| ἔστιν ἡ διπλῆ τῆς ΑΒ δοθεῖσα : τὸ ἄρα ὑπὸ δοθείσης καὶ τῆς ΖΔ ἴσον ἐστὶν τῷ ἀπὸ τῆς ΔΓ | ||
| καὶ τῶν ἄλλων διαμέτρων παραλαμβανομένων τὰ αὐτὰ συμβήσεται . Εὐθείας δοθείσης ἐν ἐπιπέδῳ καθ ' ἓν σημεῖον πεπερασμένης εὑρεῖν ἐν |
| τὸ Γ , καὶ εἰλήφθω τι σημεῖον ἐπὶ τῆς ΑΒ τομῆς τὸ Δ , καὶ δι ' αὐτοῦ ἤχθω παρὰ | ||
| ἡ ἀπὸ τῆς συμπτώσεως ἐπὶ τὸ Δ ἐφάψεται τῆς ἀντικειμένης τομῆς . ἔστω γὰρ τὰ αὐτὰ , καὶ τὸ Δ |
| , ΑΖ μιᾷ σεληνιακῇ διαμέτρῳ καὶ τῷ τετάρτῳ μέρει τῆς διαμέτρου . Ἑκατέρας δὲ τῶν ΑΓ καὶ ΑΕ δʹ μέρει | ||
| τουτέστιν οὔτε τῶν ἐπὶ τῆς διαμέτρου οὔτε τῶν ἐκτὸς τῆς διαμέτρου . ἔστω κοῖλον ἔνοπτρον τὸ ΑΓΔ , διάμετρος δὲ |
| καὶ τοῦ κέντρου τῆς τομῆς , ἡ δὲ μεταξὺ τῆς κατηγμένης καὶ τῆς ἐφαπτομένης , ἕξει πρὸς αὐτὴν ἡ κατηγμένη | ||
| τῶν δύο εὐθειῶν , ὧν ἐστιν ἡ μὲν μεταξὺ τῆς κατηγμένης καὶ τοῦ κέντρου τῆς τομῆς , ἡ δὲ μεταξὺ |
| καὶ ἡμέρας ο καὶ ὥρας κβ , μοίρας δὲ τῆς φαινομένης τοῦ ἀστέρος παρόδου ξη κζ , ἡ δ ' | ||
| καὶ κατὰ τύχην : ἢ ὡς τῆς ἀληθείας ἐν ὑστέρῳ φαινομένης : ὡς καὶ Ἡσίοδός φησι [ . ] : |
| τοῦ ΑΒΓΔ κύκλου ἐπίπεδον μείζων ἐστὶ τῆς ἀπὸ τοῦ Ν καθέτου ἀγομένης ἐπὶ τὸ τοῦ ΕΖΗΘ κύκλου ἐπίπεδον . ἀλλ | ||
| Θ παράλληλος ὀρθὴν γωνίαν περιέξει μετὰ τῆς ἀπὸ τοῦ Ζ καθέτου . πάλιν ἐὰν ἐπιζεύξωμεν ἀπὸ τῶν Ζ , Η |
| εἴτε ὑπὸ πάθους ὡς πρὸς οἰκείους ἄνδρας , ἀκρατεῖς τῆς δεδομένης σφίσι τάξεως γενόμενοι , προσιοῦσι τοῖς Λευκιανοῖς οἷα συνεστρατευμένοις | ||
| τήν τε ἐσθῆτα τὴν στρατηγικὴν ἀπεδύσατο , ὡς παρὰ τυράννου δεδομένης ὑπερορῶν , καὶ τὸν Καίσαρα τύραννον ἐκάλει καὶ τοὺς |
| καί εἰσιν ὅμοιαι ἀλλήλαις : ὅπερ ἔδει δεῖξαι . Κυλίνδρου δοθέντος εὑρεῖν κῶνον καὶ τεμεῖν ἀμφοτέρους ἑνὶ ἐπιπέδῳ ποιοῦντι διὰ | ||
| τῶν ἀριθμῶν εἰσιν ὅμοια . . Ὁμοίως ἐπὶ τῆς προσθήκης δοθέντος μέρους τοῦ μεγίστου ᾧ ὑπερέχει ὁ μέσος τοῦ ἐλαχίστου |
| συνεγγίζων τῷ Ε σημείῳ κατὰ τὸ πλάτος ἀπὸ τῆς ΕΖ διαστάσεως φαίνηται πρώτως , ὁ τούτου πλέον ἀφεστὼς ἀπ ' | ||
| καὶ πρῶτον ἐπὶ τῆς ἐν ἀρχαῖς τοῦ Σκορπίου μεγίστης ἑσπερίας διαστάσεως . ἔστω γὰρ ἡ διὰ τοῦ Α ἀπογείου διάμετρος |
| ἴσον ἐστὶ τοῖς ΗΔ , ΑΖ . ἐπὶ δὲ τῆς ἐλλείψεως καὶ τῆς τοῦ κύκλου περιφερείας ἐροῦμεν : ἐπεὶ οὖν | ||
| τοῦ κέντρου τῷ ὁμοίῳ τῷ ἀποτεμνομένῳ , ἐπὶ δὲ τῆς ἐλλείψεως καὶ τῆς τοῦ κύκλου περιφερείας μετὰ τοῦ ἀποτεμνο - |
| τὸ τοιοῦτον καλεῖν . Ὃς δ ' ἂν μετ ' ὀρθῆς δόξης περὶ ὁτουοῦν τῶν ὄντων τὴν διαφορὰν τῶν ἄλλων | ||
| ἐστίν , εἴη ἂν ἡ ὑπὸ ΔΕΓ γωνία δύο πέμπτων ὀρθῆς : ὥστε ἑκατέρα τῶν ὑπὸ ΕΓΔ ΕΔΓ τεσσάρων πέμπτων |
| , ἐνεργείᾳ δὲ λίθον εἶναι , καὶ τὸ ἥμισυ τῆς γραμμῆς δυνάμει τελείαν γραμμήν , καὶ σῖτον δυνάμει ἁδρὸν τὸν | ||
| καὶ ἐπὶ τῶν γεγονότων : ὡς γὰρ ἡ στιγμὴ πέρας γραμμῆς , οὕτω τὸ γεγονὸς πέρας ἐστὶ τῆς γενέσεως . |
| τὸ δὲ περιεχόμενον σχῆμα ὑπό τε τοῦ κύκλου καὶ τῆς ἀπολαμβανομένης ὑπὸ τοῦ τέμνοντος ἐπιπέδου κωνικῆς ἐπιφανείας πρὸς τῇ κορυφῇ | ||
| ἐστι τὸ περιεχόμενον σχῆμα ὑπό τε τῆς διαμέτρου καὶ τῆς ἀπολαμβανομένης ὑπ ' αὐτῆς περιφερείας . κέντρον δὲ τοῦ ἡμικυκλίου |
