| σελήνης πλούσιον ἅμα τῷ ἡλίῳ καταδυομένῳ ἀνατελλούσης . καὶ τὸν ἥμισυν ἀριθμὸν ἔχει τοῦ πλήθους , ἐν ᾧ τὸν κύκλον | ||
| στρατιώτου πατήρ : ἐγὼ δὲ τὸν πολὺν Κυναίγειρον ἐκ Μαραθῶνος ἥμισυν ἐδεξάμην : ἑτέρωθι μὲν γὰρ ἡ δεξιά , ἑτέρωθι |
| ἐκεῖνος τὸν διπλάσιον αὑτοῦ μετρεῖ , ἐκεῖνος δὲ τὸν ἐκείνου διπλάσιον , ἐκεῖνός τε τὸν ἐκείνου διπλάσιον , καὶ ἀεὶ | ||
| ἄρα ὑπὸ ΖΒΝ μετὰ τοῦ ὑπὸ ΒΖΝ μεῖζόν ἐστιν ἢ διπλάσιον τοῦ ὑπὸ ΒΖΝ . ἀλλὰ τὸ μὲν ὑπὸ ΖΒΝ |
| λείψει ἀριθμοῦ ἑνός , ἐλάσσονα δὲ τὸν κ καὶ τὸν Ϟόν . Ἅπαξ ἄρα τὰ ἐλάσσονα , ἤτοι τὸν π | ||
| κβ . Δεῖ τοίνυν τὸν ἀπὸ τῆς ὑπεροχῆς αὐτῶν τετράγωνον Ϟόν , ἤτοι καθ ' ὑπόθεσιν τὸν ιϚ , ἐλάττονα |
| ἡ ἡμέρα καὶ ἐδίδοτο αὐτῆς ἥμισυ μὲν τῷ κατηγόρῳ , ἥμισυ δὲ τῷ ἀπολογουμένῳ . καὶ διεμετρεῖτο τὸ ὕδωρ , | ||
| δὲ τῇσι κεφαλῇσιν : διὰ τοῦτο οὐκ ἔστιν αὐτῇσι τὸ ἥμισυ ἐκστῆναι τοῦ ἄρθρου : ὀλισθάνοι γὰρ ἂν διὰ τὴν |
| ἐπιτρίτου λόγου χρεία , διότι τὸν πρῶτον καὶ τὸν τρίτον ἀριθμὸν συνάμφω ἐπιτρίτους χρὴ εἶναι δευτέρου καὶ τετάρτου , ἔστι | ||
| μοίρας , πολλαπλασίασον ἐπὶ τὸν ιγʹ , καὶ τὸν συναχθέντα ἀριθμὸν διέκβαλε ἀπ ' αὐτοῦ λογιζόμενος ἑκάστῳ ζῳδίῳ μοίρας λ |
| εἰς τὸν ἴσον , ἡ δὲ ἐκ πέντε εἰς τὸν ἡμιόλιον : αἱ δὲ τὴν ὀρθὴν περιέχουσαι δηλοῦσι τὸν ἐπίτριτον | ||
| λϚ . ὁ γὰρ λϚ πρὸς τὸν κδ ἔχει λόγον ἡμιόλιον , καὶ ὁ κδ πρὸς ιϚ ἔχει λόγον ἡμιόλιον |
| δοθέντας ἀριθμούς . Δεῖ δὴ τῶν εὑρισκομένων τὸν ἀπὸ τοῦ ἡμίσεος τοῦ συναμφοτέρου τετράγωνον τοῦ ὑπ ' αὐτῶν ὑπερέχειν τετραγώνῳ | ||
| προσοδιακὸν τρίμετρον βραχυκατάληκτον ἐξ Ἰωνικοῦ ἀπὸ μείζονος , χοριάμβου καὶ ἡμίσεος ποδὸς ἀδιαφόρου . Τὸ ηʹ ἰαμβικὸν δίμετρον ἀκατάληκτον : |
| , καί εἰσι πάλιν ἀρτιάκις ἄρτιοι . γένεσις δὲ τοῦ ἀρτιάκις ἀρτίου . περὶ τῆς γενέσεως τοῦ ἀρτιάκις ἀρτίου λέγει | ||
| ἓξ ἀριθμὸν ἔλεγον κρίσιν , ὃς καὶ ἔστιν ἀρτιοπέριττος . ἀρτιάκις γὰρ ἄρτιός ἐστιν ἀριθμὸς ὁ ἀναλυόμενος μέχρι μονάδος αὐτῆς |
| . ἐπὶ δὲ τοῦ βʹ λήμματος ὁ ἑκατὸν τοῦ εἴκοσι πολλαπλάσιός ἐστι κατὰ τὸν ε , καὶ ὁ κ τοῦ | ||
| Γ πολλαπλάσιον εἶναι . ἐπεὶ γὰρ ὁ Β τοῦ Γ πολλαπλάσιός ἐστι , μετρεῖ ἄρα ὁ Γ τὸν Β . |
| τετράκις δεκαέξ . Οἷον δύναμις ὁ δ τετράγωνος . . δυναμόκυβος . Οἷον δύναμις ὁ δ καὶ κύβος ὁ η | ||
| αὐτῷ πλευρᾶς γεγονότος πολλαπλασιάσῃς , γενήσεται ὁ λβ ὅστις ἐστι δυναμόκυβος . . κυβοκύβων . Δυναμόκυβός ἐστιν ὁ λβ ἐπειδὴ |
| αη ηβ : καὶ ἐπεὶ τὸ γδ τοῦ εζ ἐστι τριπλάσιον , ἴσον δὲ τὸ αη τῷ γδ , καὶ | ||
| , πρῶτον διπλάσιον ἐν ἑνὶ στίχῳ , εἶτα ἐν δευτέρῳ τριπλάσιον , εἶτα τετραπλάσιον ἐν τρίτῳ καὶ μέχρι δεκαπλασίων , |
| πολλαπλασιαζόμενοι ἑκάτερος τούτων καὶ εἰς ἀλλήλους παραβαλλόμενοι καὶ ἕτερος θάτερον πολλαπλασιάζων ποιοῦσι τὸ ὅλον ἐμβαδὸν τοῦ τετραγώνου ἤγουν τοῦ ΑΔΕΒ | ||
| καὶ ἐφεξῆς οὕτω παρ ' ἕνα ποτὲ ἄρτιόν ποτε περιττὸν πολλαπλασιάζων , ποιήσεις τοὺς διπλασίους . τριπλάσιοι δὲ πάντες εἰσίν |
