντρου ἀγομένων εὐθειῶν , καὶ διότι ἐν μὲν τῇ παραβολῇ αἱ καταγόμεναι ἐφ ' ἑκάστην τῶν διαμέτρων παρὰ τὰς |
| πρὸς ἀλλήλας καὶ τοῦ ὑπ ' αὐτῶν γινομένου χωρίου τὴν τετραγωνικὴν πλευρὰν ἐκβαλόντες ἔχομεν μέσην τὴν β λζ νε : | ||
| τριγωνικὴν γωνίαν ὁ Φιλόλαος τέτταρσιν ἀνῆκεν θεοῖς , τὴν δὲ τετραγωνικὴν τρισίν , ἐνδεικνύμενος αὐτῶν τὴν δι ' ἀλλήλων χώρησιν |
| τὰ μὲν οὖν πλεῖστα τούτων φύσει ἔχουσι , τὰ δὲ ἠγμέναι ἀνεπιστημόνως δύσχρηστοί εἰσιν : αἱ τοιαῦται μὲν οὖν κύνες | ||
| καὶ ἐπεὶ ἐν κύκλῳ τῷ ΑΒΓΔ [ ] δύο παράλληλοι ἠγμέναι εἰσὶν αἱ ΕΖ , ΓΔ , ἴση ἄρα ἐστὶν |
| ἐξ ὕδατος Πηγάσῳ ἀναφερομένῳ τῇ κινήσει τοῦ οὐρανοῦ καὶ τῇ ἡλιακῇ ἀνιμήσει ἐποχουμένη συναναφέρεται ἡ Ἡμέρα : σφαιροειδὴς γάρ ἐστιν | ||
| οἷόν ποτε μέρος ἢ θέσιν στῇ τὸ Γ σημεῖον τῇ ἡλιακῇ ἀκτῖνι , διὰ τοῦ ἐπιπέδου ἐσόπτρου ἡ ἀνάκλασις ἐπ |
| πρὸς τῇ περιφερείᾳ . ἐκτὸς ἄρα ἀνακλασθήσεται τοῦ Α . κεκλάσθω καὶ ἔστω ἡ ΒΚΕ . ὁμοίως δὲ καὶ ἡ | ||
| . οὐδὲ μὴν κλασθήσεται μεταξὺ τῶν Α , Γ . κεκλάσθω γάρ , εἰ δυνατόν , καὶ ἔστω ἡ ΒΖΕ |
| ἐπιφάνειαν τῇ ΑΠ εὐθείᾳ , ἣ δὴ περιαγομένη συμβαλεῖ τῇ κυλινδρικῇ γραμμῇ κατά τι σημεῖον . ἅμα δὲ καὶ τὸ | ||
| καὶ ἀκούσια τὰ πλημμελήματα , ἐκδιδάσκει τῇ κατ ' ἐπιπέδου κυλινδρικῇ κινήσει ἐοικέναι φήσας τὸν τῶν ἀνοήτων βίον , ὃς |
| ὁρᾶται : φανερὸν δέ , καθ ' ἃ ἠναντίωται τῇ ἁρμονικῇ : τῶν γὰρ αὐτῶν ἄκρων ἀμφοτέραις ὑπαρχόντων καὶ ἐν | ||
| Ζ ὑπεροχήν , ὅπερ ἐστὶ κατὰ τὴν μεσότητα τὴν τῇ ἁρμονικῇ ὑπεναντίαν . δῆλον δ ' ὅτι καί , μονάδων |
| θαυμάστῃ : ταῦτα τῆς διαχωρίσεως . φιλότητι : κοινωνίᾳ , συμφωνίᾳ , ἑνώσει , φιλίᾳ . διακρίνας : χωρίσας , | ||
| , τὸ δὲ τῆς διανοίας ἐν ἁρμονίᾳ δογμάτων καὶ ἀρετῶν συμφωνίᾳ , μὴ χρόνου μήκει μαραινόμενον , ἀλλ ' ἐφ |
| , περόνης ἐμβληθείσης εἰς τὸ ἀξόνιον τῆς κατεχούσης ἐν τῇ περιαγωγῇ τὸν κανόνα . τούτων δὲ οὕτως γενομένων κύβος κύβου | ||