| ἐπικύκλου ε ιγ ἔγγιστα . ἤχθω δὴ ἐπὶ τῆς ὁμοίας καταγραφῆς ἀπὸ τοῦ Κ κέντρου κάθετος ἐπὶ τὴν ΒΕ ἡ | ||
| ὕστερόν ἐστι βραχυτέρα . Ἔστω γὰρ ὡς ἐπὶ τῆς δευτέρας καταγραφῆς , καὶ τῶν αὐτῶν ὑποκειμένων ὁ ἥλιος ἔν τινι |
| , δέδοικα μὴ ἀλῶσιν ἀπατηθέντες , τῆς ἑτέρας ἀμίδος λεπτῆς μενούσης : ἀλλ ' αὐτοῖς μὲν ἀρκούσης ἴσως τῆς ἀπαιδευσίας | ||
| καὶ ἀνακράζει , οὕτω τε ἀφίπτανται πᾶσαι , τῆς μιᾶς μενούσης , ἥπερ αὐτὰς ἥγνισεν ἀθροι - σθείσας : τὰς |
| : ἔδει γὰρ ἢ πάντας ἀπολαβεῖν ἢ πρέσβεις ἐκ τῆς μεγίστης ἐξουσίας ἀφικέσθαι πρὸς αὐτόν . ταῦτα διαλεγομένοις παραγενόμενοί τινες | ||
| μάλισθ ' ὅταν προσλάβῃ κενοδοξίαν ὁμοῦ καὶ φιλονεικίαν μετὰ τῆς μεγίστης ἐξουσίας , ὑφ ' ἧς ἡμεῖς οἱ πρότερον εὐτυχεῖς |
| τὴν ἐνταῦθα ὑποκειμένην ἐπὶ τοῦ ἐπικύκλου μετάβασιν τὸν ἀπὸ τῆς ἐλαχίστης κινήσεως ἐπὶ τὴν μέσην χρόνον , μείζων ἐστὶν τῆς | ||
| δὴ ταῦτα ἀληθῆ λέγομεν , καὶ τὸ μέγεθος ὥρισται τῆς ἐλαχίστης σαρκός , ἀναγκαίως ἀδύνατον ἐν ἑκάστῳ πάντα μεμῖχθαι . |
| τῶν ἄλλων μενόντων τῶν αὐτῶν τὴν μὲν διπλῆν τῆς ΖΗ περιφερείας γίνεσθαι μοιρῶν ρλη νθ μβ καὶ τὴν ὑπ ' | ||
| κύκλῳ εὐθειῶν . ιβʹ . περὶ τῆς μεταξὺ τῶν τροπικῶν περιφερείας . ιγʹ . προλαμβανόμενα εἰς τὰς σφαιρικὰς δείξεις . |
| ἠγμένῃ εὐθείᾳ , καὶ ποιηθῇ , ὡς τὸ τμῆμα τῆς ἐφαπτομένης τὸ μεταξὺ τῆς ἁφῆς καὶ τῆς ἀνηγμένης πρὸς τὸ | ||
| οὕτως τὸ περιεχόμενον ὑπὸ τῶν μεταξὺ τῆς τομῆς καὶ τῆς ἐφαπτομένης πρὸς τὸ ἀπὸ τῆς ἀπολαμβανομένης πρὸς τῇ ἁφῇ τετράγωνον |
| τὴν ἁφὴν ἐπιζεύγνυται ἡ ΧΑ , ἡ δὲ παρὰ τὴν ἐφαπτομένην ἦκται ἡ ΓΧ , αἱ ΧΑ , ΓΧ ἄρα | ||
| παραβολή , ἧς ἄξων ὁ ΑΒ : δεῖ δὴ ἀγαγεῖν ἐφαπτομένην τῆς τομῆς , ἥτις πρὸς τῷ ΑΒ ἄξονι γωνίαν |
| ʂ α Μο α , καὶ γίνεται συναμφοτέρου τῆς τε ὑποτεινούσης καὶ μιᾶς τῶν ὀρθῶν τὸ ἥμισυ ἐφ ' ἑαυτὸ | ||
| τῷ ἐμβαδῷ αὐτοῦ , λείψας τὸν ἐν συναμφοτέρῳ τῆς τε ὑποτεινούσης καὶ μιᾶς τῶν ὀρθῶν , ποιῇ δοθέντα ἀριθμόν . |
| , μετὰ δὲ ταῦτα καὶ διὰ τῆς ὑπ ' αὐτοῦ παρατιθεμένης ἡλιακῆς ἐκλείψεως , ποτὲ μὲν ὡς μηδὲν αἰσθητόν , | ||
| ὑπὸ τοῦ βαρυτέρου , τῆς αὐτῆς κατατομῆς ἐφ ' ἑκατέρου παρατιθεμένης . Νοείσθω γὰρ τὸ προκείμενον σχῆμα περιέχον ὅλον τὸ |
| ἑαυτῷ τὰ χρήματα κατὰ διαθήκας . διττῆς δὲ τῆς ἀμφισβητήσεως ὑπαρχούσης , τῆς μὲν περὶ τοῦ γεγονέναι τὰς διαθήκας ἢ | ||
| κίνδυνον κωλῦσαι γενησόμενον ἐν ταῖς ἀποτέξεσιν , μικρᾶς τῆς μήτρας ὑπαρχούσης καὶ μὴ δυναμένης χωρῆσαι τὴν τελείωσιν , ἢ κατὰ |
| ταῦτά εἰσι μετὰ μικρὸν μάθῃς . ὁ μὲν σκοπὸς τῆς προκειμένης πραγματείας ἐστίν , ὡς εἴπομεν , τὸ περὶ τῆς | ||
| ἐπικαίοντας πάλιν , ἐὰν οὕτω τύχῃ : παρελθούσης δὲ τῆς προκειμένης προθεσμίας , ἀφετέον μὲν ἀπουλωθῆναι τοῖς ἕλκεσιν : ἐμπλάστρῳ |
| ὑπὸ ΒΑΔ , ἡ δὲ ΓΔ τὸ ΔΒΑΓ τμῆμα ἔχον δοθεῖσαν γωνίαν τὴν ὑπὸ ΔΑΓ : δοθὲν ἄρα καὶ τὸ | ||
| κερατοειδῆ γωνίαν τεμεῖν . τὸ δὲ νῦν πρόβλημά ἐστι τὴν δοθεῖσαν εὐθύγραμμον γωνίαν δίχα τεμεῖν . χρῆται γὰρ ἐν τούτῳ |
| τῶν ὅρων ὄντων καὶ τῆς μὲν ὑπάρχειν τῆς δὲ ἐνδέχεσθαι λαμβανομένης τῶν προτάσεων , ὅταν ἡ πρὸς τὸ ἔλαττον ἄκρον | ||
