τῇ ΑΓ μήκει , ἡ δὲ ὅλη ἡ ΑΗ τῆς προσαρμοζούσης τῆς ΔΗ μεῖζον δύναται τῷ ἀπὸ ἀσυμμέτρου ἑαυτῇ μήκει | ||
καὶ ἡ ὅλη μείζων διὰ ηʹ εʹ ιʹ δύναται τῆς προσαρμοζούσης τῷ ἀπὸ συμμέτρου ἑαυτῇ μήκει , καὶ ἡ ἄλλη |
, ἡ ἄρα ΓΜ τῆς ΜΖ μεῖζον δύναται τῷ ἀπὸ ἀσυμμέτρου ἑαυτῇ . καί ἐστιν ὅλη ἡ ΓΜ σύμμετρος μήκει | ||
ἐπεὶ οὖν ἡ ΑΗ τῆς ΗΔ μεῖζον δύναται τῷ ἀπὸ ἀσυμμέτρου ἑαυτῇ μήκει , ἐὰν ἄρα τῷ τετάρτῳ μέρει τοῦ |
τις μικρὰ καλεῖται εὐωδεστέρα οὖσα , ἡ δὲ μείζων , ὑπερέχουσα τῷ θάμνῳ καὶ τοῖς φύλλοις , πλατυτέρα καὶ βαρύοσμος | ||
καὶ τῶν οἱστισινοῦν πρὸς ἀλλήλους καθ ' ἑταιρίαν γενομένων παμπληθὲς ὑπερέχουσα . ἀνθ ' ὧν αὖ καὶ πρώτη πόλεων ἥδε |
Λ , καὶ κείσθω τῇ ΛΖ περιφερείᾳ ἴση περιφέρεια ἡ ΜΗ . Ἐπεὶ οὖν ὁ ἥλιος ἀνατείλας κατὰ τὸ Ζ | ||
ἀπὸ ΜΗ . κοινὸς προσκείσθω λόγος ὁ τῆς ΑΜ πρὸς ΜΗ . ὁ ἄρα συγκείμενος ἔκ τε τοῦ τῆς ΓΜ |
βοτάνη , ᾗ τοὔνομα μὲν ἐτέθη ἀπὸ τοῦ εὑρόντος . Δίδοται δὲ αὐτῆς τοσοῦτον μετ ' οἴνου , ἤν τις | ||
ἰδίαν ⋖ βʹ , μετ ' οἴνου κοτύλης αʹ . Δίδοται δὲ καὶ μυρίκης ὁ καρπὸς ὡςαύτως καὶ χαμαιπίτυος καὶ |
ὑπὸ ΑΕΒ ὀρθή ἐστιν . καὶ ἐπεὶ ἡ ὑπὸ ΗΕΖ ἡμίσειά ἐστιν ὀρθῆς , ὀρθὴ δὲ ἡ ὑπὸ ΕΗΖ : | ||
ΑΒΓ . διὰ τὰ αὐτὰ δὴ καὶ ἡ ὑπὸ ΒΑΔ ἡμίσειά ἐστιν ὀρθῆς . ὅλη ἄρα ἡ ὑπὸ ΔΑΓ γωνία |
ἑκάστου τῶν τμημάτων τῶν δα , αγ ἴσον τῷ ὑπὸ συναμφοτέρου τῆς δαγ καὶ τῆς αβ διὰ τὸ αʹ τοῦ | ||
, οἱ δὲ ἐξ ὑποκειμένου ἢ τέλους ἢ ἐκ τοῦ συναμφοτέρου , ἐξ ὑποκειμένου καὶ τέλους , ταῖς ἐπιστήμαις καὶ |
ἑπτακοσίων καὶ τετταράκοντα σταδίων : ἐντεῦθεν δὲ ἡ Φρυγία διὰ Λαοδικείας καὶ Ἀπαμείας καὶ Μητροπόλεως καὶ * Χελιδονίων : ἐπὶ | ||
ζημίας ἐκ τῶν πορθμικῶν διαλύεσθαι τελῶν . Μεταξὺ δὲ τῆς Λαοδικείας καὶ τῶν Καρούρων ἱερὸν ἔστι Μηνὸς Κάρου καλούμενον τιμώμενον |
λοιπὸν ἄρα τὸ ἀπὸ τῆς ΒΨ λοιπῷ τῷ ἀπὸ τῆς ΨΚ ἴσον ἐστίν : ἴση ἄρα ἡ ΒΨ τῇ ΨΚ | ||
ἄρα τὸ ἀπὸ τῆς ΚΒ τῶν ἀπὸ τῶν ΒΨ , ΨΚ . ἴση δὲ ἡ ΒΨ τῇ ΨΚ : ὥστε |
καλείσθω ἀποτομὴ δευτέρα . Ἐὰν δὲ μηδετέρα σύμμετρος ᾖ τῇ ἐκκειμένῃ ῥητῇ μήκει , ἡ δὲ ὅλη τῆς προσαρμοζούσης μεῖζον | ||
ἀπὸ συμμέτρου ἑαυτῇ , καὶ ἡ ΑΕ σύμμετρός ἐστι τῇ ἐκκειμένῃ ῥητῇ τῇ ΑΒ μήκει . τετμήσθω δὴ ἡ ΕΔ |
ἀλλὰ καὶ μῆκος καὶ βάθος , ὡσαύτως δὲ καὶ ἡ λειπομένη διάστασις . εἰ δὲ συνελθόντων τούτων τότε ἐπισυνέβη τὸ | ||
σχεδὸν τῇ πικρίᾳ μόνον καὶ τῷ τόνῳ τοῦ Δημοσθενικοῦ χαρακτῆρος λειπομένη , τοῦ δὲ πιθανοῦ καὶ κυρίου μηδὲν ἐνδέουσα . |
. . . λιτρ . αʹ ʹʹ . ἡ δόσις κοχ . αʹ μετὰ κονδίτου . τοῦτο ποιεῖ , ἐφ | ||
: ἡ τελεία δόσις κοχ . εʹ , ἡ ἐλάττων κοχ . βʹ , ἡ μέση γʹ : τὸ δὲ |
