| τὸ ΝΗ . Ἐπεὶ γὰρ ὅμοιόν ἐστι τὸ ΚΑ στερεὸν παραλληλεπίπεδον τῷ ΛΓ , τὸ ΚΑ ἄρα πρὸς τὸ ΛΓ | ||
| δίχα τμηθήσεται τὸ στερεὸν ὑπὸ τοῦ ἐπιπέδου . Στερεὸν γὰρ παραλληλεπίπεδον τὸ ΑΒ ἐπιπέδῳ τῷ ΓΔΕΖ τετμήσθω κατὰ τὰς διαγωνίους |
| ὅλον ἄρα τὸ ΓΜ στερεὸν παραλληλεπίπεδον ὅλῳ τῷ ΓΝ στερεῷ παραλληλεπιπέδῳ ἴσον ἐστίν . Τὰ ἄρα ἐπὶ τῆς αὐτῆς βάσεως | ||
| δὴ ἀπὸ τῆς δοθείσης εὐθείας τῆς ΑΒ τῷ δοθέντι στερεῷ παραλληλεπιπέδῳ τῷ ΓΔ ὅμοιόν τε καὶ ὁμοίως κείμενον στερεὸν παραλληλεπίπεδον |
| τοῦ ἀπὸ ΑΘ πρὸς τὸ ἀπὸ ΑΕ ἴση ἐστὶν τῷ περιεχομένῳ ὀρθογωνίῳ ὑπό τε τῆς ΕΘ καὶ τῆς ὑπεροχῆς ᾗ | ||
| ἀσυμπτώτων πρὸς τῷ κέντρῳ τῆς τομῆς εὐθείας ἴσον περιεχούσας τῷ περιεχομένῳ ὑπὸ τῶν ἀποτεμνομένων εὐθειῶν ὑπὸ τῆς ἐφαπτομένης κατὰ τὴν |
| στερεοῦ . ἐγγεγράφθω καὶ εἰς τὸν ΑΒΓΔ κύκλον τῷ ΕΟΖΠΗΡΘΣ πολυγώνῳ ὅμοιόν τε καὶ ὁμοίως κείμενον πολύγωνον τὸ ΑΤΒΥΓΦΔΧ , | ||
| . Καὶ ἐπεὶ ὅμοιόν ἐστι τὸ ΑΒΓΔΕ πολύγωνον τῷ ΖΗΘΚΛ πολυγώνῳ , ἴση ἐστὶν ἡ ὑπὸ ΒΑΕ γωνία τῇ ὑπὸ |
| ΑΓ τετραγώνων τῷ δὶς ὑπὸ τῶν ΓΑ , ΑΔ περιεχομένῳ ὀρθογωνίῳ . Ἐπεὶ γὰρ εὐθεῖα ἡ ΓΑ τέτμηται , ὡς | ||
| ὀρθογώνιον ἴσον ἐστὶν τῷ ὑπὸ τῶν ΛΔ , ΔΜ περιεχομένῳ ὀρθογωνίῳ , ἕξομεν καὶ τὸ ὑπὸ τῶν ΛΔ , ΔΜ |
| τῆς ὅλης καὶ τοῦ εἰρημένου τμήματος ὡς ἀπὸ μιᾶς ἀναγραφέντι τετραγώνῳ : τεσσαρεσκαιδεκάκι γὰρ ιδ ρϘϚ ποιοῦσι : δεκάκι γὰρ | ||
| ἀπὸ τοῦ γβ τετραγώνου ἴσος ἐστὶ τῷ ἀπὸ τοῦ γδ τετραγώνῳ . Ἔστω γὰρ ἀπὸ μὲν τοῦ γδ τετράγωνος ὁ |
| κγʹ πρόβλημά ἐστι σύστασιν ἀπαιτοῦν γωνίας ἴσης ἄλλῃ δοθείσῃ γωνίᾳ εὐθυγράμμῳ πρὸς τῇ δοθείσῃ εὐθείᾳ καὶ τῷ πρὸς αὐτῇ δοθέντι | ||
| τῷ δοθέντι τριγώνῳ ἴσον παραλληλόγραμμον παραβαλεῖν ἐν τῇ δοθείσῃ γωνίᾳ εὐθυγράμμῳ . Ἔστω ἡ μὲν δοθεῖσα εὐθεῖα ἡ ΑΒ , |
| λέγω , ὅτι ἴσον ἐστὶ τὸ ΓΜ στερεὸν τῷ ΓΝ στερεῷ . Ἐκβεβλήσθωσαν γὰρ αἱ ΝΚ , ΔΘ καὶ συμπιπτέτωσαν | ||
| εὐθεῖαν . αἰτιῶνται δὲ αὐτοῦ τινες ὡς οὐ δεόντως χρησαμένου στερεῷ προβλήματι . . . . . . . . |
| μονάδες ρ , οἵτινές εἰσιν ἴσοι μονάσι ρκ . Καὶ ἀφῃρήσθω ἀπὸ ὁμοίων ὅμοια , ἤτοι ἀπὸ ἴσων ἴσα . | ||
| λοιπὸς περισσὸς ἔσται . Ἀπὸ γὰρ ἀρτίου τοῦ ΑΒ περισσὸς ἀφῃρήσθω ὁ ΒΓ : λέγω , ὅτι ὁ λοιπὸς ὁ |
| σημείῳ τότε τὴν σελήνην γινομένην ἐν τῷ δι ' Ἀλεξανδρείας παραλλήλῳ , καθ ' ὃν ἐποιούμεθα τὰς τηρήσεις , τὴν | ||
| οὕτως ἐστὶν τὸ ἀπὸ ΑΔ πρὸς τὸ ἀπὸ ΘΚ ἐν παραλλήλῳ : ὁ ἄρα μοναχὸς καὶ μέγιστος λόγος ἐστὶν ὁ |
| διὰ τῶν ΕΘ , ΝΠ ἐπίπεδα κάθετοι καὶ συμβαλλέτωσαν τοῖς ἐπιπέδοις κατὰ τὰ Σ , Τ , Υ , Φ | ||
| ὑπάρχειν ὥσπερ τοῖς ὑπὸ τὸ αὐτὸ γένος οἷον τοῖς τισὶν ἐπιπέδοις τὸ γενικὸν ἐπίπεδον . Περὶ τοῦ χρησίμου τῶν ἰδεῶν |
| τοῦ πέμπτου . ἐμπεριέχεται γὰρ . , ] ἐπειδὴ τὸ εὐθύγραμμόν ἐστι βάσις τῆς πυραμίδος , ὁ δὲ κύκλος βάσις | ||
| τούτου θεωρήματι . ἡ ΝΗΕΡ ἄρα τομὴ οὔτε κύκλος οὔτε εὐθύγραμμόν ἐστι : καὶ ἡ ΓΕΗΖ ἄρα τομὴ οὔτε εὐθύγραμμον |
| εἴρηκεν , ὡς τοῖς σωματικοῖς στοιχείοις ἕκαστα γνωρίζεται καὶ τῷ ὁμοίῳ τὸ ὅμοιον , καίπερ ἱκανῶς ἐληλεγμένου , τοῖς φθάσασιν | ||