| δύο αὗται συζυγίαι τὸ ἀναγκαῖον συνάγουσιν οἵας δή ποτε ἀναγκαίας λαμβανομένης προτάσεως , κἂν τῆς μείζονος κἂν τῆς ἐλάττονος , |
| Λ διπλασίαν τῆς Δ οὖσαν ١٤ , τὴν δὲ Μ τριπλασίαν ٢١ , τὴν δὲ Ν ٢٨ καὶ τὴν Κ | ||
| οὖν γενομένης τῆς ναυμαχίας ὁ μὲν Δημήτριος ἄλλην μηχανὴν κατεσκεύασε τριπλασίαν τῷ ὕψει καὶ πλάτει τῆς πρότερον , προσάγοντος δ |
| ἐπιθύουσι , παρ ' Ὁμήρῳ δὲ τέθειται καὶ ἐπὶ τῆς βάσεως , ἀπὸ τοῦ βεβηκέναι . Ἠὼς , λαμβάνεται παρ | ||
| : ὑψηλοῖς , μεγάλοις , παχυτάτοις , τοῖς λειπομένοις τῆς βάσεως . ὀψέ : μόλις , ἀργῶς . Πάντεσσιν : |
| συμβήσεται . Εὐθείας δοθείσης ἐν ἐπιπέδῳ καθ ' ἓν σημεῖον πεπερασμένης εὑρεῖν ἐν τῷ ἐπιπέδῳ κώνου τομὴν τὴν καλουμένην παραβολήν | ||
| ἀλλότριον , φάσεως οὔσης , ὡς εἴρηται , καὶ ἢ πεπερασμένης ἢ ἀπεράντου , ἀλλ ' οὐκ ἐν τῷ ζητεῖν |
| . ιθʹ . Τούτου προδειχθέντος ἔστω σφαῖρα μετέωρος , καὶ προκείσθω τό τε σημεῖον εὑρεῖν , ἐφ ' ὃ πεσεῖται | ||
| , Η γεγράφθω μεγίστου κύκλου περιφέρεια ἡ ΖΗΘ , καὶ προκείσθω τὴν ΗΘ δηλονότι εὑρεῖν . προειλήφθω δὴ καὶ ἐνταῦθα |
| ποδός ἐστιν ἢ τῆς αὐτῆς συζυγίας ἢ τῆς αὐτῆς περιόδου ἀρχικῆς , οὔτε ὑπὸ στίχου οὔτε ὑπὸ συστήματος καταμετρούμενα . | ||
| ? καὶ μεγάλης οἶμαι δεῖσθαι μάλιστα καὶ ὅσης ? τῆς ἀρχικῆς ? χαλιναγωγίας , ἧς εἰ μὴ τύχοι , μείζονα |
| μειουρισθῇ , κόλουρος ἁπλῶς λέγεται ἐστερημένη τῆς φυσικῆς καὶ πᾶσιν ἐπιβαλλούσης κορυφώσεως : οὐ γὰρ εἰς τὸν δυνάμει πολύγωνον τὴν | ||
| τὰ ἀίδια τῶν πραγμάτων περιορᾶσθαι ὑπ ' αὐτῶν ἔρημα τῆς ἐπιβαλλούσης αὐτοῖς προνοίας ἢ τὰ ῥευστὴν ἔχοντα φύσιν , εἴπερ |
| , ὀρθότατος ἔσται πρὸς ἡμᾶς : ὅταν δὲ ἐπὶ τῆς διχοτομίας τοῦ ὑπὸ γῆν τμήματος τοῦ θερινοῦ τροπικοῦ , ταπεινότατος | ||
| τυχὸν σημεῖον τὸ Γ . εἰ μὲν οὖν ἐπὶ τῆς διχοτομίας ἐστὶ τὸ Γ , φανερόν ἐστι τὸ ζητούμενον . |
| οὕτως ἡ ΑΒΓΗ πυραμὶς ἤτοι πρὸς ἔλασσόν τι τῆς ΔΕΖΘ πυραμίδος στερεὸν ἢ πρὸς μεῖζον . ἔστω πρότερον πρὸς ἔλασσον | ||
| ἀπὸ δὲ τοῦ Θ ἐπὶ τὸ ΗΕΚΛ . Ἔστω βάσις πυραμίδος τρίγωνον τὸ ΑΒΓ , καὶ τετμήσθω ἡ μὲν ΑΒ |
| δεδομένῳ εὐθεῖα γραμμὴ ἀχθῇ δεδομένην ποιοῦσα γωνίαν , δέδοται ἡ ἀχθεῖσα τῇ θέσει . πρὸς θέσει γὰρ δεδομένῃ εὐθείᾳ τῇ | ||
| , ἡ δὲ ἀπὸ τῆς τομῆς ἐπὶ τὴν δευτέραν διάμετρον ἀχθεῖσα παράλληλος τῇ διαμέτρῳ δυνήσεται χωρίον , πρὸς ὃ τὸ |
| ΝΞ περὶ κέντρον τὸ Ζ ἴσος τῷ ΛΜ , καὶ ἐπιζευχθείσης τῆς διὰ τῶν κέντρων διαμέτρου τῆς ΝΛΜ εἰλήφθω ἐπ | ||
| μεσημβρίας κατὰ τὸ Ω σημεῖον τῆς ἀκριβοῦς τοῦ ἡλίου ἐποχῆς ἐπιζευχθείσης τῆς ΕΥΩ εὐθείας , ἡ δὲ ΦΩ τῆς παραλλάξεως |
| ὑπὸ κακοχυμίας , ἤτοι ἐξ ἥπατος εἰς αὐτὴν καταρρεούσης ἢ περιεχομένης ἐν τοῖς χιτῶσιν αὐτῆς . γεννᾶται δ ' ἐξ | ||
| ἐπεὶ γὰρ τὸ Δ ἐντός ἐστι τῆς ὑπὸ τῶν ἀσυμπτώτων περιεχομένης γωνίας , δυνατὸν ἀπὸ τοῦ Δ δύο ἐφαπτομένας ἀγαγεῖν |
| Ὑδροχόου καὶ κύριος τοῦ βʹ ἐννατημορίου , τῆς δὲ τρίτης μερίδος ὁ Ζεὺς ὁ κύριος τῶν Ἰχθύων καὶ κύριος τοῦ | ||
| τὸ Κάσπιον πέλαγος . μῆκος δ ' ἐστὶ ταύτης τῆς μερίδος τὸ μέγιστον ἀπὸ τῆς Ὑρκανίας θαλάττης ἐπὶ τὸν ὠκεανὸν |
| ρκ , καὶ αὐτῆς τῆς σελήνης ἐν ἀρχῇ τοῦ Ταύρου ὑποκειμένης πρὸς ἀνατολὰς ἀπέχειν τοῦ μεσημβρινοῦ ὥρας ἰσημερινὰς δ . | ||
