καὶ μέσον δυναμένη . Χωρίον γὰρ τὸ ΑΓ περιεχέσθω ὑπὸ ῥητῆς τῆς ΑΒ καὶ τῆς ἐκ δύο ὀνομάτων πέμπτης τῆς | ||
Ὅτι ἐπειδὴ ἀδύνατον ῥητὴν εἶναι τὴν διάμετρον τῆς πλευρᾶς οὔσης ῥητῆς , ἐπενόησαν οὕτω λέγειν οἱ Πυθαγόρειοι καὶ Πλάτων , |
ὅπερ ἔδει δεῖξαι . Ἐὰν χωρίον περιέχηται ὑπὸ ῥητῆς καὶ ἀποτομῆς πέμπτης , ἡ τὸ χωρίον δυναμένη [ ἡ ] | ||
ἐστι καὶ μέσης ἀποτομὴ δευτέρα , καὶ τὸ ἀπὸ μέσης ἀποτομῆς δευτέρας παρὰ ῥητὴν παραβαλλόμενον πλάτος ποιεῖ ἀποτομήν : ὅπερ |
μηκέτι μὲν καμπτῆρι , ὕσπληγι δὲ χρησαίμεθα καὶ ἀρχῇ τῆς προόδου μέχρις ἑκατοντάδος , ἀφ ' ἧς πάλιν ἡ ἐπάνοδος | ||
: ἀλλὰ τί αὐτοῦ οἷον εἴδωλον , ὃ καὶ τῆς προόδου χεῖρον φανεῖται ; ἀλλ ' οὐδὲν ὀρέγεται τοῦ εἰδώλου |
ἐπικύκλου ε ιγ ἔγγιστα . ἤχθω δὴ ἐπὶ τῆς ὁμοίας καταγραφῆς ἀπὸ τοῦ Κ κέντρου κάθετος ἐπὶ τὴν ΒΕ ἡ | ||
ὕστερόν ἐστι βραχυτέρα . Ἔστω γὰρ ὡς ἐπὶ τῆς δευτέρας καταγραφῆς , καὶ τῶν αὐτῶν ὑποκειμένων ὁ ἥλιος ἔν τινι |
, ἐνεργείᾳ δὲ λίθον εἶναι , καὶ τὸ ἥμισυ τῆς γραμμῆς δυνάμει τελείαν γραμμήν , καὶ σῖτον δυνάμει ἁδρὸν τὸν | ||
καὶ ἐπὶ τῶν γεγονότων : ὡς γὰρ ἡ στιγμὴ πέρας γραμμῆς , οὕτω τὸ γεγονὸς πέρας ἐστὶ τῆς γενέσεως . |
τὴν ἐνταῦθα ὑποκειμένην ἐπὶ τοῦ ἐπικύκλου μετάβασιν τὸν ἀπὸ τῆς ἐλαχίστης κινήσεως ἐπὶ τὴν μέσην χρόνον , μείζων ἐστὶν τῆς | ||
δὴ ταῦτα ἀληθῆ λέγομεν , καὶ τὸ μέγεθος ὥρισται τῆς ἐλαχίστης σαρκός , ἀναγκαίως ἀδύνατον ἐν ἑκάστῳ πάντα μεμῖχθαι . |
μηδετέρας δὲ αὐτῶν ἡ σύμπτωσις ὑπὸ τῶν τῆς ἑτέρας συμπτώσεων περιέχηται , συμπεσοῦνται ἀλλήλαις αἱ εὐθεῖαι ἐκτὸς μὲν τῆς τομῆς | ||
χάριν ἐπενοήθησαν : ἐπὰν οὖν τὸ ἕτερον ὑπὸ τοῦ ἑτέρου περιέχηται , οὐκ ἔστι διαίρεσις : οἷον οὐδεὶς διαιρεῖ τὸν |
τοὺς λόγους : ἡ δ ' ἐμὴ πόση τις ; Χωρίον ἐν Οἰνόῃ πεντακισχιλίων καὶ Προσπαλτοῖ τρισχιλίων , καὶ οἰκία | ||
δυναμένη ἄλογός ἐστιν ἡ καλουμένη ῥητὸν καὶ μέσον δυναμένη . Χωρίον γὰρ τὸ ΑΓ περιεχέσθω ὑπὸ ῥητῆς τῆς ΑΒ καὶ |
καὶ τοῦ κέντρου τῆς τομῆς , ἡ δὲ μεταξὺ τῆς κατηγμένης καὶ τῆς ἐφαπτομένης , ἕξει πρὸς αὐτὴν ἡ κατηγμένη | ||
τῶν δύο εὐθειῶν , ὧν ἐστιν ἡ μὲν μεταξὺ τῆς κατηγμένης καὶ τοῦ κέντρου τῆς τομῆς , ἡ δὲ μεταξὺ |
τισιν οἵ τε ἀπὸ τῆς Ἀκαδημίας καὶ οἱ ἀπὸ τῆς σκέψεως λέγουσι , πρόδηλος καὶ ἡ κατὰ τοῦτο διαφορὰ τῶν | ||
ιʹ εἰ ἀναιρεῖ τὰ φαινόμενα ιαʹ περὶ τοῦ κριτηρίου τῆς σκέψεως ιβʹ περὶ τοῦ τέλους αὐτῆς ιγʹ περὶ τῶν ὁλοσχερῶν |
καθόλου ἀποφαίνεται ὅτι παντὸς τριγώνου αἱ δύο πλευραὶ μείζονες τῆς λοιπῆς εἰσιν : ἀλλ ' ἐνταῦθα μὲν ἐπὶ τῶν τριγώνων | ||
. Κοινὴ ἀφῃρήσθω ἡ ΝΑ : λοιπὴ ἄρα ἡ ΒΝ λοιπῆς τῆς ΑΛ μείζων ἐστίν . Ἐν πλείονι ἄρα χρόνῳ |
συνεγγίζων τῷ Ε σημείῳ κατὰ τὸ πλάτος ἀπὸ τῆς ΕΖ διαστάσεως φαίνηται πρώτως , ὁ τούτου πλέον ἀφεστὼς ἀπ ' | ||
καὶ πρῶτον ἐπὶ τῆς ἐν ἀρχαῖς τοῦ Σκορπίου μεγίστης ἑσπερίας διαστάσεως . ἔστω γὰρ ἡ διὰ τοῦ Α ἀπογείου διάμετρος |
, ὀρθότατος ἔσται πρὸς ἡμᾶς : ὅταν δὲ ἐπὶ τῆς διχοτομίας τοῦ ὑπὸ γῆν τμήματος τοῦ θερινοῦ τροπικοῦ , ταπεινότατος | ||
τυχὸν σημεῖον τὸ Γ . εἰ μὲν οὖν ἐπὶ τῆς διχοτομίας ἐστὶ τὸ Γ , φανερόν ἐστι τὸ ζητούμενον . |