| ἤπερ γὰρ ἄλλος καλοῖτο ὁ ὑπὸ ἀρτίου ἀριθμοῦ μετρούμενος κατὰ ἄρτιον ὥσπερ τὸν κδ : ὑπὸ γὰρ ἀρτίου κατὰ ἄρτιον | ||
| , ἔχων ἄρρενα μὲν τὸν περιττόν , θῆλυν δὲ τὸν ἄρτιον , ἐξ ὧν εἰσιν αἱ γενέσεις κατὰ φύσεως θεσμοὺς |
| ὁ ἐκ πάντων συγκείμενος ὁ αζ τοῦ μέσου τοῦ γδ πολλαπλασίων ἐστὶ κατὰ τὸ πλῆθος αὐτῶν . ἐπεὶ γὰρ οἱ | ||
| καὶ τὰ ἰσάκις πολλαπλάσια τοῦ πρώτου καὶ τρίτου τῶν ἰσάκις πολλαπλασίων τοῦ δευτέρου καὶ τετάρτου ἢ ἅμα ὑπερέχουσιν ἢ ἅμα |
| ταυτὶ μόνον θεωρεῖται σύμφωνα πρὸ τοῦ τελείου συστήματος : τὸ ἐπίτριτον τὸ ἡμιόλιον τὸ διπλάσιον . ἐπεὶ τοίνυν τὸ σύστημα | ||
| δὲ ΘΜ ἡμιολίαν καὶ πάλιν τῆς ΔΖ τὴν μὲν ΘΜ ἐπίτριτον , τὴν δὲ ΗΚ ἡμιολίαν καὶ ἔτι τὴν ΗΚ |
| οὐκ ἄν προύβη τὰ τῆς ἀποδείξεως . Ὁ γὰρ ἀπὸ Ϟοῦ α ↑ μονάδων τριῶν τετράγωνος γίνεται δυ μία μο | ||
| , ὥστε οὐ προβήσεται ἡ ἀπόδειξις . Ἐὰν δὲ ἀπὸ Ϟοῦ ἑνὸς ↑ μο δ πλασθῇ ὁ τετράγωνος , ἡ |
| λαμβάνει δὲ τὸν ἥλιον δὶς τοῦ ἔτους κατὰ κορυφὴν , ἀπέχοντα τῆς θερινῆς τροπῆς ἐφ ' ἑκάτερα μοίρας ξβ . | ||
| σκάφῃ κείμενα τῶν ὑπηρετῶν τινες ἔφερον ἐμβαλοῦντες εἰς τὸν ποταμὸν ἀπέχοντα τῆς πόλεως ἀμφὶ τοὺς ἑκατὸν εἴκοσι σταδίους . ἐπεὶ |
| κατὰ συζυγίαν πολλαπλάσιός ἐστι κατὰ τὸν ἥμισυν τοῦ πλήθους τῶν ἐκκειμένων ὅρων . ἐπεὶ γὰρ ἡ τῶν αβ βγ ὑπεροχὴ | ||
| γδ , τουτέστιν ὅσον ἐστὶ τὸ ἥμισυ τοῦ πλήθους τῶν ἐκκειμένων ὅρων : ὥστε ὁ αη δύο τῶν κατὰ συζυγίαν |
| καὶ ἀνακραθῆναι αὐτῷ ὀρεγομένου , δεῖ προστεθῆναι τῷ πάθει τούτῳ ἐπιστάτην λόγον , ἵνα ἀρετὴ γένηται , καὶ μὴ νόσος | ||
| αἰγιαλόν . μετὰ δὲ ταῦτα ἐπὶ μὲν τῶν ἔργων κατέλιπεν ἐπιστάτην Λεπτίνην τὸν ναύαρχον , αὐτὸς δὲ μετὰ τῆς πεζῆς |
| . ὁ ἕκτος καὶ ἕβδομος τροχαϊκοὶ τρίμετροι ἀκατάληκτοι . τὸ ὄγδοον ὅμοιον τῷ τετάρτῳ . εἰσὶ δὲ καὶ ταῦτα τὰ | ||
| δίς , οὕτως ἡμισάκις ἥμισυ ἡμισάκις , ὀκτώ τε καὶ ὄγδοον : καὶ ὡς δὶς τρία ἕξ , οὕτως ἡμισάκις |
| ἂν καὶ ἐνταῦθα πάλιν τοῦ διδόντος ἀστέρος ὑποτιθεμένου κατὰ τὸν ὡροσκοπικὸν λόγον καὶ τῶν λοιπῶν ὡς ἐπὶ γενέσεως συνθεωρουμένων . | ||
| μετὰ μοιρῶν , καὶ ἐκκρούσας ὅλους κύκλους τὰ λοιπὰ ἡγοῦ ὡροσκοπικὸν γνώμονα . κλίμα * * ὥρα ἡμέρας βʹ : |
| , τὸ διάλειμμα ποιεῖ , καὶ ἄνεσιν προσλαμβάνουσα κινεῖ ἕτερον παροξυσμόν , ἢ καὶ ἕτερον σκόπον ἔχουσα διὰ τὸ κατὰ | ||
| τετάρτης παροξύνοντες διπλασιασθέντες μέν , δυοῖν ἐφεξῆς ἡμέραις ἐπάγουσι τὸν παροξυσμόν , μία δ ' αὐτῶν ἡ διαλείπουσα . ὥσπερ |
| καὶ ποιοῦσι τὸ πρόβλημα . λα . Εὑρεῖν δύο ἀριθμοὺς ἴσους τετραγώνῳ , ὅπως ὁ ὑπ ' αὐτῶν , ἐάν | ||
| ιϚ # ʂ ιϚ . βούλομαι τοὺς δύο λοιπὸν συντεθέντας ἴσους εἶναι Μο ιϚ . ΔΥ ἄρα ε Μο ιϚ |
| Μο κα ἀφελεῖν Μο θ # ΔΥ α καὶ ποιεῖν ⃞ον . ἀλλ ' ἐὰν ἀπὸ Μο κα ἀφέλω Μο | ||
| Μο β , δεήσει καὶ ΔΥ λ ʂ ε εἶναι ⃞ον : οὐκ ἔστιν δέ . ἀπάγεται οὖν εἰς τὸ |
| ἔτυχεν , πολλαπλάσιον τὸ Ζ . Ἐπεὶ οὖν ἰσάκις ἐστὶ πολλαπλάσιον τὸ Δ τοῦ Α καὶ τὸ Ε τοῦ Β | ||
| οὔτε πολλαπλάσιον ἔσται οὔτε ἐπιμόριον . ἔστω γὰρ διάστημα μὴ πολλαπλάσιον τὸ ΒΓ , καὶ γεγενήσθω , ὡς ὁ Γ |