| ἐνεπετάννυντο . μετὰ δὲ τοῦτο αἴθριον ἐξεδέχετο τὴν ἐπάνω τῆς ὑποκειμένης προστάδος τάξιν κατέχον : ᾧ κλῖμάξ τε ἑλικτὴ φέρουσα |
| κατὰ τοῦ ὑπάρχοντος κατηγορεῖσθαι . δέδεικται δὲ καὶ ὅτι τῆς καταφατικῆς ἀναγκαίας λαμβανομένης οὐ γίνεται συλλογιστικὴ ἡ συζυγία . ἀλλ | ||
| ἕκαστα καὶ τὴν μάχην τῆς μερικῆς πρὸς τὴν καθόλου εἴτε καταφατικῆς εἴτε ἀποφατικῆς εἰπὼν ἀντιφατικῶς μάχεσθαι , ταῦτα οὖν πάντα |
| , τοὺς βουλευτὰς ᾐτησάμην . καὶ τοίνυν διοικήσεως νῦν πρῶτον ἀχθείσης πολλὰ ὑπὸ πολλῶν ἠδικημένος , ὥσπερ εἰκός ἐστι τὸν | ||
| τοῦ ἐκκέντρου πηλικότησιν . κατὰ ταὐτὰ δὲ καὶ ἐνθάδε καθέτου ἀχθείσης ἐπὶ τὴν ΔΒ τῆς ΑΛ , ἐάν τε τὴν |
| τῆς [ ] [ ἰατρείας ] ? τῆς [ ] τεινούσης [ ] ὥστ ' οὐδὲ τοῖς [ ] σέχει | ||
| ξὺν ἁβρότητι ἐνεργὸν καὶ ἔνθεον ἀεὶ τῆς γνώμης ἐς θεολογίαν τεινούσης . τάχα δέ τι καὶ νῦν ᾄδει καὶ ἡ |
| , ὕστερον ἐροῦμεν . περὶ δὲ τῆς κακίας , τῆς ἀντικειμένης ταῖς ἠθικαῖς ἀρεταῖς , εἴπομεν πρότερον , ὅτε περὶ | ||
| πάντα τὸν ἀνὰ μέσον τόπον τῆς τε νήσου καὶ τῆς ἀντικειμένης παραλίας συμπεπληρωμένον φαίνεσθαι τοῖς πλοίοις καὶ πολὺν φόβον καὶ |
| ζῳδιακὸν τῶν μεγίστων εἶναι ἐν τῇ σφαίρᾳ κύκλων , καὶ διχοτομεῖσθαι τὴν σφαῖραν ὑφ ' ἑκατέρου αὐτῶν , καὶ τὸ | ||
| ἀστὴρ ἐπέχει τοῦ Αἰγόκερω μοῖραν αʹ : οὐκ ἄρα δυνατὸν διχοτομεῖσθαι αὐτὸν ὑπὸ τοῦ προειρημένου κύκλου . ὁμοίως δὲ καὶ |
| προσλαβὸν τὴν ἡμίσειαν τῆς ὅλης πενταπλάσιον δύναται τοῦ ἀπὸ τῆς ἡμισείας τετραγώνου : ὅπερ ἔδει δεῖξαι . Ἐὰν εὐθεῖα γραμμὴ | ||
| ἐνδεχομένου καὶ ἀναγκαίου , ὅτι πάντες ἀτελεῖς καὶ τὸ ἐξ ἡμισείας ἐνδεχόμενον συνάγουσι . Καὶ τελειοῦνται διὰ τῶν πρώτων σχημάτων |
| ἀτεχνῶς τὸν κολοφῶνα ἐπιθεῖναι . τῆς τοίνυν διὰ τῶν κυνηγετῶν ὑπερβολῆς ἐν σοὶ τὸ πλεῖστον . τρέφει γὰρ ἡ Φοινίκη | ||
| τοιαῦτα νοσήματα πάντα παρέσχετο . τὸ μὲν οὖν ἐκ πυρὸς ὑπερβολῆς μάλιστα νοσῆσαν σῶμα συνεχῆ καύματα καὶ πυρετοὺς ἀπεργάζεται , |
| ἀπὸ δὲ τοῦ κέντρου τῆς σφαίρας ἐπ ' αὐτὸν κάθετος ἀχθῇ καὶ ἐκβληθῇ ἐπ ' ἀμφότερα τὰ μέρη , ἐπὶ | ||
| ' αὐτῆς σημεῖον ληφθῇ ὡς τὸ Γ , κάθετος δὲ ἀχθῇ ἡ ΓΔ , ἴσον εἶναι τὸ ὑπὸ Ρ , |
| ἐλλείψεων . Κείσθω πάλιν ἡ καταγραφὴ τοῦ κώνου , καὶ ἐκβληθείσης τῆς ΓΒ ἐπὶ θάτερα δέον ἔστω ἀπ ' ἀμφοτέρων | ||
| ζῳδιακοῦ ἐπεζεύχθωσαν αἱ ΑΔ καὶ ΒΔ καὶ ΓΔ , καὶ ἐκβληθείσης τῆς ΓΔΕ ἐπεζεύχθωσαν αἱ ΑΕ καὶ ΕΒ καὶ ΑΒ |
| περιφέρεια τῆς ΒΑΔ περιφερείας , καὶ ἐπὶ τῆς ΒΔ ὀρθὸν τμῆμα κύκλου ἐφεστάτω τὸ ΒΕΔ μὴ μεῖζον ἡμικυκλίου , καὶ | ||
| τῆς ΕΖ ἄκρον καὶ μέσον λόγον τεμνομένης , μεῖζον ἔσται τμῆμα ἡ ΑΓ : ἡ ἄρα ΕΖ πρὸς τὴν ΑΓ |
| ἐκφαίνοντος , μέσης τῆς νήσου ἡμῶν τε καὶ τοῦ ἡλίου κειμένης . Ἐὰν τοίνυν ἡ ὄψις ἡμῶν περιλαμβάνῃ τὴν νῆσον | ||
| τὸ ναυτικὸν αὐτῶι , διαπλεῖ τὸν Ἑλλήσποντον ἐπὶ τῆς ἔγγιστα κειμένης χερρονήσου τὸν πλοῦν ποιούμενος , ἣ πρόκειται μὲν τῆς |
| ῥυπτικὴν ἔχοντος δύναμιν , τῆς δ ' οὐσίας αὐτῆς στασίμου τυγχανούσης ἐδέσματος . μελαγχολικὸν δὲ τὸ πλέον ἥδε γεννᾷ χυμόν | ||