ἠγμένῃ εὐθείᾳ , καὶ ποιηθῇ , ὡς τὸ τμῆμα τῆς ἐφαπτομένης τὸ μεταξὺ τῆς ἁφῆς καὶ τῆς ἀνηγμένης πρὸς τὸ | ||
οὕτως τὸ περιεχόμενον ὑπὸ τῶν μεταξὺ τῆς τομῆς καὶ τῆς ἐφαπτομένης πρὸς τὸ ἀπὸ τῆς ἀπολαμβανομένης πρὸς τῇ ἁφῇ τετράγωνον |
τὴν εὕρεσιν τὴν παρὰ τοῦ θεοῦ Ἑρμοῦ εἰς ἀνθρώπους διὰ μεσότητός τινος ἔρχεσθαι , ἡ δὲ δαιμονία φύσις ἐστὶν ἡ | ||
φανεῖεν χείρους καὶ ἦσαν οὐκ ἀδύνατοι : τὸ οὐκ ἀδύνατοι μεσότητός ἐστι ῥῆμα , οἷον οὔτε τελείως δυνατοὶ οὔτε ἀσθενεῖς |
μία ἀγκύλη . Ἐπεὶ πολλάκις ἐκ τῶν εὐτόνων σωμάτων σφοδρᾶς τάσεως γινομένης ἀπὸ μέρους αἱ τοῦ βρόχου ῥήγνυνται ἀρχαί , | ||
τοῦτο πάλιν οὐχ οἷόν τε καλῶς ἐργάσασθαι χωρὶς ἀντι - τάσεως . χρὴ τοίνυν ἢ διὰ τῶν χειρῶν , εἰ |
. ταῦτα οὖν διορίζεσθαι καὶ πειρᾶσθαι κατὰ τὸ ποσὸν τῆς ἁπλῆς διαθέσεως ἐξευρίσκειν τὸ ποσὸν τῆς τοῦ φαρμάκου δυνάμεως , | ||
, καὶ τῇ μὲν ἐκ μεταθέσεως ἀποφάσει ἐπὶ πλέον τῆς ἁπλῆς , καὶ τῇ καταφάσει αὐτῆς κατὰ τὸ ἀκόλουθον ἐπ |
Φιλόνομος καὶ Καλλίας οἱ Καταναῖοι τοὺς ἑαυτῶν πατέρας ἀράμενοι διὰ μέσης τῆς φλογὸς ἐκόμισαν , τῶν ἄλλων κτημάτων καταφρονήσαντες . | ||
Ὑδροχόου μοίρας ι . καὶ ἐνθάδε ἄρα ἡ μεγίστη τῆς μέσης ἀπόστασις ἑῴα τῶν ἴσων γέγονεν κϚ ∠ ʹ μοιρῶν |
τοῦ ΑΒΓΔ κύκλου ἐπίπεδον μείζων ἐστὶ τῆς ἀπὸ τοῦ Ν καθέτου ἀγομένης ἐπὶ τὸ τοῦ ΕΖΗΘ κύκλου ἐπίπεδον . ἀλλ | ||
Θ παράλληλος ὀρθὴν γωνίαν περιέξει μετὰ τῆς ἀπὸ τοῦ Ζ καθέτου . πάλιν ἐὰν ἐπιζεύξωμεν ἀπὸ τῶν Ζ , Η |
ἐπιθύουσι , παρ ' Ὁμήρῳ δὲ τέθειται καὶ ἐπὶ τῆς βάσεως , ἀπὸ τοῦ βεβηκέναι . Ἠὼς , λαμβάνεται παρ | ||
: ὑψηλοῖς , μεγάλοις , παχυτάτοις , τοῖς λειπομένοις τῆς βάσεως . ὀψέ : μόλις , ἀργῶς . Πάντεσσιν : |
ὑπὸ κακοχυμίας , ἤτοι ἐξ ἥπατος εἰς αὐτὴν καταρρεούσης ἢ περιεχομένης ἐν τοῖς χιτῶσιν αὐτῆς . γεννᾶται δ ' ἐξ | ||
ἐπεὶ γὰρ τὸ Δ ἐντός ἐστι τῆς ὑπὸ τῶν ἀσυμπτώτων περιεχομένης γωνίας , δυνατὸν ἀπὸ τοῦ Δ δύο ἐφαπτομένας ἀγαγεῖν |
καὶ τῆς τετράδος ἀποτελουμένῃ πεντάδι διὰ τὸ μὴ προϋποκεῖσθαι τῆς προσθέσεως τὴν πεντάδα καὶ ἀεί ποτε ὀφείλειν τὸ προστιθέμενον προϋποκειμένῳ | ||
καθ ' αὑτὸ ὑπαρχόντων συμβεβηκότων εἶναι ὁρισμούς , ἐπειδὴ ἐκ προσθέσεως ὑπάρχουσιν , ἅτε δὴ συμπαραλαμβανόντων αὐτοῖς καὶ τὰ ὑποκείμενα |
μεῖζον ἄρα τὸ ὑπὸ ΛΘ καὶ τῆς περιμέτρου τοῦ ΔΕΖ περιεχόμενον ὀρθογώνιον τοῦ ὑπὸ τῆς ΚΗ καὶ τῆς περιμέτρου τοῦ | ||
ὥστε τὸ ὑπὸ τῆς ὅλης καὶ τοῦ ἑτέρου τῶν τμημάτων περιεχόμενον ὀρθογώνιον ἴσον εἶναι τῷ ἀπὸ τοῦ λοιποῦ τμήματος τετραγώνῳ |
τοὺς δὲ προβλήματα , ἀποβλέποντας εἰς τὸ σχῆμα μόνον τῆς προτάσεως . τὴν δὲ διαφορὰν τῶν τριῶν τούτων ὅτι βέλτιον | ||
ὁ δὲ γος Μο μ , καὶ ποιοῦσι τὰ τῆς προτάσεως . Ἄλλως . Ζητῶ πρότερον τρεῖς ἀριθμοὺς ἴσους εἶναι |
τῆς πρώτης κλίμακος ἐσχάτων δυοῖν βαθμῶν τοῖς τόποις τῶν τῆς δευτέρας ἵνα περονῶνται σιδηραῖς ἢ ξυλίναις περόναις : τὰ δὲ | ||
ἐπὶ Τυδέως καὶ Πολυνείκους τὸ σφωιτέρην ὀϊζύν καὶ διὰ τῆς δευτέρας ἐπὶ Ἐτεοκλέους καὶ Πολυνείκους τὸ σφωίτερον μῦθον , ἑαυτοῖς |
ΝΞ περὶ κέντρον τὸ Ζ ἴσος τῷ ΛΜ , καὶ ἐπιζευχθείσης τῆς διὰ τῶν κέντρων διαμέτρου τῆς ΝΛΜ εἰλήφθω ἐπ | ||
