| ληψόμεθα τὰς δύο μέσας ἀνάλογον ἐν τῇ συνεχεῖ ἀναλογίᾳ . ἐκκείσθωσαν γὰρ ταῖς ΕΔ ΔΖ ΔΜ ἴσαι αἱ ΕΔ ΔΖ | ||
| : ποδηγεῖ γὰρ πρὸς τὴν τοῦ ζητουμένου κατάληψιν . οἷον ἐκκείσθωσαν ταυταδὶ τὰ στοιχεῖα ἰσάριθμα ὄντα καὶ ἀναλογοῦντα τοῖς νοήμασι |
| ἑκατέρου αὐτῶν καὶ μονάδος μεταξὺ κατὰ τὸ συνεχὲς ἀνάλογον ἐμπίπτουσιν ἀριθμοί , τοσοῦτοι καὶ εἰς αὐτοὺς μεταξὺ κατὰ τὸ συνεχὲς | ||
| τῷ ὀνόματι πέντε : γένη , εἴδη , ϲχήματα , ἀριθμοί , πτώϲειϲ . Γένη μὲν οὖν εἰϲι τρία : |
| καὶ ὁ η καὶ ὁ ι καὶ πάντες οἱ εὐτάκτως ἄρτιοι . πρόλογος δὲ τοῦ μὲν β ὁ γ , | ||
| δὶς μέρος τὸν δὲ λβ δύναμιν : καὶ ἀμφότεροι ἀρτιάκις ἄρτιοι : καὶ πάλιν τὸν λβ ἐπὶ τὸν β πολλαπλασιάζεις |
| δὴ τοσούτων εἶναι μονάδων τοὺς δύο πρώτους ἀριθμούς , οἵπερ διπλάσιοι ἔσονται τῶν λοιπῶν δύο , ὄντων δηλονότι καὶ αὐτῶν | ||
| , ὀγδοήκοντα δὲ ἐκ Μυκηνῶν καὶ ἐκ Φλιοῦντος διακόσιοι , διπλάσιοι δὲ τούτων Κορίνθιοι : παρεγένοντο δὲ καὶ Βοιωτῶν ἑπτακόσιοι |
| ἐπιζευγνυμένη εὐθεῖα ἐν τῷ αὐτῷ ἐπιπέδῳ ἐστὶ ταῖς παραλλήλοις . Ἔστωσαν δύο εὐθεῖαι παράλληλοι αἱ ΑΒ , ΓΔ , καὶ | ||
| ἀπάγεται γὰρ εἰς τὰ πτωτικὰ τοῦ ἑπτακαιδεκάτου . κγʹ . Ἔστωσαν δύο κύκλοι οἱ ΑΒ ΓΔ , καὶ ἐκβεβλήσθω ἡ |
| , ὁ ὅλος ἄρτιος ἔσται . Συγκείσθωσαν γὰρ περισσοὶ ἀριθμοὶ ὁσοιδηποτοῦν ἄρτιοι τὸ πλῆθος οἱ ΑΒ , ΒΓ , ΓΔ | ||
| πλῆθος τῶν αβ βγ γδ δε εζ . Ἐὰν ὦσιν ὁσοιδηποτοῦν ὅροι ἐν ἴσῃ ὑπεροχῇ , ἑξῆς ἀλλήλων κείμενοι , |
| . Ἡ δὲ διαίρεσις ἰσθμοῖς ἢ πορθμοῖς . Καί εἰσιν ὅροι τῶν ἠπείρων , τῆς μὲν Εὐρώπης πρὸς τὴν Λιβύην | ||
| Καὶ γὰρ τὸ ζῷον τινὶ λευκῷ , τουτέστιν οἱ αὐτοὶ ὅροι καὶ ἐξ ἀνάγκης τινὶ ποιοῦσι καὶ ἐξ ἀνάγκης οὐ |
| εἶναι καὶ ἀριθμόν , συνάξει , ὅτι ἄρτιοί εἰσιν ἢ περιττοὶ οἱ ἀστέρες , οὔτε δὲ τὸ περιττοὺς αὐτοὺς εἶναι | ||
| εἰς περιττόν . καὶ οἱ ἄρτιοι δὲ ἵπποι δύνανται καὶ περιττοὶ γενέσθαι ἑτέρου προσθήκῃ . ἀλλὰ καὶ τὸ χρῶμα εἰ |
| τῶν δ ' ἀμφισβητούντων πρὸς ταύτας τὰς ζημίας αἱ κρίσεις ἔστωσαν ἐπὶ τοῦ δήμου . τοῦτον τὸν νόμον ἐπιψηφίσαντες οἱ | ||
| στερεὰ παραλληλεπίπεδα ἀνάλογον ᾖ , καὶ αὗται ἀνάλογον ἔσονται . ἔστωσαν ὁσαιδηποτοῦν εὐθεῖαι ἀνάλογον ἡ ΑΒ , ΓΔ , ΕΖ |
| ' ἂν γένοιό γ ' ἀθλιωτάτη γυνή . ἴτω : περισσοὶ πάντες οὑν μέσωι λόγοι . ἀλλ ' εἶα χώρει | ||
| μὲν οὖν ἄρτιον δεῖ εἶναι , ὅπως ἴσοι ἐνῶσιν οἱ περισσοὶ καὶ ἄρτιοι καὶ μὴ ἑτερομερῶς : ἐπεὶ γὰρ πρότερος |
