διὰ τοῦ Δ ἡμικύκλια , ἵνα ἡ ἐφαπτομένη ἑκάστου αὐτῶν προσεκβαλλομένη ἐπὶ τὴν τοῦ μείζονος ἡμικυκλίου περιφέρειαν τὴν μεταξὺ τῆς
ἣν ἄγονται καὶ τῆς παρ ' ἣν δύνανται , καὶ προσεκβαλλομένη ἕως τοῦ ἑτέρου μέρους τῆς τομῆς δίχα τμηθήσεται ὑπὸ
8316489 τμηθησεται
ἡ ἀπὸ τοῦ Θ κάθετος ἐπὶ τὸ ΔΕΖ ἐπίπεδον δίχα τμηθήσεται ὑπὸ τοῦ ΣΤΥ ἐπιπέδου . καί εἰσιν ἴσαι αἱ
παραλληλογράμμου καὶ προσεκβαλλομένη μέχρι τοῦ ἑτέρου μέρους τῆς ἐπιφανείας δίχα τμηθήσεται ὑπὸ τοῦ παραλληλογράμμου . ἤχθω διὰ τοῦ Ε σημείου
7906574 τεμνοντος
ἀδιάστατον ἀπολείψουσι τὸ σημεῖον , ὅ γε διχάζεται πρὸς τοῦ τέμνοντος . ὁ δὲ αὐτὸς λόγος καὶ ἐπειδὰν φῶσι τὸν
ἐπιφανείᾳ τοῦ κώνου τὴν ΔΖΕ : κοινὴ δὴ τομὴ τοῦ τέμνοντος ἐπιπέδου καὶ τοῦ ΑΒΓ τριγώνου ἡ ΖΗ . καὶ
7585672 ΘΑΗ
διὰ τοῦ Α κέντρου ἤχθω κάθετος ἐπὶ τὴν ΖΗ ἡ ΘΑΗ , καὶ διὰ τῆς ΘΑ καὶ τοῦ ἄξονος ἐκβεβλήσθω
περιφέρεια μοιρῶν ἐστιν λ , εἴη ἂν καὶ ἡ ὑπὸ ΘΑΗ γωνία , οἵων μέν εἰσιν αἱ δ ὀρθαὶ τξ
7390299 ΑΔΒ
ΑΒ δύο τρίγωνα δεδομένα τῷ εἴδει ἀναγεγράφθω τὰ ΑΒΓ , ΑΔΒ : λέγω , ὅτι λόγος ἐστὶ τοῦ ΑΓΒ πρὸς
ἐπίπεδον : τομὴν δὴ ποιήσει μέγιστον κύκλον . ποιείτω νὸν ΑΔΒ , καὶ ἐπεζεύχθωσαν αἱ ΑΔ , ΑΒ , ΒΔ
7293976 προσκειμενου
γ : γίνονται θ ἔκ τε τῆς ἡμισείας καὶ τοῦ προσκειμένου ὡς ἀπὸ μιᾶς ἀναγραφέντα τετράγωνα β λϚ καὶ πα
, ὁ ἐκ τοῦ ὅλου σὺν τῷ προσκειμένῳ καὶ τοῦ προσκειμένου ἐπίπεδος μετὰ τοῦ ἀπὸ τοῦ ἡμίσεος τετραγώνου ἴσος ἐστὶ
7284835 συμπιπτῃ
ἀπὸ δὲ τῆς κορυφῆς εὐθεῖα ἀναχθῇ παρὰ τεταγμένως κατηγμένην καὶ συμπίπτῃ τῇ διὰ τῆς ἁφῆς καὶ τοῦ κέντρου ἠγμένῃ εὐθείᾳ
ἕν . εἰ δὲ ἡ ΒΓ τῇ Δ τομῇ μὴ συμπίπτῃ , ὡς ἐπὶ τοῦ τρίτου σχήματος , διὰ μὲν
7213768 κατηγμενην
ἐκβληθῇ , ἀπὸ δὲ τῆς κορυφῆς ἀναχθεῖσα εὐθεῖα παρὰ τεταγμένως κατηγμένην συμπίπτῃ τῇ διὰ τῆς ἁφῆς καὶ τοῦ κέντρου ἠγμένῃ
τῇ ΑΓ . ἤχθω γὰρ ἀπὸ τοῦ Β παρὰ τεταγμένως κατηγμένην ἡ ΒΖ . ἔστιν ἄρα , ὡς τὸ ὑπὸ
7186074 ΜΛΝ
τὸ ὑπὸ ΜΛΝ τῷ ὑπὸ ΘΖΛ . τὸ δὲ ὑπὸ ΜΛΝ ἴσον ἐστὶ τῷ ἀπὸ τῆς ΚΛ : καὶ τὸ
ἡ ΔΕ ἐπὶ τὴν ΒΓ : τὸ ἄρα ὑπὸ τῶν ΜΛΝ ἴσον ἐστὶ τῷ ἀπὸ τῆς ΚΛ . καὶ ἐπεί
7163068 ἰσοϋψης
, ΗΠ , ΠΘ , ΘΡ , ΡΕ τριγώνων πυραμὶς ἰσοϋψὴς τῷ κώνῳ . ἑκάστη ἄρα τῶν ἀνεσταμένων πυραμίδων μείζων
τὸ ΕΖΗΘ , καὶ ἀνεστάτω ἀπὸ τοῦ ΕΖΗΘ τετραγώνου πυραμὶς ἰσοϋψὴς τῷ κώνῳ . ἡ ἄρα ἀνεσταμένη πυραμὶς μεῖζόν ἐστιν
7130509 ἠγμενη
Διάμετρος δὲ τῆς σφαίρας ἐστὶν εὐθεῖά τις διὰ τοῦ κέντρου ἠγμένη καὶ περατουμένη ἐφ ' ἑκάτερα τὰ μέρη ὑπὸ τῆς
Ὤχου θυγατέρων τὴν νεωτάτην Παρύσατιν . ἤδη δὲ ἦν αὐτῷ ἠγμένη καὶ ἡ Ὀξυάρτου τοῦ Βακτρίου παῖς Ῥωξάνη . Δρύπετιν
7109421 ΖΟ
ΟΗ , ὡς δὲ ἡ ΒΝ πρὸς ΝΖ , ἡ ΖΟ πρὸς ΟΘ : ἡ ἄρα ΑΒ πρὸς ΒΓ τὸν
ΖΟ πρὸς τὸ ὑπὸ ΗΟΘ . καί ἐστι παράλληλος ἡ ΖΟ τῇ ΑΔ : πλαγία μὲν ἄρα πλευρά ἐστιν ἡ
7107263 ἀπολαμβανομενη
τῆς ἁφῆς ἐπὶ τὴν διάμετρον καταχθῇ εὐθεῖα τεταγμένως , ἡ ἀπολαμβανομένη εὐθεῖα ὑπὸ τῆς κατηγμένης πρὸς τῷ κέντρῳ τῆς τομῆς
καθόλου τε , ὅτι , ὃν ἂν ἔχῃ λόγον ἡ ἀπολαμβανομένη περιφέρεια πρὸς τὸν γραφέντα κύκλον , καθ ' ὃν
7104859 ΛΚΜ
, κοινὴ προσκείσθω ἡ ΝΚΜ περιφέρεια : ὅλη ἄρα ἡ ΛΚΜ περιφέρεια ὅλῃ τῇ ΝΚΜΞ περιφερείᾳ ἐστὶν ἴση . ἡμικυκλίου