| . , , . = , , . ὀνίσκου τε περιαγωγῇ Ὀνίσκους λέγει τοὺς τροχούς , λέγω δὲ τῆς ἁμάξης |
| , οἷον μονῆς μὲν ἐν ἰσότητι , κινήσεως δὲ ἐν ἀνισότητι . ὡσαύτως δὲ τὸ μὲν κατὰ φύσιν ἐν ἰσότητι | ||
| ἐστιν , ἑτέρας φύσεως ἔσται καὶ τῆς ἐναντίας γε τῇ ἀνισότητι , καὶ διὰ τοῦτο οὐ συγκαταριθμηθήσεται τοῖς εἴδεσι τῆς |
| ΒΖ τῷ ΧΦΨ : καὶ ὁ ΧΦΨ ἄρα πρὸς τὸν ΞΚΟ κέκλιται ὡς ἐπὶ τὰ Ξ μέρη . καὶ ἐπεὶ | ||
| , ΒΖ κοινῇ τομῇ . ἡ δὲ κοινὴ τομὴ τῶν ΞΚΟ , ΒΖ ἐστιν ἡ ἀπὸ τοῦ Ο σημείου διάμετρος |
| , ΒΕΓ τρίγωνα . ἔστιν ἄρα , ὡς τὸ ἀπὸ ΤΝ πρὸς τὸ ἀπὸ ΤΟ , οὕτως τὸ ἀπὸ ΒΕ | ||
| διελθὸν ἐπὶ τὸ Ξ παραγίγνεται : ὁμοία ἄρα ἐστὶν ἡ ΤΝ τῇ ΞΡ . Ἔστω τῆς μὲν ΤΜ ἡμίσεια ἡ |
| θερμοτέρων ἐλαίων διεθείς . ὥσπερ δ ' αὐτὸς ἐνδεῖ τῇ συμμετρίᾳ ὡς πρὸς τὰς μέσας τῇ κράσει φλεγμονὰς καὶ φύσεις | ||
| λεπτότητι καὶ παχύτητι τῶν χυμῶν καὶ ἁπλῶς τῇ εὐκρασίᾳ καὶ συμμετρίᾳ αὐτῶν . ὡς ἐν τῷ ἕκτῳ τῶν ἐπιδημιῶν τῷ |
| ἐν ψωρώδει κύϲτει . ἐπεὶ δὲ καὶ ὑγρόν ἐϲτι τῇ κράϲει τὸ μετρίωϲ γλυκύ , κατὰ λόγον ἄδιψόν ἐϲτι . | ||
| διὰ ταῦτα ξηραίνειν μὲν θέλων τὸ ϲῶμα τῶν ξηροτέρων τῇ κράϲει ζῴων δώϲειϲ τὴν ϲάρκα , θερμαίνειν δὲ βουλόμενοϲ τῶν |
| ἐν τοῖς καθ ' ἕκαστα θεωροῦντες , ὁδῷ τινι ἢ κλίμακι τῷ μαθηματικῷ χρώμενοι : οἱ δὲ κατὰ Ἀριστοτέλην βουλόμενοι | ||
| ἀναβαθμοί , ἔνθα διελθεῖν ἁμάξαις ἄβατον : κλῖμαξ γὰρ ἐπὶ κλίμακι δίδωσιν ἀεὶ τὸ μεῖζον ὡς ἐξ ἐλάττονος ἄγουσα καὶ |
| ἀντιμεταγέτω βίᾳ τὸν τράχηλον . προστιθέσθω δ ' ἅμα τῇ κατατάσει καὶ τῇ ὑπεραιωρήσει : ἀνίεται γὰρ τὰ περικείμενα τῷ | ||
| τὴν δὲ μόχλευσιν πλάτος ἔχοντι μοχλῷ μοχλεύειν χρὴ ἅμα τῇ κατατάσει , ἐκ τοῦ ἔξω μέρεος ἐς τὸ ἔσω ἀναγκάζοντα |
| τουτέστι ΔΕ , ΕΖ , ἐλάττους ἔσονται τῶν ΜΞ , ΞΛ , τουτέστι τῆς ΜΝ : ἀλλ ' ἡ ΜΝ | ||
| τουτέστιν αἱ ΔΕ , ΕΖ , δύο ταῖς ΜΞ , ΞΛ , τουτέστι τῇ ΜΝ , ἴσαι εἰσίν . ἀλλὰ |