| ὁ μὲν γὰρ τοῦ Κρόνου τὸν Ἥλιον παρὰ τὴν αἵρεσιν τετραγωνίσας ἢ διαμηκίσας ἐν μὲν τοῖς στερεοῖς ποιεῖ αὐτοὺς καταθλίψει | ||
| οὖν ἐτῶν ξθʹ : ἐὰν δὲ μὴ ἐκώλυσεν ὁ Ζεὺς τετραγωνίσας , μόνα ἔτη ξδʹ ἔζησεν ἄν . Ἄλλη . |
| δίδου καὶ ὕδωρ ἐπιρροφεῖν . Σκίλλης ὠμῆς τοῦ ἐγκαρδίου δραχμὰς ὀκτώ , ἀμμωνιακοῦ θυμιάματος τὸ ἴσον , ἴρεως δραχμὴν μίαν | ||
| δὲ δύο καὶ τριάκοντα ἔτη καὶ τοῦ τρίτου μῆνας ἐπέλαβεν ὀκτώ , ὡς λέγει Ἀριστόβουλος : ἐβασίλευσε δὲ δώδεκα ἔτη |
| . τάσσω τὸν μὲν αον ʂא ιε , τὸν δὲ βον ʂא κ : καὶ συναμφότερος ὁ βος καὶ ὁ | ||
| ὁ Μοι ἐλάσσων τοῦ βου . ἐὰν οὖν τάξω τὸν βον ὁσουδήποτε καὶ προσθῶμεν αὐτὸν τῷ δοθέντι , καὶ τὰ |
| τὰς τάξεις τάσσειν , ἵνα μὴ ὡς κονδότεραι καὶ ὀλίγον διάστημα κρατοῦσαι μὴ δύνανται εὐκόλως τὰ κυνήγια περιλαμβάνειν , μήτε | ||
| οἷόν τε ὑπὸ ὄντος κατέχεσθαι μὴ κατεχόμενον δέ , ἢ διάστημα ἔρημον σώματος , ἢ διάστημα ἀκαθεκτούμενον ὑπὸ σώματος , |
| τοῦ ἀπὸ τῆς ΑΜ κύβου πρὸς τὸν ἀπὸ τῆς ΜΗ κύβον . ἀλλ ' ὡς μὲν ἡ ΓΜ πρὸς ΜΗ | ||
| προσδήσαντες εἶτα μέντοι ἀπαλλάττονται , τοῦτο δήπου τὸ λεγόμενον ἀτεχνῶς κύβον ἀναρρίψαντες . οἱ δὲ τίγρεις ἐντυχόντες αὐταῖς , ἀθηρίᾳ |
| λέγομεν μετρεῖσθαι τὸν ἀριθμόν . ἰστέον δέ , ὅτι τὸν περισσάρτιον τὸν ὑπὸ τῶν Πυθαγορείων οὕτως καλούμενον τὸν πλείονας διαιρέσεις | ||
| μὲν ἀρτίου τὸ ἀρτιάκις ἄρτιον καὶ τὸ ἀρτιοπέριττον καὶ τὸ περισσάρτιον , τοῦ δὲ περιττοῦ τὸ πρῶτον καὶ ἀσύνθετον , |
| ἔχομεν ἀπὸ ἐμπειρίας ἓξ μηνῶν τὴν ἡμέραν καὶ τὴν νύκτα ἓξ μηνῶν δεῖξαι . τινὲς δὲ ἱστοροῦσιν ηʹ ἡμερῶν ἔκτασιν | ||
| ὁ ὀκτὼ πρὸς τὸν ἕξ : καὶ γὰρ αὐτὸν τὸν ἓξ περιέσχηκε καὶ τὸ τρίτον αὐτοῦ , τουτέστι τὴν δυάδα |
| γον , ποιεῖ ⃞ον : ὥστε καὶ ἑκάτερον τόν τε αον καὶ τὸν βον λείψας ὁ ἐκ τῶν τριῶν στερεὸς | ||
| ἐκ τῶν τριῶν συγκείμενον τετράγωνον ΔΥ α , τὸν δὲ αον ΔΥ א ρνγ , ἐπεὶ δεῖ τρίγωνον γενέσθαι , |
| ὑπὸ ΖΗΑ ὀρθή : καὶ λοιπὴ ἄρα ἡ ὑπὸ ΑΖΗ ἡμίσους ὀρθῆς : ἴση ἄρα ἡ ΑΗ τῇ ΖΗ : | ||
| τέλειός ἐστι τοῖς ἑαυτοῦ μέρεσι , συμπληρούμενος ἐκτῶν αὐτῶν , ἡμίσους μὲν τριάδος , τρίτου δὲ δυάδος , ἕκτου δὲ |
| : ὁ ι πάλιν πρὸς τὸν Ϛ ἐπιμερής ἐστι καὶ ἐπιδίτριτος : ἔχει γὰρ αὐτὸν καὶ δύο αὐτοῦ τρίτα . | ||
| πρὸς τὸ τμῆμα τὸ πρὸς αὐτῇ πέμπτων θ ὂν ὡσαύτως ἐπιδίτριτος , πρὸς μέντοι τὴν ἑτέραν πλευρὰν εἴκοσι πέμπτων οὖσαν |
| ἐπειδὴ τὸν μὲν κε ὁ ε ἐποίησεν ἐφ ' ἑαυτὸν πολλαπλασιασθείς , τὸν δὲ μθ ὁ ζ . οἱ δὲ | ||
| ὁ γ τὸν θ , οὔτε μετ ' ἄλλου τινὸς πολλαπλασιασθείς . Μέρη λέγω τοὺς ὑπολόγους , ὑποεπιτρίτους , ὑποεπιτετάρτους |
| δ τῆς δυάδος διπλάσιος : μεῖζον δὲ τὸ τριπλάσιον τοῦ διπλασίου . ὡσαύτως καὶ ἐπὶ πλειόνων , οἷον ἀπὸ β | ||
| ἀδιαιρέτου γοῦν τῆς μονάδος ὑποκειμένης . ἐπὶ μὲν γὰρ τοῦ διπλασίου λόγου τῆς ΑΒ πρὸς τὴν Γ [ ἐν διπλασίῳ |
| καταντήσει τὸ ἔτος εἰς τὸν ἕκτον τόπον εἴτε εἰς τὸν δωδέκατον εἴτε εἰς τὸν δʹ εἴτε εἰς τὸν ζʹ εἴτε | ||