| εὐκινήτους ὑπάρχειν . διὰ δὲ τῆς πείρας τῆς εὐχρηστίας ἀποδοχῆς τυγχανούσης , οἱ [ μὲν ] πρότερον ἀπὸ τῶν ἀσπίδων |
| , τοῦθ ' ὑμῖν γέγονε γνώριμον ἐκ τῆς δαπάνης τῆς γεγενημένης , ἐκ τῶν ἐλπίδων ὧν ἐσφάλητε , ἐκ τοῦ | ||
| προῆλθεν ἐπὶ τὴν σκηνὴν καὶ τῆς τοῦ κωμῳδοῦ σφαγῆς ἄρτι γεγενημένης , Ἄνδρες , εἶπε , θεαταί , καλλιεροῦμεν : |
| Ε σημεῖα . ἐπεὶ μεῖζον τὸ ΑΓΒ τμῆμα τοῦ ΒΓ τμήματος , μείζων ἡ Ζ γωνία τῆς Θ γωνίας . | ||
| ὁ αὐτὸς δὲ γίνεται καὶ τοῦ περὶ τὴν γῆν ὁμοίου τμήματος πρὸς τὸν ἐν αὐτῇ μέγιστον κύκλον . Οἱ μὲν |
| διὰ τὸν τρόπον τῆς συγγραφῆς ἐκθησόμεθα μετὰ τῆς φαινομένης ἡμῖν ἐπικρίσεως . φασὶν οὖν τινες , ὅτι δύναταί τι ἐν | ||
| οὖν τοῦτό ἐστιν ; ἐκεῖναι δὲ ἐκ τῆς αὐτοῦ τινος ἐπικρίσεως , ὅταν λέγῃ , καὶ γὰρ οὕτως ἔχει , |
| ἀσυλλόγιστον γίνεται τὸ σχῆμα ἐν πρώτῳ ἢ δευτέρῳ τῆς μείζονος μερικῆς οὔσης . καὶ δηλονότι , εἰ ἀποφατικὸν εἴη τὸ | ||
| καὶ τὸ ψεῦδος , τήν τε καθόλου κατάφασιν μετὰ τῆς μερικῆς ἀποφάσεως καὶ τὴν καθόλου ἀπόφασιν μετὰ τῆς μερικῆς καταφάσεως |
| μὲν ἐγχειρήσωσι ταῖς ἐπιβολαῖς : ὑπὸ γὰρ τῆς πεπρω - μένης αὐτοῖς κεκυρῶσθαι πατρίδα τὴν Ἔνναν , οὖσαν ἀκρόπολιν ὅλης | ||
| , τῆς ΕΗ ἄρα ἄκρον καὶ μέσον λόγον τεμνο - μένης τὸ μεῖζον τμῆμά ἐστιν ἡ ΕΖ . ἔστι δὲ |
| ἀιδίοις ἀπολείπουσιν οἱ ἄνδρες , οἷον τὸ τῆς ὁμοιότητος ἢ ἰσότητος ἢ ταυτότητος εἶδος , οὗ μετέχει μὲν καὶ ὁ | ||
| Τῷ δὴ ἑνὶ μὴ ὄντι , ὡς ἔοικε , καὶ ἰσότητος ἂν μετείη καὶ μεγέθους καὶ σμικρότητος . Ἔοικεν . |
| ἐστίν . μόνοι δὴ λοιπὸν δοκοῦσι καθικνεῖσθαι τῆς ἐννοίας τοῦ δεδομένου οἱ γνώριμον ἅμα καὶ πόριμον αὐτὸ εἶναι ἀποφηνάμενοι : | ||
| ἐστὶ καὶ ἡ ὑπὸ τῶν ΑΕΓ γωνία . Ἐὰν κύκλου δεδομένου τῇ θέσει ἐπὶ τῆς περιφερείας δοθὲν σημεῖον ληφθῇ , |
| ἐν τρίτῳ τῆς μὲν Β τουτέστι τῆς μείζονος τῆς αὐτῆς ληφθείσης , ἥτις ἦν καὶ ἐν τῷ πρώτῳ , τῆς | ||
| ὠμῶν γινομένης τῆς ἀναδόσεως . καὶ ἐν τῶι στόματι δὲ ληφθείσης τῆς τροφῆς παρὰ ταῦτα ἀνάδοσις γίνεται ἀπ ' αὐτῆς |
| εἰκοσάεδρον , λόγον ἕξει εὐθείας ἡσδηποτοῦν ἄκρον καὶ μέσον λόγον τμηθείσης ὡς ἡ δυναμένη τὸ ἀπὸ τῆς ὅλης καὶ τὸ | ||
| καὶ κείσθω τῇ ΑΒ ἴση ἡ ΔΕ , καὶ δίχα τμηθείσης τῆς ΕΑ κατὰ τὸ Ζ καὶ ἐπιζευχθείσης τῆς ΖΓ |
| προτέρων μορίων τοῖς δευτέροις ὑπηρετούντων , ἀλλὰ τῇ τάξει τῆς θέσεως , ἣν ὁ τῆς τῶν ζῴων γενέσεως δημιουργὸς ἐμηχανήσατο | ||
| τῷ ἀδελφῷ σπονδῶν κατάρχειν ἐπέτρεψε καὶ κύριον αὐτὸν εἶναι τῆς θέσεως τοῦ ὀνόματος τῷ παιδίῳ . Μηριόνης , * * |
| αὐτῆς εἴδει ὁμοίῳ τῷ ΒΗ τῷ παραβληθέντι παρὰ τὴν ἑτέραν ἡμίσειαν τῆς ΑΒ , καὶ ἑξῆς τὸ θεώρημα . τὸ | ||
| κατὰ τὰς ἀναφορὰς τοῦ κλίματος ἕως τοῦ διαμέτρου τούτων τὴν ἡμίσειαν ἀπόλυε ἀπὸ τῆς δυτικῆς μοίρας : ὅπου δ ' |
| , ἐκείνῳ διδόναι τὴν προτερίαν ὀφείλομεν τῆς τῶν τοιούτων χρόνων ἀφέσεως . Ὁ τοῦ Κρόνου λαμβάνων τοὺς καθολικοὺς χρόνους ἢ | ||
| ὡρίσατο ὧν ἐν ἑνὶ χρὴ εἶναι τὸν τὴν κυρείαν τῆς ἀφέσεως λαμβάνοντα ἀστέρα , τό τε περὶ τὸν ὡροσκόπον δωδεκατημόριον |
| οὐκ ἔστιν , οἷον ἄλλε : ἡ γὰρ φύσις τῆς κλήσεως μάχεται τῷ σημαινομένῳ τοῦ ὀνόματος : ἡ μὲν γὰρ | ||