, καὶ διὰ τοῦ Κ ἤχθω πλευρὰ τοῦ κυλίνδρου ἡ ΛΚΜ εὐθεῖα πίπτουσα ἐπὶ τὰς ΕΗ , ΖΘ περιφερείας ἐκβαλλομένη
7053403 ἐκκοπεως
ὀστέῳ ὑπὸ τὴν ὀξεῖαν καὶ ἀποθραύειν σμιλίῳ ἢ τῇ τοῦ ἐκκοπέως ἀκμῇ , τῆς λαβῆς κρατουμένης καὶ πλησσομένης τῷ σφυρίῳ
, ἵνα μὴ τοῦ ὀστέου ὅλου διακοπέντος ἡ τοῦ ἀντερηρεισμένου ἐκκοπέως ἀκμὴ κενεμβατήσασα διέλῃ τὴν μήνιγγα . τοιγαροῦν ὅταν τὰ
7052264 καταχθῃ
. Ἐὰν ἐν ὑπερβολῇ ἢ ἐλλείψει ἢ κύκλου περιφερείᾳ εὐθεῖα καταχθῇ τεταγμένως ἐπὶ τὴν διάμετρον , καὶ ἀπό τε τῆς
τῇ πλαγίᾳ τοῦ εἴδους πλευρᾷ , καὶ ἀπὸ τῆς ἁφῆς καταχθῇ εὐθεῖα τεταγμένως ἐπὶ τὴν διάμετρον , ἔσται ὡς ἡ
7048795 ΗΖΘ
ἡ ΕΚ ἄρα τεταρτημορίου ἐστίν : ἰσημερινὸς ἄρα ἐστὶν ὁ ΗΖΘ . καὶ ἐπεὶ αἱ ΕΚ , ΚΛ ἴσον ἀπέχουσι
ὑπὸ ΚΖΔ ἴση τῇ ὑπὸ ΗΖΘ : καὶ ἡ ὑπὸ ΗΖΘ ἄρα ἴση ἐστὶ τῇ ὑπὸ ΗΘΖ . ἴση ἄρα
7032993 ΒΔΓ
ἴση ἡ ΔΕ , τῇ δὲ ΓΖ ἡ ΖΗ τῆς ΒΔΓ περιφερείας κατὰ τὸ Δ δίχα τετμημένης . λέγω ,
ΒΑΓ . ἀλλὰ τῆς ὑπὸ ΓΕΒ μείζων ἐδείχθη ἡ ὑπὸ ΒΔΓ : πολλῷ ἄρα ἡ ὑπὸ ΒΔΓ μείζων ἐστὶ τῆς
7026321 τρηματος
⊂ , πλάτος δὲ τρήματος α ⊂ πάχος δὲ ἡμίσους τρήματος καὶ ἔτι ὀγδόου : τοὺς δὲ μεσοστάτας μῆκος ἔχοντας
τῷ μεταξὺ διαστήματι τῶν τροχῶν , κεχωρισμένων δὲ τοῦ μέσου τρήματος . οὗτοι οἱ κάλοι εἴρονται : εἶθ ' ὅταν
6985297 ΓΧ
καὶ τῆς ἀπολαμβανομένης ὑπὸ τῆς παραλλήλου ἴσον ἔσται τῷ ἀπὸ ΓΧ . διὰ δὲ τοῦτό ἐστιν , ὡς ἡ ΤΧ
τοῦ Χ πρὸς ὁποιανοῦν τῶν τομῶν προσπιπτέτω τις εὐθεῖα ἡ ΓΧ , καὶ τῇ ΓΧ παράλληλος ἤχθω τέμνουσα τὰς ἐφεξῆς
6979374 ἐκβαλλομενη
ἡ ΑΖ ἐφάψεται τῶν τομῶν ἀμφοτέρων , καὶ ἡ ΔΖ ἐκβαλλομένη τεμεῖ τὰς τομὰς μεταξὺ τῶν Α , Β κατὰ
καὶ συμπιπτέτω αὐτῇ εὐθεῖα ἡ ΓΔΕ κατὰ τὸ Δ καὶ ἐκβαλλομένη ἐφ ' ἑκάτερα ἐκτὸς πιπτέτω τῆς τομῆς . λέγω
6971517 κολλαται
ὑφαίνεται , ἤως συμπλέκεται , ἀφωμοίωται , ἢ ὑποκρύπτεται , κολλᾶται . ἡ δή : μύραινα . ἄγχι : γράφεται
ᾗ ἐπιτίθεται ἡ ματέρια , καὶ ἐν τῷ ζυμοῦσθαι οὐ κολλᾶται τῇ καρδόπῳ . ἐπειδὰν δὲ βληθῇ εἰς τὸν φοῦρνον
6969154 κυλινδρου
διὰ τοῦ ἄξονος ἐπίπεδον πρὸς ὀρθὰς ᾖ τῇ βάσει τοῦ κυλίνδρου . ἔστω κύλινδρος , οὗ βάσεις μὲν οἱ Α
ἴσον . μεῖζον δὲ ἡ πυραμὶς τοῦ τρίτου μέρους τοῦ κυλίνδρου , ὡς ἐδείχθη : μεῖζον ἄρα καὶ τὸ πρίσμα
6961914 ἀχθεισα
δεδομένῳ εὐθεῖα γραμμὴ ἀχθῇ δεδομένην ποιοῦσα γωνίαν , δέδοται ἡ ἀχθεῖσα τῇ θέσει . πρὸς θέσει γὰρ δεδομένῃ εὐθείᾳ τῇ
, ἡ δὲ ἀπὸ τῆς τομῆς ἐπὶ τὴν δευτέραν διάμετρον ἀχθεῖσα παράλληλος τῇ διαμέτρῳ δυνήσεται χωρίον , πρὸς ὃ τὸ
6961459 πενταγωνου
ἐγγεγράφθω τὸ ΑΒΓΔΕ . λέγω , ὅτι ἡ τοῦ ΑΒΓΔΕ πενταγώνου πλευρὰ δύναται τήν τε τοῦ ἑξαγώνου καὶ τὴν τοῦ
καὶ ἐγγεγράφθω εἰς αὐτὸν τριγώνου μὲν πλευρὰ ἡ ΒΕ , πενταγώνου δὲ ἡ ΓΔ , καὶ ἔστωσαν παράλληλοι , καὶ
6942485 καχεξιη
ἐϲ ἀϲθενείην κακοχυμίηϲ ἡ φύϲιϲ τραπῇ , τόδε ἐϲτὶν ἡ καχεξίη . ἡ νοῦϲοϲ ἥδε δυϲαλθήϲ , ἠδὲ μήκιϲτον κακόν
οἶδοϲ καὶ εἴ τι ἕτερον πρόϲκαιρον ἀνὰ τὸ ϲῶμα . καχεξίη δὲ ἑνὸϲ μεγάλου πάθεοϲ ἰδέη , καὶ τοῦδε τοὔνομα
6929379 ΧΩ
ΨΧ πρὸς τὴν ΧΠ , οὕτως ἡ ΠΧ πρὸς τὴν ΧΩ . καὶ διὰ τοῦτο πάλιν ἐὰν ἐπιζεύξωμεν τὴν ΠΨ
καὶ ἀπὸ περισπωμένων : ἰαχήσω , στεναχήσω . Τὰ εἰς ΧΩ ὑπερδισύλλαβα φύσει βραχείᾳ παραληγόμενα , ἢ παρ ' ὄνομα
6925460 ἰσομεγεθες