μεσημβρίας κατὰ τὸ Ω σημεῖον τῆς ἀκριβοῦς τοῦ ἡλίου ἐποχῆς ἐπιζευχθείσης τῆς ΕΥΩ εὐθείας , ἡ δὲ ΦΩ τῆς παραλλάξεως |
δακτύλους ὑποπιπτούσης ἀνωμαλίας σὺν τῷ τοπικῷ πόνῳ , τὸ δὲ ἐμπίεσμα διὰ τῆς κοιλότητος καὶ ἀλγήματος νυγματώδους καὶ νάρκης τοῦ | ||
τῆς πρὸς τοὺς δακτύλους | ἀνωμαλίας καὶ τοῦ ψόφου , ἐμπίεσμα δὲ διὰ τῆς κοιλότητος καὶ τῆς συνείξεως , ἑπομένης |
προτέρων μορίων τοῖς δευτέροις ὑπηρετούντων , ἀλλὰ τῇ τάξει τῆς θέσεως , ἣν ὁ τῆς τῶν ζῴων γενέσεως δημιουργὸς ἐμηχανήσατο | ||
τῷ ἀδελφῷ σπονδῶν κατάρχειν ἐπέτρεψε καὶ κύριον αὐτὸν εἶναι τῆς θέσεως τοῦ ὀνόματος τῷ παιδίῳ . Μηριόνης , * * |
ἀσυλλόγιστον γίνεται τὸ σχῆμα ἐν πρώτῳ ἢ δευτέρῳ τῆς μείζονος μερικῆς οὔσης . καὶ δηλονότι , εἰ ἀποφατικὸν εἴη τὸ | ||
καὶ τὸ ψεῦδος , τήν τε καθόλου κατάφασιν μετὰ τῆς μερικῆς ἀποφάσεως καὶ τὴν καθόλου ἀπόφασιν μετὰ τῆς μερικῆς καταφάσεως |
τῆς ἡλικίας ἡμῶν ; ] καὶ τίς ἐστιν ἔξω τῆς καθολικῆς , οἷον νέων ἀνδρῶν γερόντων , εἰ μὴ ἄρα | ||
, οὕτω καὶ ὁ γραμματικὸς δύναται ἀπὸ ἐπιστημονικῆς τινος καὶ καθολικῆς θεωρίας ἀπαγγέλλειν , ὅτι ὁ μὲν Πέλοπος ὦμος ἐλεφάντινος |
καὶ τὴν ἐκ τῆς συνεμπτώσεως πλάνην προανελόντας τὸν προσήκοντα τῆς κλίσεως ἀποδιδόναι λόγον . Εἰλήφθω δὲ παραδείγματα τὸ πλεῖον , | ||
λῆγον , ὃ οὐ πάντως κλίσεως ἔτυχε . καὶ ἕνεκα κλίσεως καὶ συντάξεως τὸ μὲν πτύξ ὄνομά ἐστιν , ἐπεὶ |
γὰρ δὴ ἰσχυρὸν οὐδὲ ἀγωνιστικὸν τὸ παραγραφικόν : ἐκ τῆς προβολῆς δὲ παραγράφεται λέγων , ὅτι οὐκ ἔξεστί σοι πολιτεύεσθαι | ||
τὰ γυμνὰ οὕτω γε παραδίδοται τοῖς πολεμίοις , εἰ ἄνευ προβολῆς ἐπιστρέψειαν . ὁμοῦ δὲ ἥ τε ἐπέλασις ἤδη ἀποπαύεται |
ρκ , καὶ αὐτῆς τῆς σελήνης ἐν ἀρχῇ τοῦ Ταύρου ὑποκειμένης πρὸς ἀνατολὰς ἀπέχειν τοῦ μεσημβρινοῦ ὥρας ἰσημερινὰς δ . | ||
ἐνεπετάννυντο . μετὰ δὲ τοῦτο αἴθριον ἐξεδέχετο τὴν ἐπάνω τῆς ὑποκειμένης προστάδος τάξιν κατέχον : ᾧ κλῖμάξ τε ἑλικτὴ φέρουσα |
, ΑΖ μιᾷ σεληνιακῇ διαμέτρῳ καὶ τῷ τετάρτῳ μέρει τῆς διαμέτρου . Ἑκατέρας δὲ τῶν ΑΓ καὶ ΑΕ δʹ μέρει | ||
τουτέστιν οὔτε τῶν ἐπὶ τῆς διαμέτρου οὔτε τῶν ἐκτὸς τῆς διαμέτρου . ἔστω κοῖλον ἔνοπτρον τὸ ΑΓΔ , διάμετρος δὲ |
ἐλλείψεων . Κείσθω πάλιν ἡ καταγραφὴ τοῦ κώνου , καὶ ἐκβληθείσης τῆς ΓΒ ἐπὶ θάτερα δέον ἔστω ἀπ ' ἀμφοτέρων | ||
ζῳδιακοῦ ἐπεζεύχθωσαν αἱ ΑΔ καὶ ΒΔ καὶ ΓΔ , καὶ ἐκβληθείσης τῆς ΓΔΕ ἐπεζεύχθωσαν αἱ ΑΕ καὶ ΕΒ καὶ ΑΒ |
συμβήσεται . Εὐθείας δοθείσης ἐν ἐπιπέδῳ καθ ' ἓν σημεῖον πεπερασμένης εὑρεῖν ἐν τῷ ἐπιπέδῳ κώνου τομὴν τὴν καλουμένην παραβολήν | ||
ἀλλότριον , φάσεως οὔσης , ὡς εἴρηται , καὶ ἢ πεπερασμένης ἢ ἀπεράντου , ἀλλ ' οὐκ ἐν τῷ ζητεῖν |
τὸ τοιοῦτον καλεῖν . Ὃς δ ' ἂν μετ ' ὀρθῆς δόξης περὶ ὁτουοῦν τῶν ὄντων τὴν διαφορὰν τῶν ἄλλων | ||
ἐστίν , εἴη ἂν ἡ ὑπὸ ΔΕΓ γωνία δύο πέμπτων ὀρθῆς : ὥστε ἑκατέρα τῶν ὑπὸ ΕΓΔ ΕΔΓ τεσσάρων πέμπτων |
ὡς ἂν ἔχωμεν μνήμης , οὕτω περὶ τῆς τῶν πραγμάτων ὑποστάσεως φερόμεθα . Ἀλλ ' εἴπερ οὔτε αἰσθητόν ἐστι τὸ | ||
ἢ τοὐναντίον δυστυχῆσαι ; ἀλλὰ καθολικῶς μὲν τῆς ἐξ ἀρχῆς ὑποστάσεως [ ὁ ] τῶν ἐπισήμων καὶ μέσων καὶ ταπεινῶν |