| τοῦτο ἔρρευσε χρόνῳ : ἐν τοσούτῳ γὰρ ἔλεγον καὶ τὸ δωδέκατον μέρος ἀνεληλυθέναι τοῦ κύκλου , καὶ τοῦτον ἔχειν τὸν |
| τὸ εον , καὶ ἔτι τὸν δον τῷ αῳ τὸ Ϛον , καὶ γίνεσθαι ἴσους μετὰ τὴν ἀντίδοσιν . Τετάχθω | ||
| αὐτῶν τῆς τῶν ἀπ ' αὐτῶν τετραγώνων ὑπεροχῆς εἶναι μέρος Ϛον . Τετάχθω ὁ ἐλάσσων ʂ α , ὁ δὲ |
| μείζονα λόγον ἔχει ἢ ὃν τὰ ιη πρὸς α , ἐλάσσονα δὲ ἢ ὃν τὰ κ πρὸς ἕν : ὥστε | ||
| τὸ ηʹ , ἐπὶ δὲ τοῦ ζῳδιακοῦ τὸ εʹ , ἐλάσσονα χρόνον κρύψιν ἄγει τὸ ηʹ τοῦ εʹ : καὶ |
| στίχων , καὶ τρίτον τὸ ὑπὸ τῶν τρίτων , καὶ τέταρτον τὸ ὑπὸ τῶν τετάρτων : ἀλλὰ τὸ μὲν α | ||
| . . . . . . ρμζ γʹ ιη τὸ τέταρτον , ὃ καλεῖται Ψευδόστομον ρμζ γοʹ ιη ∠ ʹ |
| ο κϚ πθ ζ Ἡλίου η κϚ Ϛ ιε ζ ιϚ νϚ ο κη ϘϚ Ϛ ι λβ ε η | ||
| . . . . . . . . . Ζυγοῦ ιϚ ∠ ʹ γʹ νο λγ εʹ ὁ ἐπὶ τῆς |
| τὸ ΓΕ μετρείτω . Ἐπεὶ οὖν τὸ ΑΖ τὸ ΓΕ μετρεῖ , ἀλλὰ τὸ ΓΕ τὸ ΖΒ μετρεῖ , καὶ | ||
| . μετρείτω ὁ Γ . ἐπεὶ ὁ Γ τὸν Β μετρεῖ , ὁ δὲ Α τὸν Β οὐ μετρεῖ , |
| τῶν ἡμερέων ὁκόταν ἡ γονὴ ἐς τὰς μήτρας πέσῃ , ἐλάχιστον αἷμα ἔρχεται ἀπὸ τῆς γυναικὸς ἐς τὰς μήτρας , | ||
| οὐ διὰ τῶν βαθυτέρων τῆς γῆς ἰόντος , διὰ τὸ ἐλάχιστον εἶναι παρ ' αὐτοῖς τμῆμα ὑπὸ γῆν τοῦ θερινοῦ |
| τὸν μετ ' αὐτόν , τουτέστι τὸν δεύτερον καὶ τὸν οὐραγὸν κοντάτους εἶναι , τοὺς δὲ λοιποὺς πάντας , τοὺς | ||
| λοχαγὸν τὸν κράτιστον τοῦ λόχου εἶναι , ἀλλὰ καὶ τὸν οὐραγὸν οὐ πολύ τι ἀποδέοντα ἐπιλέγεσθαι : πολλὰ γὰρ καὶ |
| . καὶ ἐπειδὴ μὲν ὀνομάζεται , ἔχει ἐκ τοῦ ὀνόματος ὅρον τὸν λέγοντα φιλοσοφία ἐστὶ φιλία σοφίας , ἐπειδὴ δὲ | ||
| μόνων ἄν τις παραδειγμάτων θηράσειεν : λύσεις οὖν οὕτως τὸν ὅρον , ὅτι τὸ νεῦσαι οὐκ ἐξειπεῖν ἐστι : τί |
| μέρους καὶ διηθουμένου . καὶ ἴτριον δὲ καὶ ἄρτον ξηρὸν ἕψοις ἂν λεπτὸν γενόμενον σφόδρα καὶ τριβόμενον : ἑψέσθω δ | ||
| : καὶ γὰρ εἴ τι τῶν ἀγρίων ἀπὸ θήρας εὐθὺς ἕψοις , οὐδὲν ἂν μέγα μέμψεως : μὴ καὶ ἐπαινέσαις |
| διεζευγμένοις , εἰ δὲ τρεῖς , τετράς , εἰ δὲ τέσσαρας , πεντάς , καὶ τοῦτο ἐφ ' ὁποσονοῦν . | ||
| ἀκράτου . Φερεκράτης δ ' ἐν Κοριαννοῖ δύο ὕδατος πρὸς τέσσαρας οἴνου , λέγων ὧδε : ἄποτος , ὦ Γλύκη |
| στρατεύματι ἀσφαλῶς πρὸς Σεύθην ἰέναι , παραλαβὼν Πολυκράτην τὸν Ἀθηναῖον λοχαγὸν καὶ παρὰ τῶν στρατηγῶν ἑκάστου ἄνδρα πλὴν παρὰ Νέωνος | ||
| ἑώρων εὐθὺς ὅπως χλωρὰ ἐγένετο ἔτι σου τὰ κατὰ τὸν λοχαγὸν ἐκεῖνα διηγουμένου καὶ συνέστειλε τὸ πρόσωπον καὶ ὑπέφριξεν , |
| μυριάδες σταδίων πεντακόσιαι κατά γε τὴν ἔφοδον ταύτην πρὸς τὸ σεληνιακὸν ὕψος . Πάλιν κατὰ λόγον ἁπλούστερον ὑποτιθεμένης τῆς προαιρετικῆς | ||
| ὡροσκοπικὸς γνώμων , ὃν σημειοῦμαι . εἶτα ἔρχομαι ἐπὶ τὸ σεληνιακὸν ζῴδιον τὸν Αἰγόκερω καὶ κατὰ τὰς κζʹ μοίρας εὑρίσκω |
| θερινῆς τροπῆς τὰς πβ ∠ ʹ μοίρας : ἐν τοῖς ιβ ἔτεσιν ἄρα τοῖς μεταξὺ τῶν δύο τηρήσεων Ϛʹ ἔγγιστα | ||
| ΑΘ ἔσται νθ μδ , ἡ δὲ ΕΘ ὁμοίως ν ιβ . τῶν δ ' αὐτῶν ἐδέδεικτο καὶ ἡ ΕΒ |
| ' εὐθέως ἐξ ἀρχῆς οὕτως σκευάζειν : τῷ ὀξυμέλιτι μιγνύσθω τετραπλάσιον ὕδατος καλλίστου , κἄπειτα ἑψείσθω μετρίως , ἕως ἂν | ||