τὸ ἴσον λέγεται διχῶς , κατὰ ἕνα μὲν τρόπον τὸ ἰσομέγεθες καὶ μήτε ὑπερέχον ἐκείνου τοῦ ᾧ λέγεται ἴσον μήτε
Ἴσον , ἰσάριθμον , ἰσοπληθές , ἰσοτελές , ἰσόμηκες , ἰσομέγεθες , ἰσομέτρητον , ἰσοστάσιον , ἰσόσταθμον , ἰσόνομον ,
6919549 ΔΜΕ
πρὸς τὸ ὑπὸ ΞΜΕ . καὶ ὡς ἄρα τὸ ὑπὸ ΔΜΕ πρὸς τὸ ὑπὸ ΠΜΡ , οὕτως τὸ ὑπὸ ΔΜΕ
. τὸ ἄρα ὑπὸ τῶν ΝΜΞ ἴσον ἐστὶ τῷ ὑπὸ ΔΜΕ . ἔστιν ἄρα ὡς ἡ ΜΝ πρὸς ΜΔ ,
6892666 ϲυναγεται
δριμύ τε τῇ ποιότητι καὶ διαφορητικὸν ἱκανῶϲ τῇ δυνάμει . ϲυνάγεται δὲ ἐν τοῖϲ ὑπὸ κύνα καύμαϲιν . ἐϲτὶ γὰρ
δὲ πλείοϲι καὶ ϲιτίοιϲ δριμυτέροιϲ καὶ ἐν θέρει ὁ πικρόχολοϲ ϲυνάγεται , ἐν φθινοπώρῳ δὲ καὶ ἐδέϲμαϲι τοιούτοιϲ καὶ πολυχρονίοιϲ
6872315 συνανατολων
τῶν πρὸς τὴν θεωρίαν . Ἐγένοντο δὲ τρισσαὶ στάσεις περὶ συνανατολῶν καὶ συγκαταδύσεων : οἳ μὲν γὰρ ἔφασαν τὴν πραγματείαν
παντὶ τόπῳ σχεδὸν τῆς οἰκουμένης δύνασθαι παρακολουθεῖν ταῖς διαφοραῖς τῶν συνανατολῶν καὶ συγκαταδύσεων . Πρῶτον μὲν οὖν ἐκθησόμεθα τὰς τῶν
6840436 ἐπιπεδου
διὰ τῆς εὐθείας διδάσκουσι τήν τ ' εὐθεῖαν διὰ τοῦ ἐπιπέδου : εὐθεῖαν γὰρ εἶναί φασιν ἥτις εἰς πάντα τὰ
τοῖς στερεοῖς ἡ σφαιρική : τοῦ δὲ αἰθέρος μὴ ὄντος ἐπιπέδου , ἀλλὰ στερεοῦ , καταλείπεται αὐτὸν εἶναι σφαιροειδῆ .
6829042 ἀνεστατω
: τὸ Η ἄρα σημεῖον κέντρον ἐστὶ τῶν κύκλων . ἀνεστάτω ἀπὸ τοῦ Η σημείου τῷ μὲν τοῦ ΓΔ κύκλου
. ἔστω δὲ ἡ δοθεῖσα γωνία πρότερον ὀρθή , καὶ ἀνεστάτω ἀπὸ τῆς ΑΒ ἐπίπεδον ὀρθὸν πρὸς τὸ ὑποκείμενον ,
6823010 κωνικης
καὶ τῆς ἀπολαμβανομένης ὑπ ' αὐτοῦ πρὸς τῷ Α σημείῳ κωνικῆς ἐπιφανείας κῶνός ἐστι . καὶ συναποδέδεικται , ὅτι ἡ
τοῦ κυλίνδρου τομῆς : τὸ Ρ ἄρα σημεῖον ἐπὶ τῆς κωνικῆς ἐπιφανείας καὶ ἐπὶ τῆς τοῦ κυλίνδρου ἐπιφανείας ἐστί .
6816737 ΓΕΔ
Ξ τῇ πρὸς τῷ Ε , περιεχομένῃ δὲ ὑπὸ τῶν ΓΕΔ , ἐλάσσων ἄρα φανήσεται ἡ ΓΔ τῆς ΗΘ .
τῇ ὑπὸ ΔΗΓ , καὶ συναμφότεραι ἄρα ἥ τε ὑπὸ ΓΕΔ καὶ ἡ ὑπὸ ΓΗΒ ἴσαι εἰσὶν τῇ ὑπὸ ΔΕΖ
6813977 πυοποιος
ἔναιμος ἀγωγή , ἄνευ βλάβης δὲ μᾶλλον ἡ ἀφλέγμαντος καὶ πυοποιὸς θεραπεία . Μεγάλου δὲ τραύματος γενομένου καὶ ἐπὶ πλεῖον
, διαμοτούσθω ἡ ἀναστολή , καὶ δι ' ὅλου ἡ πυοποιὸς ἐπιμέλεια ἐγκρινέσθω . Τῆς ἀλωπεκίας ἡ ὑπερμεγέθης ἀθεράπευτός ἐστιν
6809741 περισπασμος
διὰ τί γίνεται . Τί ἐστιν ἀναστροφή . Τίς ἐστι περισπασμὸς καὶ τί ἐκπερισπασμός . Τί ἐστι στοιχεῖν . Τί
σύνταγμα τόπον πεπυκνωμένον πρὸ τοῦ γενέσθαι αὐτοῦ τὴν ἐπιστροφήν . περισπασμὸς δέ ἐστιν ἡ ἐκ δυεῖν ἐπιστροφῶν τοῦ τάγματος κίνησις
6809521 ροβ
, καταλειφθήσεται ἡμῖν τὸ ἀπὸ τῆς ΔΚ τετράγωνον τῶν αὐτῶν ροβ θ . καὶ μήκει ἄρα ἕξομεν τὴν ΔΚ μεταξὺ
ἡ δ ' ἐφεξῆς αὐτῇ ἡ ὑπὸ ΕΔΗ τῶν αὐτῶν ροβ λβ : ὥστε καὶ ἡ μὲν ἐπὶ τῆς ΕΗ
6806726 Ζυμη
ἂν ἐκ ϲηπεδόνοϲ γεννώμενοϲ , ἐϲτὶ δὲ καὶ φυϲώδηϲ . Ζύμη λεπτομερήϲ ἐϲτι καὶ μετρίωϲ θερμή : διὰ τοῦτο τοίνυν
τῆϲ ὀξώδουϲ ποιότητοϲ : δι ' ὃ καὶ κακόχυμοϲ . Ζύμη καὶ αὐτὴ ἐξ ἐναντίων οὐϲιῶν ϲύγκειται : καὶ γὰρ
6806723 ἀμβη
μολπῇ κατ ' Εὐριπίδην . . . . . . ἄμβη , : ἡμεῖς δὲ τούτους πάντας παραιτησάμενοι , Βακχείῳ
τῇ φλιᾷ ὑπὸ τὸ καταρτιζόμενον σκέλος ἐπιτίθεται σπάθη ἰπωτρὶς ἢ ἄμβη ἔσωθεν ἀπὸ τοῦ περινέου ὅλῳ τῷ σκέλει ὑποκειμένη .