κατὰ μὲν τὴν ἔννοιαν θεωρίαν ἔλαβον , ἀπὸ δ ' ὀργανικῆς ἕξεως προκόψαντες . οὗτοι γὰρ τὴν μὲν αἴσθησιν ὡς | ||
δεχόμενοι μαλακαῖς τισι καὶ συνενδιδούσαις κατασκευαῖς ἐπράυνον τὴν ἐκ τῆς ὀργανικῆς βίας δύναμιν . ὁ δὲ βασιλεὺς ἅμα τῇ κατὰ |
οὐραγεῖν , ἀλλὰ ἡγεῖσθαι οὖν αὐτὴν δεῖν καὶ ἐκ τῆς βαδίσεως ὁμολογεῖ . † ποθεῖ γοῦν ἐκεῖνα καὶ μέντοι καὶ | ||
δ ' ἀκρασία . ἀμήχανον : ἀδύνατον , τροφῆς καὶ βαδίσεως , ἀσθενῆ , ἄπορον . ἀδρανέοντες : ἀσθενοῦντες : |
ἴσον ἐστὶ τοῖς ΗΔ , ΑΖ . ἐπὶ δὲ τῆς ἐλλείψεως καὶ τῆς τοῦ κύκλου περιφερείας ἐροῦμεν : ἐπεὶ οὖν | ||
τοῦ κέντρου τῷ ὁμοίῳ τῷ ἀποτεμνομένῳ , ἐπὶ δὲ τῆς ἐλλείψεως καὶ τῆς τοῦ κύκλου περιφερείας μετὰ τοῦ ἀποτεμνο - |
, ἐξείπω . . Ἐμοί γε μὴν δοκεῖ τὰ τῆς ἐγκλίσεως ἐπιτεταράχθαι , ἐπεὶ σχεδὸν ἐγκλίσεις δύο συνωθοῦσιν εἰς μίαν | ||
ὑποτακτικὸν ἄληται ὡς λάβηται . συστολῇ οὖν ἐγένετο ἢ μεταβολῇ ἐγκλίσεως , ὁμοίως τῷ ” ἐπεὶ ἄρ κεν ἀμείψεται ἕρκος |
. τὸ γὰρ ἀμβλὺ τῆς ἐπὶ πᾶν ἁπλουμένης τῶν εἰδῶν ἐκτάσεως εἰκών , καὶ τὸ ὀξὺ τῆς διαιρετικῆς καὶ κινητικῆς | ||
συστέλλονται . λέγεται καὶ Πισιδική καὶ Πισιδικόν καὶ Πισιδεῖς μετὰ ἐκτάσεως τοῦ ι . Πισίς , πόλις καὶ ὄρος Ἀρμενίας |
δυνατὸν ἡμῖν τρόπον . Ὡς μὲν οὖν ἁπλῶς εἰπεῖν , διττῆς οὔσης περὶ τὸν ἴδιον δαίμονα πραγματείας , τῆς μὲν | ||
καὶ ἑτέρου αἰσθητηρίου , ἐκ τούτων πιστεύσειεν ἄν τις . διττῆς γὰρ οὔσης σχέσεως , καθ ' ἣν ἂν αἴσθησις |
μάλιστ ' ἐπόθει καὶ τῆς ἐπ ' αὐτῷ χαλεπῆς καὶ βαρυτάτης ἀνίας ἀπαλλαγῆναι . καὶ ἐπειδὴ παρεγένετο καὶ τὸν ἀδελφὸν | ||
τόποι τῶν λιχανῶν ἑκάστης : ἥ τε γὰρ βαρυτέρα τῆς βαρυτάτης χρωματικῆς πᾶσά ἐστιν ἐναρμόνιος λιχανὸς ἥ τε τῆς βαρυτάτης |
ʂ α Μο α , καὶ γίνεται συναμφοτέρου τῆς τε ὑποτεινούσης καὶ μιᾶς τῶν ὀρθῶν τὸ ἥμισυ ἐφ ' ἑαυτὸ | ||
τῷ ἐμβαδῷ αὐτοῦ , λείψας τὸν ἐν συναμφοτέρῳ τῆς τε ὑποτεινούσης καὶ μιᾶς τῶν ὀρθῶν , ποιῇ δοθέντα ἀριθμόν . |
εἰς μαι λήγοντος ἐνεργητικὸν ἔστιν παραδέξασθαι , ἐὰν μετὰ τῆς καταλήξεως συντρέχῃ καὶ τὰ τῆς συντάξεως , ἵσταμαι ὑπὸ σοῦ | ||
ἦν τὸ ἐντελὲς ἠόαΑἱ . ἀποκοπαί , ἐὰν τύχωσι πτωτικῆς καταλήξεως , κλίνονται , μάκαρ , μάρτυρ , γηράντεσσι τοκεῦσιν |
καὶ τοῦ τοῦ Ἑρμοῦ πολλάκις καὶ δι ' αὐτῆς τῆς εἰρημένης συντυχίας ὠφέλειαι καὶ προκοπαὶ καὶ δωρεαὶ καὶ τιμαὶ προσγίνονται | ||
τοῦ Ἴστρου πρὸς ἄρκτους καὶ ἀνατολὰς φέρεται , μέχρι τῆς εἰρημένης τοῦ Τύρα ποταμοῦ ἐπιστροφῆς . Κατέχουσι δὲ τὴν Δακίαν |
: τοῖς γοῦν αὐτοῖς λόγοις οἱ ἄκροι τῆς μέσης καὶ παραμέσης ὑπερέχουσι καὶ ὑπερέχονται , ἐπιτρίτῳ καὶ ἡμιολίῳ . τοιαύτη | ||
τῷ αὑτῆς ὑπερέχουσαν , τὴν δ ' ὑπάτην ὑπὸ τῆς παραμέσης ὑπερεχομένην ὁμοίως : ὡς γίγνεσθαι τὰς αὐτὰς ὑπεροχὰς τῶν |
ὑπὸ ΑΕΒ ὀρθή ἐστιν . καὶ ἐπεὶ ἡ ὑπὸ ΗΕΖ ἡμίσειά ἐστιν ὀρθῆς , ὀρθὴ δὲ ἡ ὑπὸ ΕΗΖ : | ||
ΑΒΓ . διὰ τὰ αὐτὰ δὴ καὶ ἡ ὑπὸ ΒΑΔ ἡμίσειά ἐστιν ὀρθῆς . ὅλη ἄρα ἡ ὑπὸ ΔΑΓ γωνία |
καὶ τὰ διιστάμενα ὀστᾶ συνάγειν πρὸς τὴν κατὰ φύσιν τῆς ῥαφῆς συναρμογήν , ἔπειτα ὅλην τὴν κεφα - λὴν ἀποξυρᾶν | ||