| ΚΓ , διπλῆ ἄρα καὶ ἡ ΘΚ τῆς ΚΓ . τετραπλάσιον ἄρα ἐστὶ τὸ ἀπὸ τῆς ΘΚ τοῦ ἀπὸ τῆς |
| Γ πρὸς τὴν Β οὖσαν β κϚ νδ . πάλιν πολλαπλασίασαι τὴν Γ ἐπὶ τὴν Β καὶ τὸν γεγονότα εὐθὺς | ||
| Γ πρὸς τὴν Β οὖσαν β κϚ νδ . πάλιν πολλαπλασίασαι τὴν Γ ἐπὶ τὴν Β καὶ τὸν γεγονότα εὐθὺς |
| οὕτως , οἱ δὲ Πυθαγόρειοι τὸ μὲν σημεῖον ἀνάλογον ἐλάμβανον μονάδι , δυάδι δὲ τὴν γραμμὴν καὶ τριάδι τὸ ἐπίπεδον | ||
| πρὸ γὰρ τοῦ ζ ὁ Ϛ , ὃς ἄρτιος : μονάδι οὖν διαφέρει τοῦ ἀρτίου . ὡσαύτως καὶ ὁ ἄρτιος |
| τεσσαράκοντα καὶ πέντε πήχεις , τὸ δ ' ὕψος πηχῶν ἐννενήκοντα , διειλημμένην στέγαις ἐννέα , ὑπότροχον δὲ πᾶσαν τροχοῖς | ||
| ἐννέα καὶ τῶν παρ ' αὐτοῦ , οἷον ἔννατος ἐννάκις ἐννενήκοντα : ταῦτα γὰρ ψιλοῦνται : πρόσκειται ἀπὸ τοῦ ε |
| , Β οἱ ΓΔ , ΕΖ : λέγω , ὅτι ἰσάκις ὁ ΓΔ τὸν Α μετρεῖ καὶ ὁ ΕΖ τὸν | ||
| ἔχον αὔξησιν τοιανδί , τουτέστιν ᾗ οὕτως ὑπερέχον , ἤγουν ἰσάκις : ποιότης γὰρ ὑπεροχῆς ἐστι τὸ ἰσάκις πολλαπλασιάζεσθαι . |
| ἀντὶ μελικράτου κέχρησο ἀπομέλιτι ὥσπερ καὶ τῷ μελικράτῳ ὀλίγον , ὁσάκις ἂν δυσχεραίνῃ ἐπὶ τὴν ἀνάπτυσιν ἐπιρροφεῖν ἐξ αὐτοῦ κελεύων | ||
| μέντοι πλεῖον τοῦ ἱκανοῦ συνάγεται , ὅθεν οὐκ ὀκνητέον , ὁσάκις ἂν πλήθους σημεῖα προσπέσῃ , συναιρεῖν αὐτὸ τῷ δεδηλωμένῳ |
| Ϛ , τοῦ δὲ β τὰ δύο καὶ δ . πολλαπλασίασον τὴν ἐλάττονα πλευρὰν τοῦ Α μετὰ τῆς μείζονος πλευρᾶς | ||
| μῆκος τῆς Α . τὰ δὴ οὖν ε ια μϚ πολλαπλασίασον μετὰ τοῦ Ϛ , καὶ γίνονται μονάδες λ λεπτὰ |
| . Λέγω , ὅτι , ὅταν ὁ ἥλιος τὸ ΑΕ τεταρτημόριον διαπορεύηται , νὺξ καὶ ἡμέρα τὸ συναμφότερον νυκτὶ καὶ | ||
| ὑπογείου μέχρι τοῦ ὡροσκόπου ἐστὶ βόρειον καὶ δηλοῖ τὸ δʹ τεταρτημόριον τοῦ ἔτους . δεῖ δὲ ὁρᾶν τὸν χρονοκράτορα καὶ |
| ἢ τὸ ἥμισυ αὐτῶν μέρος , τουτέστι κατὰ ἰλάρχας καὶ δεκάρχας δηποτατεύεσθαι . Εἰ δὲ χρεία ὡς εἰκὸς κατὰ τὸ | ||
| κέρατι , τοῦ μὲν ἑνὸς τάγματος ἐπὶ μέτωπον ἔχοντος τοὺς δεκάρχας ἢ πεντάρχαςἀρκοῦσι γὰρ καὶ ἀπὸ πέντε τὸ βάθος , |
| τὰ τρία εἴδη ἄρτια καλοῦνται , καὶ γὰρ ὁ ἀρτιάκις ἄρτιος , ὁ ἀρτιοπέριττος καὶ ὁ περισσάρτιος . συμβέβηκε δὲ | ||
| εἶναι ἀριθμόν ; διότι πᾶς ἀριθμὸς ἢ περιττός ἐστιν ἢ ἄρτιος . καὶ πᾶς ἄρτιος δύναται εἶναι , ἡ δὲ |
| οὓς κῆρες φορέουσι μελαινάων ἐπὶ νηῶν . ἀθετεῖται , ὅτι περισσός : ἐν γὰρ τῷ κηρεσσιφορήτους τὸ αὐτὸ συντόμως εἴρηκεν | ||
| λοιπὸς ὁ ΓΑ ἄρτιός ἐστιν . Ἐπεὶ γὰρ ὁ ΑΒ περισσός ἐστιν , ἀφῃρήσθω μονὰς ἡ ΒΔ : λοιπὸς ἄρα |
| ἀναγκαῖον . ὥσπερ γὰρ ἐπὶ τῶν καθόλου συζυγιῶν οἱ τὴν ἐλάττονα ἔχοντες ἀναγκαίαν οὐ συνῆγον ἀναγκαῖον , οὕτως καὶ ἐπὶ | ||
| συμπέρασμα , καὶ πάλιν ἡ ἀντίφασις ἀκολουθήσει , εἴτε τὴν ἐλάττονα εἰς ὑπάρχουσαν μεταλάβωμεν , γίνεται ὁ συλλογισμὸς ἐκ δύο |
| βον μετὰ τοῦ γου ποιεῖν Μο λ , τὸν δὲ γον μετὰ τοῦ αου ποιεῖν Μο μ . Τετάχθωσαν οἱ | ||
| βου τουτέστιν εἰς ʂ β Μο δ , ἕξω τὸν γον : ἀλλ ' ἔστιν ὁ μερισμὸς ʂ ∠ ʹ |
| : διὸ λίθῳ φησὶν αὐτὴν κλασθῆναι . Γ κυψέλην ] μόδιον . ξυνῆλθεν οὑργάτης Γ λεώς Γ : διὰ γὰρ | ||