| [ ἔλαβεν . ] ἐνταυθοῖ ] ἐνταῦθα , ἐν τῷ ὁμοίῳ βίῳ . ἔσθι ' ] ναὶ τρῶγε . , |
| κύκλος γεγράφθω ὁ ΕΖΗΓ , κέντρῳ δὲ τῷ Β , διαστήματι δὲ τῷ ΒΔ κύκλος γεγράφθω ὁ ΕΘΗΔ , καὶ | ||
| γεγράφθω ὁ ΔΚΛ : πάλιν κέντρῳ μὲν τῷ Η , διαστήματι δὲ τῷ ΗΘ κύκλος γεγράφθω ὁ ΚΛΘ , καὶ |
| καὶ ἀτάκτων καλουμένων . προϊόντι δὲ αὐτῷ γίγνεται ῥῖγοϲ καὶ αὐξανομένῳ ϲυναύξεται καὶ τὸ ῥῖγοϲ . ἡ δὲ αἴϲθηϲιϲ τοῖϲ | ||
| . τὴν μὲν γὰρ αὔξησιν δεῖ γίνεσθαι πάντη προσκρινομένης τῷ αὐξανομένῳ σώματι τῆς τροφῆς , τοῦτο δὲ οὐκ ἂν γένοιτο |
| ΒΖ ] τῇ ΓΖ , καὶ τὸ [ ΔΕΒΖ ] παραλληλόγραμμον , καὶ ἡ διάμετρος ἴση [ τῷ ] διαστήματι | ||
| δέ : καὶ τοῦ ΓΚ ἄρα παραλληλογράμμου πρὸς τὸ ΛΖ παραλληλόγραμμον λόγος ἐστὶ δοθείς : ὥστε καὶ τοῦ ΑΒΓ τριγώνου |
| τὸ πλάτος ἄχρι τεσσαράκοντα ἢ πεντήκοντα ποδῶν , καὶ ἑκατέρωθεν παρακεῖσθαι αὐτῇ τὰς τένδας ῥυμοειδῶς κατ ' ὄρδινον , ἐχούσας | ||
| τὰ πάντα καὶ ἀεὶ τῇ ἀληθείᾳ φαντασίαν [ ἀεὶ ] παρακεῖσθαι ψευδῆ . τί τοίνυν πάθω τοσούτῳ χρόνῳ ταλαιπωρήσας ; |
| δ τὴν Ϛ ἀπ ' αὐτῆς ἀναγράφεις τετράγωνον ἴσον τῷ παραλληλογράμμῳ . ἀλλ ' εἴτε τὸ τί ἐστι τετραγωνίζειν λέγοις | ||
| ΗΘ , ΕΚ , ΖΛ : καὶ τῷ μὲν ΑΘ παραλληλογράμμῳ ἴσον τετράγωνον συνεστάτω τὸ ΣΝ , τῷ δὲ ΗΚ |
| ὥστε καὶ οὕτως ἔσται ἔλαττον δηλονότι τοῦ ἀπὸ τῆς ἡμισείας ἀναγραφομένου . εἰ δὲ μὴ τοὺς προσεχεῖς τετραγώνους ἀριθμοὺς τῷ | ||
| πρὸς τὸ ὑπὸ [ τῶν ] ΔΩ , ΩΒ , ἀναγραφομένου ἀπὸ τῆς ΒΩ τετραγώνου καὶ συμπληρουμένου τοῦ ἐπὶ τῆς |
| , καὶ ἀπ ' αὐτῶν ἴσαι περιφέρειαι ἀπειλήφθωσαν πρὸς τοῖς πέρασι τοῖς Α , Δ σημείοις αἱ ΑΗ , ΔΘ | ||
| ὑπάρξαι τῆς Λιβύης ἐν τοῖς πρὸς ἑσπέραν μέρεσιν ἐπὶ τοῖς πέρασι τῆς οἰκουμένης ἔθνος γυναικοκρατούμενον καὶ βίον ἐζηλωκὸς οὐχ ὅμοιον |
| μʹʹ . πάλιν ἐπεὶ αἱ τῶν ἐν τῷ αβ δωδεκατημορίῳ τριακοστημορίων περιφερειῶν ἀναφοραὶ ἐν ἴσῃ εἰσὶν ὑπεροχῇ , ἀρχόμεναι ἀπὸ | ||
| δωδεκατημορίων τοῦ ζῳδιακοῦ ἀναφοραί , καὶ τῶν ἐν τοῖς δωδεκατημορίοις τριακοστημορίων τῶν ἑξῆς ἀλλήλοις κειμένων γνωσθήσονται αἱ ἀναφοραί , ἐν |
| μηδενί , οὐχὶ δὲ τὸ ἐνδέχεται μηδενί : τῷ γὰρ ὑπάρχοντι οὐκ ἀντίκειται τὸ ἐνδεχόμενον , ἐπειδὴ τὸ νῦν ὑπάρχον | ||
| ἐνδεχόμενον οὐ τὸ κατὰ τὸν διορισμὸν ἀλλὰ τὸ συντρέχον τῷ ὑπάρχοντι . ὅτι γὰρ οὐ συνάγεται τὸ κατὰ τὸν διορισμὸν |
| μέγιστον κύκλον . ποιείτω τὸν ΕΓΔΖ , ἐν δὲ τῷ κώνῳ εὐθείας τὰς ΑΓ , ΑΔ , ΔΓ : ὁ | ||
| , ΒΕΖ τρίγωνα ἴσα ἀλλήλοις ἐστίν . ἔστω τῷ ΑΗΓΔ κώνῳ ἰσοϋψὴς ὁ ΚΘΕΖ κῶνος . ἐπεὶ οὖν , ὡς |
| ] τοῦ ἀπὸ τῆς ἡμισείας τῆς ΑΒ ἀναγραφομένου ὁμοίου τῷ ἐλλείμματι , ᾧ δὲ δεῖ ὅμοιον ἐλλείπειν , τὸ Δ | ||
| ἐξ ἀνάγκης τὸ ἀπὸ τῆς ἡμισείας παραβαλλόμενον ὅμοιον ὂν τῷ ἐλλείμματι ἐξ ἀνάγκης . Παραβολὴ παρὰ τοῖς μαθηματικοῖς λέγεται ὁ |
| μεῖζον ἄρα τὸ ὑπὸ ΛΘ καὶ τῆς περιμέτρου τοῦ ΔΕΖ περιεχόμενον ὀρθογώνιον τοῦ ὑπὸ τῆς ΚΗ καὶ τῆς περιμέτρου τοῦ | ||
| ὥστε τὸ ὑπὸ τῆς ὅλης καὶ τοῦ ἑτέρου τῶν τμημάτων περιεχόμενον ὀρθογώνιον ἴσον εἶναι τῷ ἀπὸ τοῦ λοιποῦ τμήματος τετραγώνῳ |