6798988 χρηϲωμεθα
καταλιπόντεϲ τὸ δεδεμένον καὶ ϲπλήνιον ἐπιθέντεϲ ἐξ οἰνελαίου τῇ ἐμμότῳ χρηϲώμεθα θεραπείᾳ . Ὄγκοϲ ἐπὶ τῷ τραχήλῳ γίνεται μέγαϲ καὶ
ἄκρον , ἀρκεϲθῶμεν , εἰ δὲ μή , καὶ δὶϲ χρηϲώμεθα , δι ' ὅλου τοῦ τῆϲ ἐνεργείαϲ χρόνου κεκυφότοϲ
6796499 ἐλλιπους
ἀναπληρώσεις φύσεως , ἤτοι λίαν [ καὶ ] ἐνδεοῦς ἤτοι ἐλλιποῦς , οἷον ἰατρεῖαι , ἤτοι αἱ ἀναπληρώσεις τῆς γαστρὸς
αἴτιον , καὶ τούτῳ ἐνίστασθαι . ἐὰν μὲν οὖν , ἐλλιποῦς τῆς ἐκκοπῆς γεγενημένης , ὀξεῖα προὔχουσα καὶ νύσσουσα τὴν
6786505 ΖΒΗ
ἄρα ἡ ὑπὸ ΖΔΗ . ὀρθὴ δὲ καὶ ἡ ὑπὸ ΖΒΗ : ἐν κύκλῳ ἄρα τὸ ΒΖΔΗ τετράπλευρον . καὶ
καὶ διὰ μὲν τοῦ Β παρὰ τὴν ΓΔ ἤχθω ἡ ΖΒΗ , διὰ δὲ τοῦ Γ τῇ ΔΕ ἡ ΓΑΗ
6786076 περιτρητου
ἐπὶ τὸ κέντρον , καὶ ἔσται ἡ ὀξεῖα γωνία τοῦ περιτρήτου . μετενέγκας οὖν ἐπὶ τὸν ἀναγραφέα τὴν ἐκ τοῦ
τοῖς παρ ' ἡμῖν ὁμοίους ὑπάρχειν , ἀντὶ δὲ τοῦ περιτρήτου παρ ' ἡμῖν ἐπικεῖσθαί τι καθάπερ ἐπιστύλιον , ὀρθὰς
6774167 ΤΦ
γωνία τῇ ἐναλλὰξ ὑπὸ ΡΠΤ ἴση . ἐὰν δὲ ἡ ΤΦ παράλληλος ᾖ τῇ ΡΠ , διὰ τὰς ἴσας ἐναλλὰξ
οὕτως ὁ ἀπὸ τοῦ ΡΦ παραλληλογράμμου κύλινδρος περὶ ἄξονα τὸν ΤΦ πρὸς τὸν ἀπὸ τοῦ ΞΦ παραλληλογράμμου κύλινδρον περὶ τὸν
6773878 διατεινον
χρῆϲθαι μερῶν . εἰ μὲν οὖν αἵματοϲ πλῆθοϲ εἴη τὸ διατεῖνον , φλέβα τμητέον αὐτίκα μεγάλην τὴν ἐγγὺϲ τοῦ πάϲχοντοϲ
τὸ μὲν λέγεται σπέρμα , ὅπερ καὶ αὐτὸ πνεῦμά ἐστι διατεῖνον ἀπὸ τοῦ ἡγεμονικοῦ μέχρι τῶν παραστατῶν : τὸ δέ
6765663 μηλη
θέλει , εἰ μὴ ἀπὸ δασέος ἄρχεται συμφώνου , οἷον μήλη στήλη „ . τὸ ἐθνικὸν Πηλαῖος . Πήληκες ,
μὲν ἰατρῶν σμίλη , ψαλίς , τομεύς , ὠτογλυφίς , μήλη , ὑπογραφίς , βελόνη , ξυστήρ , ὀδοντοξέστης ,
6763569 σαφεστερας
. τούτου δὲ τὰς αἰτίας ἀναγκαῖόν ἐστι προεκθέσθαι χάριν τοῦ σαφεστέρας γενέσθαι τὰς ἐν αὐτῷ συντελεσθείσας πράξεις . Ἀλέξανδρος γὰρ
ἐπὶ τὴν ἀγωγὴν τῆς εἱμαρμένης . Εἰ δέ σοι καὶ σαφεστέρας εἰκόνος δεῖ , νόει μοι στρατηγὸν μὲν τὸν θεόν
6762096 ἐκβληθῃ
δύο εὐθεῖαι ἐφαπτόμεναι συμπίπτωσι , καὶ διὰ τῶν ἁφῶν εὐθεῖα ἐκβληθῇ , ἀπὸ δὲ τῆς συμπτώσεως τῶν ἐφαπτομένων ἀχθεῖσα εὐθεῖα
ΘΓ παράλληλον ἀγάγω τὴν ΕΞ , καὶ ἐπιζευχθεῖσα ἡ ΘΗ ἐκβληθῇ ἐπὶ τὸ Ξ , ὁ μὲν τῆς ΚΗ πρὸς
6756391 ΟΗ
ΒΓ , ΝΞ , ΔΜ , ΘΟ , ΗΠ , ΟΗ , ΗΡ . ἐπεὶ οὖν ἐν σφαίρᾳ μέγιστος κύκλος
ΘΝΟΗ . λέγω , ὅτι ἴση ἐστὶν ἡ ΝΟ τῇ ΟΗ . κατήχθωσαν γὰρ τεταγμένως αἱ ΞΝΖ , ΒΛ ,
6744010 ΑΗΘ
δύο ὀρθαῖς ἴσαι εἰσίν , εἰσὶ δὲ καὶ αἱ ὑπὸ ΑΗΘ , ΒΗΘ δυσὶν ὀρθαῖς ἴσαι , αἱ ἄρα ὑπὸ
κοινὴ ἀφῃρήσθω ἡ ὑπὸ ΒΗΘ : λοιπὴ ἄρα ἡ ὑπὸ ΑΗΘ λοιπῇ τῇ ὑπὸ ΗΘΔ ἐστιν ἴση : καί εἰσιν
6743843 ἀϲθματικοιϲ