| τὸ ἀληθὲς εἶχεν , εἶπε : μυρίους ὀλύνθους ἔχει καὶ μόδιον ἕνα καὶ ὄλυνθον ἕνα . Μόψος δὲ συὸς ἐπὶ |
| ἣ τῶν ἄλλων ἄρχει , Στρατήγιος πάλαι προειρημένον αὐτῷ . προσλαβὼν δὴ φίλον οὕτω μέγαν , οὑτοσὶ δὲ ἦν ἐκεῖνος | ||
| ὁ βος προσλαβὼν τοὺς δύο , τρίς ἐστιν ὁ βος προσλαβὼν τοὺς τρεῖς : τρὶς ἄρα ὁ βος προσλαβὼν τοὺς |
| : διὸ καὶ οὐ δύναται εἶναι ὁ θ τοῦ δ τετραπλάσιος , ὡς ὁ ιϚ τοῦ δ καὶ ὁ λϚ | ||
| δὲ ὦσι δύο ἀριθμοὶ ὁ μὲν ἕτερος αὐτῶν τοῦ αὐτοῦ τετραπλάσιος , ὁ δ ' ἕτερος διπλάσιος , ὁ τετραπλάσιος |
| οἱ μακρότατοι αὐτῶν πηχέων δύο , οἱ δὲ πλεῖστοι ἑνὸς ἡμίσεως πήχεος . κόμην δὲ ἔχουσι μακροτάτην μέχρις ἐπὶ τὰ | ||
| ἔχῃ : Χίῳ δ ' ἐγκεράσας τάδε μίγματα πικρὸν ἐχίδνης ἡμίσεως δραχμῆς ἰὸν ἀποσκεδάσεις : τῷ δὲ ποτῷ καὶ δεινὰ |
| ἴσα ἐστὶ τῷ ἀπὸ τῆς ΓΒ τετραγώνῳ : τὰ γὰρ πεντάκις πέντε εἰκοσιπέντε . Ἔστω ἡ ΑΒ εὐθεῖα μονάδων ι | ||
| ΓΔΕ : τὸ ἄρα ἐννάκις ὑπὸ ΓΔΕ μεῖζόν ἐστιν τοῦ πεντάκις ὑπὸ ΓΔΕ καὶ τοῦ πεντάκις ὑπὸ ΔΓΕ , τουτέστιν |
| καὶ οἱ κατὰ ζυγὰ γίγνονται , ἐάν τε κατὰ τάγματα ἐξελίσσειν τις βούληται , ὥς τι ὁποῖον δήποτ ' οὖν | ||
| , στοιχεῖν τε καὶ ζυγεῖν καὶ εἰς ὀρθὸν ἀποδοῦναι καὶ ἐξελίσσειν καὶ διπλασιάζειν : φασὶ δέ τι καὶ ἐπαγωγὴν καὶ |
| τριακοσιοστοεξηκοστοπρώτων , ὁ ἀπὸ συναμφοτέρου αὐτῶν ἐννέα μυριάδων δισχιλίων τετρακοσίων δεκαὲξ τρισκαιδεκακισμυριοστοτριακοσιοστοεικοστοπρώτων . Λείψει γοῦν τῶν ριβ τριακοσιοστοεξηκοστοπρώτων ἀναλυθέντων εἰς | ||
| ἦσαν οἱ χαρακτῆρες . Καὶ γὰρ αἱ ἐκφωνήσεις ἐπληροῦντο τῶν δεκαὲξ στοιχείων μετά τινων προσῳδιῶν . Φασὶ γάρ : πρὶν |
| ὁ γ συνεχὴς προσσωρευθεὶς καὶ ἐξαπλωθείς γε εἰς μονάδα καὶ συντεθεὶς τὸν Ϛ ἀποδίδωσι δεύτερον ἐνεργείᾳ τρίγωνον καὶ προσέτι σχηματογραφεῖ | ||
| δ ὁ ἀπὸ τοῦ αβ τετράγωνος , ὁ δὲ εη συντεθεὶς ἐκ δύο ἐπιπέδων ἀριθμῶν τῶν ἐκ τῶν αβ βγ |
| τῶν ἁρμονικῶν λέγουσι βαρύτατον μὲν τὸν ὑποδώριον τῶν τόνων , ἡμιτονίῳ δὲ ὀξύτερον τούτου τὸν μιξολύδιον , τούτου δ ' | ||
| ἄλλο τι λεγόμενον συνημμένων , εὐθὺς τὴν ἑαυτοῦ τρίτην ἔχον ἡμιτονίῳ διεστῶσαν ἀπὸ τῆς μέσης , εἶτα μετὰ τόνον τὴν |
| στήθεος ὀστέον ὑποδεδυκέναι , τὸ δὲ ἀπὸ τῆς ἀκρωμίης ὀστέον ὑπερέχειν καὶ ἐποχέεσθαι ἐπὶ τοῦ ἑτέρου , οὐδεμιῆς μεγάλης ἰητρείης | ||
| . . : νομίζων τό τε δεξιὸν τῶν Λακεδαιμονίων ἔτι ὑπερέχειν τῶν ἐναντίων καὶ τὸ εὐώνυμον τὸ κατὰ τοὺς Μαντινεῖς |
| διεζῶσθαι κύκλοις , ὧν ὀνόματα εἶναι τάδε : ἀρκτικόν , ἀνταρκτικόν , θερινὸν τροπικόν , χειμερινὸν τροπικόν , ἰσημερινόν , | ||
| δὲ τόν τε ἀρκτικὸν καὶ τὸν θερινὸν τροπικὸν καὶ τὸν ἀνταρκτικόν . ἀρκτικὸς δ ' ὁ αὐτὸς καὶ ἀεὶ φανερὸς |
| στερεῶν σωμάτων λόγοι δῆλοι , ἐπεὶ καὶ ὁ τοῦ αʹ κύβος τοῦ αὐτοῦ ἐστιν αʹ , ὁ δ ' ἀπὸ | ||
| οἱ ἕνα διαλείποντες πάντες , ὁ δὲ τέταρτος ὁ Γ κύβος καὶ οἱ δύο διαλείποντες πάντες , ὁ δὲ ἕβδομος |
| τὸ πράσιον μετ ' οἴνου , ἕως οὗ τὸ ἥμισυ καταλειφθῇ , εἶτα τὰ λοιπὰ μίξας ἕψε , ἕως μελιτῶδες | ||