, καθὼς καὶ γεγεννημέναι εἰσίν . ἐκ τῆς Πίστεως γεννᾶται Ἐγκράτεια , ἐκ τῆς Ἐγκρατείας Ἁπλότης , ἐκ τῆς Ἁπλότητος | ||
τὰ δεινὰ καὶ ἐμπειρία πολέμου : ἕξις ἐμμενητικὴ νόμου . Ἐγκράτεια δύναμις ὑπομενητικὴ λύπης : ἀκολούθησις τῷ ὀρθῷ λογισμῷ : |
⃞ον καὶ ἔστιν ΔΥ α # Μο ιβ ἴσ . ⃞ῳ καὶ ʂ Ϛ ∠ ʹ # Μο ιβ ἴσ | ||
α . πάλιν , ἐπεὶ θέλω τοὺς τρεῖς ἴσους εἶναι ⃞ῳ , εἰσὶ δὲ οἱ τρεῖς ʂ ιγ , ταῦτα |
Ν , Ο , Π τῇ ΑΒ παράλληλοι ἤχθωσαν αἱ ΝΥ , ΟΣ , ΤΠ : ἴσον ἄρα ἐστὶ τὸ | ||
τῆς ΖΝ βάσεως , ὑπερέχει καὶ τὸ ΛΥ στερεὸν τοῦ ΝΥ [ στερεοῦ ] , καὶ εἰ ἴση , ἴσον |
: ποταμὸς κατὰ Ἰβηρίαν . . . Βάλα : πόλις Γαλιλαίας : ὁ πολίτης Βαλαῖος . . . Βέλβινα : | ||
ἐθνικὸν Γαβαηνός , ὡς αὐτὸς Ἰώσηπος . Γαβάθη , πόλις Γαλιλαίας , ὡς Ἰώσηπος ἕκτῳ Ἰουδαϊκῆς ἀρχαιολογίας . τὸ ἐθνικὸν |
καὶ τοῦ κέντρου τῆς τομῆς , ἡ δὲ μεταξὺ τῆς κατηγμένης καὶ τῆς ἐφαπτομένης , ἕξει πρὸς αὐτὴν ἡ κατηγμένη | ||
τῶν δύο εὐθειῶν , ὧν ἐστιν ἡ μὲν μεταξὺ τῆς κατηγμένης καὶ τοῦ κέντρου τῆς τομῆς , ἡ δὲ μεταξὺ |
εὐλόγως , φανερὸν δὲ μάλιστα ἐκ τῶν ἀμυγδαλῶν , εἴπερ ἀφαιρουμένης τῆς ὑγρότητος καὶ τῆς εὐτροφίας μεταβάλλουσι . Τὰ δ | ||
τελῶν δοκεῖ προσφέρεσθαι νῦν ἢ ὁ φόρος δύναται συντελεῖν , ἀφαιρουμένης τῆς εἰς τὸ στρατιωτικὸν δαπάνης τὸ φρουρῆσον καὶ φορολογῆσον |
Ἑκαταῖος Περιηγήσει . . . . Καλαμένθη , ἥτις καὶ Καλαμίνθη : πόλις Λιβύης . Ἑκαταῖος Περιηγήσει . κρεῖττον οὖν | ||
Πελοποννήσου . Παυσανίας τετάρτῳ . Καλαμένθη , ἥ τις καὶ Καλαμίνθη , πόλις Λιβύης . Ἑκαταῖος περιηγήσει . κρεῖττον οὖν |
ΚΛ δύνει ἤπερ ἡ ΛΞ . πάλιν , ἐπεὶ ἡ ΤΜ τῆς ΗΞ μείζων ἐστὶν ἢ ὁμοία , ἔστω τῇ | ||
μείζων ἐστὶν ἡ μὲν ΛΤ τῆς ΝΧ , ἡ δὲ ΤΜ τῆς ΧΞ , ὅλη ἄρα ἡ ΛΜ ὅλης τῆς |
: δοθεῖσα ἄρα καὶ ἡ ΨΚ . ἀλλὰ καὶ ἡ ΨΣ δοθεῖσά ἐστιν , ἐπεὶ καὶ ὡς ἡ ΦΚ πρὸς | ||
τῷ ΡΣ κύκλῳ : ἴση ἄρα ἐστὶν ἡ ΠΩ τῇ ΨΣ περιφερείᾳ . ἐπεὶ δὲ ἀσύμπτωτόν ἐστι τὸ ἀπὸ τοῦ |
ἐν ἀριστερᾷ ὅσον δὴ μιᾶς ἡμέρας περίοδον κυκλεύσαντι , ἡ Ἀππία λεγομένη , ἁμαξήλατος μᾶλλον : ἐν ταύτῃ δὲ πόλις | ||
ἢ μεταξὺ ἵδρυνται . γνωριμώταται δὲ τῶν ὁδῶν ἥ τε Ἀππία καὶ ἡ Λατίνη καὶ ἡ Ὀυαλερία , ἡ μὲν |
τὸ δὲ περιεχόμενον σχῆμα ὑπό τε τοῦ κύκλου καὶ τῆς ἀπολαμβανομένης ὑπὸ τοῦ τέμνοντος ἐπιπέδου κωνικῆς ἐπιφανείας πρὸς τῇ κορυφῇ | ||
ἐστι τὸ περιεχόμενον σχῆμα ὑπό τε τῆς διαμέτρου καὶ τῆς ἀπολαμβανομένης ὑπ ' αὐτῆς περιφερείας . κέντρον δὲ τοῦ ἡμικυκλίου |
ια λϚ ιη . , ٢٠ , ٤٠ , ٢٩ ٢٦ ٣٠ , ٢٩ ٢٦ ٣٠ καὶ ἡ ΑΕ τῆς | ||
٥٠ ٢٠ τὸ ἀπὸ ταύτης ٤٢ ٥٢ ٢ ٢٣ ٣٣ ٢٦ ٤٠ ὃ μέλλει πρὸς τὸ ἀπὸ τῆς ΘΗ παραβληθῆναι |
Ποσείδιον [ τὸ ] καὶ Ἄγκιστρον στάδιοι σνʹ . Ἀπὸ Βαργυλίων εἰς Ἴασον στάδιοι σκʹ . Ἀπὸ Ἰάσου ἐπ ' | ||