τοιούτοιϲ χρονίζουϲι , διὰ τοῦτο κατάλληλα ἀρθρίτιδι ποδάγρᾳ παρέϲεϲι νεφρίτιδι ἀϲθματικοῖϲ κατάγμαϲι πωρώϲεωϲ δεομένοιϲ ἕλκεϲι ῥευματικοῖϲ φλεγμοναῖϲ χρονιζούϲαιϲ καὶ ἤδη
ὀδόνταϲ καὶ οὐλὰϲ ἐν ὀφθαλμοῖϲ λαμπρύνει . βοηθεῖ δὲ καὶ ἀϲθματικοῖϲ καὶ λύζουϲιν , ἐπιληπτικοῖϲ τε καὶ ποδαγρικοῖϲ μεθ '
6732950 τρυπανου
: ἐὰν δὲ ὡϲ ὑπὸ ϲκόλοποϲ ἐμπεπαρμένου ἢ ὡϲ ὑπὸ τρυπάνου τιτρᾶϲθαι νομίζῃ , παχέοϲ ἐντέρου τὸ εἶδοϲ τῆϲ ὀδύνηϲ
καὶ τότε μᾶλλον ἡ ἐνέργεια ὀξυτέρα γινέσθω , στρεφομένου τοῦ τρυπάνου τῇ ἀρίδι , ἕως ὅτου καταβιβασθῇ ἡ ἀκμὴ εἰς
6732181 πλειϲτακιϲ
τοῦ ε λόγου . [ πλυνομένη δι ' ὕδατοϲ ψυχροῦ πλειϲτάκιϲ ἀλλαϲϲομένου τοῦ ὕδατοϲ ἐν θέρει καὶ ἐπιρριπτομένηϲ τῆϲ κηρωτῆϲ
. καθαίρειν δὲ χρὴ τὴν τῆλιν ἀκριβέϲτατα καὶ ἀποπλύνοντα αὐτὴν πλειϲτάκιϲ ἀποβρέχειν ὕδατι γλυκεῖ καθαρῷ ἡμέραν καὶ νύκτα ἐν ὀϲτρακίνῳ
6725617 δεδομενου
ἐστίν . μόνοι δὴ λοιπὸν δοκοῦσι καθικνεῖσθαι τῆς ἐννοίας τοῦ δεδομένου οἱ γνώριμον ἅμα καὶ πόριμον αὐτὸ εἶναι ἀποφηνάμενοι :
ἐστὶ καὶ ἡ ὑπὸ τῶν ΑΕΓ γωνία . Ἐὰν κύκλου δεδομένου τῇ θέσει ἐπὶ τῆς περιφερείας δοθὲν σημεῖον ληφθῇ ,
6718962 Μαρκε
τῆς ἀληθείας ἐμμέτρως ἐπιβεβόηκέ σοι , εἰπὼν οὔτως : Εἰδωλοποιὲ Μάρκε , καὶ τερατοσκόπε , ἀστρολογικῆς ἔμπειρε καὶ μαγικῆς τεχνῆς
τὴν δ ' ἐξουσίαν τοῦ κωλύειν τοὺς ἀκοσμοῦντας , ὦ Μάρκε Ὁράτιε , παρὰ τοῦ δήμου λαβόντες ἔχομεν , ὅτε
6712124 παραλληλογραμμου
δὲ δύο τῆς μιᾶς διπλασίους : ἡ ἄρα ἀπὸ τοῦ παραλληλογράμμου ἀνασταθεῖσα πυραμὶς ἰσουψὴς τῷ κώνῳ διπλασία τῆς ἀπὸ τοῦ
τῆς περιφερομένης εὐθείας γραφόμενος . Κύλινδρός ἐστιν , ὅταν ὀρθογωνίου παραλληλογράμμου μενούσης μιᾶς πλευρᾶς τῶν περὶ τὴν ὀρθὴν γωνίαν περιενεχθὲν
6710321 ΨΩ
ἀποτομή . Ἐκβεβλήσθω γὰρ ἡ ΨΟ , καὶ ἔστω ἡ ΨΩ : συμβάλλει ἄρα ἡ ΟΩ τῇ τοῦ κύβου διαμέτρῳ
ΣΨ , ἀπὸ δὲ τοῦ Ψ τῇ ΚΞ παράλληλος ἡ ΨΩ , καὶ ἔστω ὡς ΛΜ πρὸς ΜΩ , οὕτως
6707423 ΓΖΑ
προκείσθω εὑρεῖν πόσων ἐστὶν τὸ περιεχόμενον ὑπὸ τῶν ΑΔΓ , ΓΖΑ περιφερειῶν ἐμβαδὸν μέγεθος οἵων ἐστὶν τὸ ὅλον τοῦ ἡλιακοῦ
τοῦ ὑπὸ ΓΖΑ : τὸ οὖν ὑπὸ ΒΖΕ τοῦ ὑπὸ ΓΖΑ ὑπερέχει τῷ ὑπὸ Η ΖΔ , ὥστε τὸ ὑπὸ
6700682 λυϲεωϲ
ἐρίοιϲ οἰϲυπηροῖϲ ἢ καὶ ἐλαιοβραχέϲι καὶ τοῖϲ δι ' ὠμῆϲ λύϲεωϲ καταπλαϲτέον . ἀναγαργαριζέϲθωϲαν δὲ κατ ' ἀρχὰϲ μὲν τοῖϲ
φλεγμαίνοι τὰ ϲπλάγχνα , τοῖϲ διὰ λινοϲπέρμου καὶ τῆϲ ὠμῆϲ λύϲεωϲ ἐν ὑδρελαίῳ καταπλάϲμαϲιν αὐτὰ παρηγορήϲωμεν , ἔπειτα δὲ καὶ
6699659 Ϟων
β μο α . ↑ οὖν τοῦ δευτέρου , ἤτοι Ϟῶν β μο α , γίνεται δυ μία , τουτέστι
β : ἔσται Ϛ δʹ . Ὁ δὲ ἕτερος ταχθεὶς Ϟῶν ι ἔσται λ δʹ . Καὶ ποιοῦσι τὰ τῆς
6696364 Γαρου
ρμαʹ . Ῥοδομήλου σκευασία ρμβʹ . Μουστακίων σκευασία ρμγʹ . Γάρου νηστικοῦ σκευασία ρμδʹ . Θυμιάματος μοσχάτου σκευασία ρμεʹ .