| ἐν οὐδεμιᾷ μεθόδῳ εἴωθε γίνεσθαι , τοῦτο πῶς ἐν τῇ ὁριστικῇ ποιοῦσιν ; ἴδωμεν δὲ τὴν λέξιν . ὥσπερ , | ||
| ἔστιν ἀναλογεῖ τῇ διαιρετικῇ , τὸ δὲ τί ἐστι τῇ ὁριστικῇ * * * , τὸ δὲ διὰ τί ἐστιν |
| ἢ πολλαπλασία . Ἔστω γὰρ τρίγωνον τὸ ΑΒΓ , καὶ συνεστάτω τρίγωνον τὸ ΕΖΗ ἑκάστην πλευρὰν ἔχον ἑκάστης τῶν τοῦ | ||
| μείζων ἐστίν . ἔστω μείζων ἡ ὑπὸ ΑΒΓ . καὶ συνεστάτω πρὸς τῇ ΑΒ εὐθείᾳ καὶ τῷ πρὸς αὐτῇ σημείῳ |
| , τῇ δὲ τούτων θεωρίᾳ συνεισφέρει καὶ τὴν περὶ τῶν τραπεζίων διδασκαλίαν : διῄρηται γὰρ τὸ τετράπλευρον εἴς τε τὸ | ||
| τὸ δὲ ῥομβοειδὲς πάντων ἔλαττον . πρῶτον δὲ ἐνταῦθα τῶν τραπεζίων ἐμνημόνευσε . περὶ τούτων δὲ ἐν ταῖς ὑποθέσεσιν ἐδίδαξεν |
| , καὶ ἐφαπτόμεναι μὲν αἱ ΑΔΓ , ἀσύμπτωτοι δὲ αἱ ΕΖΗ , καὶ ἐπεζεύχθω ἡ ΑΓ , καὶ διὰ τοῦ | ||
| ἔστω ὁ ΒΖΓ , ἀπὸ δὲ τοῦ λοξοῦ κύκλου τοῦ ΕΖΗ ἴσαι περιφέρειαι ἀπειλήφθωσαν αἱ ΛΚ , ΚΘ ἑξῆς ἐπὶ |
| τι ἢ ἀπ ' ἄλλου τὸ αὐτό , οὐχ ἡ ἀντικειμένη , ἀλλ ' ἔσται ἐκείνης ἑτέρα , τοῦτο δέ | ||
| φερόμενον : ἡ γὰρ ὅλη φορὰ οὐθὲν ἧττον ἑκατέρα ἑκατέρᾳ ἀντικειμένη ἐπ ' ἄπειρον νοεῖται . Καὶ μὴν καὶ ἰσοταχεῖς |
| ἐπεζεύχθω ἡ ΗΘ . καὶ ἐπεί , ἐὰν ᾖ ἐν σφαίρᾳ κύκλος , ἡ διὰ τῶν πόλων αὐτοῦ ἀγομένη εὐθεῖα | ||
| κύκλον ἐγγραφομένων . ὅπερ ἔδει δεῖξαι . Δωδεκάεδρον συστήσασθαι καὶ σφαίρᾳ περιλαβεῖν , ᾗ καὶ τὰ προειρημένα σχήματα , καὶ |
| δὲ πρὸς ὄρεξιν καὶ κατάποσιν . παρατέταται δὲ τῇ τραχείᾳ ἀρτηρίᾳ καὶ διατείνει μέχρι διαφράγματος . κοινὴ δὲ πρὸς πέψιν | ||
| , ὥσπερ ἡ βήξ : ἀλλὰ τούτῳ τύπτει τὸν ἐν ἀρτηρίᾳ πρὸς αὐτήν : σημεῖον δὲ τούτου : οὐδεὶς γὰρ |
| κωλύοντοϲ καὶ εἰϲ λουτρὸν ἀπάξομεν εὐκράτῳ τε τῇ ἐμ - βάϲει χρηϲόμεθα ϲὺν ἐλαίῳ καὶ τρίψει μαλθακωτάτῃ . θρέψομέν τε | ||
| φαινομένηϲ , ποτὲ δὲ μελαίνηϲ , ϲὺν τῷ προϲέχεϲθαι τῇ βάϲει καὶ τρόπον τινὰ προϲηλῶϲθαι μετὰ νομῆϲ : ἡ δὲ |