τῆς τε διαρθρώσεως αὐτῆς καὶ τοῦ κάτω πέρατος τῆς λαβδοειδοῦς ῥαφῆς . κάμπτουσιν οἱ μύες οὗτοι σὺν τῷ τραχήλῳ τὴν |
ἀτεχνῶς τὸν κολοφῶνα ἐπιθεῖναι . τῆς τοίνυν διὰ τῶν κυνηγετῶν ὑπερβολῆς ἐν σοὶ τὸ πλεῖστον . τρέφει γὰρ ἡ Φοινίκη | ||
τοιαῦτα νοσήματα πάντα παρέσχετο . τὸ μὲν οὖν ἐκ πυρὸς ὑπερβολῆς μάλιστα νοσῆσαν σῶμα συνεχῆ καύματα καὶ πυρετοὺς ἀπεργάζεται , |
καὶ οὗτος , καὶ ἄρθρον οὐκ ἐπιδέχονταιοὐδὲ . γὰρ ἕνεκα διαστολῆς παραλαμβάνεται , ἐπεὶ οὐδὲ αὐτὰ διαστέλλει , συνεμπεσόντα τοῖς | ||
γνωστόν , τοῦ τέλους ἐκθλιβέντος . ἔπειτα , εἰ ὑπὲρ διαστολῆς τῶν μεταβατικῶν πλαγίων αἱ σύνθετοι γεγόνασι , περισσὸν ζητεῖν |
καὶ ἐὰν μὲν ὁ λόγος ᾖ ἴσος πρὸς ἴσον , παραβολῆς , ἐὰν δὲ ἐλάσσων πρὸς μείζονα , ἐλλείψεως , | ||
ΓΔ τῇ ΔΕ . δεῖξαι , ὅτι τὸ Δ ἅπτεται παραβολῆς . ἤχθω κάθετος ἡ ΓΖ : θέσει ἄρα ἐστί |
ἐκείνου δὲ καὶ τῶν πρὸ αὐτοῦ βασιλέων εἰς δέκα στρατηγίας διῃρημένης τῆς χώρας , πέντε μὲν ἐξητάζοντο αἱ πρὸς τῷ | ||
καὶ τοὺς τροπικοὺς προσεντάξαι : τῆς γὰρ τοῦ μεσημβρινοῦ πλευρᾶς διῃρημένης τὸ μὲν μεταξὺ τῶν πόλων τοῦ ἰσημερινοῦ σημεῖον καὶ |
παραστάτες οἱ καὶ κρεμαστῆρες λεγόμενοι ἐκφύσεις εἰσὶ τοῦ νωτιαίου μυελοῦ μήνιγγος , σὺν φλεψὶν ἀρτηριώδεσιν ἐν τοῖς διδύμοις καθήκουσαι δι | ||
τὸν Ἐρασίστρατον ἠπάτησεν . ὡς οἰηθῆναι . διὰ τὴν τῆς μήνιγγος τρῶσιν ἀκίνητον αὐτίκα γίγνεσθαι τὸ ζῷον . ἑώρα γὰρ |
εὐπρεπέστεροι . Οἱ δὲ ἱρέες ξυροῦνται πᾶν τὸ σῶμα διὰ τρίτης ἡμέρης , ἵνα μήτε φθεὶρ μήτε ἄλλο μυσαρὸν μηδὲν | ||
περιεχέσθω ὑπὸ ῥητῆς τῆς ΑΒ καὶ τῆς ἐκ δύο ὀνομάτων τρίτης τῆς ΑΔ διῃρημένης εἰς τὰ ὀνόματα κατὰ τὸ Ε |
δὲ ἢ ι οαʹ : καὶ ὅτι τὸ ὑπὸ τῆς περιμέτρου τοῦ κύκλου ὡς εὐθείας καὶ τῆς ἐκ τοῦ κέντρου | ||
: καί εἰσιν οἱ μὲν ʂ ἐκ τοῦ ἀπὸ τῆς περιμέτρου καὶ τοῦ δπλ . τοῦ ἐν τῷ ἐμβαδῷ , |
. εἴπωμεν λοιπὸν περὶ τῆς μουσικῆς ὅ ἐστι περὶ τῆς ἁρμονικῆς ἀναλογίας . ἰστέον ὅτι ἐν τῇ γεωμετρικῇ ἡ ὑπεροχὴ | ||
. Εἶτα διὰ τριῶν παραδειγμάτων , ἰατρικῆς , ποιητικῆς , ἁρμονικῆς , βούλεται ἀναιρεῖν τὰ λεγόμενα καὶ δεῖξαι ὅτι τὰ |
ὁ παραστάτης πρότερός ἐστι τοῦ τριτοστάτου καὶ ἡ παρανήτη τῆς νήτης , ἐπειδὴ τὸ μὲν πλησιαίτερόν ἐστι τῷ κορυφαίῳ , | ||
βαρυτέρα τῆς νήτης διεζευγμένων . τοῦ δ ' ἀπὸ τῆς νήτης ἕως τῆς τελευτῆς τὸ ὄγδοον λαβόντες καὶ ὑπερβιβάσαντες ἕξομεν |
διὰ δʹ οὐκ ἀποκαθίσταται οὐδενί . ἑξῆς ἐπὶ τὸν τῆς ἐννεάδος κλιμακτῆρα : κυριεύσουσι δὲ τῆς ἐννεάδος Ἥλιος Ἄρης Ἑρμῆς | ||
δεκάδος ἀξιοῦν ἀφαιρεῖσθαι μονάδα . καὶ μὴν ἀπὸ τῆς περιλειπομένης ἐννεάδος οὐκ ἂν εἴποιμεν ταύτην ἀφαιρεῖσθαι . εἰ γὰρ ἀπὸ |
: τὸ δὲ λογικὸν αὐτὸν εἶναι καὶ μὴ ἄλογον χωρὶς δείξεως αἰτεῖταί τε καὶ τίθησιν . εἰ δέ ἐστιν ἀσθενὴς | ||
τὸ ἐνδέχεσθαι καὶ αὐτὴ συνάγει διὰ τῆς ἐπ ' εὐθείας δείξεως : διὸ καὶ τέλειος ὁ συλλογισμός . ἐπειδὴ γὰρ |
Ὑδροχόου καὶ κύριος τοῦ βʹ ἐννατημορίου , τῆς δὲ τρίτης μερίδος ὁ Ζεὺς ὁ κύριος τῶν Ἰχθύων καὶ κύριος τοῦ | ||
τὸ Κάσπιον πέλαγος . μῆκος δ ' ἐστὶ ταύτης τῆς μερίδος τὸ μέγιστον ἀπὸ τῆς Ὑρκανίας θαλάττης ἐπὶ τὸν ὠκεανὸν |
ἐὰν προσλάβωσι τὸ ἐπὶ τὴν Ταπροβάνην καὶ τοὺς ὅρους τῆς διακεκαυμένης , οὓς οὐκ ἐλάττους τῶν τετρακισχιλίων θετέον , ἐκτοπιοῦσι | ||