| . τὼς δ ' ἄρα καὶ διάμετροι . ἀτὰρ χαίρουσι τρίγωνοι , σχήμασι δ ' ἐν τούτοισιν ἀεὶ φιλομάντιας ἄνδρας | ||
| ἐλευθερωθῆναι . κυνοῦχος : θυλάκιον , μαρσίππιον . κύρβεις : τρίγωνοι πίνακες , ἐν οἷς οἱ περὶ τῶν ἱερῶν νόμοι |
| ποιῇ τοὺς δοθέντας τετραγώνους ἀριθμούς . Ἐὰν γὰρ ὦσιν οἱ δοθέντες τετράγωνοι , ὅ τε δ καὶ ὁ θ καὶ | ||
| τετράγωνον , ὃν δὲ πλευρὰν τοῦ τετραγώνου . Ἔστωσαν οἱ δοθέντες δύο ἀριθμοὶ ὅ τε σ καὶ ὁ ε : |
| , οἱ πρῶτοι κατὰ πλάτος καὶ οἱ ὑπ ' αὐτοὺς τετραπλάσιοι πάντες εἰσίν , οἱ δὲ ὑποκάτω τῶν ἐπάνω ἐπιτέταρτοι | ||
| ' αὐτῶν ἐπίτριτοι καὶ ἀπὸ τούτων ἐπιτριμερεῖς , εἰ δὲ τετραπλάσιοι ἐπιτέταρτοί τε καὶ ἐπιτετραμερεῖς καὶ ἀεὶ οἱ ἑξῆς , |
| εἰσι ταῦτα τὰ στοιχεῖα , μεταξὺ δὲ δύο στερεῶν δύο μέσοι ἀνάλογοι γίνονται . ἐν δὲ ταῖς Πολιτείαις ζητεῖ εἰ | ||
| παρ ' Αἰολεῦσι τὸ μέσοι , γαίας καὶ νιφόεντος ὠράνω μέσοι : τῇδε ἔχει καὶ ἀπὸ τοῦ τηλόθι τὸ τήλοι |
| ιϚʹ κεʹ . μέσους δὲ ἔχουσι τοὺς ἑτερομήκεις οὕτως . τετράγωνοι δύο ἐφεξῆς ὅ τε αʹ καὶ δʹ : τούτων | ||
| ἄνω μὲν εἷς ὀδοὺς προσπέφυκε , κάτω δὲ ἄλλος , τετράγωνοι δὲ ἄμφω , πυγόνος δὲ τὸ μῆκος . τοσοῦτον |
| κατὰ τοὺς κυνόδοντας ἐπῆρται , οἷς δὲ τὰ κατὰ τοὺς τομεῖς , κυνώδεις . Τῶν ἐρώντων ὑπάρχει σημεῖα τοιαῦτα : | ||
| τὰ αὐτὰ δὴ καὶ οἱ ΘΕΖ , ΘΖΜ , ΘΜΝ τομεῖς ἴσοι ἀλλήλοις εἰσίν . ὁσαπλασίων ἄρα ἐστὶν ἡ ΛΒ |
| προφέρονται : ὑμεῖς δ ' , ὦ Μεγαρεῖς , οὔτε τρίτοι οὔτε τέταρτοι . ὡς καὶ Καλλίμαχος ἐν τοῖς Ἐπιγραμματίοις | ||
| στόματι . ὑμεῖς δ ' , ὦ Μεγαρεῖς , οὔτε τρίτοι οὔτε τέταρτοι οὔτε δυωδέκατοι οὔτ ' ἐν λόγωι οὔτ |
| . βʹ Ἐὰν ἀριθμὸς εἰς δύο ἀριθμοὺς διαιρεθῇ , δύο ἐπίπεδοι ἀριθμοὶ οἱ γενόμενοι ἔκ τε τοῦ ὅλου καὶ ἑκατέρου | ||
| βέλεσιν αἱ βελοστάσεις κατασκευάζονται , αἱ μὲν [ ὀρυκταὶ ] ἐπίπεδοι [ καὶ κατώρυχοι ] , αἱ δὲ ὑπόγειοι πρὸς |
| αἱ διατριβαί . νεπόδεσσιν : ἰχθύσιν . ὁμοῖαι : καὶ ἴσοι , ἀττικόν . Οἱ μὲν γάρ : χωρισμὸς τῶν | ||
| ἴσοι οἱ κοινωνοὶ ἐν δημοκρατίᾳ , κατ ' ἀναλογίαν δὲ ἴσοι οἱ ἐν ταῖς ὀλιγαρχίαις καὶ οἱ ἐν ταῖς ἀριστοκρατικαῖς |
| πρὸς τὸ ΗΘΚΛΜ πολύγωνον : ὅπερ ἔδει δεῖξαι . Οἱ κύκλοι πρὸς ἀλλήλους εἰσὶν ὡς τὰ ἀπὸ τῶν διαμέτρων τετράγωνα | ||
| Ζ σημεῖα . λέγω , ὅτι οἱ ΑΒ , ΓΔ κύκλοι μέγιστοί εἰσιν . ἐπεζεύχθω γὰρ ἡ ΕΖ : ἡ |