| ἑπομένως τῷ τῆς ἀκολουθίας εἱρμῷ τὰ πρέποντα καὶ περὶ τῆς κλήσεως εὐθὺς παρήγγειλε : πολύτροποι γὰρ καὶ πολυειδεῖς αἱ περὶ |
| ἡ ὑπὸ ΑΕΒ γωνία τὰς διπλασίονας ἔγγιστα περιέχῃ μόνης τῆς ἡλιακῆς ἀνωμαλίας μοίρας δ μϚ , καὶ ἐπιζευχθείσης ἐπὶ τῆς | ||
| φοῖνιξ καὶ τοῖς πατρῴοις ἔθεσι χρῆται , ὥστε ὑπὸ τῆς ἡλιακῆς μόνης αὐγῆς , πατρός τε καὶ μητρὸς χωρίς , |
| τοὺς δὲ προβλήματα , ἀποβλέποντας εἰς τὸ σχῆμα μόνον τῆς προτάσεως . τὴν δὲ διαφορὰν τῶν τριῶν τούτων ὅτι βέλτιον | ||
| ὁ δὲ γος Μο μ , καὶ ποιοῦσι τὰ τῆς προτάσεως . Ἄλλως . Ζητῶ πρότερον τρεῖς ἀριθμοὺς ἴσους εἶναι |
| καθόλου ἀποφαίνεται ὅτι παντὸς τριγώνου αἱ δύο πλευραὶ μείζονες τῆς λοιπῆς εἰσιν : ἀλλ ' ἐνταῦθα μὲν ἐπὶ τῶν τριγώνων | ||
| . Κοινὴ ἀφῃρήσθω ἡ ΝΑ : λοιπὴ ἄρα ἡ ΒΝ λοιπῆς τῆς ΑΛ μείζων ἐστίν . Ἐν πλείονι ἄρα χρόνῳ |
| μοι δέον οὐκ ἐτελέσθη πρὸς ταῦτα ; Τοσαύτης οὖν διαφορᾶς οὔσης τῶν ἐπιθυμουμένων , τῶν ἔργων , τῶν εὐχῶν ἔτι | ||
| τοὺς λόγους . ἀνάγκη δὴ τὸν πατέρα ἐμὲ φιλίας μὲν οὔσης ὑμῖν χαίρειν , τούτου δὲ οὐκ ὄντος ἀνιᾶσθαι . |
| γὰρ τῆς σφαίρας καὶ ἐπὶ τοῦ κατὰ τὸ ἡμικύκλιον ἑτέρου σημείου τὴν μοῖραν περιαγαγούσης , αἱ αὐταὶ ἔγγιστα καιρικαὶ ὧραι | ||
| γίνεται δὲ τὰ ἀπ ' ἀρχῆς ἄχρι τέλους ἀπὸ τοῦ σημείου : καὶ αὔξεται ἀπὸ τῶν περιστατικῶν : πόθεν δὲ |
| : τὸ δὲ λογικὸν αὐτὸν εἶναι καὶ μὴ ἄλογον χωρὶς δείξεως αἰτεῖταί τε καὶ τίθησιν . εἰ δέ ἐστιν ἀσθενὴς | ||
| τὸ ἐνδέχεσθαι καὶ αὐτὴ συνάγει διὰ τῆς ἐπ ' εὐθείας δείξεως : διὸ καὶ τέλειος ὁ συλλογισμός . ἐπειδὴ γὰρ |
| καὶ τοῦ εἶναι τῷ υἱῷ ὡς ἀνθρώπῳ αἴτιος καὶ τῆς σχέσεως , ὁ δὲ υἱὸς τῆς σχέσεως μόνης τῷ πατρὶ | ||
| , ὡς δύνασθαι ῥᾷστά τινα , διὰ τῆς πρὸς ἄλληλα σχέσεως αὐτῶν , τὴν ὅλην οἰκουμένην μηδὲν εἰκόνος δεηθέντα τῷ |
| ὑπὸ τῶν ΒΚΑ . ὀρθὴ δέ ἐστιν ἡ ὑπὸ τῶν ΒΕΚ : ἴση ἄρα ἐστὶν ἡ ΒΕ τῇ ΕΚ . | ||
| μείζονος ἐνόπτρου ὁρᾷ τὸ Κ , καὶ ἡ αὐτὴ ἡ ΒΕΚ ἀνακλωμένη ἀπὸ τοῦ ἐλάσσονος ἐνόπτρου ὁρᾷ τὸ αὐτὸ Κ |
| Ξενοφάνης ὁ Κολοφώνιος ἀπορητικῆς μᾶλλον ἢ δογματικῆς τοῖς πολλοῖς εἶναι δοκούσης . μετὰ δὲ τοῦτον τοῖς αὐτοῦ βουλήμασιν εὐαρεστηθεὶς καὶ | ||
| ὥστε καὶ τοὺς ἐπὶ πλεῖστον μετεσχηκότας συγγραμμάτων διαπορεῖσθαι τῆς ὀρθῆς δοκούσης γεγράφθαι παρὰ σοὶ ἐξηγήσεως . βασιλεὺς οὖν Δαρεῖος Ὑστάσπου |
| τῷ σκέλει , διελοῦμεν τὸν χορηγὸν κατ ' ἐπικόπου τῆς ἐπιβολῆς τοῦ τυφλαγκίστρου : ἔπειτα διπύρηνον διὰ τῆς διαιρέσεως καθήσομεν | ||
| Ἑλλάδα περί τε τοῦ ἄθλου καὶ τῆς κατὰ τὴν ναυπηγίαν ἐπιβολῆς , οὐκ ὀλίγους τῶν ἐν ὑπεροχαῖς νεανίσκων ἐπιθυμῆσαι μετασχεῖν |
| καὶ ἄλλη ἀδικία ἡ διὰ κέρδος . ἀμφότεραί τε τῆς κοινῆς ἀδικίας διαφέρουσιν , ὅτι ἐκείνη μὲν κατ ' ἀμφοτέρων | ||
| τοῖς πονηροῖς , ᾗπερ εἴρηται , τιμὴν ἐχαρίζετο : τῆς κοινῆς σωτηρίας ἀμελήσαντες , καὶ προστησάμενοι σφῶν αὐτῶν τὸν Ἰωάννην |
| οὐδὲ σκῆψιν , οὐδὲ τοιοῦτον τὸν ὑπὲρ τῆς περὶ ἡμῶν ψήφου λόγον δείκνυσιν ὄντα . εἴποιεν δ ' ἂν καὶ | ||
| ἐνθυμηθείης , οὐδεὶς οὕτως ἀθορύβου καὶ καθαρᾶς πρὸς βασιλείαν ἔτυχε ψήφου , οὐ Περσῶν ἐπικειμένων , οὐδὲ καταπεπληγμένης τῆς στρατιᾶς |