| τούτῳ ὑπὸ τοῦ ιβ ὑπερέχεται , ἐν αὐτῷ τῷ ιβ θεωρουμένῳ , ὥσπερ γὰρ ὁ η τοῦ Ϛ ὑπερέχει δυάδι | ||
| τῷ δυνατῷ , ἀλλὰ τῷ ἀληθεῖ τῷ ἐν ταῖς προτάσεσι θεωρουμένῳ . οὕτως γάρ φαμεν ἀδύνατον τὴν διάμετρον σύμμετρον εἶναι |
| καὶ τὰ τούτοις ἀντικείμενα , τὸ ἕτερον τὸ ἀνόμοιον τὸ ἄνισον , ἅπερ ὑπὸ τὸ πλῆθος ἀνάγεται , καὶ οὐ | ||
| , ἐπειδὰν αὐτῶν κατηγορῆται , καὶ τὸ ἴσον καὶ τὸ ἄνισον καὶ τὰ ἄλλα : ταὐτὸν μὲν γὰρ κυρίως ἐπὶ |
| τῆς τοῦ διὰ πέντε συμπληρώσεως . ἡ γὰρ τῷ ἡγουμένῳ φθόγγῳ συναπτομένη διάζευξις ποιοῦσα λόγον ἐπόγδοον οὐκέτι περὶ μόνας τὰς | ||
| , καὶ ἐγένετο οὐσία καὶ ἑστία ἁπάντων : οἷον ἐν φθόγγῳ ἐναπερείσαντος αὐτὸν τοῦ φωνοῦντος ὑφίσταται τὸ ἓν δηλοῦν τὸ |
| χρῆσις : ἀσκέειν , δακτύλοισι μὲν ἄκροις , τὰ πλεῖστα λιχανῷ πρὸς μέγαν : ὅλῃ δὲ , καταπρηνεῖ : ἀμφοτέρῃσι | ||
| δ ' ὁ τὸν ἀντίχειρα καλούμενον τὸν μέγαν προσάγων τῷ λιχανῷ : ὁ δ ' ἕβδομος ἀπάγει μέχρι πλείστου τὸν |
| ἐπὶ ἀπαλλαγῇ λοιμοῦ βωμὸν τοῦ ὄντος διπλασίονα κατασκευάσαι , πολλὴν ἀρχιτέκτοσιν ἐμπεσεῖν ἀπορίαν ζητοῦσιν ὅπως χρὴ στερεὸν στερεοῦ γενέσθαι διπλάσιον | ||
| . διαβήτης , σταφύλη : ὅπερ ἐστὶν ὄνομα παρὰ τοῖς ἀρχιτέκτοσιν ἐπὶ τῆς καθιεμένης μολύβδου τιθέμενον . Ὅμηρος σταφύλην ἐπὶ |
| , ὅτι τὸ ὑπὸ ΑΖ , ΒΘ ἴσον ἐστὶ τῷ πενταγώνῳ . Ἀπὸ γὰρ τοῦ Β ἐπὶ τὸ Δ ἐπεζεύχθω | ||
| ἐπεὶ τὸ μὲν ὑπὸ ΑΗ , ΘΒ ἴσον ἐστὶ τῷ πενταγώνῳ , τὸ δὲ ὑπὸ ΑΗΔ τῷ ΑΔΜ τριγώνῳ , |
| τρίγωνον διὰ τὸ ἴσον εἶναι τὸ ΑΒΔ τρίγωνον τῷ ΑΓΔ τριγώνῳ . ἐπισταθὲν δὲ ὁμοίως τὸ ΑΒΓ τρίγωνον κατὰ τὴν | ||
| ' αὑτὸ συμβεβηκότα τοῖς καθόλου ὑπάρχουσιν , οἷον τῷ ἁπλῶς τριγώνῳ τὸ ἔχειν τὰς τρεῖς γωνίας δυσὶν ὀρθαῖς ἴσας : |
| τῇ Β ἴση ἑκατέρα τῶν ΞΛ , ΛΟ , καὶ συμπεπληρώσθω τὸ ΛΠ στερεόν . καὶ ἐπεί ἐστιν ὡς ἡ | ||
| ἡ ΑΒ , καὶ ἔστω ῥητὴ ἡ ΑΒ , καὶ συμπεπληρώσθω τὸ ΒΓ : ἄλογον ἄρα ἐστὶ τὸ ΒΓ , |
| ὀστέου , τῆς δὲ σήραγγος κατὰ φύσιν ἐχούσης , τραχύτερον ὑποπεσεῖται τὸ ἐφθαρμένον ὀστέον : ἐὰν δ ' ᾖ μᾶλλον | ||
| ' ἀρωματικὰ ἐπιπολάζει , καὶ οὔτε ἀλλήλοις ἀναγκασθήσεται ἑνωθῆναι οὔτε ὑποπεσεῖται τῷ λεαντῆρι , προτρέχοντα καὶ διαφεύγοντα τῷ ὑγρῷ . |
| σμζ : ἅπερ προέκειτο δεῖξαι . ►αἱ ἐπίπεδοι γωνίαι περιέχονται ►τῶν τριπλεύρων ἰσόπλευρον ἰσοσκελές σκαληνόν◄ ► τῶν τριγώνων ἀμβλυγώνιον ὀρθογώνιον | ||
| , οὐχ ὁ ἐρωτῶν . ἐάν σε ἔρωμαι κτλ . ►τῶν ἐρωτήσεων αἱ μὲν πευστικαὶ πλείονος λόγου δέονται αἱ δὲ |
| ἀπὸ τοῦ ὅλου τετράγωνος ἴσος ἐστὶ τοῖς ἀπὸ τῶν μερῶν τετραγώνοις καὶ τῷ δὶς ἐκ τῶν μερῶν ἐπιπέδῳ . Ἀριθμὸς | ||
| τῆς ὅλης τετράγωνον ἴσον ἐστὶ τοῖς τε ἀπὸ τῶν τμημάτων τετραγώνοις καὶ τῷ δὶς ὑπὸ τῶν τμημάτων περιεχομένῳ ὀρθογωνίῳ : |
| περιφέρεια τῆς ΒΑΔ περιφερείας , καὶ ἐπὶ τῆς ΒΔ ὀρθὸν τμῆμα κύκλου ἐφεστάτω τὸ ΒΕΔ μὴ μεῖζον ἡμικυκλίου , καὶ | ||
| τῆς ΕΖ ἄκρον καὶ μέσον λόγον τεμνομένης , μεῖζον ἔσται τμῆμα ἡ ΑΓ : ἡ ἄρα ΕΖ πρὸς τὴν ΑΓ |