| μετ ' αὐτοὺς πεντάγωνοι , εἶτα ἐπὶ τούτοις ἑξάγωνοι καὶ ἑπτάγωνοι καὶ ἐπ ' ἄπειρον : προσαγορεύονται δέ , ὡς | ||
| , μέχρις ἄν τις θέλῃ . οἱ δὲ τούτοις ἀκόλουθοι ἑπτάγωνοι τοὺς μὲν γνώμονας ἔχουσι πεντάδι μὲν διαφέροντας , τετράδι |
| δὲ τὴν πίστιν τῶν ἰδίων λόγων οἱ κοινοὶ λόγοι καὶ καθολικοί . ἀμφοτέρων δ ' ἦν ἐν τῷ ἐπιταφίῳ χρεία | ||
| περὶ τοῦ ἐπιμερίζοντος καὶ συνεπιμερίζοντός εἰσι θεμέλιά τινα καὶ κανόνες καθολικοί : εἴσι δὲ καὶ ἕτερά τινα σημαίνοντα τὰ μερικὰ |
| κατὰ πλάτος τριπλάσιοι , οἱ δὲ ὑποκάτω τῶν ἐπάνω ὁμοταγῶν ἐπίτριτοι , ὁμοταγεῖς ὁμοταγῶν : ἐκ γὰρ τῶν τριπλασίων οἱ | ||
| κἀνταῦθα ἡ ἀναλογία κατὰ τάξιν . πάλιν γὰρ οἱ ἐφεξῆς ἐπίτριτοι ἔσονται καὶ ἐπιτέταρτοι καὶ ἐφεξῆς : λαβὲ γὰρ θ |
| δὲ τῶν μὲν Ἑλλήνων ὥσπερ τροφέων ἐπιμελόμενοι , χεῖρά τε ὑπερέχοντες καὶ οἷον κειμένους ἀνιστάντες , τοὺς μὲν ἀρίστους καὶ | ||
| ὁ πίθων , οὕτω παρὰ τοῖς ἄφροσι καὶ κόλαξιν οἱ ὑπερέχοντες λέγονται σοφοὶ καὶ πάντα ἔχειν τὰ ἀγαθά : δεῖ |
| τούτων λαμβανομένων μέσων γίνονται αἱ τρεῖς μεσότητες : οἷον ἔστωσαν ἄκροι ὅ τε μ καὶ ὁ ι . ἐὰν μὲν | ||
| . Ἀλλὰ τριῶν ὄντων τοῦ γένους ἀρχηγετῶν , οἱ μὲν ἄκροι μετωνομάσθησαν , Ἀβραάμ τε καὶ Ἰακώβ , ὁ δὲ |
| πα Ϟ ρ ἐκ δὲ τῶν ἐπιμορίων οἵ τ ' ἐπιμερεῖς καὶ οἱ πολλαπλασιεπιμόριοι , πάλιν δ ' ἐκ τῶν | ||
| σπανιότητα τῶν ἐπιδεξομένων τὸ μόριον ἀριθμῶν καθ ' ὃ ἐπιμόριον ἐπιμερεῖς γενήσονται , πολὺ μᾶλλον σπανιώτεραι αἱ ἀναλογίαι γενήσονται διὰ |
| τινὰ δὲ καὶ διάφωνα . σύμφωνα μὲν , ἐπειδὴ οἱ περιέχοντες φθόγγοι διάφοροι τῷ μεγέθει ὄντες , ἅμα κρουσθέντες ἢ | ||
| σφισιν ἐφεστήκασι τρίποδες χαλκοῖ μέν , μνήμης δὲ ἄξια μάλιστα περιέχοντες εἰργασμένα . σάτυρος γάρ ἐστιν , ἐφ ' ᾧ |
| δὲ τετράγωνοι , οἱ δὲ πεντάγωνοι καὶ κατὰ τὸ ἑξῆς πολύγωνοι . γεννῶνται δὲ οἱ τρίγωνοι τὸν τρόπον τοῦτον . | ||
| , ὅσοιπέρ εἰσι τὸν ἀριθμὸν οἱ εἰς σύστασιν αὐτῆς συσσωρευθέντες πολύγωνοι . πάλιν γὰρ τὴν ιδ πυραμίδα συνόλην βάσιν ἔχουσαν |
| ΒΔ . Ποιοῦσι δὲ τὰ αὐτὰ καὶ οἱ ἰσάκις αὐτῶν πολλαπλάσιοι . Τὸ γὰρ ἀπὸ τῆς ΓΒ τετράγωνον καὶ τὸ | ||
| ὁ ζη τῷ κν : οἱ γὰρ τοῦ αὐτοῦ ἰσάκις πολλαπλάσιοι ἴσοι ἀλλήλοις εἰσίν . ἔστι δὲ καὶ ὁ ηθ |
| ὑπεροχάς . . Ἐπεὶ ὁ τρίτος καὶ ὁ τέταρτος δὶς λαμβανόμενοι μετὰ τοῦ πρώτου καὶ δευτέρου ἅπαξ λαμβανομένων ὑπερέχουσι τοῦ | ||