| λι . δ ∠ ʹ ἕψονται , ἕωϲ οὗ μέτριον καταλειφθῇ τοῦ χυλοῦ , καὶ ἐπιβάλλεται βουτύρου # Ϛ , |
| ἁλμυρὸν βαρὺ φύσει καὶ ἄτροφον ἔπειτα ἀσαπὲς καὶ ἀναλλοίωτον : καταλειπόμενον οὖν καὶ οὐ συνελκόμενον ὑπὸ τῶν ῥιζῶν οὐκ ἀναμίγνυται | ||
| βουκόλος , οὗ πρόσθε μέμνηται . καλάμη δέ ἐστι τὸ καταλειπόμενον ἐκ τοῦ θεριζομένου σίτου , ποππύσδεν δὲ τὸ λεπτοτάτως |
| εἰσὶ πλείους ἢ πέντ ' ἢ ἕξ . οὐκοῦν ἀμφοτέρων ἑκκαίδεκα . ποιήσωμεν αὐτοὺς εἴκοσιν , εἰ δὲ βούλεσθε , | ||
| κεφαλῆς τὸ ἀρχαῖον , ὃ βροντῆς ἔργον ἐγεγόνει , διαλιπὸν ἑκκαίδεκα ἔτη , πάλιν ἐνέκειτο καὶ ἦν χαλεπώτερον ἀρξάμενον εὐθὺς |
| κζ πολλαπλασιαζέτω τὸν κζ : εἰκοσιεπτάκις κζ : καὶ γίνονται ψκθ . καὶ ἐπεὶ ὁ ιη οὐ μετρεῖ τὸν ψκθ | ||
| μετρεῖται . τκδ τξδ τπδ υλβ υπϚ φιβ φοϚ χμη ψκθ ψξη ωξδ Ϡοβ ͵ακδ ͵αρνβ ͵ασϘϚ # ⌉ # |
| ; εἰ ὅλον , οὐ καὶ ἀρχὴν ἂν ἔχοι καὶ μέσον καὶ τελευτήν ; ἢ οἷόν τέ τι ὅλον εἶναι | ||
| πρώτην , Μέσης ἀποτομὴν δευτέραν , Ἐλάσσονα , Μετὰ ῥητοῦ μέσον τὸ ὅλον ποιοῦσαν , Μετὰ μέσου μέσον τὸ ὅλον |
| ἄλλο τι τῶν συμφώνων , ὁ πρῶτος φθόγγος πρὸς τὸν ἕβδομον οὐ ποιήσει τὸ διὰ πασῶν . εἴτε δὴ μὴ | ||
| παράθεσις καὶ ἐπὶ τῶν εἰς ΩΝ ληγόντων . Τὸ δὲ ἕβδομον ἀπὸ τῶν εἰς ΜΟΣ μέχρι τῶν εἰς ΠΟΣ . |
| ἀπὸ μονάδος ὁποσοιοῦν ἀριθμοὶ ἐν ἴσῃ ὑπεροχῇ , ὁ σύμπας πολυπλασιασθεὶς ἐπὶ τὸν ὀκταπλασίονα τῆς ὑπεροχῆς αὐτῶν , καὶ προσλαβὼν | ||
| α . Πῶς ; Ϟ α δὲ ἐπὶ Ϟ α πολυπλασιασθεὶς ποιεῖ δυ α . δυ ἄρα α ἑξαπλασίων ἐστὶν |
| ἢ τριπλάσιος . ἐδείχθη δέ , ὅτι οὐδὲ μείζων ἢ τριπλάσιος : τριπλάσιος ἄρα ὁ κύλινδρος τοῦ κώνου : ὥστε | ||
| δὲ διπλάσιον τὸν τοῦ Ϛ : ἐὰν δὲ καὶ ὁ τριπλάσιος οὗτος δεύτερον εἶδος ὢν τοῦ πολλαπλασίου συντεθῇ ἐπιτρίτῳ δευτέρῳ |
| μετρῶν , ἀλλ ' ὡς μετρούμενος : οὐ γὰρ τὰ μετροῦντα μόνα ποσά , ἀλλὰ καὶ τὰ μετρούμενα , ὡς | ||
| Ἐπεί , κἄν τις ἐξεύρῃ ὅπως , οὐ χρόνον εὑρήσει μετροῦντα , ἀλλὰ τὸν τοσόνδε χρόνον : τοῦτο δὲ οὐ |
| ἕκτον αὐτοῦ τῷ τρίτῳ , ἤτοι ιη ζʹ , καὶ μο ζʹ , ἤτοι μθ ζʹ , λαβὼν δὲ παρὰ | ||
| . Κείμενον . Αὐτὸς ἄρα ὁ τετράγωνος ἔσται δυνάμεων τεσσάρων μο θ ↑ Ϟ ιβ . Ταῦτα ἴσα δυνάμεσι τρισὶν |
| ἐν τούτῳ κεκρυμμένην ἔννοιαν , οὐχ ἧττον δὲ καὶ τὸ μέτρον δῆλα σὺν θεῷ τοῖς μὴ εἰδόσι ποιήσομεν ἐκ παλαιοῦ | ||
| εἶναι αὐτὴν καὶ βραχεῖαν καὶ μακράν : καὶ πᾶν δὲ μέτρον εἰς τελείαν περατοῦται λέξιν , ὅθεν ἐπίληπτά ἐστι τὰ |
| ἦγον τοὺς μῆνας . ὁ δὲ τῆς σελήνης μήν ἐστιν εἰκοσιεννέα τέταρτον ἡμερῶν . τρίτῃ δὲ εἰκάδι . τοῦ πατριάρχου | ||
| ἡ σελήνη , ὁ καλούμενος μήν : ἔστι γοῦν ἡμερῶν εἰκοσιεννέα τέταρτον , ὥστε εὐλόγως τὴν τριακάδα κοινὴν γενέσθαι τῶν |
| ἡ δεῖξις προβήσεται . Ἔστωσαν μείζονες αἱ ρ μο λείψει ἀριθμοῦ ἑνός , ἐλάσσονα δὲ τὸν κ καὶ τὸν Ϟόν | ||
| ἄπειρον αὐτὸν οὐ τῷ ἀδιεξιτήτῳ ἢ τοῦ μεγέθους ἢ τοῦ ἀριθμοῦ , ἀλλὰ τῷ ἀπεριλήπτῳ τῆς δυνάμεως . Ὅταν γὰρ |