ϲήϲαϲ δίδου κοχλιάριον α ϲὺν ὀξυκράτῳ : καθαίρει ἀδιαϲτρόφωϲ . Γάρου καθαρτικοῦ ϲκευαϲία . Ϲκαμμωνίαϲ ⋖ δ πεπέρεωϲ κόκκοι ν
6694453 μελαγχολιηϲ
τόκουϲ , μανίηϲ , ϲπαϲμοῦ , παραλύϲιοϲ : κἢν ἐκ μελαγχολίηϲ τάδε γίγνηται , τὰ ἐπιγιγνόμενα ἀνήκεϲτα . ἐλλεβόρῳ ὦν
. ἀτὰρ καὶ τοῖϲδε αἰτίη ξὺν ὑγρότητι ψῦξιϲ . Περὶ μελαγχολίηϲ . Μέλαινα χολή , ἐν μὲν ὀξέϲι ἄνωθεν φανεῖϲα
6692562 γραφουσα
τμηθῇ παραλλήλῳ τῷ κύκλῳ , καθ ' οὗ φέρεται ἡ γράφουσα τὴν ἐπιφάνειαν εὐθεῖα , τὸ ἐναπολαμβανόμενον ἐπίπεδον μεταξὺ τῆς
ἰατρική , ὅταν ἡ φύσις ἐξασθενήσῃ , τὰ δὲ μιμεῖται γράφουσα καὶ πλάσσουσα παντοίας ζῴων καὶ φυτῶν ἰδέας . ὁμοίως
6692410 ΒΗΕ
δὲ τὸ Β , ὄψεις δὲ ἀνακλώμεναι αἱ ΒΖΔ , ΒΗΕ . λέγω , ὅτι αἱ ΖΔ , ΕΗ οὔτε
ὑπὸ ΔΗΕ γωνίᾳ . ὀρθὴ ἄρα ἐστὶν ἑκατέρα τῶν ὑπὸ ΒΗΕ , ΔΗΕ γωνιῶν : ἡ ΕΗ ἄρα τῇ ΒΔ
6687121 μεικτον
μὲν ὑγρὸν καὶ θερμὸν ὅσον εἰλικρινὲς ἀπῄειν , τὸ δὲ μεικτὸν ἐξ ὧν καὶ τὸ δέρμα ἦν , αἰρόμενον μὲν
τὸ δὲ χλωρὸν ἐκ τοῦ στερεοῦ καὶ τοῦ κενοῦ συνεστάναι μεικτὸν ἐξ ἀμφοῖν , τῆι θέσει δὲ καὶ τάξει διαλλάττειν
6685544 τελαμων
τῇ τῶν ἀρχῶν ἐναλλαγῇ ὡς ὑπὸ τοπικοῦ ἅμματος κρατηθῇ ὁ τελαμών . τούτων δὲ τῶν ἀρχῶν καθειλκυσμένων , τοῦ πλατυτέρου
, ταλαμών , καὶ τροπῇ τοῦ α εἰς ε , τελαμών . Τέρεν κατὰ δάκρυον εἴβει . παρὰ τὸ θέρω
6673574 βαρυτερου
ἀνομοίων τῇ τάσει , τοῦ μὲν ὀξυτέρου , τοῦ δὲ βαρυτέρου . σύστημα δέ ἐστι σύνταξις πλειόνων φθόγγων ἐν τῷ
Ἀγωγὴ προσεχὴς ἀπὸ τῶν βαρυτέρων ὁδὸς ἢ κίνησις φθόγγων ἐκ βαρυτέρου τόπου ἐπὶ ὀξύτερον , ἀνάλυσις δὲ τοὐναντίον . τὰς
6665895 συζυγεις
τῶν ἀντικειμένων . ἔστωσαν κατὰ συζυγίαν ἀντικείμεναι , ὧν διάμετροι συζυγεῖς αἱ ΑΒ , ΓΔ , κέντρον δὲ τὸ Χ
ἠγμένῃ , αἱ δὲ διὰ τῶν ἁφῶν καὶ τοῦ κέντρου συζυγεῖς ἔσονται διάμετροι τῶν ἀντικειμένων . ἔστωσαν κατὰ συζυγίαν ἀντικείμεναι
6659074 κωνου
τοῦ κώνου . εἰ γὰρ μή ἐστιν ὁ κύλινδρος τοῦ κώνου τριπλάσιος , ἔσται ἄρα ἤτοι μείζων ἢ τριπλάσιος ἢ
εἰ γάρ ἐστιν ἐκείνη γωνία , καὶ ἡ κορυφὴ τοῦ κώνου γωνία ἐστίν . ὥστε καὶ ὑπὸ δύο ἐπιφανειῶν καὶ
6648267 βουβωϲι
καὶ ἐπιπολῆϲ ὑποπίπτοντα . τὰ μὲν οὖν ἐν μαϲχάλαιϲ καὶ βουβῶϲι καὶ τραχήλῳ γινόμενα , καὶ τῶν ἐν ἄλλοιϲ δὲ
προϲβάλλειν δὲ ϲικύαϲ κούφαϲ μηροῖϲι , λαγόϲι , ἰϲχίοιϲι , βουβῶϲι , ἑλκοῦντα τὴν ὑϲτέρην : προϲβάλλειν δὲ καὶ πρὸϲ
6647909 συμπιπτωσι
ΑΗΘ . Ἐὰν μιᾶς τῶν κατὰ συζυγίαν ἀντικειμένων εὐθεῖαι ἐπιψαύουσαι συμπίπτωσι , καὶ διὰ τῶν ἁφῶν διάμετροι ἀχθῶσι , ληφθῇ
ἐπὶ ταὐτὰ τῷ κέντρῳ . Ἐὰν ἑκατέρᾳ τῶν ἀντικειμένων εὐθεῖαι συμπίπτωσι καθ ' ἓν ἐφαπτόμεναι ἢ κατὰ δύο τέμνουσαι ,
6647555 ΛΠ
ἴση ἑκατέρα τῶν ΞΛ , ΛΟ , καὶ συμπεπληρώσθω τὸ ΛΠ στερεόν . καὶ ἐπεί ἐστιν ὡς ἡ Α πρὸς
ἄρα ἀπὸ τῆς ΕΛ ἴσον ἐστὶ τῷ ὑπὸ ΟΛ , ΛΠ . ἐπεὶ δὲ οὔκ ἐστιν ἡ τομὴ ὑπεναντία ,
6645725 ٢٩
ΕΛ ια λϚ ιη . , ٢٠ , ٤٠ , ٢٩ ٢٦ ٣٠ , ٢٩ ٢٦ ٣٠ καὶ ἡ ΑΕ
καὶ μέσον ٢٤ ٢٩ ٣٧ ٤٨ ٢ τὸ ΕΓ ٨ ٢٩ ٣٧ ٤٨ ٢ ἡ πλευρὰ τοῦ . . ٤
6645114 πρωτιστῳ
δὲ γυναῖκες εἰσὶν ἐνὶ κλισίῃς ἐξαίρετοι , ἅς τοι Ἀχαιοὶ πρωτίστῳ δίδομεν , εὖτ ' ἂν πτολίεθρον ἕλωμεν . συγκαταριθμεῖ
δὲ γυναῖκες εἰσὶν ἐνὶ κλισίῃς ἐξαίρετοι , ἅς τοι Ἀχαιοὶ πρωτίστῳ δίδομεν εὖτ ' ἂν πτολίεθρον ἕλωμεν . ἦ ἔτι
6643065 ΚΧ