| τῶν προτάσεων τὸ Δίων ἀληθεύει . ὅσον δὴ οἱ οὕτως λαμβανόμενοι τῶν ἐκείνως διαφέρουσι , τοσοῦτον καὶ οἱ κατηγορικοὶ συλλογισμοὶ |
| γοῦνα φέρει . . ἡ διπλῆ ὅτι σαφῶς οἱ Τρῶες ἐλάττονες συνίστανται τῶν Ἑλλήνων , καὶ τῶν ἐπικούρων ἐξεληλυθότων . | ||
| τῆς ὑπὸ ΔΗΒ , τουτέστιν δύο τῶν ὑπὸ ΔΕΖ , ἐλάττονες γίνονται συναμφοτέραις τῇ τε ὑπὸ ΔΕΚ καὶ τῇ ὑπὸ |
| ἐπιμορίου καὶ τῶν λοιπῶν εἰδῶν ἐν αὐτῶι , καὶ οἱ γραμμικοὶ καὶ οἱ ἐπίπεδοι καὶ οἱ στερεοί . τὸ μὲν | ||
| ἐξ ἀρχῆς βάθος τι προσκτωμένου : οἷον καθ ' ὑποδιαίρεσιν γραμμικοὶ μέν εἰσιν ἀριθμοὶ ἁπλῶς ἅπαντες οἱ ἀπὸ δυάδος ἀρχόμενοι |
| τι ὠνομάζετο , καὶ ἐκπερισπασμὸς ἄλλο , καὶ στοιχεῖν καὶ ζυγεῖν , καὶ ἐς ὀρθὸν ἀποδοῦναι καὶ ἐξελίσσειν καὶ διπλασιάζειν | ||
| τὰ ἓν παρ ' ἓν κείμενα . Ἐπεὶ δὲ συνέβη ζυγεῖν μέν , οὐ στοιχεῖν δέ , τοῦτο ἡμῶν φροντιζόντων |
| , ἐπειδήπερ οἱ διὰ τῶν πόλων τοῦ ἑτέρου τῶν εἰρημένων γραφόμενοι μέγιστοι κύκλοι ἀνίσους ἀπολαμβάνουσιν ἐφ ' ἑκατέρου περιφερείας , | ||
| τῇ ΘΚ , καὶ οἱ διὰ τῶν Κ καὶ Η γραφόμενοι παράλληλοι ἴσον ἀπέχουσιν ἐφ ' ἑκάτερα τοῦ ἰσημερινοῦ , |
| ἐν τῷ ἀπὸ τῆς μονάδος ἀριθμῷ εὐτάκτῳ τῶν ἐφεξῆς πάντων τριπλάσιοί εἰσι προχωροῦντες , ἐφ ' ὅσον βούλεταί τις παρακολουθεῖν | ||
| τὸ βάθος καὶ τὴν ὑποτείνουσαν . ἐκ μὲν γὰρ διπλασίων τριπλάσιοί τε καὶ ἡμιόλιοι φύσονται , ἐκ δὲ τριπλασίων τετραπλάσιοί |
| δέ τινες ἐν ἀριθμητικῇ λόγοι ἀριθμῶν οὐ μόνον πολλαπλάσιοι καὶ ἐπιμόριοι , ἀλλὰ καὶ ἐπιμερεῖς καὶ πολλαπλασιεπιμερεῖς καὶ ἔτι πλείους | ||
| τεθέντων [ αʹ αʹ αʹ ] καὶ ὁμοίως πλαττομένων οἱ ἐπιμόριοι λόγοι καὶ αἱ ἐν τούτοις συστήσονται ἀναλογίαι , ἐκ |
| διοικῶν . ἄξονες καὶ κύρβεις διαφέρουσιν . οἱ μὲν γὰρ ἄξονες ἦσαν τετράγωνοι , οἱ δὲ κύρβεις τρίγωνοι . καὶ | ||
| , ὧν κορυφαὶ μὲν τὰ Α , Β σημεῖα , ἄξονες δὲ αἱ ΑΗ , ΒΘ εὐθεῖαι , τὰ δὲ |
| . Κιμμερίου διὰ Βοσπόρου ] Πλησίον γάρ εἰσιν οἱ Κιμμέριοι κείμενοι παρὰ τὸν ἰσθμὸν , οὗ ἐστιν ὁ Ταῦρος : | ||
| ἐπὶ τὴν δεξιὰν , ποτὲ δὲ παρὰ τὴν ἀριστερὰν πλευρὰν κείμενοι καὶ κοιταζόμενοι , προνοούμενοι τοῦ συμφέροντος . φέρει : |
| τετράκις δʹ ιϚʹ . οἱ μὲν οὖν τετράγωνοι πάντες τοὺς ἑτερομήκεις περιλαμβάνουσι κατὰ τὴν γεωμετρικὴν ἀναλογίαν καὶ μέσους αὐτοὺς ποιοῦσι | ||
| πρὸς ἑαυτοὺς διαφορὰς τοὺς περισσοὺς μόνον ἔχουσιν , οἱ δὲ ἑτερομήκεις τοὺς ἀρτίους : ἂν δὲ καὶ τὸν πρῶτον ἑτερομήκη |