τε Βάκτρα καὶ τὴν Ἀρίαν εἰς τοὺς ἀπέχοντας τόπους τῆς διακεκαυμένης σταδίους τρισμυρίους καὶ τετρακισχιλίους , ὅσους ἀπὸ τοῦ ἰσημερινοῦ |
τὸ ἕν , ἀπὸ δὲ τῆς μονάδος καὶ τῆς ἀορίστου δυάδος τὰ δύο . δὶς γὰρ τὸ ἓν δύο , | ||
αὐτὴν καλοῦσι καὶ πανδοχέα γε , ὡς παρεκτικὴν οὖσαν καὶ δυάδος τῆς κυρίως ὕλης καὶ πάντων χωρητικὴν λόγων , εἴ |
. οὐδεμία δὲ τούτων οὔτε συναμφότερος μέση , ἡ δὲ συγκειμένη ἐξ αὐτῶν ἐκ δύο ὀνομάτων καλεῖται . ἀμφοτέρων τοίνυν | ||
καὶ ταῦτα σύμμετρα ἀλλήλοις . ἐπεὶ γοῦν ἡ ΒΓ ὅλη συγκειμένη ὡς ἐκ δύο οἷον τῆς ΖΔ καὶ τῆς ΒΖ |
καλουμένη ἐκ δύο μέσων δευτέρα . Χωρίον γὰρ τὸ ΑΒΓΔ περιεχέσθω ὑπὸ ῥητῆς τῆς ΑΒ καὶ τῆς ἐκ δύο ὀνομάτων | ||
παραλληλόγραμμά ἐστιν . Στερεὸν γὰρ τὸ ΓΔΘΗ ὑπὸ παραλλήλων ἐπιπέδων περιεχέσθω τῶν ΑΓ , ΗΖ , ΑΘ , ΔΖ , |
τὸ Γ , καὶ εἰλήφθω τι σημεῖον ἐπὶ τῆς ΑΒ τομῆς τὸ Δ , καὶ δι ' αὐτοῦ ἤχθω παρὰ | ||
ἡ ἀπὸ τῆς συμπτώσεως ἐπὶ τὸ Δ ἐφάψεται τῆς ἀντικειμένης τομῆς . ἔστω γὰρ τὰ αὐτὰ , καὶ τὸ Δ |
κατηγορούμενα πάντα πῶς θηρεύεται διδάσκων , κἀκ τῆς τούτων ποιᾶς συνθέσεως τὸν ὅρον ἀποτελῶν , ἓν μὲν καὶ αὐτὸν τῶν | ||
καὶ τοῖς φαυλοτάτοις ὄντα . ταυτί μοι δοκεῖ μηνύματα τῆς συνθέσεως εἶναι τῆς Δημοσθένους ἀνυφαίρετα καὶ χαρακτηρικά , ἐξ ὧν |
γενέσεως τῆς ἁλμυρότητος : οἱ μὲγ γὰρ ὑπόλειμμά φασιν τῆς πρώτης ὑγρότητος ἐξατμισθέντων πλείστων ὑδάτων : οἱ δὲ ἱδρῶτ ' | ||
ὡς ἐκ χαλκοῦ ὁ ἀνδριάς . καὶ πάλιν ἐκ τῆς πρώτης κινησάσης ἀρχῆς , οἷον ἐκ τίνος γέγονε * * |
. καʹ . Τὸ ἐπὶ τῆς ἕλικος τῆς ἐν ἐπιπέδῳ γραφομένης θεώρημα προὔτεινε μὲν Κόνων ὁ Σάμιος γεωμέτρης , ἀπέδειξεν | ||
. λδʹ . Δύναται δὲ καὶ διὰ τῆς ἐν ἐπιπέδῳ γραφομένης ἕλικος ἀναλύεσθαι τὸν ὅμοιον τρόπον . ἔστω γὰρ ὁ |
πρὸς δὲ τούτοις ὥσπερ νόμον κατεστήσατο ὁ Κῦρος , ὅσα διακρίσεως δέοιτο εἴτε δίκῃ εἴτε ἀγωνίσματι , τοὺς δεομένους διακρίσεως | ||
διακεκριμένον διακεκριμένου διακέκριται , εἰ καὶ ἄλλος ἑκατέρου ὁ τῆς διακρίσεως τρόπος . Καὶ γὰρ τὸ καλὸν τοῦ δικαίου ἕτερον |
τροφή . δαιτρός βʹ : ὁ μάγειρος . καὶ ὁ μεριστής . δαΐφρων γʹ : κυρίως ὁ συνετὸς ἐν πολέμῳ | ||
μεριστής . θ χρηματοδαίτης ] μοιραστής . χρηματοδαίτης ] χρημάτων μεριστής . Ξ πικρὸς ] ἀπηνής . ὠμόφρων ] ἀπηνής |
προσλαβὸν τὴν ἡμίσειαν τῆς ὅλης πενταπλάσιον δύναται τοῦ ἀπὸ τῆς ἡμισείας τετραγώνου : ὅπερ ἔδει δεῖξαι . Ἐὰν εὐθεῖα γραμμὴ | ||
ἐνδεχομένου καὶ ἀναγκαίου , ὅτι πάντες ἀτελεῖς καὶ τὸ ἐξ ἡμισείας ἐνδεχόμενον συνάγουσι . Καὶ τελειοῦνται διὰ τῶν πρώτων σχημάτων |
μὴ προσλαμβάνον τὸ ς : τὸ μέντοι κέκλιμαι οὐ δεῖται σημειώσεως , κἂν ἀπὸ τῆς πέμπτης ἢ τῆς ἕκτης ληφθείη | ||
' ἑκάτερον φαινομένων καὶ οὐκ ἀδήλων . διὸ οὐ δέονται σημειώσεως , οἷον τὸ μὲν στεγνὸν , ἐκ τοῦ πεπυκνῶσθαι |
, ΖΔ ἄρα ῥηταί εἰσι δυνάμει μόνον σύμμετροι . [ ἀποτομὴ ἄρα ἐστὶν ἡ ΓΔ . Λέγω δή , ὅτι | ||
ΖΘ , ΖΚ ἄρα ῥηταί εἰσι δυνάμει μόνον σύμμετροι : ἀποτομὴ ἄρα ἐστὶν ἡ ΚΘ [ προσαρμόζουσα δὲ ἡ ΖΚ |