τῷ ἀπὸ ΓΧ : ἐὰν γὰρ ἀπὸ τοῦ Ε τῇ ΚΧ παράλληλον ἄγωμεν , τὸ ὑπὸ τῆς ΤΧ καὶ τῆς
καὶ ἡ ΣΧ τῇ ΟΦ , ἡ δὲ ΒΦ τῇ ΚΧ . παράλληλος ἄρα . , ] ἐὰν γὰρ δύο
6642226 ϲμιλῃ
' εὐθὺ τοῦ βάθουϲ ἄνωθεν κάτω , τὴν τομὴν ὀξείᾳ ϲμίλῃ , ἵνα ἐκκριθέντοϲ τοῦ αἵματοϲ οἷον πῶμά τι τῶν
περικλάϲει τοῦτον διαλύϲομεν . εἰ δὲ λιθώδηϲ ἤδη γεγένηται , ϲμίλῃ τὴν ἐπιφάνειαν διελόντεϲ ἐκκοπεῦϲιν λύϲομεν τοῦ ὀϲτοῦ τὴν ϲυνέχειαν
6639928 ΑΕΒ
ΚΝΡ ἴση τῇ ὑπὸ ΔΕΖ : ἐλάσσων ἄρα ἡ ὑπὸ ΑΕΒ τῆς ὑπὸ ΔΕΖ . ὥστε καὶ τὸ ΑΒ μέγεθος
μοίρας δ μϚ , ἃς ὑποθέμενος τοῦ μεγέθους τῆς ὑπὸ ΑΕΒ γωνίας ἐν τῷ θʹ θεωρήματι δείκνυσι διὰ τῶν ἀριθμῶν
6636109 φανταστον
τοῦ καθόλου μὲν εἶναι τὴν ἀπόδειξιν , πᾶν δὲ τὸ φανταστὸν μερικὸν ὑπάρχειν : οὐδὲ ἡ σπουδὴ ἄρα ἡ προηγουμένη
. . . οἱ δὲ Στωικοὶ τέσσαρα ταῦτά φασι φαντασίαν φανταστὸν φανταστικὸν φάντασμα , φαντασίαν μὲν λέγοντες τὸ πάθος τῆς
6632684 ΘΕΩΝ
ΘΕΩΝ ΟΠΙΝ . Ὁ ΤΕ σύνδεσμος πλεονάζει . . ΟΥΤΕ ΘΕΩΝ ΟΠΙΝ ΕΙΔΟΤΕΣ . Τουτέστιν οὔτε εἰς θεοὺς εἰδότες ἐπιστρέφεσθαι
Νῦν γὰρ θεοὺς τὰς ψυχικὰς δυνάμεις φησίν . . ΟΥΤΕ ΘΕΩΝ ΟΠΙΝ . Ὁ ΤΕ σύνδεσμος πλεονάζει . . ΟΥΤΕ
6631451 ΠΛΡ
ὑπὸ ΚΘΟ , συνεστάτω τῇ ὑπὸ ΚΘΟ ἴση ἡ ὑπὸ ΠΛΡ . ἡ ἄρα ΠΛ κάθετός ἐστιν ἰσοπλεύρου τριγώνου ,
Λ σημείων παράλληλοι κύκλοι γεγράφθωσαν οἱ ΜΘΝ , ΞΚΟ , ΠΛΡ . λέγω , ὅτι μείζων ἐστὶν ἡ ΠΞ περιφέρεια
6618652 Ἰτεα
μιγάδος . οἱ πολῖται Ἰτάνιοι . ἔστι καὶ ἄκρα . Ἰτέα , δῆμος τῆς Ἀκαμαντίδος φυλῆς . ὁ δημότης Ἰτεαῖος
φύλλα ροα Ἵππουριϲ ροβ Ἰϲάτιϲ βαφική ρογ Ἰϲάτιϲ ἀγρία ροδ Ἰτέα ροε Καλαμίνθη ροϚ Κάλαμοϲ ἀρωματικόϲ ροζ Κάλαμοϲ φραγμίτηϲ ροη
6618596 ἀσυμπτωτος
ἧς ἄξων ὁ ΑΒ , κέντρον δὲ τὸ Ε , ἀσύμπτωτος δὲ ἡ ΕΤ , ἡ δὲ δοθεῖσα γωνία ὀξεῖα
, ΓΕ . Τῶν αὐτῶν ὄντων δεικτέον , ὅτι ἑτέρα ἀσύμπτωτος οὐκ ἔστι τέμνουσα τὴν περιεχομένην γωνίαν ὑπὸ τῶν ΔΓΕ
6618390 προσελθῃς
ὀπώρα ” μὴ λάβῃς „ , οὐδὲ λειμὼν „ μὴ προσέλθῃς ” . ἕπου καὶ σὺ τοῖς νόμοις καὶ διψῶντα
μεθορίᾳ καὶ χώρᾳ μέσῃ . Τήρησον αὐτὸ ἀδιάφορον , μὴ προσέλθῃς περαιτέρω , μὴ ὑπερβῇς τοὺς ὅρους . Ἂν δὲ
6615298 ΓΔΕ
τὰ συσταθέντα τὰ ΑΖΓ ΓΗΕ ἅμα τῶν ἐξ ἀρχῆς ΑΒΓ ΓΔΕ : καὶ τοῦτο γὰρ δέδεικται πρὸ δύο . κοινοῦ
τῇ ὑπὸ ΔΓΕ , τὴν δὲ ὑπὸ ΒΑΓ τῇ ὑπὸ ΓΔΕ καὶ ἔτι τὴν ὑπὸ ΑΓΒ τῇ ὑπὸ ΓΕΔ :
6614975 Λαπαθον
ἐϲτι , καταπλαττομένη δὲ ῥυπτικὸν ἔχει τι καὶ διαφορητικόν . Λάπαθον διαφορητικῆϲ μετρίωϲ ἐϲτὶ δυνάμεωϲ , καὶ δηλονότι θερμότητοϲ μετέχει
: πόλις ἐστίν : ἔχει ὕφορμον . Ἀπὸ Κερυνείας εἰς Λάπαθον στάδιοι υνʹ . πόλις ἐστὶν ἔχουσα ὅρμον . Ἀπὸ
6613572 γραφεντος
ὑποθεμένῳ λόγον τ ' οὐθενὶ προθέντες ἐπικυροῦσι τὴν γνώμην . γραφέντος δὲ τοῦ δόγματος εὐθὺς ἐξ ἑκάστης πόλεως τοὺς ἐπιφανεστάτους
ἡλίου περὶ τὴν ιʹ μοῖραν ὄντος τοῦ Καρκίνου , καὶ γραφέντος περὶ τὸ Θ τοῦ ΚΛ ἐπικύκλου ἤχθωσαν μὲν ἀπὸ
6612223 ροϚ
' ἑαυτά , γίνονται ιϚ : ταῦτα ἑνδεκάκις , γίνονται ροϚ : τούτων τὸ ιδʹ , γίνονται ιβ ∠ ʹ
ΒΖ γ ι , ἡ δ ' ἐπὶ τῆς ΕΖ ροϚ ν . καὶ εὐθεῖα ἡ μὲν ΒΖ γ ιη
6609877 ἐγκρινεσθω
ξυστῆρος γινέσθω ὁμαλῶς ἰσοβαθής , καὶ πάλιν μετὰ τὴν ξύσιν ἐγκρινέσθω ἡ μικρῷ πρόσθεν δεδηλωμένη θεραπεία . Ἐν πρώτοις διαστείλασθαι
δοκιμαζέσθω . λιπάσματος μὲν οὖν ὄντος ἢ ἐπιπολαίου φθορᾶς , ἐγκρινέσθω ξύσις , οὐχ ἵνα μόνον ἡ ἐπιλιπὴς οὐσία ξυσθῇ