| Χαβηρὶς ἐμπόριον . . . . . . . . ρκη ∠ ʹ ιε γοʹ Σαβούρας ἐμπόριον . . . | ||
| . . . . . . . . . . ρκη δʹ λβ γʹ Ὀστοβαλάσαρα . . . . . |
| καὶ ὄνομα οἰκεῖον πρόσκειται . οἱ μέν γε δύο λόχοι διλοχία καλεῖται , ἐξ ἀνδρῶν δύο καὶ τριάκοντα , καὶ | ||
| δὲ λόχον ἑξκαίδεκα . Ἔσονται δὴ οἱ μὲν δύο λόχοι διλοχία καὶ ὁ ἐπ ' αὐτοῖς ἄρχων διλοχίτης , οἱ |
| , διαπαλαίειν , καταπαλαίειν , προσπαλαίειν . καὶ οἱ μὲν δρομεῖς ἐλαφροί , κοῦφοι , ποδώκεις , ταχεῖς , σπουδαῖοι | ||
| ἐκπρεπὲς κύκλῳ περιιόντων καὶ θεωμένων . ἔνιοι δὲ ὅτι οἱ δρομεῖς εἰς τὸν τάφον τοῦ Πέλοπος ἔκαμπτον . ἀμφίπολον : |
| Οἵ τε γὰρ εὐηθέστατοι τῶν πυρετῶν καὶ ἐπὶ σημείων ἀσφαλεστάτων βεβῶτες τεταρταῖοι παύονται , ἢ πρόσθεν : οἵ τε κακοηθέστατοι | ||
| τοὺς ἀνωτάτω καὶ τὸ τρίγλυφον , πάντες ἐν διαστήματι συμμέτρῳ βεβῶτες . ἡ δὲ ναῦς πᾶσα οἰκείαις γραφαῖς ἐπεπόνητο . |
| . Ἐπιτυχόντες δὲ τούτου , οὐκ ἐβούλοντο ἀπαλάσσεσθαι , ὡς συντιθέμενοι νύκτας καὶ ἡμέρας μένειν . Διὸ λέγεσθαι τοῦτο ἐπὶ | ||
| , καὶ μένουσι νεαροί . ὁμοίως δὲ καὶ ἐν ἅλμῃ συντιθέμενοι διαμένουσιν . Ἀκμαίους τοὺς σικύους φυλάξεις , ἐὰν ἐν |
| τετράγωνοι , ἐκ δὲ τῶν τετραγώνων καὶ τῶν τριγώνων οἱ πεντάγωνοι , ἐκ δὲ τῶν πενταγώνων καὶ τῶν τριγώνων οἱ | ||
| μηδένα συντεθέντων τῶν γνωμόνων , τετράγωνοι δὲ παρὰ ἕνα , πεντάγωνοι δὲ παρὰ δύο καὶ ἀεὶ οὕτως . τὸν αὐτὸν |
| εἰ οὐδενί , καὶ οὐ παντί . Περὶ ὧν οἱ συλλογισμοί , τουτέστιν τῶν προβλημάτων : ἐπάγει γὰρ καὶ ποῖον | ||
| δοξαστικόν , ἀλλὰ τὸ διανοητικόν , καὶ περὶ τίνων οἱ συλλογισμοί , ὅτι οὐ περὶ τῶν νοητῶν , οὐ περὶ |
| . Ἄθρει δὴ ὡς καὶ τῶν τοῦ παντὸς σωμάτων ὡδὶ συμφωνοῦσιν οἱ λόγοι . πυρὶ μὲν γὰρ διὰ τὸ πυραμίδι | ||
| ὁ ἀγκὼν αὐτός . Ἀλλ ' οὐδ ' εἰ μὴ συμφωνοῦσιν οἱ τὴν ἱστορίαν τῶν τόπων παραδιδόντες , εὐθὺς ἐκβάλλειν |
| γένωνται , πάθεσιν ἀκαθάρτοις καὶ παρὰ φύσιν ἡδοναῖς χρήσονται . ἑξάγωνοι δὲ πρὸς ἀλλήλους τὴν αὐτὴν ἀποτελεσματογραφίαν τοῖς τριγώνοις ἔχουσιν | ||
| πεντάγωνοι , ἐκ δὲ τῶν πενταγώνων καὶ τῶν τριγώνων οἱ ἑξάγωνοι , ἐκ δὲ τῶν ἑξαγώνων καὶ τῶν τριγώνων οἱ |
| θέλω ἴσους εἶναι Μο π : ἀλλ ' οἱ δύο συντεθέντες ʂ εἰσι δ καὶ Μο δ . ʂ ἄρα | ||
| ἄρα ὁ αος ἔσται ʂ δ . καὶ οἱ τρεῖς συντεθέντες ποιοῦσι τὸν ἐπιταχθέντα ⃞ον , ΔΥ α ʂ β |