ἦν δέ ποτε καὶ χωρίον Κινδύη . ἐκ δὲ τῶν Βαργυλίων ἀνὴρ ἐλλόγιμος ἦν ὁ Ἐπικούρειος Πρώταρχος , ὁ Δημητρίου |
πρὸς τὸ ὑπὸ ΞΜΕ . καὶ ὡς ἄρα τὸ ὑπὸ ΔΜΕ πρὸς τὸ ὑπὸ ΠΜΡ , οὕτως τὸ ὑπὸ ΔΜΕ | ||
. τὸ ἄρα ὑπὸ τῶν ΝΜΞ ἴσον ἐστὶ τῷ ὑπὸ ΔΜΕ . ἔστιν ἄρα ὡς ἡ ΜΝ πρὸς ΜΔ , |
β μο α . ↑ οὖν τοῦ δευτέρου , ἤτοι Ϟῶν β μο α , γίνεται δυ μία , τουτέστι | ||
β : ἔσται Ϛ δʹ . Ὁ δὲ ἕτερος ταχθεὶς Ϟῶν ι ἔσται λ δʹ . Καὶ ποιοῦσι τὰ τῆς |
τοῦ ὑπὸ τὸ πλάτος ἡ ΔΖ ٢ ٤٧ ٤٢ ٣٥ ٤٤ Ἐκ τῆς εἰς ἄτοπον ἀπαγωγῆς . Ἡ ΑΒ ٢٠ | ||
ἴσον εἶναι τῷ ΖΛ . Ἡ ΑΒ ٢ ٥ ⸎ ٤٤ ἡ ΓΔ ٤ ἡ ΒΗ ١ ٣٩ ٩ ἡ |
τρίτῳ . τὸ πρωτότυπον αὐτῶν Νουκερία . Νουκρία , πόλις Τυρσηνίας . Φίλιστος [ ιεʹ ] ιαʹ . καὶ τὸ | ||
τοῖς Ἀθηναίοις , οἳ πρότερον περιεωρῶντο , καὶ ἐκ τῆς Τυρσηνίας νῆες πεντηκόντοροι τρεῖς . καὶ τἆλλα προυχώρει αὐτοῖς ἐς |
ἐπὶ τὸν ἄρχοντα χειρῶν ἀδίκων ἀναφέρουσι . , . . ἀπειροκαλία ἀλλ ' εἰμὶ λίαν ἀπειρόκαλος , ὡς διαβεβοημένα ἐπιδιηγούμενος | ||
Ἀντωνίου περιγενέσθαι . τοσοῦτος ἦν οἶστρος αὐτῷ κατὰ Ἀντωνίου καὶ ἀπειροκαλία . ἐβεβαίου τε αὖθις τοῖς δύο τέλεσι τοῖς ἀπὸ |
ΕΛ ια λϚ ιη . , ٢٠ , ٤٠ , ٢٩ ٢٦ ٣٠ , ٢٩ ٢٦ ٣٠ καὶ ἡ ΑΕ | ||
καὶ μέσον ٢٤ ٢٩ ٣٧ ٤٨ ٢ τὸ ΕΓ ٨ ٢٩ ٣٧ ٤٨ ٢ ἡ πλευρὰ τοῦ . . ٤ |
ἀριθμητικὴ δὲ ἡ τῷ αὐτῷ ἀριθμῷ τῶν ἄκρων ὑπερέχουσα καὶ ὑπερεχομένη , ἁρμονικὴ δὲ ἡ τῷ αὐτῷ μέρει τῶν ἄκρων | ||
μεσότης ἡ ταὐτῷ μέρει τῶν ἄκρων αὐτῶν ὑπερέχουσά τε καὶ ὑπερεχομένη , ὅπερ ἄλλῃ οὐ συμβέβηκεν : ἐπί τε γὰρ |
Ξ τῇ πρὸς τῷ Ε , περιεχομένῃ δὲ ὑπὸ τῶν ΓΕΔ , ἐλάσσων ἄρα φανήσεται ἡ ΓΔ τῆς ΗΘ . | ||
τῇ ὑπὸ ΔΗΓ , καὶ συναμφότεραι ἄρα ἥ τε ὑπὸ ΓΕΔ καὶ ἡ ὑπὸ ΓΗΒ ἴσαι εἰσὶν τῇ ὑπὸ ΔΕΖ |
ΑΗ ١٤ ٥ ٥٧ ٤٠ ἡ αὐτῆς ἡμίσεια ٧ ٢ ٥٨ ٥٠ τὸ ἀπὸ τῆς ἡμισείας ٤٩ ٤١ ٥٣ ٢٣ | ||
ΒΓ ٤ ٥٨ ٠ ٨ ٤٩ ἡ ΘΜ ٣ ١٩ ٥٨ ٥٠ ٣٢ τὸ συναμφότερον τῶν ἀπό ٣٢ ١٢ ٤٣ |
κατὰ τὸ Ρ , καὶ τὸ μεῖζον τμῆμά ἐστιν ἡ ΡΟ , τὰ ἄρα ἀπὸ τῶν ΟΝ , ΝΡ τριπλάσιά | ||
ἡ ΥΡ τῆς ΡΞ . Ἴση δὲ ἡ ΥΡ τῇ ΡΟ : μείζων ἄρα ἡ ΟΡ τῆς ΡΞ . Τετμήσθω |
κατὰ τοῦ ὑπάρχοντος κατηγορεῖσθαι . δέδεικται δὲ καὶ ὅτι τῆς καταφατικῆς ἀναγκαίας λαμβανομένης οὐ γίνεται συλλογιστικὴ ἡ συζυγία . ἀλλ | ||
ἕκαστα καὶ τὴν μάχην τῆς μερικῆς πρὸς τὴν καθόλου εἴτε καταφατικῆς εἴτε ἀποφατικῆς εἰπὼν ἀντιφατικῶς μάχεσθαι , ταῦτα οὖν πάντα |
τυράννῳ . Δημοσθένης δ ' ἐξ Ἀμαζόνος οὕτω λεγομένης . Ἀμάστρεως δὲ κλίνει Στράβων , ἄλλοι Ἀμάστριδος . τὸ ἐθνικὸν | ||
αἱ δὲ ἄλλαι συνέμειναν , ὧν ἡ Σήσαμος ἀκρόπολις τῆς Ἀμάστρεως λέγεται . τὸ δὲ Κύτωρον ἐμπόριον ἦν ποτε Σινωπέων |
, ὀξύνω ; φρύγω , ψυχρός εἰμι ; φαίνω , πενθῶ ; ἀστράπτω , ὑπορθῶ ; δογματίζω , αὐξάνω ; | ||