ἄχρι ποδῶν κατειλείτω : παραβεβλημέναι γὰρ αἱ χεῖρες ἔνδοθεν τῆς περιειλήσεως εἰς ἔκτασιν ἐθίζονται . παχυντικαὶ γὰρ τῶν νεύρων αἱ | ||
τε τὴν ζώνην προσῆκεν αὐτῶν καὶ τὸ στῆθος πάσης ἐλευθεροῦν περιειλήσεως , οὐ κατὰ τὴν ἰδιωτικὴν πρόληψιν , καθ ' |
οὐκ ἔστιν , οἷον ἄλλε : ἡ γὰρ φύσις τῆς κλήσεως μάχεται τῷ σημαινομένῳ τοῦ ὀνόματος : ἡ μὲν γὰρ | ||
ἑπομένως τῷ τῆς ἀκολουθίας εἱρμῷ τὰ πρέποντα καὶ περὶ τῆς κλήσεως εὐθὺς παρήγγειλε : πολύτροποι γὰρ καὶ πολυειδεῖς αἱ περὶ |
διὰ τῶν ὀκτὼ τοῦ λόγου μερῶν καὶ τῆς τούτων ἐναρμονίου συμπλοκῆς τὸ εὖ λέγειν καὶ τὸ εὖ γράφειν παιδευόμεθα , | ||
θείας φιλίας τῆς συνεχούσης τὰ πάντα κοινωνίαν παρέχουσι τῆς ἀδιαλύτου συμπλοκῆς : οὐχ ὡς τοὔνομα , ὥς γε οὕτω δόξαι |
α καὶ ἑξηκοστῶν ζ . Ὥστε κατὰ τὸν ὑποκείμενον τῆς τηρήσεως χρόνον ἡ σελήνη παρήλλασ - σεν μὲν κατὰ πλάτος | ||
τὸ εἴσω νοούμενον . ἐκ γὰρ τῆς συνεχοῦς τοῦ φαινομένου τηρήσεως ἡ τῶν μειζόνων μελετᾶται κατόρθωσις . οὕτως οὖν καὶ |
τομὴν καὶ τὴν τὰς ἁφὰς ἐπιζευγνύουσαν , ἡ μεταξὺ τῆς συμπτώσεως καὶ τῆς τὰς ἁφὰς ἐπιζευγνυούσης δίχα τμηθήσεται ὑπὸ τῆς | ||
ἐπ ' εὐθείας τῆς παρὰ τὴν πλαγίαν ἠγμένης μεταξὺ τῆς συμπτώσεως τῶν εὐθειῶν καὶ τῶν τομῶν τετράγωνα λόγον ἔχουσιν , |
ἐν ἑαυτῷ περιέχον αἵματος ἐπιρρύτου τινὸς ἔξωθεν ἐκ τῆς παρακειμένης φλεβὸς τῆς ἀληθινῆς αἵματος ἑτέρου , ἀλλ ' ἱκανὸν αὐτῷ | ||
ἐστιν , ὅταν ἐκ τοῦ δακτυλίου κενῶται αἷμα , ἀναστομουμένης φλεβὸς , διὰ μηνὸς καὶ διὰ δύο μηνῶν , ὅπερ |
ἐκ τῶν νόμων ἐπιτιθέντες δίκην , αὐτὸ δὲ τὸ τῆς ἐσχάτης δίκης ἀξίους πεφηνέναι μυρίους , ὧν οἱ πλείους οἰκιῶν | ||
τὸ τῆς ἐπιπέδου πλάτος τὸ ἀπὸ τοῦ κέντρου μέχρι τῆς ἐσχάτης περιφερείας . ἐπεὶ οὖν τὸ συμπληρωτικὸν πλάτους ἐξ ἀνάγκης |
ἑκάστου τῶν τμημάτων τῶν δα , αγ ἴσον τῷ ὑπὸ συναμφοτέρου τῆς δαγ καὶ τῆς αβ διὰ τὸ αʹ τοῦ | ||
, οἱ δὲ ἐξ ὑποκειμένου ἢ τέλους ἢ ἐκ τοῦ συναμφοτέρου , ἐξ ὑποκειμένου καὶ τέλους , ταῖς ἐπιστήμαις καὶ |
παντὶ τῷ Α ὑπάρχειν : οὐκ ἀντιστρεφούσης δὲ τῆς μερικῆς ἀποφατικῆς ὑπαρχούσης οὐ δυνατὸν ἀντιστρέψαι τὸ συμπέρασμα . ἀντιστρεφομένου γὰρ | ||
ἐπὶ τοῦ οὐδενί : τῆς δ ' ἐλάττονος ὑπαρχούσης καθόλου ἀποφατικῆς οὔσης δέδεικται ὅτι οὐ γίνεται συλλογισμός . Ὅροι τοῦ |
τὸ δὲ περιεχόμενον σχῆμα ὑπό τε τοῦ κύκλου καὶ τῆς ἀπολαμβανομένης ὑπὸ τοῦ τέμνοντος ἐπιπέδου κωνικῆς ἐπιφανείας πρὸς τῇ κορυφῇ | ||
ἐστι τὸ περιεχόμενον σχῆμα ὑπό τε τῆς διαμέτρου καὶ τῆς ἀπολαμβανομένης ὑπ ' αὐτῆς περιφερείας . κέντρον δὲ τοῦ ἡμικυκλίου |
ἀποδέδεικται : ἐνταῦθα δὲ κατηγοροῦντες τὴν ἀπόφανσιν κοινῶς καταφάσεως καὶ ἀποφάσεως , οὐ λέγομεν τὴν μὲν κατάφασιν πρώτην ἀπόφανσιν εἶναι | ||
τὰ φαιὰ καὶ τὰ ἄλλα χρώματα . καλῶς οὖν ἐξ ἀποφάσεως καὶ καταφάσεως παρέδωκε τὴν διαίρεσιν . ἢ ὅτι τὸ |
ταῦτα δὲ καὶ πεπονθότα διά τινα δυσκρασίαν ἢ ἔμφραξιν ἢ συνεχείας λύσιν , τοῦ μὴ ὁρᾷν ἢ κακῶς ἡμᾶς ὁρᾷν | ||
ἐν τῇ καταγματικῇ ἀγωγῇ πρώτως δύο , ἅτινα λύσεώς εἰσιν συνεχείας . ἢ γὰρ ἐγκαρσίως τέμνεται ἢ ἐπ ' εὐθείας |
ἐπὶ τὴν βαρυτάτην χρωματικὴν ἑκτημόριον , ἀπὸ δὲ τῆς βαρυτάτης χρωματικῆς ἐπὶ τὴν ἡμιόλιον δωδεκατημόριον τόνου . τὸ δὲ τεταρτημόριον | ||