| ἀναδεχομένη καὶ ὑπομένουσα τὴν περίθεσιν , ἄνευ δὲ αὐτῆς οὐ φύσονται ἑτερομήκεις : εἴτε κατὰ τὸν αὐτὸν δίαυλον οἱ ἐφεξῆς | ||
| ὑποτείνουσαν . ἐκ μὲν γὰρ διπλασίων τριπλάσιοί τε καὶ ἡμιόλιοι φύσονται , ἐκ δὲ τριπλασίων τετραπλάσιοί τε καὶ ἐπίτριτοι , |
| ἑκάστῳ καὶ ὄνομα οἰκεῖον πρόσκειται . οἱ μέν γε δύο λόχοι διλοχία καλεῖται , ἐξ ἀνδρῶν δύο καὶ τριάκοντα , | ||
| : ἤδη δὲ καὶ ἐς λόχους καταχωρισθέντων τῶν πεζῶν , λόχοι ἐνεβλήθησαν ἐναλλὰξ τῶν ψιλῶν . τὸν δὲ ἀριθμὸν τάξεώς |
| τὸ αὐτὸ ἰδεῖν ἐθέλειν τὸ ἐρώμενον . Ὥσπερ δὲ ἐνταῦθα σχηματίζονται εἰς ὁμοιότητα τῷ ἐραστῷ οἳ ἂν ἐρῶσι , καὶ | ||
| , καὶ πρὸς τὸ ἔργον ὃ ἂν ἐπιτελέσασθαι θέλῃ , σχηματίζονται αἱ χεῖρες . Τοξικὴν δὲ ἀσκέοντι εἰκὸς τοῦτο τὸ |
| ἀπεῖχε τοῦ μεσουρανήματος ὁ ἀφέτης , τὸν δὲ γενόμενον ἀριθμὸν συγκρινόμενοι πρὸς ὃν ἔχομεν τῆς θέσεως τοῦ ἑπομένου καὶ τοὺς | ||
| πρόσθεν πάντες ἐσημειώσαντο , οἱ ἐν τοῖς ἐλάττοσιν ὅροις λόγοι συγκρινόμενοι πρὸς τοὺς ἐν τοῖς μείζοσι μείζονές εἰσι : δειχθήσονται |
| ἐφεξῆς ἀριθμοί , ἀπογεννῶντες τριγώνους ἢ τετραγώνους ἢ πολυγώνους , γνώμονες καλοῦνται . τοσούτων δὲ μονάδων ἕκαστον τρίγωνον ἔχει πλευρὰς | ||
| Ἐν Ἀλεξανδρείᾳ δὲ τῇ αὐτῇ ὥρᾳ ἀποβάλλουσιν οἱ τῶν ὡρολογίων γνώμονες σκιάν , ἅτε πρὸς ἄρκτῳ μᾶλλον τῆς Συήνης ταύτης |
| οἱ μερίζοντες καὶ περὶ τὴν ἐκείνου ἁπλότητα διπλασιαζόμενοι καὶ ἔτι πολλαπλασιαζόμενοι , ἐκεῖνο γὰρ τῷ ἓν εἶναι , πάντα ἐστὶ | ||
| . Καὶ πάλιν γίνεται δίτονον ὁ η καὶ ὁ θ πολλαπλασιαζόμενοι : ὁ γὰρ οβ εὑρίσκεται ἀνάλογον μεταξὺ καὶ ποεῖ |
| δὲ τῶν τριπλασίων οἱ ἐπίτριτοι , ἐκ δὲ τῶν τετραπλασίων ἐπιτέταρτοι , καὶ ἀεὶ ἑξῆς οὕτως . οἷον ἔστω ἀναλογία | ||
| χρεία , ἵνα πρῶτος καὶ τέταρτος συνάμφω τῶν δύο μέσων ἐπιτέταρτοι ὦσιν , ἔστι δὲ πρόλογος ἐν ἐπιτετάρτῳ πυθμέσι ὁ |
| καὶ διλοχίτης ὁ τούτου ἡγούμενος : οἱ δὲ τέσσαρες λόχοι τετραρχία , καὶ ὁ τούτου ἡγούμενος τετράρχης τεσσάρων καὶ ἑξήκοντα | ||
| διλοχία καὶ πόσων ἀνδρῶν καὶ τίς ὁ διλοχίτης . Τί τετραρχία καὶ τίς ὁ τετράρχης καὶ ὁπόσων ἀνδρῶν . Τί |
| φυλῆς ἕνα ὑπὲρ ἑκάστου μέρους . καὶ οἱ δῆμοι οἱ μερικοὶ οἷον ὥσπερ αἱ κῶμαι . τοῦτο δὲ εἶπεν , | ||
| οἱ δειλοὶ τὸ ἦθοϲ τῆϲ ψυχῆϲ . Καιροὶ καθολικοὶ καὶ μερικοὶ ἐπιτήδειοι εἰϲ ἐλλεβοριϲμόν . Ὥρα δὲ ἐαρινὴ ἐπιτηδειατάτη , |