| τῆς ἄλλης ἡδονῆς ἅμα καὶ ὠφελίας τῆς περὶ τὰ τοιαῦτα γιγνομένης πᾶσιν . τούτους οὖν , αὐτούς τε καὶ τὸ | ||
| δὴ τελέσῃ θεὸς ἕπτ ' ἐνιαυτούς , ἥβης ἐκφαίνει σήματα γιγνομένης : τῇ τριτάτῃ δὲ γένειον ἀεξομένων ἔτι γυίων λαχνοῦται |
| πολυχρονίως ἡ πανήγυρις τελεσθήσεται . ἄλλως : ἐν ταύτῃ πρῶτον ἀγομένῃ τῇ ἑορτῇ τῶν Ὀλυμπίων παρέστησαν αἱ Μοῖραι καὶ ὁ | ||
| Ω κάθετος ἀγομένη ἴση ἐστὶ τῇ ἀπὸ τοῦ Χ καθέτῳ ἀγομένῃ ἐπὶ τὸ τοῦ ΑΒΓ κύκλου ἐπίπεδον , τὰ Ω |
| τισιν οἵ τε ἀπὸ τῆς Ἀκαδημίας καὶ οἱ ἀπὸ τῆς σκέψεως λέγουσι , πρόδηλος καὶ ἡ κατὰ τοῦτο διαφορὰ τῶν | ||
| ιʹ εἰ ἀναιρεῖ τὰ φαινόμενα ιαʹ περὶ τοῦ κριτηρίου τῆς σκέψεως ιβʹ περὶ τοῦ τέλους αὐτῆς ιγʹ περὶ τῶν ὁλοσχερῶν |
| πλευρά ١ ٣١ ١ ١٤ τὸ ἀπὸ ταύτης ٢٨ ٤٩ ٥٤ ٥٦ ٢٦ ٤٦ ٤٠ ἡ τὸ χωρίον δυναμένη τὸ | ||
| ἡ πλευρὰ τοῦ ἀπὸ τῆς μεταξὺ τῶν τομῶν ١٤ ١٤ ٥٤ ἡ ΔΖ [ ٩ ٢٣ ٥٦ ٥٠ ] τὸ |
| κατὰ μὲν τὴν ἔννοιαν θεωρίαν ἔλαβον , ἀπὸ δ ' ὀργανικῆς ἕξεως προκόψαντες . οὗτοι γὰρ τὴν μὲν αἴσθησιν ὡς | ||
| δεχόμενοι μαλακαῖς τισι καὶ συνενδιδούσαις κατασκευαῖς ἐπράυνον τὴν ἐκ τῆς ὀργανικῆς βίας δύναμιν . ὁ δὲ βασιλεὺς ἅμα τῇ κατὰ |
| κυρτὸν εἶναι . νζʹ . Τετραγώνου ὑπάρχοντος ἐὰν ἀπὸ τῆς συναφῆς τῶν διαμέτρων πρὸς ὀρθάς τις ἀναχθῇ τῷ τοῦ τετραγώνου | ||
| ΚΠ , καὶ ἴσον ἀπέχουσιν αἱ ΔΜ , ΚΠ τῆς συναφῆς τοῦ θερινοῦ τροπικοῦ : ἐν ᾧ ἄρα χρόνῳ ἡ |
| ἐστὶ δοθεὶς διὰ τὸ δοθεῖσαν εἶναι τὴν ὑπὸ τῶν ΒΑΓ γωνίαν : καὶ τοῦ Δ ἄρα χωρίου πρὸς τὸ ὑπὸ | ||
| πλευραὶ ἄνισοι , καὶ ἡ μείζων ὑποτείνει τὴν δεδομένην μείζονα γωνίαν . εἰ γὰρ μή ἐστιν ἡ τὴν μείζονα γωνίαν |
| . εἴπωμεν λοιπὸν περὶ τῆς μουσικῆς ὅ ἐστι περὶ τῆς ἁρμονικῆς ἀναλογίας . ἰστέον ὅτι ἐν τῇ γεωμετρικῇ ἡ ὑπεροχὴ | ||
| . Εἶτα διὰ τριῶν παραδειγμάτων , ἰατρικῆς , ποιητικῆς , ἁρμονικῆς , βούλεται ἀναιρεῖν τὰ λεγόμενα καὶ δεῖξαι ὅτι τὰ |
| διελέγχεται μὴ ὑγιῶς ἐρωτηθείς , ἀπὸ τῆς εὐθὺς ἐν ἀρχῇ φάσεως . οὐ γὰρ δήπουθεν οὗ πάντα τὰ μέρη φθείρεται | ||
| ἡλίου αὐγάς : τὸ ηʹ ἄρα ἄστρον ἀπὸ ἐσχάτης ἑσπερίας φάσεως ἑῴαν πρώτην φάσιν ποιεῖται πλείονας ἡμέρας ἀφανισθὲν ἤπερ τὰ |
| εἶδος χωρίζεσθαι κατὰ τὴν ὑπόστασιν . οἷον ἐπεὶ εἶδος τῆς σεληνιακῆς ἐκλείψεως τὸ ἐν μέσῳ αὐτῆς καὶ τοῦ ἡλίου γεγονέναι | ||
| τὴν σεληνιακήν . καὶ ἐπειδὴ τὸ ἀπ ' αὐτῆς τῆς σεληνιακῆς ἕως ἐπὶ τὴν μέλλουσαν σύνοδον διάστημά ἐστι μοιρῶν λβʹ |
| μὴ ἔλασσον ἡμικυκλίου , καὶ ἐπ ' αὐτῆς τμῆμα κύκλου ἐπισταθῇ μὴ μεῖζον ἡμικυκλίου κεκλιμένον πρὸς τὸ μὴ μεῖζον ἡμικυκλίου | ||
| εὐθεῖα δυσὶν εὐθείαις τεμνούσαις ἀλλήλας ἐπὶ τῆς τομῆς πρὸς ὀρθὰς ἐπισταθῇ , καὶ τῷ δι ' αὐτῶν ἐπιπέδῳ πρὸς ὀρθὰς |
| ἢ ὅλως εὐθύγραμμον ἢ μικτήν : καὶ λόγῳ , ὅταν διπλασίαν λέγωμεν τῆσδε καὶ τριπλασίαν ἢ ὅλως μείζονα καὶ ἐλάσσονα | ||
| ὧν πολὺς ἐφ ' ἱππομαχίᾳ λόγος . Ἀσπίδα δὲ ἄγομεν διπλασίαν δυνάμεως τῆς ἱππικῆς , οὐδ ' ἐν τούτοις ταῖς |
| πρόσεστι τούτοις τὸ λεῖον τῆς ἑρμηνείας καὶ τὸ ἀφελὲς τῆς κατασκευῆς , ὧν μάλιστα δεῖ τοῖς ὑπ ' οἰκείων προοιμιαζομένοις | ||
| εἰς ἃ προσήκει οὐ δυναμένης , κατάρχειν δὲ τῆς τοιαύτης κατασκευῆς δύναται καὶ τῆς ἀπ ' ἄκρων διατεινούσης ἐπὶ τὰ |