| περιεχόντων τὴν πυραμίδα , ἧς βάσις μέν ἐστι τὸ ΕΟΖΠΗΡΘΣ πολύγωνον , κορυφὴ δὲ τὸ Ν σημεῖον , ἓν τρίγωνον | ||
| [ . ] παρελάβομεν , διὰ τὸ ἴσον ὑποκεῖσθαι τὸ πολύγωνον τῶι κύκλωι ἐφαρμόζον αὐτῶι , ἐσόμεθα καὶ κύκλωι ἴσον |
| Λ διπλασίαν τῆς Δ οὖσαν ١٤ , τὴν δὲ Μ τριπλασίαν ٢١ , τὴν δὲ Ν ٢٨ καὶ τὴν Κ | ||
| οὖν γενομένης τῆς ναυμαχίας ὁ μὲν Δημήτριος ἄλλην μηχανὴν κατεσκεύασε τριπλασίαν τῷ ὕψει καὶ πλάτει τῆς πρότερον , προσάγοντος δ |
| ΒΕ . τὰ ἄρα ἀπὸ ΝΖΘ τετράγωνα μετὰ τῶν ἀπὸ ΚΖΜ εἰδῶν ὁμοίων τῷ πρὸς τῇ ΓΑ εἴδει διπλάσιά ἐστι | ||
| τά τε ΞΓΔ , ΗΖΝ ἡμικύκλια καὶ τὰ ΚΓΛ , ΚΖΜ τρίγωνα περιενεχθέντα εἰς τὸ αὐτὸ πάλιν ἀποκατασταθῇ ὅθεν ἤρξατο |
| παράκειται παρὰ τὴν ΑΗ τρίτην ἀνάλογον πλάτος ἔχον τὴν ΑΖ ἐλλεῖπον εἴδει τῷ ὑπὸ ΗΚΘ ὁμοίῳ τῷ ὑπὸ ΗΑΒ . | ||
| παρὰ τὴν ζ καὶ τὴν γ παραλληλόγραμμον οἷον τὸ κα ἐλλεῖπον εἴδει τετραγώνῳ τῷ θ , τὸ παραβληθὲν οἷον τὸ |
| μὲν τετράπλευρον τέτρασιν ὀρθαῖς ἴσας ἔχει γωνίας , πᾶν δὲ πεντάπλευρον ἓξ καὶ τοῦτο ἑξῆς ὁμοίως . ἓν μὲν οὖν | ||
| : καὶ ἐκτὸς ἄρα ἄλλαις τοσαύταις ἴσαι . εἰ δὲ πεντάπλευρον , δέκα μὲν αἱ πᾶσαι , ἓξ δὲ αἱ |
| ʂ α Μο α , καὶ γίνεται συναμφοτέρου τῆς τε ὑποτεινούσης καὶ μιᾶς τῶν ὀρθῶν τὸ ἥμισυ ἐφ ' ἑαυτὸ | ||
| τῷ ἐμβαδῷ αὐτοῦ , λείψας τὸν ἐν συναμφοτέρῳ τῆς τε ὑποτεινούσης καὶ μιᾶς τῶν ὀρθῶν , ποιῇ δοθέντα ἀριθμόν . |
| ἐλαμβάνετο περιφανείας . δεῖ ἄρα τὸ σημεῖον οὐ μόνον ἐν ὑγιεῖ εἶναι συνημμένῳ ἡγούμενον , τουτέστι τῷ ἀπ ' ἀληθοῦς | ||
| μὲν πρὸς πλοῦν , καλῷ μεγέθει ὁλκάδος , καὶ κατασκευῇ ὑγιεῖ , καὶ πλήθει ὀργάνων , καὶ ὑπηρεσίας ἀκριβείᾳ , |
| ἑκάτερον περὶ τοὺς ὤμους περιβεβλῆσθαι . ἔπειτα αἱ ἀρχαὶ πρὸς ὑπεροειδές τι προσδεδέσθωσαν [ αἱ ] ἁρμόσσουσαι τὸ μῆκος τῷ | ||
| δὲ ὑποβάς φησιν : “ ἔπειτα αἱ ἀρχαὶ πρὸς ξύλον ὑπεροειδές τι προσδεδέσθωσαν , ἁρμόζουσαι τὸ μῆκος τῷ ὑποτεταμένῳ ” |
| αὕτη τοῦ κεκύηκεν αὕτη δηλωτικὸν εἶναι δοκεῖ ἐν τούτῳ τῷ συνημμένῳ εἰ γάλα ἔχει αὕτη , κεκύηκεν αὕτη . ταῦτα | ||
| σημεῖον . τοίνυν ἐπεὶ τοῦτο ἡγούμενόν ἐστιν ἐν τῷ δευτέρῳ συνημμένῳ , ἕξει ἀκολουθοῦν αὐτῷ τὸ λῆγον ἐν τῷ δευτέρῳ |
| τοὺς ὤμους περιβεβλῆσθαι . ἔπειτα αἱ ἀρχαὶ πρὸς ὑπεροειδές τι προσδεδέσθωσαν [ αἱ ] ἁρμόσσουσαι τὸ μῆκος τῷ ξύλῳ τῷ | ||
| τοῦ κάτω πλάτους λάβῃ . Οὐθὲν δὲ ἧττον καὶ σχοῖνοι προσδεδέσθωσαν κατὰ τὰς γωνίας ἄνωθεν καὶ κατὰ μέσον ἔξω προτεινόμενοι |
| χειμερινὸν λέγεται , τὸ δὲ ἀπ ' ἄρκτων θερινόν . νοηθήσεται δὲ ἡ μὲν μία καὶ πρώτη φορὰ καὶ περιέχουσα | ||
| ἀριθμὸν μαχόμενον τῷ ἰδιώματι τῆς συνθέσεως , καθὸ διάφορα πρόσωπα νοηθήσεται , ἐκ συλλήψεως , γενόμενα δευτέρου καὶ τρίτου καὶ |
| τῷ ΕΓΗ τριγώνῳ καὶ τὸ ΚΘΛ τῷ ΓΗΔ καὶ τὸ ΚΖΘ τῷ ΓΕΔ . ὥστε ἡ ὑπὸ ΕΓΔ γωνία ἴση | ||
| τοῦ Κ καὶ Ε ἐπὶ τὸ Θ , δύο αἱ ΚΖΘ δυσὶν ταῖς ΕΖΘ ἴσαι , καὶ γωνία καὶ γωνίᾳ |
| ἐμοὶ μόνηι . Πυλάδης δ ' ὅδ ' ἡμῖν ποῦ τετάξεται πόνου ; ταὐτὸν χεροῖν σοὶ λέξεται μίασμ ' ἔχων | ||