ἐμοῖς ] ? ἐμοί τε ταλαίναι ? [ δέον ἔσχατομ πενθῶ ? [ ἀκροθήκτων ] ἐγχέων πλ [ μαζει ? |
٤ ἡ ΑΔ οὐδέν ٢٦ ١٥ ἡ ΑΗ ١٠ ٤٤ ٢٠ ٤٠ ἡ αὐτῆς ἡμίσεια ٥ ٢٢ ١٠ ٢٠ τὸ | ||
٤٧ ٢٢ ١٩ ١٠ ٢٤ τὸ ΑΒ χωρίον ١٣ ٥١ ٢٠ ἡ ΛΝ ἡ αὐτοῦ πλευρά ٣ ٤٣ ٢٠ τὸ |
τὸ ἐντὸς λεάνας μεθ ' ὕδατος προστίθει . Ἄλλο . Σιδίων μέρη δύο , κηκίδων μέρος ἕν , λειώσας ἀνάπλασσε | ||
τε οἱ διὰ μαλαγμάτων καὶ διὰ νάπυος . Καταπότια . Σιδίων , σμύρνης ἀνὰ ⋖ η , στυπτηρίας σχιστῆς , |
ἑκατέρᾳ τῶν ΚΣ , ΒΟ : καὶ ἑκατέρα ἄρα τῶν ΚΣ , ΒΟ τῆς ΣΟ μείζων ἐστίν . καὶ ἐπεὶ | ||
μία ἄρα τῶν ΘΚ , ΚΛ ἑκατέρας τῶν ΨΚ , ΚΣ μείζων ἐστίν . καὶ ἐπεὶ παράλληλός ἐστιν ὁ ΒΖΓ |
ἐστὶν ἴσα τῷ ἀπὸ τῆς ὅλης καὶ τοῦ ἥττονος τμήματος ἀναγραφέντι τετραγώνῳ . τεσσαρεσκαιδεκάκις γὰρ τὰ ιδ ρϘϚ . ἡ | ||
, τουτέστι τοῦ δ , ὁμοῦ ιϚ ; ἀπὸ μιᾶς ἀναγραφέντι τετραγώνῳ , τουτέστι ιϚ ἐπὶ ιϚ : γίνονται σνϚ |
τῆς ὅλης καὶ τοῦ εἰρημένου τμήματος ὡς ἀπὸ μιᾶς ἀναγραφέντι τετραγώνῳ : τεσσαρεσκαιδεκάκι γὰρ ιδ ρϘϚ ποιοῦσι : δεκάκι γὰρ | ||
ἀπὸ τοῦ γβ τετραγώνου ἴσος ἐστὶ τῷ ἀπὸ τοῦ γδ τετραγώνῳ . Ἔστω γὰρ ἀπὸ μὲν τοῦ γδ τετράγωνος ὁ |
ΝΞ περὶ κέντρον τὸ Ζ ἴσος τῷ ΛΜ , καὶ ἐπιζευχθείσης τῆς διὰ τῶν κέντρων διαμέτρου τῆς ΝΛΜ εἰλήφθω ἐπ | ||
μεσημβρίας κατὰ τὸ Ω σημεῖον τῆς ἀκριβοῦς τοῦ ἡλίου ἐποχῆς ἐπιζευχθείσης τῆς ΕΥΩ εὐθείας , ἡ δὲ ΦΩ τῆς παραλλάξεως |
τὸ σύναμα ὑπὸ τῶν ΑΒ , ΒΓ ٣ ٥٩ οὐδέν ٣٥ ٥ ἡ ΔΗ ἤτοι τὸ πλάτος τοῦ ἀπό ٣ | ||
ΑΙ παραλληλόγραμμον ١١٧ ٣٥ ٤٧ ٢٠ τὸ ΚΖ ٣ ٣٦ ٣٥ ٢٠ τὸ ΛΜ ١١٧ ٣٥ ٤٧ ٢٠ τὸ ΝΞ |
ἐκκειμένης σεληνιακῆς ἀνωμαλίας ἐπὶ τῆς κατ ' ἐπίκυκλον ὑποθέ - σεως , δι ' ἣν εἴπομεν αἰτίαν , τὸ μὲν | ||
σοφόν ; μηδένα γὰρ ἀπ ' ἀρχῆς ἀνθρώπων γενέ - σεως ἄχρι τοῦ παρόντος βίου κατὰ τὸ παντελὲς ἀνυπαίτιον νομισθῆναι |
ἀριθμοῦ καὶ μο β ὑπάρξεως ἐπὶ Ϟ καὶ μο β λείψεως ποιεῖ δυ α ↑ μο δ . Πῶς ; | ||
μο λϚ , καὶ κοινῆς προσκειμένης τῆς τῶν κδ ἀριθμῶν λείψεως καὶ τῆς μιᾶς μονάδος , γενήσεται κζ ἀριθμοὶ ἴσοι |
ΟΗ , ὡς δὲ ἡ ΒΝ πρὸς ΝΖ , ἡ ΖΟ πρὸς ΟΘ : ἡ ἄρα ΑΒ πρὸς ΒΓ τὸν | ||
ΖΟ πρὸς τὸ ὑπὸ ΗΟΘ . καί ἐστι παράλληλος ἡ ΖΟ τῇ ΑΔ : πλαγία μὲν ἄρα πλευρά ἐστιν ἡ |
. . . . . ρκη ∠ ʹ ἰσημερινός . Πρόκειται δὲ τῆς Ταπροβάνης στίφος νήσων , ἅς φασιν εἶναι | ||
πρὸς τὴν ἀρχήν , οὕτως ἡ πᾶσα πρὸς πᾶν . Πρόκειται τῇδε τῇ συγγραφῇ ἐπιστήμην τινὰ πορίσασθαι τῆς τε φύσεως |
, ΖΔ ἄρα ῥηταί εἰσι δυνάμει μόνον σύμμετροι . [ ἀποτομὴ ἄρα ἐστὶν ἡ ΓΔ . Λέγω δή , ὅτι | ||
ΖΘ , ΖΚ ἄρα ῥηταί εἰσι δυνάμει μόνον σύμμετροι : ἀποτομὴ ἄρα ἐστὶν ἡ ΚΘ [ προσαρμόζουσα δὲ ἡ ΖΚ |
ἐφ ' ἧς τὸ μεῖζον ὄνομα σύμμετρόν ἐστι τῇ ἐκκειμένῃ ῥητῇ , δευτέραν δέ , ἐφ ' ἧς τὸ ἔλασσον | ||