| ἡμικυκλίου τμήματι . Λέγω , ὅτι καὶ ἡ μὲν τοῦ μείζονος τμήματος γωνία ἡ περιεχομένη ὑπό [ τε ] τῆς | ||
| ἰαμβικὸν δίμετρον ἀκατάληκτον . Τὸ δʹ προσοδιακὸν ἐξ Ἰωνικοῦ ἀπὸ μείζονος καὶ χοριάμβου καὶ συλλαβῆς , ἤτοι δίμετρον ὑπερκατάληκτον . |
| . Ἐὰν ἐν ὑπερβολῇ ἢ ἐλλείψει ἢ κύκλου περιφερείᾳ εὐθεῖα καταχθῇ τεταγμένως ἐπὶ τὴν διάμετρον , καὶ ἀπό τε τῆς | ||
| τῇ πλαγίᾳ τοῦ εἴδους πλευρᾷ , καὶ ἀπὸ τῆς ἁφῆς καταχθῇ εὐθεῖα τεταγμένως ἐπὶ τὴν διάμετρον , ἔσται ὡς ἡ |
| μηκέτι μὲν καμπτῆρι , ὕσπληγι δὲ χρησαίμεθα καὶ ἀρχῇ τῆς προόδου μέχρις ἑκατοντάδος , ἀφ ' ἧς πάλιν ἡ ἐπάνοδος | ||
| : ἀλλὰ τί αὐτοῦ οἷον εἴδωλον , ὃ καὶ τῆς προόδου χεῖρον φανεῖται ; ἀλλ ' οὐδὲν ὀρέγεται τοῦ εἰδώλου |
| τῆς ἁφῆς ἐπὶ τὴν διάμετρον καταχθῇ εὐθεῖα τεταγμένως , ἡ ἀπολαμβανομένη εὐθεῖα ὑπὸ τῆς κατηγμένης πρὸς τῷ κέντρῳ τῆς τομῆς | ||
| καθόλου τε , ὅτι , ὃν ἂν ἔχῃ λόγον ἡ ἀπολαμβανομένη περιφέρεια πρὸς τὸν γραφέντα κύκλον , καθ ' ὃν |
| , ἐξείπω . . Ἐμοί γε μὴν δοκεῖ τὰ τῆς ἐγκλίσεως ἐπιτεταράχθαι , ἐπεὶ σχεδὸν ἐγκλίσεις δύο συνωθοῦσιν εἰς μίαν | ||
| ὑποτακτικὸν ἄληται ὡς λάβηται . συστολῇ οὖν ἐγένετο ἢ μεταβολῇ ἐγκλίσεως , ὁμοίως τῷ ” ἐπεὶ ἄρ κεν ἀμείψεται ἕρκος |
| περὶ μὲν τῆς θυσίας σαφῶς λέγει , περὶ δὲ τῆς δόσεως τῶν δώρων ἐσιώπησεν , ἀρκεσθεὶς τῷ ἄνω κεφαλαιωδῶς εἰρημένῳ | ||
| ἐπιπνοίας ἢ ἀνενέργητον ποιήσῃς ἀλλὰ ἔχεσθαί με τῆς παρὰ σοῦ δόσεως καὶ ἀγαθότητος . Ϙεʹ Δίδου δ ' ἔτι μᾶλλον |
| ψεύδεσθαι ἀναγκάζωμαι ἢ τὰ αὐτὰ λέγων ἀποκλείω τῆς εἰς μέσον παρόδου τὸν πόνον τῶν παλαιῶν : ἐν δὲ ταύτῃ τῇ | ||
| καὶ αὐτοῦ πρὸς τῷ τείχει ἐστρατοπεδευκότα , ὡς εἴργειν τῆς παρόδου Ἀλέξανδρον . Τότε μὲν δὴ αὐτοῦ κατεστρατοπεδεύσατο : τῇ |
| τῆς ὅλης καὶ τοῦ εἰρημένου τμήματος ὡς ἀπὸ μιᾶς ἀναγραφέντι τετραγώνῳ : τεσσαρεσκαιδεκάκι γὰρ ιδ ρϘϚ ποιοῦσι : δεκάκι γὰρ | ||
| ἀπὸ τοῦ γβ τετραγώνου ἴσος ἐστὶ τῷ ἀπὸ τοῦ γδ τετραγώνῳ . Ἔστω γὰρ ἀπὸ μὲν τοῦ γδ τετράγωνος ὁ |
| τοῦ τόπου ὠθήσει , μηδὲ ἀμελεῖν τῆς τοῦ ὅλου πράγματος ἐκβάσεως δι ' ὀλίγην καρτερίαν μετὰ τοσοῦτον κάματον καὶ τὸν | ||
| ἀφάνεια τύχας : τὸ ἑξῆς : ἔστι δὲ τὸ τῆς ἐκβάσεως τέλος τῶν μαχομένων ἀτελὲς , πρὶν ἐπὶ τέλος καὶ |
| ἁπανταχοῦ τιμᾷ καὶ τὰς ἐν τοῖς λόγοις συνουσίας ἀφορμὴν φιλίας ἀληθινῆς ὑπολαμβάνει , σαφέστερον κατίδωμεν τί ποτε ἦν ὅ σοι | ||
| καρτερεῖν τε καὶ ἀπερείδεσθαι , ὡς ἂν μὴ ἀθρόας τῆς ἀληθινῆς μαρμαρυγῆς ἐμπλησθέντες σκότου μᾶλλον ἢ αὐγῆς ἀπολαύσειαν . καὶ |
| Ἐκπετάσματα , Μέγας ἐνιαυτὸς ἢ Ἀστρονομίη , παράπηγμα , Ἅμιλλα κλεψύδρας καὶ οὐρανοῦ , Οὐρανογραφίη , Γεωγραφίη , Πολογραφίη , | ||
| αἵματος ἀραιώματα τὴν εἰσπνοήν : ὑπομιμνήισκει δὲ τὸ ἐπὶ τῆς κλεψύδρας [ , ] . , Ἐ . ὅτε ἐγεννᾶτο |
| ; καὶ διὰ τί ἐστι κύκλος ; τῆς τοῦ ὁρισμοῦ ἀποδόσεως μηδετέραν δυναμένης ἱστᾶν τουτωνὶ τῶν ζητήσεων . ἐπεὶ οὖν | ||
| συζύγως ἀμειβόμενος καὶ ὡς ἀφορίζονται οἱ Πυθαγορικοὶ δικαιοσύνην λέγοντες δύναμιν ἀποδόσεως τοῦ ἴσου καὶ προσήκοντος ἐμπεριεχομένην ἀριθμοῦ τετραγώνου περισσοῦ μεσότητι |