| τῆς συντάξεως ἕνεκα τοῦ σημαινομένου . τὸ ἄγε παρακελευστικὸν οὐ τετάξεται σὺν ὁριστικῇ προφορᾷ , ἀλλ ' οὐδὲ εὐκτικῇ ἢ |
| τρόπον γένοιτο ἂν τετραγωνισμός . ἀπεδίδου δὲ τοῦτο περὶ τρίγωνον ὀρθογώνιόν τε καὶ ἰσοσκελὲς ἡμικύκλιον περιγράψας καὶ περὶ τὴν βάσιν | ||
| θ : ὥστε τὸ δὶς ὑπὸ τῶν ΓΒ , ΒΔ ὀρθογώνιόν ἐστιν ρμ : πεντάκις γὰρ ιδ ο , καὶ |
| φαίνεται καὶ τὰ ἀριστερὰ δεξιὰ καὶ τὸ εἴδωλον ἴσον τῷ ὁρωμένῳ , καὶ τὸ ἀπόστημα τὸ ἀπὸ τοῦ ἐνόπτρου ἴσον | ||
| τὸ μεσαίτατον τῆς βάσεως τῷ τῆς ὄψεως κώνῳ προσβάλλειν τῷ ὁρωμένῳ . διά τοι τοῦτο καὶ ῥαφίδος εἰ τύχοι παρακειμένης |
| τε ὅλῳ καὶ ἀλλήλοις : ὅπερ ἔδει δεῖξαι . Τῷ δοθέντι εὐθυγράμμῳ ὅμοιον καὶ ἄλλῳ τῷ δοθέντι ἴσον τὸ αὐτὸ | ||
| δὴ τὸ πλῆθος τῶν ΑΖ ΖΗ ΗΘ ΘΒ ἴσον τῷ δοθέντι , καὶ ἡ ἐκ πασῶν συγκειμένη εὐθεῖα ἴση τῇ |
| ΘΚ ἐστιν ἴση ] , ἰσόπλευρον ἄρα ἐστὶ τὸ ΖΗΘΚ τετράπλευρον . λέγω δή , ὅτι καὶ ὀρθογώνιον . ἐπεὶ | ||
| ἐστιν , ὡς μὲν τὸ ὑπὸ ΚΖΕ πρὸς τὸ ΖΞ τετράπλευρον , τὸ ἀπὸ ΑΓ πρὸς ΓΠΒ , διὰ δὲ |
| ] τὸ τοιοῦτον τραπέζιον προσηγόρευσαν ἀπὸ τῶν ἐπιπέδων τραπεζίων : τραπέζιον γὰρ λέγεται , ὅταν τριγώνου ἡ κορυφὴ ὑπὸ παραλλήλου | ||
| τῆς ΔΕ , οὕτως τὸ ΑΒΓ τρίγωνον πρὸς τὸ ΔΕΖΗ τραπέζιον . Καὶ ἐὰν ᾖ [ δὲ ] τρίγωνον τὸ |
| , μὴ δυναμένου τὸν γόνον εὐθυβολεῖν , ἢ παρὰ τὸ ἀσύμμετρον τῶν μορίων πρὸς τὴν ἀπόστασιν τῆς μήτρας . Οἱ | ||
| καὶ ἐπεὶ αἱ ΑΗ , ΗΒ δυνάμει εἰσὶν ἀσύμμετροι , ἀσύμμετρον ἄρα ἐστὶ τὸ ἀπὸ τῆς ΑΗ τῷ ἀπὸ τῆς |
| ἡ ΗΔ τῇ ΕΖ ἐστὶν ἴση : ἡ ΗΚ ἄρα συναμφοτέρῳ τῇ ΓΔ ΕΖ ἐστὶν ἴση [ ἡ δὲ ΔΖ | ||
| τῇ ΑΕ , ἡ δὲ ΚΗ τῇ ΗΛ , τουτέστιν συναμφοτέρῳ τῇ ΕΒΓ ἴση , καὶ γίνεται ἀπειραχῶς . κϚʹ |
| τεταρτημορίου , διὰ τὸ τὸ Α σημεῖον πόλον εἶναι τοῦ ΒΕΔ ὁρίζοντος . ὀρθῆς δὲ οὔσης ἀεὶ διὰ τὴν αὐτὴν | ||
| προσκείσθω τὸ ἀπὸ ΔΕ τετράγωνον : ὅλον ἄρα τὸ ὑπὸ ΒΕΔ ἴσον τῷ ἀπὸ ΓΕ τετραγώνῳ . ἀνάλογον καὶ ἀναστρέψαντι |
| ἔστω γὰρ ἡ ΓΖΘ . φανερόν , ὅτι τὸ ὑπὸ ΓΚΘ ἴσον τῷ ἀπὸ ΑΓ : τέτμηται γὰρ ἡ ΘΚ | ||
| ΚΘ , ἴση ἐστὶν ἡ μὲν ὑπὸ ΑΓΒ τῇ ὑπὸ ΓΚΘ , ἡ δὲ ὑπὸ ΚΓΒ τῇ ὑπὸ ΓΑΔ , |
| ΚΞ τεταρτημόρια ἀλλήλοις . ὅσαι ἄρα εἰσὶν ἐν τῷ ΒΕ τεταρτημορίῳ πλευραὶ τοῦ πολυγώνου , τοσαῦταί εἰσι καὶ ἐν τοῖς | ||
| ἕκαστον τῆς γῆς τόπον τῶν ἐν τῷ καθ ' ἡμᾶς τεταρτημορίῳ τεταγμένων , λέγω δὲ τῶν ἀπὸ τοῦ ἰσημερινοῦ μέχρι |
| Ῥαδίνης καὶ Λεοντίχου μνῆμά ἐστι , καὶ τοῖς ὑπὸ ἔρωτος ἀνιωμένοις εὔχεσθαι καθέστηκεν ἰοῦσιν ἐπὶ τὸ μνῆμα . τὰ μὲν | ||
| ῥύπτειν , ἀνάψυξιν δὲ φέρει τοῖς διὰ θερμασίαν καὶ δῆξιν ἀνιωμένοις , ῥώννυσί τε τὰς φυσικὰς δυνάμεις διὰ τῆς στύψεως |
| ὑπὸ ΔΓΗ τῇ ὑπὸ ΔΖΗ : ἐν γὰρ τῷ αὐτῷ τμήματι τοῦ κύκλου εἰσίν . ἡ δὲ ὑπὸ ΔΖΗ ἐδείχθη | ||
| ὑπὸ ΘΑΓ ἴση ἐστὶ τῇ ἐν τῷ ἐναλλὰξ τοῦ κύκλου τμήματι γωνίᾳ τῇ ὑπὸ ΑΒΓ . ἀλλ ' ἡ ὑπὸ |
| : τὰ μικρὰ ξύλα τὰ ὡσανεὶ ἧλοι πεπηγμένα ἐν τῷ ἄξονι : θραύων δὲ σάρκας : ἀντὶ τοῦ θραυόμενος . | ||
| . αἱ χνόαι ἢ τὰ ἐμβαλλόμενα [ πρὸς ] τῷ ἄξονι , ὥστε μὴ ἐξιέναι τὸν τροχόν : ἄλλως : |