ἄλλαι εὐθεῖαι , αἳ μήκει μὲν ἀσύμμετροί εἰσι τῇ ἐκκειμένῃ ῥητῇ , δυνάμει δὲ μόνον σύμμετροι , καὶ διὰ τοῦτο |
, ΗΠ , ΠΘ , ΘΡ , ΡΕ τριγώνων πυραμὶς ἰσοϋψὴς τῷ κώνῳ . ἑκάστη ἄρα τῶν ἀνεσταμένων πυραμίδων μείζων | ||
τὸ ΕΖΗΘ , καὶ ἀνεστάτω ἀπὸ τοῦ ΕΖΗΘ τετραγώνου πυραμὶς ἰσοϋψὴς τῷ κώνῳ . ἡ ἄρα ἀνεσταμένη πυραμὶς μεῖζόν ἐστιν |
πλευρά ١ ٣١ ١ ١٤ τὸ ἀπὸ ταύτης ٢٨ ٤٩ ٥٤ ٥٦ ٢٦ ٤٦ ٤٠ ἡ τὸ χωρίον δυναμένη τὸ | ||
ἡ πλευρὰ τοῦ ἀπὸ τῆς μεταξὺ τῶν τομῶν ١٤ ١٤ ٥٤ ἡ ΔΖ [ ٩ ٢٣ ٥٦ ٥٠ ] τὸ |
ὑγίειαν καλὸν ἡμῖν ἔργον ἀπεργάζεται , εἰ ἀποδέχῃ τοῦτο . Ἀποδέχομαι . Καὶ εἰ τοίνυν με ἔροιο τὴν οἰκοδομικήν , | ||
ὑπὸ μοχθηροῦ , ἂν ἔχῃ δὴ ἀναφαίρετον τὸ ἀγαθόν . Ἀποδέχομαι τοῦ λόγου τῆς γνώμης τῷ ἡμαρτημένῳ προστιθέντος τὴν ἀδικίαν |
ἐστὶν τῇ ΜΒ περιφερείᾳ . καὶ βέβηκεν ἐπὶ μὲν τῆς ΟΓ περιφερείας γωνία ἡ ὑπὸ ΔΑΟ , ἐπὶ δὲ τῆς | ||
ἀπὸ τῆς ΟΓ τετραγώνῳ . ἀλλὰ τῷ μὲν ἀπὸ τῆς ΟΓ ἴσον ἐστὶ τὸ ὑπὸ τῶν ΔΓΦ , τῷ δὲ |
σκʹ . Ἀπὸ Μύνδου εἰς Λέρον στάδιοι τνʹ . Ἀπὸ Μύνδου εἰς τὴν Κῶ στάδιοι ρμʹ . Ἀπὸ δὲ Κῶ | ||
πάλιν εἰς Μύνδον , ἀφ ' ἧς κατέλιπον . Ἐκ Μύνδου εἰς Πάνορμον στάδιοι πʹ Ἐκ Μύνδου εἰς Βαργύλια στάδιοι |
١٣ ٤٣ ἡ ΑΗ ٥ ١٣ ١١ ἡ ΓΚ ٢ ٤٨ ٤٠ ٥٧ ἡ ΚΜ ١ ١٤ ٣٠ ٢ ١٢ | ||
١ ١١ ١٦ τὸ ὑπὸ τῶν ΒΑ , ΑΖ ٢ ٤٨ ١٠ ٤ ٤٥ Ἐπεὶ γὰρ ἀσύμμετρός ἐστιν ἡ ΑΖ |
ἐς Ὀλυμπίαν τοῦ λόγου δηλώσω . τῷ δὲ Ἰφίτῳ , φθειρομένης τότε δὴ μάλιστα τῆς Ἑλλάδος ὑπὸ ἐμφυλίων στάσεων καὶ | ||
φθορά : εἰ δὲ εἰς ἄπειρον προΐοιεν , ἀεὶ τῆς φθειρομένης ἀρχῆς ἐκείνη εἰς ἣν φθείρεται ἔσται ἀρχή . οὐ |
ἐναντίοι κρατοῦσιν αὐτῆς : οὔτ ' ἀπὸ τῶν οἰκιῶν : ὀλιγανθρωπία γὰρ ἐν τῷ ἄστει γέγονε . τὰ ἔπιπλα δὲ | ||
βήσομεν . καὶ Θουκυδίδης αἴτιον δ ' ἦν οὐχ ἡ ὀλιγανθρωπία , ὅσον ἡ ἀχρηματία : τῆς γὰρ τροφῆς ἀπορίᾳ |
ρξϚ Περὶ λουτρῶν ρξζ Περὶ λουτρῶν αὐτοφυῶν ρξη Περὶ ψυχρολουϲίαϲ ρξθ Περὶ τῆϲ εἰϲ ἔλαιον ἐμβάϲεωϲ ρο Περὶ ἀποϲπογγιϲμοῦ ροα | ||
λϚ ιδ λθ ια λ # , Διὸς δὲ μοίρας ρξθ λ λγ μδ κζ # # , Ἄρεως δὲ |
λείψας αὐτὸν ποιεῖ ΚΥ κζ ʂ Ϛ # ΔΥ κζ ἴσ . ʂ Ϛ # ΔΥ α , καὶ γίνεται | ||
ποιεῖν ἴσ . ⃞ῳ , καὶ ʂ β Μο α ἴσ . κύβῳ . καὶ γίνεται ζητεῖν τετράγωνον κύβου βπλ |
ἰσημερινοῦ μοίρας ξα καὶ γράφεται διὰ τῶν βορείων τῆς μικρᾶς Βρεττανίας . κηʹ . ὅπου δὲ ἡ μεγίστη ἡμέρα ὡρῶν | ||
οὗτος τοῦ ἰσημερινοῦ μοίρας νζ καὶ γράφεται διὰ Κατουρακτονίου τῆς Βρεττανίας . ἔστι δὲ ἐνταῦθα , οἵων ὁ γνώμων ξ |
καὶ αὔξανε τὴν ὕβριν καὶ βλάβην καὶ ἀδικίαν . . ΟΥΔΕ ΜΕΝ ΕΣΘΛΟΣ . Οὐδὲ ὁ πάνυ ἀγαθὸς οἰστὴν νομίζει | ||
δίκαιον ὁρίζοντες . Πορθήσει δὲ πόλιν ἑτέρου ἕτερος . . ΟΥΔΕ ΤΙΣ ΕΥΟΡΚΟΥ ΧΑΡΙΣ ΕΣΣΕΤΑΙ . Ἤγουν οὐδεμία δὲ εὐχαριστία |