ἐναρμόνιος μὲν οὖν ἐστι παρυπάτη πᾶσα ἡ βαρυτέρα τῆς βαρυτάτης χρωματικῆς , χρωματικὴ δὲ καὶ διάτονος ἡ λοιπὴ πᾶσα μέχρι |
, Ἑρμῆς Σελήνη Κρόνος τε περὶ τὴν δωδεκάτην . Τῆς πέμπτης δὲ τὴν ἅπασαν ἡμέραν Ζεὺς πολεύει , οὗτος καὶ | ||
, Β , Γ , Δ , ὡς ἐπὶ τῆς πέμπτης καταγραφῆς , ἡ ΕΖ τῇ ἑτέρᾳ οὐ συμπεσεῖται . |
χυμῷ τινι ζέσαντι ἢ σαπέντι , ἢ μωρίου φλεγμονῆς καὶ στεγνώσεως . Τῶν δὲ συνόχων πυρετῶν γένος διττόν : οἱ | ||
Δία ἔπεμψέ τις καὶ πρὸς ἰατρὸν , ὡς ὑπὸ ἀμέτρου στεγνώσεως ἢ ἀραιώσεως ἐνοχλούμενος . εἰ δὲ μή ἐστι πάθη |
φαίνεται . Ἀκμάσαντος δὲ τοῦ θέρους μείω μὲν τῷ ἐξ ἀναλογίας ποσῷ τὰ χύματα καὶ πρὸς τὸ πυρρὸν ἤδη καὶ | ||
σοφῶν ἀνδρῶν παντέλεια , περιέχει δ ' ἐν αὑτῇ τὰς ἀναλογίας πάσας , τήν τε ἀριθμητικὴν καὶ τὴν ἁρμονικὴν καὶ |
, δέδοικα μὴ ἀλῶσιν ἀπατηθέντες , τῆς ἑτέρας ἀμίδος λεπτῆς μενούσης : ἀλλ ' αὐτοῖς μὲν ἀρκούσης ἴσως τῆς ἀπαιδευσίας | ||
καὶ ἀνακράζει , οὕτω τε ἀφίπτανται πᾶσαι , τῆς μιᾶς μενούσης , ἥπερ αὐτὰς ἥγνισεν ἀθροι - σθείσας : τὰς |
μεριστῆς οὔτε ἄλλης τοιαύτης ἐν τῇ παρουσίᾳ τῶν θεῶν ἐμφυομένης παρισώσεως . Πρὸς μὲν γὰρ τὰ ὁμοφυῆ κατ ' οὐσίαν | ||
τὸ σχῆμα τῆς κατὰ κῶλον ἐπαναφορᾶς , ὅπερ ἐστὶ καὶ παρισώσεως εἶδος , μέχριμέχριμέχρι . καὶ πλεῖστα ἀντιλέγων τούτοις ] |
ὕστερον δὲ γλαφυρώτατα δείξει ὅτι καὶ ἡ ἰσότης προτέρα τῆς ἀνισότητος . δείκνυσιν οὖν ὅτι τὸ πολλαπλάσιον πρῶτόν ἐστι τῶν | ||
πόλοι ἐπὶ τοῦ ὁρίζοντος πίπτουσιν , ἀναιρουμένου τοῦ αἰτίου τῆς ἀνισότητος τῶν ἡμερῶν , τοῦτο δὲ ἦν τὸ ἔγκλιμα , |
οὕτως ἡ ΑΒΓΗ πυραμὶς ἤτοι πρὸς ἔλασσόν τι τῆς ΔΕΖΘ πυραμίδος στερεὸν ἢ πρὸς μεῖζον . ἔστω πρότερον πρὸς ἔλασσον | ||
ἀπὸ δὲ τοῦ Θ ἐπὶ τὸ ΗΕΚΛ . Ἔστω βάσις πυραμίδος τρίγωνον τὸ ΑΒΓ , καὶ τετμήσθω ἡ μὲν ΑΒ |
τῇ ΑΓ μήκει , ἡ δὲ ὅλη ἡ ΑΗ τῆς προσαρμοζούσης τῆς ΔΗ μεῖζον δύναται τῷ ἀπὸ ἀσυμμέτρου ἑαυτῇ μήκει | ||
καὶ ἡ ὅλη μείζων διὰ ηʹ εʹ ιʹ δύναται τῆς προσαρμοζούσης τῷ ἀπὸ συμμέτρου ἑαυτῇ μήκει , καὶ ἡ ἄλλη |
τοῦ πᾶσαν αὐτῷ τὴν Ἰλιάδα εἰς τοῦτο αὐτὸ συγκεῖσθαι καὶ στάσεως εἶναι κατηγορίαν ἅπαν τὸ ποίημα , λέγει δή που | ||
Φοῖβος Ἀπόλλων ἐς Λιβύην πέμπει μηλοτρόφον οἰκιστῆρα . οἱ δὲ στάσεως παραπεσούσης πολιτικῆς : ὁ γοῦν Μενεκλῆς πιθανωτέραν δοκεῖν φησι |
τῷ Ἡρακλείας τυράννῳ . Δημοσθένης δ ' ἐξ Ἀμαζόνος οὕτω λεγομένης . : Ἀπολλωνία , πρώτη πόλις Ἰλλυρίας . . | ||
αὐτῶν ἡ προρρηθεῖσα κοινὴ ἐπιμέλεια . Τοῖς δὲ ὑπὸ τῆς λεγομένης χαλκίδος σαύρας πληγεῖσι , παρακολουθεῖ οἴδημα διαφανὲς ὥσπερ ἐκλάμπον |
μεταξὺ καί τινας ὑπονοίας λύει καὶ ἐκ τῆς ἐργασίας ἀνακυπτούσας ὑποφορὰς θεραπεύει . συνίστησι δὲ τὸ νόμιμον πρῶτον μὲν ἐκ | ||
μεταξὺ καί τινας ὑπονοίας λύει καὶ ἐκ τῆς ἐργασίας ἀνακυπτούσας ὑποφορὰς θεραπεύει . συνίστησι δὲ τὸ νόμιμον πρῶτον μὲν ἐκ |
ἑτέρου καὶ τῶν ἐναντίων : καὶ ταῦτα γὰρ πάντα μετέχουσιν ἑνώσεως καὶ ὑπάρξεως . ὥστε διελόμενον ποσαχῶς λέγεται ἕκαστον , | ||
φορᾷ : καὶ ἄρκτος ἑπτὰ ἄστροις συμπληροῦται , κοινωνίας καὶ ἑνώσεως ἀνθρώπων , οὐκ ἐπιμιξίας αὐτὸ μόνον , οὖσα αἰτία |