| τέσσαρσι τῆς οἰκουμένης μέρεσι , βορείῳ λέγω καὶ νοτίῳ καὶ ἑσπερίῳ καὶ ἑώῳ . Εἶτα γραμμῇ διελόντες τὴν ὅλην οἰκουμένην | ||
| , νηπίη , ἥ ῥ ' ἐπίθησεν ὀιζυρῷ περ Ὀνείρῳ ἑσπερίῳ , ὃς φῦλα πολυτλήτων ἀνθρώπων θέλγει ἐνὶ λεχέεσσιν ἄδην |
| ἀνεγερθείη τρόπον κίονος ἑνός , μυρίοις τῆς αἰθερίου σφαίρας ἀπολειφθήσεται διαστήμασι , καὶ μάλιστα κατὰ τοὺς ζητητικοὺς τῶν φιλοσόφων , | ||
| τοῦ μονοχόρδου κανόνος . Ὅτι οὐ δεόντως οἱ Ἀριστοξένειοι τοῖς διαστήμασι καὶ οὐ τοῖς φθόγγοις παραμετροῦσι τὰς συμφωνίας . Ὅτι |
| ὡς τὰ πολλαχῶς καὶ ἀορίστως γινόμενα : δύναται γὰρ καὶ σκαληνὸν τρίγωνον μετρεῖσθαι ὑπὸ τοῦ προτεθέντος καὶ ὁρισθέντος ῥητοῦ μέτρου | ||
| τοῦ τρίγωνον εἶναι καθ ' αὑτὸ μᾶλλον ἢ ἐκ τοῦ σκαληνὸν ἀποδείκνυται . καὶ ὄντος τοῦ καθόλου γίνεται ἡ ἀπόδειξις |
| , Γ στερεὸν ἴσον ἐστὶ τῷ ἀπὸ τῆς Β στερεῷ ἰσοπλεύρῳ μέν , ἰσογωνίῳ δὲ τῷ προειρημένῳ . Ἐκκείσθω στερεὰ | ||
| στερεὸν παραλληλεπίπεδον ἴσον ἐστὶ τῷ ἀπὸ τῆς μέσης στερεῷ παραλληλεπιπέδῳ ἰσοπλεύρῳ μέν , ἰσογωνίῳ δὲ τῷ προειρημένῳ . Ἔστωσαν τρεῖς |
| ἴση ἐστὶν ἡ ΚΑ περιφέρεια τῇ ΔΟ περιφερείᾳ , κοινὴ προσκείσθω ἡ ΑΟ : ὅλη ἄρα ἡ ΚΟ ἴση ἐστὶ | ||
| η . ταῦτα ἴσα ΔΥ α Μο α . κοινὴ προσκείσθω ἡ λεῖψις , καὶ ἀφῃρήσθω ἀπὸ ὁμοίων ὅμοια : |
| κατ ' ἐνέργειαν , τὸ δεύτερον ἐξελέξατο ὡς τελειότερον καὶ ἐφαρμόζον τῇ τελειότητι , ἤτοι τῇ εὐδαιμονίᾳ . ᾧ προσθεὶς | ||
| περιλαμβάνειν ἐθέλει τὸ ὑποκείμενον , ἢ ὡς ἐξισάζον καὶ οἷον ἐφαρμόζον αὐτῷ ἢ καὶ ὡς ὑπερτεῖνον , καὶ ἔτι τὸ |
| καὶ οὐδέποτε ποιήσει ἐπιφάνειαν . πολλῷ δὲ μᾶλλον οὐδ ' ὑπερέξει . καὶ ἐπὶ ἐπιφανείας καὶ σώματος ὡσαύτως . Οὔτε | ||
| ὑπερέχει . οὐκέτι γὰρ καὶ τὸ Α τοῦ Γ πήχει ὑπερέξει : ψεῦδος γὰρ τοῦτο . ἡ δ ' αἰτία |
| ἐπὶ ταῖς ΛΒ , ΛΕ περιφερείαις τοῦ περὶ τὸ ΒΕΛ τρίπλευρον γραφομένου κύκλου . ὥστε καὶ τῆς ΒΕ πρὸς ἑκατέραν | ||
| τοῦ μεσημβρινοῦ , ἰσόπλευρόν τε καὶ ἰσογώνιον γίνεται τὸ ΓΔΕ τρίπλευρον τῷ ΓΔΗ , ὥστε καὶ τὴν ΓΕ τῇ ΓΗ |
| ΕΔ οὐδέν ٤٣ ٢ ٣٣ ٢ ١٥ ἡ ΘΚ οὐδέν ٤١ ٥٣ ٢١ ٤ τὸ ΓΔ ٢ ٤٧ ٣٣ ٢٤ | ||
| ἡ ΓΚ ٢ ٤٧ ٥١ ٤٧ ٤٢ ἡ ΚΜ οὐδέν ٤١ ٥٣ ٢١ ٤ Ἡ ΑΒ ٢٠ ἡ ΓΔ ٢٥ |
| ὑπὸ κακοχυμίας , ἤτοι ἐξ ἥπατος εἰς αὐτὴν καταρρεούσης ἢ περιεχομένης ἐν τοῖς χιτῶσιν αὐτῆς . γεννᾶται δ ' ἐξ | ||
| ἐπεὶ γὰρ τὸ Δ ἐντός ἐστι τῆς ὑπὸ τῶν ἀσυμπτώτων περιεχομένης γωνίας , δυνατὸν ἀπὸ τοῦ Δ δύο ἐφαπτομένας ἀγαγεῖν |
| τὸ σκέλος τοῖς διακόπτειν τεταγμένοις παραδίδωσιν , ὡς ἂν τῷ λοιπῷ σώματι ὑγιὴς ὁ ἄνθρωπος ᾖ . Σὺ δὲ τὸν | ||
| ἀπὸ τῆς ΗΚ : λοιπὸν ἄρα τὸ ἀπὸ τῆς ΘΛ λοιπῷ τῷ ἀπὸ τῆς ΚΝ ἴσον ἐστίν : ἴση ἄρα |
| ἐπογδόων λόγων , ἐν οἷς θεωρεῖται τὰ τονιαῖα διαστήματα , συμπληροῦσι τὸ σνϚ . ἐπιτείνουσι τοίνυν ἀπὸ τοῦ ρϘβ τόνον | ||
| δαιμόνων γένος , τὸ δὲ κατὰ σχέσιν , ὃ μερικαὶ συμπληροῦσι ψυχαὶ δαιμονίας τυχοῦσαι λήξεως , τὸ δὲ πονηρὸν ἄλλο |
| αὐτοῦ . ἐπ ' ἐκείνων μὲν γὰρ διεβάλλετο , ἐπεὶ κειμένῳ τῷ ἐξ ἀναγκαίας τῆς μείζονος καὶ ὑπαρχούσης τῆς ἐλάττονος | ||