τὸ ὑπὸ ΠΜΡ τῷ ὑπὸ ΞΜΕ . τὸ δὲ ὑπὸ ΠΜΡ ἴσον ἐδείχθη τῷ ἀπὸ τῆς ΛΜ : καὶ τὸ | ||
ἄρα ὡς τὸ ὑπὸ τῶν ΕΜΔ πρὸς τὸ ὑπὸ τῶν ΠΜΡ , οὕτως ἡ ΔΕ πρὸς τὴν ΕΘ , τουτέστιν |
μιγάδος . οἱ πολῖται Ἰτάνιοι . ἔστι καὶ ἄκρα . Ἰτέα , δῆμος τῆς Ἀκαμαντίδος φυλῆς . ὁ δημότης Ἰτεαῖος | ||
φύλλα ροα Ἵππουριϲ ροβ Ἰϲάτιϲ βαφική ρογ Ἰϲάτιϲ ἀγρία ροδ Ἰτέα ροε Καλαμίνθη ροϚ Κάλαμοϲ ἀρωματικόϲ ροζ Κάλαμοϲ φραγμίτηϲ ροη |
. τρίτῳ . Ὁ πολίτης Συεδρεύς . : Καυίνδανα , Ἰσαυρίας κώμη . Κ . Ἰσ . ἕκτῳ : Ὁ | ||
Στράβων : κατὰ δὲ Καπίτωνα Ἀμασεώτης . Δέρβη , φρούριον Ἰσαυρίας καὶ λιμήν . Ὁ κατοικῶν Δερβήτης . . . |
ΟΤ . Κοινὴ ἀφῃρήσθω ἡ ΓΤ : λοιπὴ ἄρα ἡ ΤΨ τῇ ΟΓ ἴση ἐστίν . Διπλῆ δὲ ἡ ΓΟ | ||
δὲ ἡ ΓΟ τῆς ΤΣ : διπλῆ ἄρα καὶ ἡ ΤΨ τῆς ΤΣ : ἴση ἄρα ἡ ΨΣ τῇ ΣΤ |
ἀπὸ τῆς ΒΗ λϚ , τὸ ἀπὸ τῆς ΗΓ ١٠ ١٧ ٨ ٣٤ ١٧ ἡ ΒΓ ٢ ٤٧ ٣٥ ἡ | ||
λϚ , τὸ ἀπὸ τῆς ΗΓ ١٠ ١٧ ٨ ٣٤ ١٧ ἡ ΒΓ ٢ ٤٧ ٣٥ ἡ ΗΓ ٣ ١٢ |
ἠγμένῃ εὐθείᾳ , καὶ ποιηθῇ , ὡς τὸ τμῆμα τῆς ἐφαπτομένης τὸ μεταξὺ τῆς ἁφῆς καὶ τῆς ἀνηγμένης πρὸς τὸ | ||
οὕτως τὸ περιεχόμενον ὑπὸ τῶν μεταξὺ τῆς τομῆς καὶ τῆς ἐφαπτομένης πρὸς τὸ ἀπὸ τῆς ἀπολαμβανομένης πρὸς τῇ ἁφῇ τετράγωνον |
Οὕτως οὖν ὅμοθεν φησὶ στοιχεῖα καὶ ἀνθρώπους γενέσθαι . . ὩΣ ὉΜΟΘΕΝ ΓΕΓΑΑΣΙΝ . Ἴσθι , ὅτι ἀπὸ τῆς αὐτῆς | ||
δὲ ἐπιτυχῶς αὐτὸν ἐν τῷ σῷ λογισμῷ λάμβανε . . ὩΣ ὉΜΟΘΕΝ ΓΕΓΑΑΣΙ ΘΕΟΙ . Ὅτι ἐκ τῆς αὐτῆς αἰτίας |
παράλληλος αὐτῇ ἡ ΓΟ . ἐπεὶ οὖν ἰσογώνιόν ἐστιν τὸ ΑΛΒ τρίγωνον τῷ ΓΟΒ τριγώνῳ καὶ διπλῆ ἐστιν ἡ μὲν | ||
πρὸς ὅλον τὸ ἀπὸ ΛΗ , οὕτως ἀφαιρεθὲν τὸ ὑπὸ ΑΛΒ πρὸς ἀφαιρεθὲν τὸ ἀπὸ ΛΚ , καὶ λοιπὸν ἄρα |
ὁρᾶν αἴσθησις καὶ ἡ τοῦ ὁρᾶσθαι δύναμις τῶν ἄλλων συζεύξεων τιμιωτέρῳ ζυγῷ ἐζύγησαν , εἴπερ μὴ ἄτιμον τὸ φῶς . | ||
τῇ ἀξίᾳ πρότερον καὶ τὸ δυνάμει τάττοιτο ἂν τὰ τῷ τιμιωτέρῳ συγγενέστερα , ὡς τὸ ποσὸν τοῦ ποιοῦ προτάττοιτο ἄν |
τὸ ὑπὸ ΜΛΝ τῷ ὑπὸ ΘΖΛ . τὸ δὲ ὑπὸ ΜΛΝ ἴσον ἐστὶ τῷ ἀπὸ τῆς ΚΛ : καὶ τὸ | ||
ἡ ΔΕ ἐπὶ τὴν ΒΓ : τὸ ἄρα ὑπὸ τῶν ΜΛΝ ἴσον ἐστὶ τῷ ἀπὸ τῆς ΚΛ . καὶ ἐπεί |
τῶν ΑΕ καὶ ΕΓ ὑπόκειται Ϛ , ἑκατέρα δὲ τῶν ΑΘ καὶ ΘΓ τῶν αὐτῶν Ϛ ι , καὶ ὀρθή | ||
ἴση . ἔστω πρότερον μείζων : μείζων ἄρα καὶ ἡ ΑΘ τῆς ΘΔ . τετμήσθω ἡ ΑΔ δίχα κατὰ τὸ |
τοῦ κέντρου δύναται τὸ ὑπὸ ΛΑΒ , ὕψος δὲ ἡ ΓΟ , μείζων ἐστὶν τοῦ κώνου , οὗ ἡ μὲν | ||
τὸ ΜΓΟΥ , καὶ τρεῖς αἱ ΥΜ , ΜΓ , ΓΟ ἴσαι ἀλλήλαις εἰσίν , καὶ μείζων ἐστὶν ἡ ΜΓ |
τὸν σφόνδυλον . ἐστὶ δὲ κεδνὸς κἀν πορθμῷ πρὸς ἄκραισι Πελωριάδος προβολαῖσι . τίς οὕτως τακτικὸς ἀκριβὴς ἢ τίς οὕτως | ||
τὸν σφόνδυλον . ἔστι δὲ κεδνὸς κἀν πορθμῷ πρὸς ἄκραισι Πελωριάδος προβολαῖσι . τὸν σκάρον ἐξ Ἐφέσου ζήτει , χειμῶνι |