| καὶ μὴ πρότερον , ἀλλὰ νῦν γε εἰρημένον , οἱ μέγιστοι τῶν ἐν ταῖς τέχναις οὐχ ᾧ μετεσχήκασι τῆς τέχνης | ||
| πόλος δὲ ἔστω τῶν παραλλήλων ὁ Α , καὶ γεγράφθωσαν μέγιστοι κύκλοι οἱ ΑΜ ΑΝ ΑΞ : δεῖξαι ὅτι μείζων |
| μὲν οὖν ἢ καὶ ἐπαναφερόμενοι οἱ ἀναιρέται εὐτονώτεροι καθίστανται , ἔκκεντροι δὲ ἐξασθενήσουσι . Ἔστω δὲ καὶ οὗτος ὁ λόγος | ||
| δὴ τὸ καθόλου τῶν ὑποθέσεων τοιοῦτον , ὅτι οἱ μὲν ἔκκεντροι κύκλοι τῶν ε πλανωμένων ἐγκεκλιμένοι τυγχάνουσιν πρὸς τὸ τοῦ |
| : οἱ ταοὶ ἱεροί εἰσι τῆς Ἥρας . καὶ μήποτε πρώτιστοι καὶ ἐγένοντο καὶ ἐτράφησαν ἐν Σάμῳ καὶ ἐντεῦθεν εἰς | ||
| ἄνθρωποι Γαῖάν τε καὶ Οὐρανὸν οὔνομα θέντες , οὕνεκα οἱ πρώτιστοι ἔσαν μερόπων ἀνθρώπων τοὺς δ ' ἐπ ' ἰσχύι |
| συζυγίαν ἀντικειμένων εὐθεῖαι ἐπιψαύουσαι συμπίπτωσι , καὶ διὰ τῶν ἁφῶν διάμετροι ἀχθῶσι , ληφθῇ δέ τι σημεῖον ἐφ ' ὁποτέρας | ||
| αἱ δὲ διὰ τῶν ἁφῶν καὶ τοῦ κέντρου συζυγεῖς ἔσονται διάμετροι τῶν ἀντικειμένων . ἔστωσαν κατὰ συζυγίαν ἀντικείμεναι , ὧν |
| , ἐκθησόμεθα ταύτας κανονικῶς πρὸς τὴν ἐπὶ τὰ λοιπὰ μέθοδον ἀρχόμενοι μὲν ἀπὸ τοῦ ὑπ ' αὐτὸν τὸν ἰσημερινόν , | ||
| τε δύο Τίτος καὶ Τιβέριος Βρούτου παῖδες τοῦ ὑπατεύοντος ἀρτίως ἀρχόμενοι γενειᾶν καὶ σὺν αὐτοῖς Οὐιτέλλιοί τε δύο Μάρκος καὶ |
| δύνανται ἐπίπεδον τετράγωνον , ἰσάκις ἴσοι ὄντες : οἱ δὲ τέταρτοι ὅροι ὅ τε ηʹ καὶ ὁ κζʹ δύνανται ἰσάκις | ||
| λαῶν ἄνακτες , ἀλλ ' ἀνώνυμοι σποραὶ ναυκληρίας πέμπτοι καὶ τέταρτοι γαῖαν ἵξονται θεᾶς . Διομήδης μετὰ τὴν Ἰλίου πόρθησιν |
| . ἐὰν τὰ στελέχη τῶν ἀμπέλων κισσῷ δασεῖ περιδήσωμεν , εὑρεθήσονται μετ ' ὀλίγον οὐ μόνον οἱ μύρμηκες , ἀλλὰ | ||
| γὰρ οὐδέν ἐστι παρὰ τὰ γένη καὶ τὰ εἴδη , εὑρεθήσονται ἐκ τοῦ μηδαμῇ μηδαμῶς ὄντος προελθοῦσαι αἱ διαφοραὶ ἐν |
| οἷς θεμελιοῦται δεκάς , ἑβδομάδος φύσιν περιέχειν : οἱ γὰρ λεχθέντες ἀριθμοὶ τέσσαρας μὲν ἔχουσιν ὅρους , τὸν πρῶτον , | ||
| [ ] . : ἐπεὶ τόλμαν γε καὶ θάρσος οἱ λεχθέντες ὑπ ' αὐτοῦ λόγοι τῶν γραφέντων μᾶλλον εἶχον , |
| δὴ μεταξὺ τούτων τῶν τετραγώνων πείπτοντες ἀριθμοί εἰσιν προμήκεις : ἀνισάκις [ ] γὰρ ἄνισοι , ὡς οἱ ? μεταξὺ | ||
| ? [ ] οὖν ἀνισάκις ? ? ἄνισοι [ ] ἀνισάκις σφηνίσκοι [ καλοῦνται ] . , οἱ [ δέ |
| ὁ πλείων καὶ τοῦ πέριξ ἦχος . Πῶς γὰρ ἂν σύμφωνοι ἐγίγνοντό τινες φθόγγοι εἰ μὴ ἰσότης ἦν ; ἀσύγκριτον | ||