| γὰρ κοπτομένης κεφαλῆς δύο ἀνεφύοντο . ἐπεβοήθει δὲ καρκίνος τῇ ὕδρᾳ ὑπερμεγέθης , δάκνων τὸν πόδα . διὸ τοῦτον ἀποκτείνας | ||
| δύο ἀνεφύοντο . καὶ ὁ καρκίνος δὲ ἦλθε βοηθῶν τῇ ὕδρᾳ : καὶ τότε δὴ ὁ Ἰόλαος ἀμύνει τῷ Ἡρακλεῖ |
| ἔχει καθόλου τὴν δύναμιν . ἡμεῖς μέντοι τῇ τῶν θερμῶν διαφορᾷ προσέ - χοντες , διάφορον αὐτοῦ καὶ τὴν δύναμιν | ||
| καὶ τὸ ἐλλείπειν τὰς τῶν ἄλλων ποιότητας καὶ ἅμα τῇ διαφορᾷ διδάξαι καὶ τὴν αἰτίαν , δι ' ἣν διαφέρουσιν |
| λόγου δύναμιν δείκνυσι τὴν ῥητορικήν , ὅτι πρᾶγμά ἐστιν ἐν μεσότητι θεωρούμενον , ᾧ ἔξεστι χρήσασθαι καὶ καλῶς καὶ κακῶς | ||
| τοῦ ἴσου καὶ τοῦ προσήκοντος , ἐμπεριεχομένη ἀριθμοῦ τετραγώνου περισσοῦ μεσότητι . πρῶτον δὴ ἐκθετέον στιχηδὸν τοὺς μέχρι τούτου ἀριθμοὺς |
| ὀκταέδρου δὲ τρίγωνον τὸ ΣΡΠ ἔστω , καὶ ὁμοίως ἡ ΧΨ κάθετος , ἣν δεῖ ἐλάσσονα δεῖξαι τῆς ΥΩ καθέτου | ||
| ἀπὸ τῆς ΚΓ μείζονα λόγον ἔχει ἤπερ ιβʹ τὰ ἀπὸ ΧΨ πρὸς ιεʹ τὰ ἀπὸ ΩΦ : ὥστε καὶ λϚʹ |
| τό τε ἄστολον καὶ τὸ μελάγκροκον οἰκεῖα τῇ εἰς Ἅιδην φερούσῃ νηῒ ὡς τῶν ἐν βίῳ ἐναντίως ἐχουσῶν . θεωρίδα | ||
| τὴν ἔχουσαν ἀθέρας , ἢ ψυχράν . καχρυφόρῳ ἤτοι τῇ φερούσῃ ὡς κάχρυας λιβανωτίδι . * ἄμμιγα : ἀμμίγδην ὁμοῦ |
| χολὴν εὕροιϲ ϲυνυποκειμένην τοῖϲ ἄλλοιϲ δυϲὶ χυμοῖϲ , προϲτίθει τῇ δόϲει ἐπὶ τῆϲ χρείαϲ καὶ ἄλλην ϲκαμμωνίαν , ὅϲην δ | ||
| παραιτούμεθα : εἰ δὲ χρεία πλείονοϲ κενώϲεωϲ , μίγνυε τῇ δόϲει ϲκαμμωνίαϲ κεράτια γ . δίδου λουϲαμένῳ . Ἀλόηϲ # |
| προξενίᾳ τῇ πρὸς τοὺς Ἠπειρώτας : ἢ πιστεύω καὶ τῇ συγγενείᾳ ᾗ ἔχομεν Θηβαῖοι πρὸς τοὺς Αἰγινήτας . διὸ οὐ | ||
| δωρησαμένη καὶ ὡς ἂν μάλιστα κόσμον ἡ δωρεὰ προσήκοντα τῇ συγγενείᾳ λάβοι πάντας αὐτοὺς ἐσθῆσιν ἀμφιέσασα ἐλευθέροις σώμασι πρεπούσαις . |
| δυσὶ ταῖς ΔΗ , ΗΖ ἴσαι εἰσίν , καὶ γωνίας ὀρθὰς περιέχουσιν , βάσις ἄρα ἡ ΑΘ βάσει τῇ ΖΔ | ||
| καὶ διὰ τοῦ Ζ ἐπὶ τὰ ἐναντία τῇ ΗΘ πρὸς ὀρθὰς γωνίας τῇ ΑΓ εὐθεῖα ἡ ΖΜΝ , ἐφ ' |