ΞΝ τῆς ΜΟ ἐλάσσων ἐστὶν ἢ β : καὶ ἡ ΣΛ ἄρα τῆς ΓΡ ἐλάσσων ἐστὶν ἢ β : ὥστε | ||
ΞΟ τῇ ΘΣ ἐστὶν ὁμοία , ἡ δὲ ΟΠ τῇ ΣΛ ἐστὶν ὁμοία , καὶ ἡ ΘΣ ἄρα τῇ ΣΛ |
λόχος ἐκ δέκα ἢ ιεʹ , πύργος ἐξ ἑκατὸν , λεγεὼν ἐκ μυρίων . λόχοισιν : ἀλλαγίοις : στὶξ ἐκ | ||
Ἀννίβαν ἔγραψεν ἐν βιβλίοις ἑπτά . Κατὰ δὲ Ῥωμαίους ἡ λεγεὼν πεντακισχίλιοί εἰσιν . Ὅτι φύσει οἱ ἄνθρωποι ταῖς μὲν |
ποτε ληφθεὶς ἀπήγετο τὴν πρὸς θάνατον . τῆς δὲ μητρὸς ἑπομένης καὶ ὀλοφυρομένης ἐκεῖνος τῶν δημίων ἐδεῖτο βραχέα τινὰ τῇ | ||
, ᾗ ταῦτα ἕπεται , ἡ δὲ αἰτία φανερὰ τῆς ἑπομένης ἀτοπίας ἐστίν . ἐπειδὴ γὰρ πᾶσα κίνησις ἐν χρόνῳ |
μέσον τὸ ΓΕ . Ἡ πλευρὰ τοῦ . . ٥ ٢٨ ٣٨ ἡ πλευρὰ τοῦ ΕΓ ٢ ٥٤ ٥١ τὸ | ||
٢٩ ٣٧ ٤٨ ٢ ἡ πλευρὰ τοῦ . . ٤ ٢٨ ١٩ τὸ ΗΚ ١٦ ἡ δυναμένη αὐτό ٤ ΚΘ |
μόνης τῆς μαι συλλαβῆς γίνεται ἀπὸ τοῦ ἐὰν τύπω ἐὰν τύπωμαι . Καὶ περὶ μὲν οὖν τῶν ὑποτακτικῶν εἰρήσθω μέχρι | ||
τυψώμεθοντύψησθοντύψησθον . Πληθ . Ἐὰν τυψώμεθατύψησθετύψωνται . Ἑνικά . Ἐὰν τύπωμαι : ὁμοίως τῷ πρώτῳ κανονίζεται , εἴτε ἀπὸ ἐνεργητικοῦ |
١١ ٤٣ ἡ αὐτῶν πλευρὰ ἢ καὶ ΔΖ ٠ ٥ ٣٠ ٤ ٤٧ καὶ ἀσύμμετρος τῇ ΑΓ . , ] | ||
καὶ δεύτερα σοϚ . καὶ ὅρα ταῦτα , πῶς κεῖνται ٣٠ ٦٦ ٢٧٦ ταῦτα ἀναβίβασον , καὶ γίνονται λα ι |
Ἠριγέρων ἐπίμικτον ἔχει δύναμιν ψυκτικήν τε καὶ μετρίωϲ διαφορητικήν . Ἠρύγγιον θερμαίνει μὲν οὐ καταφανῶϲ , ξηρότητοϲ δὲ λεπτομεροῦϲ οὐκ | ||
ὀνίνηϲι : καταπλάϲϲεται δὲ καὶ πρὸϲ τὰϲ φλεγμονὰϲ ἐναργῶϲ . Ἠρύγγιον . Θερμότητι μὲν ἢ βραχὺ τῶν ϲυμμέτρων ἢ οὐδὲν |
. ἐσθίεται δὲ τὰ μὲν ἐν τῇ θαλάττῃ σηπόμενα ὑπὸ τερηδόνος , τὰ δ ' ἐν τῇ γῇ ὑπὸ σκωλήκων | ||
, μετὰ τῶν ἑκάστῳ πάθει συνεδρευόντων σημείων καὶ τὰ τῆς τερηδόνος συνεδρεύει . διὰ δὲ τῆς μηλώσεως γινώσκεται : λιπασμοῦ |
καὶ αὗται δοκοῦσιν . Ἀρετὴ μὲν ἡ ἀνδρώδης αὕτη , Σωφροσύνη δὲ ἐκείνη καὶ Δικαιοσύνη ἡ παρ ' αὐτήν . | ||
ἔοικεν , αἰδὼς οὐκ ἀγαθὸν καὶ ἀγαθόν . Φαίνεται . Σωφροσύνη δέ γε ἀγαθόν , εἴπερ ἀγαθοὺς ποιεῖ οἷς ἂν |
εἰρηνικοὺς ἀλλὰ καὶ πολιτικοὺς ἤδη τινὰς αὐτῶν ἀπεργασάμενος τυγχάνει . Λοιπὴ δ ' ἐστὶ τῆς Ἰβηρίας ἥ τε ἀπὸ τῶν | ||
καὶ δρυμῶν ἀβάτων ἐφ ' ἡμέρας πλείους ἐποίησαν μεστήν . Λοιπὴ δ ' ἐστὶ τῆς μεταξὺ Ἴστρου καὶ τῶν ὀρῶν |
τέσσαρα . γίνονται οὖν τῶν δύο τετραγώνων αἱ μονάδες . ρδ ἡ δὲ ΑΓ ιϚ : τετράκις γὰρ δ ιϚ | ||
δ ' ἐπὶ τῆς ΕΘ τῶν λοιπῶν εἰς τὸ ἡμικύκλιον ρδ ιζ . καὶ τῶν ὑπ ' αὐτὰς ἄρα εὐθειῶν |
ἡ μὲν ΛΤ τῆς ΝΧ , ἡ δὲ ΤΜ τῆς ΧΞ , ὅλη ἄρα ἡ ΛΜ ὅλης τῆς ΝΞ μείζων | ||
ΤΜ , ΜΥ , ΥΦ , ΦΝ , ΝΧ , ΧΞ ἄρα ἑξῆς ἀλλήλων μείζονές εἰσιν ἀρχόμεναι ἀπὸ μεγίστης τῆς |
ὑπὸ κακοχυμίας , ἤτοι ἐξ ἥπατος εἰς αὐτὴν καταρρεούσης ἢ περιεχομένης ἐν τοῖς χιτῶσιν αὐτῆς . γεννᾶται δ ' ἐξ | ||