| ὠνομάζετο ὁ τὴν Σωφη - νὴν ἀπολαμβάνων ἐν αὐλῶνι μεταξὺ κειμένῳ αὐτοῦ τε καὶ τοῦ Ταύρου . πέραν δὲ τοῦ |
| δέ φασιν αὐτὸν εἶναι κύνα Ὠρίωνος καὶ περὶ τὰς θήρας γινομένῳ συνέπεσθαι , καθάπερ καὶ τοῖς κυνηγετοῦσι πᾶσι τὸ ζῷον | ||
| τὴν εὔτακτον πρόβασιν τῶν τριγώνων γίνεται : συντιθεμένων ἀεὶ τῷ γινομένῳ , οἷον ὁ γ τρίγωνος ἀλλὰ καὶ ἡ μονάς |
| οὕτω περιέχεσθε τῆς ἡγεμονίης , οἰκὸς καὶ ἐμὲ μᾶλλον ὑμέων περιέχεσθαι , στρατιῆς τε ἐόντα πολλαπλησίης ἡγεμόνα καὶ νεῶν πολλὸν | ||
| τέσσαρα , ἐν οἷς ἐλέγομεν καὶ τὴν τῆς ψυχῆς ἰδέαν περιέχεσθαι κατὰ τὸν ἐναρμόνιον λόγον , ὁ μὲν τέσσαρα τοῦ |
| ἀλλήλαις κείμεναι , ὧν δεῖ δύο μέσας ἀνάλογον εὑρεῖν . Συμπεπληρώσθω τὸ ΑΒΓΔ παραλληλόγραμμον , καὶ ἐκβεβλήσθωσαν αἱ ΔΓ ΔΑ | ||
| ΔΑ δύο μέσαι κατὰ τὸ συνεχὲς λαμβάνονται τρόπῳ τοιῷδε . Συμπεπληρώσθω τὸ ΑΒΓΔ παραλληλόγραμμον , καὶ τετμήσθω δίχα ἑκατέρα τῶν |
| τὴν θέρμην γλευκίνῳ ἢ ϲικυωνίῳ λίπαϊ ξὺν πεπέρεϊ καὶ τῷ καϲτορίῳ καὶ νίτρῳ , καὶ κάγχρυ , κηροῦ ϲμικρὸν ἐντήκοντα | ||
| καϲτόριον : τινὲϲ δὲ ἀντὶ τοῦ ἐλαίου ὀξυροδίνῳ ϲὺν τῷ καϲτορίῳ χρῶνται τονοῦντεϲ ἅμα καὶ θερμαίνοντεϲ διὰ τούτου τὴν κεφαλήν |
| ἕπεσθαι Διὶ ἐπὶ φύσιν τὴν νοητὴν ἱεμένῳ . Τὰ δὲ ἥττονι τῇ φύσει κεχρημένα δεύτερα τοῦ παντός , οἷα καὶ | ||
| ἔλεγες , οὗ τὸ συμφέρον κρείττονος ὄντος δίκαιον ἔσται τῷ ἥττονι ποιεῖν . Τὸν τῷ ἀκριβεστάτῳ , ἔφη , λόγῳ |
| , οἷον ταρσοῦ , θέναρος , πέλματος , ὑδρελαίῳ . ἐπιδήσαντες δ ' ἐπιβροχῇ συνεχέστερον χρησόμεθα . εἰ δὲ πλείους | ||
| προστιθέασι . Κεφ . λγʹ . Τὴν εὐθεῖαν διμερῆ φορβέαν ἐπιδήσαντες χωρὶς τῆς γενειάδος ἐπὶ τέλει ἐπὶ τὸ ὕψωμα τῆς |
| , ΑΖ μιᾷ σεληνιακῇ διαμέτρῳ καὶ τῷ τετάρτῳ μέρει τῆς διαμέτρου . Ἑκατέρας δὲ τῶν ΑΓ καὶ ΑΕ δʹ μέρει | ||
| τουτέστιν οὔτε τῶν ἐπὶ τῆς διαμέτρου οὔτε τῶν ἐκτὸς τῆς διαμέτρου . ἔστω κοῖλον ἔνοπτρον τὸ ΑΓΔ , διάμετρος δὲ |
| , τὸ ὑπὸ Η , ΔΛ πρὸς τὸ δὶς ὑπὸ ΓΔΛ : ὡς ἄρα τὸ ἀπὸ ΚΛ πρὸς τὸ ὑπὸ | ||
| ΔΛ εὐθείας περιφέρεια τοιούτων ρκ , οἵων ὁ περὶ τὸ ΓΔΛ ὀρθογώνιον κύκλος τξ , ἡ δ ' ἐπὶ τῆς |
| συγκείμενον ἐκ τῶν ἀπὸ τῶν ΑΕ , ΕΒ τετραγώνων τῷ συγκειμένῳ ἐκ τῶν ἀπὸ τῶν ΓΖ , ΖΔ , τὸ | ||
| ἀπὸ τῶν ΑΒ , ΒΓ καὶ σύμμετρον τῷ ἐξ αὐτῶν συγκειμένῳ , ἀνάγκη καὶ τὸ ἐκ τῶν ἀπ ' αὐτῶν |
| ΒΓ . , ] ἐπεὶ γὰρ ἡ ΓΠ ἴση τῇ ΠΚ , ἡ ΓΝ μείζων τῆς ΝΚ . ὥστε καὶ | ||
| ΟΚ , καὶ ἡ ΠΡ πρὸς ΡΟ , καὶ ἡ ΠΚ πρὸς ΟΛ , καὶ ἡ ΚΡ πρὸς ΡΛ , |
| αὐτοὺς διαφορεῖν σπουδάζοντες . σκληρία δ ' εἰ φαίνοιτο , μίξομεν τὰ μαλακτικὰ τοῖς ἑλκτικοῖς . τὰς μέντοι μετρίας παρωτίδας | ||
| . Ἀλλὰ τὰ μὲν γένη ἐάσομεν , τὰ δὲ καθέκαστον μίξομεν ; Τίνα οὖν ἔσται ἐφ ' αὑτῶν τὰ γένη |
| δηλαδὴ λευκὸν γίνεται δίκην ψιμυθίου τὸ ἀπὸ μολύβδου γινόμενον . Δυνατὸν γὰρ οὕτως γενέσθαι καὶ ἄσβεστος : τεθέντα δηλαδὴ τὸν | ||
| καὶ ὑμενοῦται τὸ δέρμα , καὶ γίνονται αἱ φλύκταιναι . Δυνατὸν δέ ἐστι πρὸς τούτοις καὶ ἄλλα σημεῖα ἐφευρεῖν , |
| ἅμα καὶ τοῦ ἐπὶ τοῦ αὐτοῦ , περιγράφεσθαί φασι τὸ χαρακτηρίζον τὴν ἀντίθεσιν τῶν τοιούτων προτάσεων : ἅμα τε γὰρ | ||