| ἐννέα κοῦραι πολλαπλασιασθέντα δι ' ἀλλήλων δύνασθαι μυριάδων πλῆθος τρισκαιδεκαπλῶν ρϘϚʹ , δωδεκαπλῶν τξηʹ , ἑνδεκαπλῶν ͵δωʹ , συμφώνως τοῖς | ||
| τουτέστι τὰς προκειμένας μυριάδας ἐνναπλᾶς δέκα , ποιοῦσιν μυριάδας τρισκαιδεκαπλᾶς ρϘϚʹ , δωδεκαπλᾶς τξηʹ , ἑνδεκαπλᾶς ͵δωʹ . [ ἐνναπλαῖ |
| ὄνου γάλα ἑφθὸν δίδου , καὶ πινέτω μὴ ἔλασσον δώδεκα κοτυλῶν : ἢν δὲ ῥώμη περιέχῃ , πλεῖον ἑκκαίδεκα . | ||
| ἄρξηται ἀνιέναι τινὰ γλισχρότητα , κατὰ μικρὸν ὕδωρ παρεπίχει ἄχρι κοτυλῶν ἕξ , τρίβων εὐτόνως , ἀναλαμβάνων τε τὴν λεπίδα |
| ἀλλήλους εἰσίν : ὅπερ ἔδει δεῖξαι . Ἐὰν δύο ἀριθμοὶ πολλαπλασιάσαντες ἀλλήλους ποιῶσί τινα , τὸν δὲ γενόμενον ἐξ αὐτῶν | ||
| γὰρ ἀριθμοὶ οἱ Α , Β ἀριθμόν τινα τὸν Γ πολλαπλασιάσαντες τοὺς Δ , Ε ποιείτωσαν : λέγω , ὅτι |
| , κατὰ τὴν μʹ ἐν Ζυγῷ . Ὁ τοιοῦτος ἐκ μεγίστου γένους καὶ περιφανοῦς , λέγω δὴ πατρὸς καὶ μητρός | ||
| ἐφαρμόσαι τινὰ τῶν ἰθυτενῶν ὁδῶν τῇ κατὰ τὸ περιέχον ὁμοίᾳ μεγίστου κύκλου περιφερείᾳ , καὶ λαβόντας τὸν μὲν ταύτης λόγον |
| † φεύξεσθαι ὀΐομαι αἰπὺν ὄλεθρον . τρὶς μάκαρες μέντοι καὶ τετράκις οἱ μὴ ἔχοντες μήτε κατατρώξαντες ἐνὶ σχολῇ ὅσς ' | ||
| οὖν τούτων ἐχόντων , φαμὲν οὕτως , πεντάκις παρεγένετο , τετράκις παρεγένετο , οὐ μὴν ἔτι οὕτως , πέντε παρεγένετο |
| ὁ πολλαπλάσιός ἐστιν , εἶτα ὁ ἐπιμόριος , καὶ τοῦ ἐπιμορίου πρότερος ὁ ἡμιόλιος , εἶτα καὶ ὁ ἐπίτριτος , | ||
| δὲ καὶ τῶν ἀριθμῶν ἐπὶ πέντε τούτων εἰδῶν θεωροῦνται : ἐπιμορίου , ἐπιμεροῦς , πολλαπλασίου , πολλαπλασιεπιμορίου , πολλαπλασιοεπιμεροῦς , |
| τετράπηχυ , περαιτέρω δὲ μηκέτι προϊέναι , καὶ ὥρισε πάλιν τοὐλάχιστον μέγεθος τοῦ ἀνθρώπου μονόπηχυ , ἔλαττον δὲ μηκέτι μειοῦσθαι | ||
| στοιχεῖον ἓν μόνον δύναται συμπληροῦν τὸ στοιχειωτόν , δύο δὲ τοὐλάχιστον . Τίς οὖν ἡ διαφορὰ μερῶν καὶ στοιχείων ; |
| προτέροις τοῦ δ γεννᾶται τῇ αὐτῇ ἐφόδῳ : τὸ γὰρ συγκεφαλαίωμα τῶν τριῶν , τοῦ τε α καὶ β καὶ | ||
| ἥττονος : ἑκατὸν γὰρ ιϚ ἐν ἑκατέροις τὸ τοῦ ἀριθμοῦ συγκεφαλαίωμα . Ἔστω ἡ ΑΒ μονάδων ιβ . ἐτμήθη εἰς |
| διπλασία τῆς ὑπάτης ἐπιτέταται καὶ ὅλως ὁ δ τοῦ ὀκτὼ ἥμισυς καὶ τοῦ τρία ἐπίτριτος , ὡς ἂν ἀδιαφόρων οὐσῶν | ||
| μὲν οὖν ἀρτιάκις περισσός ἐστιν , φανερόν : ὁ γὰρ ἥμισυς αὐτοῦ περισσὸς ὢν μετρεῖ αὐτὸν ἀρτιάκις . λέγω δή |
| τὸ ἐπίταγμα , ἔστω τὸν ὑπὸ αου καὶ βου , προσλαβόντα τὸν γον , ποιεῖν ⃞ον , καὶ λείψαντα τὸν | ||
| ἠγμένης μεταξὺ τῆς συμπτώσεως τῶν εὐθειῶν καὶ τῆς γραμμῆς τετράγωνα προσλαβόντα τὰ ἀπὸ τῶν ἀπολαμβανομένων εὐθειῶν ἐπ ' εὐθείας τῆς |
| δοκεῖ , ἐφράσσετο σανίσιν ἡ ἀγορὰ , καὶ κατελείποντο εἴσοδοι δέκα , δι ' ὧν εἰσιόντες κατὰ φυλὰς ἐτίθεσαν τὰ | ||
| συμβουλευσάσης , ἄραντες ἐπὶ νώτων τὴν Ἀργὼ καὶ δύο καὶ δέκα ἡμέρας δι ' ἐρήμου γῆς πορευόμενοι , ἐν τῷ |
| γραμμὴ συνθέουσα δηλονότι κινήσει . Ἀλλ ' αὕτη συνθέουσα πῶς μετρήσει τὸ ᾧ συνθεῖ ; Τί γὰρ μᾶλλον ὁποτερονοῦν θάτερον | ||
| ὑπὸ τῶν Α , Β μετρούμενος [ τὸν Ε ] μετρήσει . ἐλάχιστος δὲ ὑπὸ τῶν Α , Β μετρούμενός |