ἐπεὶ γὰρ τὸ Δ ἐντός ἐστι τῆς ὑπὸ τῶν ἀσυμπτώτων περιεχομένης γωνίας , δυνατὸν ἀπὸ τοῦ Δ δύο ἐφαπτομένας ἀγαγεῖν |
ἔχει λόγον ἔκ τε τοῦ ὃν ἔχει ἡ ΘΒ πρὸς ΜΠ καὶ ἡ ΠΜ πρὸς ΒΓ , ἀλλ ' ὡς | ||
τῷ ὑπὸ ΤΒ , ΜΝ , καὶ τὸ μὲν ὑπὸ ΜΠ , ΒΘ τέταρτον τοῦ ὑπὸ ΤΒ , ΜΝ , |
διπλῆ ἡ ΦΧ : πενταπλάσιον ἄρα ἐστὶ τὸ ἀπὸ τῆς ΩΨ τοῦ ἀπὸ τῆς ΧΦ . καὶ ἐπεὶ τετραπλῆ ἐστιν | ||
δὲ ΣΟ τῇ ΨΥ ἴση , καὶ τὰ ἀπὸ τῶν ΩΨ , ΨΥ τριπλάσιά εἰσι τοῦ ἀπὸ τῆς ΟΝ . |
χυμῷ τινι ζέσαντι ἢ σαπέντι , ἢ μωρίου φλεγμονῆς καὶ στεγνώσεως . Τῶν δὲ συνόχων πυρετῶν γένος διττόν : οἱ | ||
Δία ἔπεμψέ τις καὶ πρὸς ἰατρὸν , ὡς ὑπὸ ἀμέτρου στεγνώσεως ἢ ἀραιώσεως ἐνοχλούμενος . εἰ δὲ μή ἐστι πάθη |
٢٦ ٤٦ ٤٠ ἡ τὸ χωρίον δυναμένη τὸ ΑΒ ١ ١٩ ٢١ ἡ ΑΖ ٦ ٥٣ ١١ ٣٤ ἡ ΖΗ | ||
٤٨ ١ τὸ δὶς ὑπὸ τῶν ΑΒ , ΒΓ ١٣ ١٩ ٥٥ ٢٣ ٨ τὸ ἀπὸ τῆς ΒΓ ٤ ٥٨ |
. Τῇ μετὰ ῥητοῦ μέσον τὸ ὅλον ποιούσῃ μία μόνον προσαρμόζει εὐθεῖα δυνάμει ἀσύμμετρος οὖσα τῇ ὅλῃ , μετὰ δὲ | ||
. ὁμοίως δὴ δείξομεν , ὅτι καὶ ἡ ΘΝ αὐτῇ προσαρμόζει : τῇ ἄρα ἀποτομῇ ἄλλη καὶ ἄλλη προσαρμόζει εὐθεῖα |
٤ ٤٨ ٤٨ ٣٦ τὸ ἀπὸ τῆς μεταξὺ τῶν τομῶν ٢٣ ١٠ ٣ ١١ ٥٣ ٢٠ ἡ ΑΖ ١١ ٥١ | ||
τὸ δὶς ὑπὸ τῶν ΑΒ , ΒΓ ١٣ ١٩ ٥٥ ٢٣ ٨ τὸ ἀπὸ τῆς ΒΓ ٤ ٥٨ ٠ ٨ |
δευτέραν ἔκλειψιν ἀπεῖχεν ἡ σελήνη τοῦ ἀπογείου τοῦ ἐπικύκλου μοίρας σνα νγ : καὶ ἐνθάδε γὰρ ὁ ἀπὸ τῆς ἐποχῆς | ||
τῶν πετρῶν σμη Λεοντοπόδιον ἢ λεοντοπέταλον σμθ Λεπίδιον σν Λευκόϊον σνα Λεύκη τὸ δένδρον σνβ Λιβανωτόϲ σνγ Λιβάνου αἰθάλη σνδ |
Κάνωβος κρύπτεται . ὡρῶν ιε : ὁ λαμπρὸς τῆς νοτίου Χηλῆς ἑῷος δύνει . Αἰγυπτίοις ἐπισημαίνει . Εὐκτήμονι καὶ Φιλίππῳ | ||
. δʹ . ὡρῶν ιε : ὁ λαμπρὸς τῆς βορείου Χηλῆς κρύπτεται . Αἰγυπτίοις καὶ Καλλίππῳ χειμάζει , δυσαερία . |
١١ ٨ ١ ٤٠ τὸ πλάτος τὸ ΓΚ ٢٢٩ ٣٢ ٤٦ ٥١ ⸎ ١ ٤٠ ἡ ΓΜ ٢٥٦ ٤ ٣٧ | ||
Ἡ ΑΒ ٤ ἡ ΒΗ ٦ ἡ ΗΓ ٥ ١١ ٤٦ ἡ ΒΓ οὐδέν ٤٨ ١٤ ἡ Θ ٣ ὁ |
καθάπερ καὶ τῇ ἐνδείᾳ ἡ λύπη : γινομένης μὲν γὰρ ἀναπληρώσεως ἡδόμεθα , τεμνόμενοι δὲ λυπούμεθα . δοκεῖ δὲ γενέσθαι | ||
' οὐδὲ μετὰ γενέσεως πᾶσαι . αἱ μὲν γὰρ μετὰ ἀναπληρώσεως , εἰ καὶ μὴ γενέσεις , ἀλλὰ μετὰ γενέσεως |
τῆς ἀληθείας ἐμμέτρως ἐπιβεβόηκέ σοι , εἰπὼν οὔτως : Εἰδωλοποιὲ Μάρκε , καὶ τερατοσκόπε , ἀστρολογικῆς ἔμπειρε καὶ μαγικῆς τεχνῆς | ||
τὴν δ ' ἐξουσίαν τοῦ κωλύειν τοὺς ἀκοσμοῦντας , ὦ Μάρκε Ὁράτιε , παρὰ τοῦ δήμου λαβόντες ἔχομεν , ὅτε |
ἐκ τῆς ἐπιορκίας τιμωρίαν τοῖς σκολιῶς δικάσασι . . ΑΥΤΙΚΑ ΓΑΡ ΤΡΕΧΕΙ ὉΡΚΟΣ . Κατασκευάζων πῶς ἡ δικαιοσύνη ὑπερφέρει τῆς | ||
ἦτοι βασιλῆες Ἀχαιῶν εἰσὶ καὶ ἄλλοι . . ΗΔΗ ΜΕΝ ΓΑΡ ΚΛΗΡΟΝ ΕΔΑΣΣΑΜΕΘΑ . Ἀντὶ τοῦ πρὸ μακροῦ τὴν περιουσίαν |