6608017 ΒΣΓ
πρὸς ΣΒ ὁ τοῦ ἀπὸ ΑΣ ἐστι πρὸς τὸ ὑπὸ ΒΣΓ , ὁ δὲ τῆς ΑΤ πρὸς ΤΞ μετὰ τοῦ
: ἔστιν ἄρα ὡς τὸ ἀπὸ ΑΣ πρὸς τὸ ὑπὸ ΒΣΓ , οὕτως τὸ ἀπὸ ΑΤ πρὸς τὸ ὑπὸ ΞΤΟ
6603063 ἀνασκευαζομεν
ὁ θεῖος Πλάτων ὡς διαβάλλειν αἱρεῖσθαι . οὕτως δ ' ἀνασκευάζομεν τοὺς λέγοντας τὸν σκοπὸν εἶναι τοῦ Μενεξένου περὶ τοῦ
περὶ τούτου . εἰσφερομένων τοίνυν τῶν νόμων ἢ κατηγοροῦμεν καὶ ἀνασκευάζομεν , ἢ συνηγοροῦμεν καὶ κατασκευάζομεν . μετὰ δὲ τὸ
6598135 ὀξυτατου
. τὸν δὲ ἐν τῶι χρωματικῶι γένει δεύτερον ἀπὸ τοῦ ὀξυτάτου φθόγγου λαμβάνει διὰ τοῦ τὴν αὐτὴν θέσιν ἔχοντος ἐν
γὰρ λόγον ἔχειν τὸν ἐν τῶι χρωματικῶι δεύτερον ἀπὸ τοῦ ὀξυτάτου πρὸς τὸν ὅμοιον τὸν ἐν τῶι διατονικῶι τὸν τῶν
6596615 ἀνατρησεως
καὶ ἐλαίου σκευαζομένῳ , τοῦ σπληνίου ἐκτιτραμένου κατὰ τὸν τῆς ἀνατρήσεως τόπον , καὶ τὰ ἔξωθεν πάντα ἐρίῳ κούφῳ σκεπέσθω
κεφαλῇ ἐπικειμένου κύκλος ἐξ ἐρίου περιτίθεται , περιορίζων τὸν τῆς ἀνατρήσεως τόπον . ὁ δὲ τροχὸς οὗτος κουφιστὴρ καλεῖται ἀπὸ
6592521 ἐρυθραϲ
, ἰοῦ ξυϲτοῦ ⋖ γ , λίθου ϲχιϲτοῦ , λεπίδοϲ ἐρυθρᾶϲ , λυκίου Ἰνδικοῦ , ὀμφακίου ἀνὰ ⋖ α ,
πεπειραμένον . χαλκίτεωϲ κεκαυμένηϲ ⋖ κ καδμίαϲ ⋖ ι λεπίδοϲ ἐρυθρᾶϲ ⋖ ε πεπέρεωϲ ⋖ α , χρῶ ξηρῷ ,
6592153 μεσαιτατου
ἱκέτης αὐτοῦ γεγονὼς λόγος ὀνομάζεται Λευίτης : τοῦτον ἐκ τοῦ μεσαιτάτου καὶ ἡγεμονικωτάτου τῆς ψυχῆς λαβών , τουτέστι προσλαβόμενος καὶ
τὸ βλέφαρον . καὶ ὁ μὲν ἀνοίγων μῦς κατὰ τοῦ μεσαιτάτου βλεφάρου τέτακται πανσόφως ὑπὸ τῆς φύσεως τοῦτο μηχανευσαμένης .
6590879 ἐντιθεμενων
ἐσομένης τῇ καταγεγραμμένῃ τοῦ συνημμένου , γίνονται σταματίων καταλειπομένων ἢ ἐντιθεμένων πρὸς ὀρθὰς τῇ πλευρᾷ , καὶ παραλλήλων ἀλλήλοις ὄντων
Νοῦς . παρὰ τὸ νῆσσα , καὶ σωρεῦσαι ἀπὸ τῶν ἐντιθεμένων αὐτῇ φορτίων : οἱ δὲ παρὰ τὸ νεῖσθαι .
6589551 συζυγης
δέδοται τῷ μεγέθει . δῆλον δ ' ὅτι καὶ ἡ συζυγὴς αὐτῇ : δέδοται γὰρ ὁ τῆς ΕΖ πλαγίας πρὸς
οὖσα καὶ τὸν τῆς ὕλης λόγον ἀναδεδεγμένη , καὶ ἐπεὶ συζυγὴς οὖσα τῇ μονάδι δι ' ἐκείνην ἐκωλύθη τῆς εἰρημένης
6589104 λειοϲ
διαυγεῖ δὲ ὡϲ πῦρ διαφύϲειϲ παρέχων ἢ ῥαγάδαϲ . οὗτοϲ λεῖοϲ τριβόμενοϲ μελαίνει τὴν ἐπιφάνειαν τῶν λευκῶν τριχῶν . Γαγάτηϲ
τὸ μέλαν ξηρὸν τοῖϲ ἕλκεϲιν ἐπιτιθέμενον , καὶ φακὸϲ ἑφθὸϲ λεῖοϲ μετὰ μέλιτοϲ καὶ ϲιδίων καταπλαττόμενοϲ , καὶ ὅϲα πρὸϲ
6585752 γερανις
λαγόνα : εἶτ ' ἐγκύκλιος ἐπιπλέκεται αὐτῇ , ἤτοι διπλῇ γερανὶς ἢ χιαστὸς τραχηλιστὴρ ἢ ἡ διπλοῦς λεγόμενος . Κεφ
κατὰ τοῦ νώτου καὶ τοῦ στήθους κυκλοτεροῦς περιειλήσεως ἔχει ἡ γερανὶς ἐπίδεσις ἀπὸ τῆς ἀντικειμένης μασχάλης κυκλοτερῆ περιείλησιν ἐπαγομένην κατὰ
6584620 Ἠρυγγιον
Ἠριγέρων ἐπίμικτον ἔχει δύναμιν ψυκτικήν τε καὶ μετρίωϲ διαφορητικήν . Ἠρύγγιον θερμαίνει μὲν οὐ καταφανῶϲ , ξηρότητοϲ δὲ λεπτομεροῦϲ οὐκ
ὀνίνηϲι : καταπλάϲϲεται δὲ καὶ πρὸϲ τὰϲ φλεγμονὰϲ ἐναργῶϲ . Ἠρύγγιον . Θερμότητι μὲν ἢ βραχὺ τῶν ϲυμμέτρων ἢ οὐδὲν
6584065 ΠΑΝΤΑ
ἐφορατικὴ δύναμις μᾶλλον δὲ περιφραστικῶς , αὐτὴ ἡ Εἱμαρμένη . ΠΑΝΤΑ ΙΔΩΝ ΔΙΟΣ ΟΦΘΑΛΜΟΣ . Ἤγουν πάντα βλέπων ὁ Ζεὺς
Πρόκλος , ὀβελίζει τοὺς ἑπτὰ τούτους στίχους : ἀπὸ τοῦ ΠΑΝΤΑ ΙΔΩΝ , μέχρι τοῦ , ΑΛΛΑ ΤΑΓ ' ΟΥΠΩ

Back