| πρῶτον τοῦ ὁρῶντος τὴν θέαν ὑφαρπάζον καὶ σχεδὸν τὴν γνώμην χαρακτηρίζον , οὕτω καὶ ἐν τῷ λόγῳ κυριώτατον ἡ τῆς |
| , τήν τε ἀριθμητικήν , ἣ τῷ ἰσαρίθμῳ ὑπερέχει καὶ ὑπερέχεται , οἷον ἐπὶ τοῦ ἓν καὶ δύο καὶ τρία | ||
| δὲ πάντες οἱ τὴν μείζονα μερικὴν ἔχοντες : ἐπεὶ γὰρ ὑπερέχεται τὸ Α ὑπὸ τοῦ Β , ὑπερεχέσθω τὸ Α |
| ΑΒ κάθετοι . ἐὰν δὴ μενούσης τῆς ΚΞ τά τε ΞΓΔ , ΗΖΝ ἡμικύκλια καὶ τὰ ΚΓΛ , ΚΖΜ τρίγωνα | ||
| κατὰ τὴν ἐπιφάνειαν , ἐπειδὴ καὶ ἡ ΚΖΓ ἐφάπτεται τῶν ΞΓΔ , ΗΖΝ ἡμικυκλίων κατὰ πᾶσαν μετακίνησιν . Ἐὰν σφαῖρα |
| λέγομεν , τὸ δὲ δ τετράπλευρον , τὸ δὲ πλείους πολύπλευρον . ὃ γάρ ἐστιν ἐν ἀριθμῷ ἡ μονάς , | ||
| Ἐάν τε γὰρ τετράγωνον ἢ ὅλως τετράπλευρον εἴτε ἄλλο τι πολύπλευρον εἴη δεδομένον , διὰ τούτου τοῦ προβλήματος ἴσον αὐτῷ |
| ἐν αὐτῷ συνισταμένοις πρὸς τῇ Ο κορυφῇ , καὶ τοῖς λαμβανομένοις πέρασι τοῦ πρὸς τῷ πελεκυναρίῳ πλάτους ἐν τῇ μετακινήσει | ||
| : ὡς μὲν ἐγὼ εἰκάζω τοῖς Ὁμήρου ἔπεσιν οὐκ ὀρθῶς λαμβανομένοις παρακρουσθέντες . πεποίηται γὰρ αὐτῷ ἐν Ἰλιάδι Ποσειδῶν προλέγων |
| , τὸ ΔΖ ιζ ιδ β λ κ . ٦ ٢٤ ٢٠ ٠ ٥٥ ٢٥ ٤ ١٠ Πόθεν δῆλον , | ||
| ٢ ٤٨ ١٠ ١٢ ٩ τὸ ΓΔ ٢ ٤٧ ٣٣ ٢٤ ١٦ ἡ ΕΖ μονάδων τεσσάρων ἡ τὸ ΑΔ δυναμένη |
| ΗΒ ἴσον ἐστὶ τὸ ΖΛ : ἀσύμμετρον ἄρα ἐστὶ τὸ ΓΛ τῷ ΖΛ . ὡς δὲ τὸ ΓΛ πρὸς τὸ | ||
| τῆς ΛΟ ἐλάσσων ἐστὶν ἢ β . καὶ ἐπεὶ ἡ ΓΛ κάθετός ἐστιν ἐπὶ τὴν ΒΛ , παράλληλος ἄρα ἐστὶν |
| πλεῖστα καταφατικὰ δεικνύουσι , σπανίως δὲ χρῶνται καὶ τοῖς ἀποφατικοῖς συμπεράσμασι . θαυμαστῆς δὲ ἀκριβείας ἐστὶν ἡ πρότασις τοῦ θεωρήματος | ||
| θαυμαστόν : ἀνάγκη γὰρ ἐν τοῖς κατὰ τὸ πρῶτον σχῆμα συμπεράσμασι τὸ κατηγορούμενον κατηγορεῖσθαι κατὰ τοῦ ἐν τῇ ἐλάττονι προτάσει |
| ἴσον ἐστὶ τοῖς ΗΔ , ΑΖ . ἐπὶ δὲ τῆς ἐλλείψεως καὶ τῆς τοῦ κύκλου περιφερείας ἐροῦμεν : ἐπεὶ οὖν | ||
| τοῦ κέντρου τῷ ὁμοίῳ τῷ ἀποτεμνομένῳ , ἐπὶ δὲ τῆς ἐλλείψεως καὶ τῆς τοῦ κύκλου περιφερείας μετὰ τοῦ ἀποτεμνο - |
| ὀξυμέλιτος θερμοῦ κυάθους τρεῖς . Χρῶ δὲ καὶ τῷ Ἀσκληπιάδου τροχίσκῳ τῷ καλουμένῳ ἀνικήτῳ ἀστέρι : αἱ δυνάμεις δὲ αὐτοῦ | ||
| καὶ μέντοι καὶ τῷ διὰ τῆς ἀκακίας καὶ τῶν ἐλλεβόρων τροχίσκῳ μιχθὲν πολλάκις κωλῦσάν τε τὸ ἐπιρρέον κενῶσάν τε τὸ |
| φύλλα δ ' ἔχει ὠκίμῳ ὅμοια , μικρότερα δὲ καὶ ἐπεσχισμένα ἐκ τῶν ἄνωθεν μερῶν , κλωνία δὲ πέντε ἢ | ||
| ἀκανθώδη , ὑπόκενον : φύλλα δ ' ἔχει ἐκ διαστημάτων ἐπεσχισμένα ἀραιῶς , σόγχῳ ἐμφερῆ τὴν περιφέρειαν , ἄνθη μήλινα |
| μόνην τὴν καθ ' ἡμᾶς οἰκουμένην . αὕτη δ ' ἀφορίζεται πέρασι νοτίῳ μὲν τῷ διὰ τῆς Κινναμωμοφόρου παραλλήλῳ , | ||
| , τίνες δέ εἰσιν αἱ παράλληλοι εὐθεῖαι , διὰ τούτων ἀφορίζεται τῶν ῥημάτων . δεῖ τοίνυν αὐτάς , φησίν , |
| ἐπείλησιν λοξὴν κατ ' ἐφηβαίου ὑπὲρ τὸ αἰδοῖον : εἶτα περιάγοντες τῷ καυλῷ ἄγομεν λοξὴν καταντίον ἐπὶ τὰ εὐώνυμα μέρη | ||
| ἢ ἰατρὸς ὤν . οὕτω δὲ καὶ οἱ τὰ μαθήματα περιάγοντες κατὰ τὰς πόλεις καὶ πωλοῦντες καὶ καπηλεύοντες τῷ ἀεὶ |