| , ὁμοίως δὲ καὶ εἰ οἱ κοσμικοὶ κυκλικοὶ τῆς γενέσεως σύμφωνοι ἢ οἱ αὐτοί . πρὸς ἐπὶ τούτοις δὲ καὶ |
| ἑκάστους ἕκαστον μηκύνῃ ἢ ὑπὸ ἑκάστου μηκύνοιτο , ὁμοίως γενήσονται εὔτακτοι κύβοι . ἔτι οἱ περισσοὶ ἐπειδὴ ἔτι ὁμοποιοί εἰσι | ||
| τῶν ἀπὸ μονάδος ἑαυτὸν πολλαπλασιάσαντος καὶ τὸν ἐξ αὐτοῦ γίνονται εὔτακτοι κύβοι . καὶ εἰ τάξει οἱ ἀπὸ τετράδος τετράγωνοι |
| εἴκοσι ἀνδρῶν καὶ ἑκατόν . καθ ' ἑκάστην δὲ ἑκατονταρχίαν ἔκτακτοι ἄνδρες τέσσαρες ἔστων , σημειοφόρος καὶ σαλπιγκτὴς καὶ ὑπηρέτης | ||
| δὲ οὐραγοὶ οἵ τ ' ἐν τοῖς λόχοις καὶ οἱ ἔκτακτοι συνέσει τῶν ἄλλων διαφερέτωσαν , οἱ μέν , ἵνα |
| καὶ γραμματικὴν καὶ τὰς συγγενεῖς καλοῦμεν τέχνας καὶ γὰρ οἱ ἀποτελούμενοι δι ' αὐτῶν τεχνῖται λέγονται μουσικοί τε καὶ γραμματικοί | ||
| δοτῆρες γίνονται . καὶ οἱ μὲν διὰ τῶν παραιρέτων ἀστέρων ἀποτελούμενοι κλιμακτῆρες νόσων καὶ κινδύνων καὶ πένθους παραίτιοι χρηματίζουσιν , |
| τῶν ἑξῆς διὰ τεσσάρων συμφωνοῦντες συναφὴν ποιήσουσιν , οἱ δὲ πέμπτοι διὰ πέντε διάζευξιν . δεῖ δ ' ἕτερον πότερον | ||
| ἐν οὖν τῷ φυσικῷ ὕφει τοῦ ἀριθμοῦ εὑρεθήσονται οἱ ἀρτιοπέρισσοι πέμπτοι μὲν ἀπ ' ἀλλήλων , τετράδι δὲ ὑπερέχοντες , |
| ἐσπουδακόσιν ἀφθόνως ἅτε δὴ γνησίοις παισίν . οἱ κατατεταγμένοι ἔσονται κανόνες τῶν βʹ πλινθίων : πάλιν ἐν ἴσῳ διαστήματι τοῦ | ||
| : γραφῆς ὁ πρῶτος ἦν μαλακόφθαλμος κύκλῳ . ἔπειτα δισσοὶ κανόνες ἰσόμετροι πάνυ : τούτους δὲ πλάγιος διαμέτρου συνδεῖ κανών |
| δὲ χρὴ λαμβάνειν λεῖπον τὸ χρή . ὥσπερ δὲ οἱ γεωμέτραι προλαμβάνουσιν λήμματα ὧν δέονται , οὕτως καὶ οὗτος εἴωθεν | ||
| καὶ μερικὸν καὶ οὐδὲ κυρίως τέλος . εἰ δὲ οἱ γεωμέτραι μὴ χρῶνται τῇ τοῦ τέλους ἀποδόσει , δεικνύντες τὰ |
| ἀνδρῶν εἶναι τὴν φάλαγγα , τὸν δὲ λόχον ἑξκαίδεκα . Ἔσονται δὴ οἱ μὲν δύο λόχοι διλοχία καὶ ὁ ἐπ | ||
| ἀποχωρησάντων κϚ πόδας ἄλλαι δύο ὑποκείσθωσαν ἀπὸ ιδ ποδῶν . Ἔσονται οὖν περικείμεναι αἱ σανίδες : ἡ μὲν μία ιβ |
| , οὐ μὴν ὅπερ τὸ ἀγαθὸν ἁπλῶς , ὥσπερ αἱ μονάδες ἢ ἑνάδες αἱ ἀπὸ τῆς πρωτίστης αἰτίας προελθοῦσαι : | ||
| ἡμῖν ἐν τρισὶν ὅροις ἶσοί τινες ἀριθμοί , πρῶτον μὲν μονάδες , εἶτα δυάδες ἐν ἄλλοις τρισίν , εἶτα τριάδες |
| ἄν τι δέῃ ποιεῖν ; οἴσουσι νὴ Δί ' οἱ φυλέται τὸν αὐτὸν τρόπον ὅνπερ καὶ τοὺς ἄλλους . οὐκοῦν | ||
| τοὔνομα μᾶλλον πρέπον ἔχοντες : δεύτεροι δὲ κωμῆταί τε καὶ φυλέται , κατὰ τὸ δωδέκατον μέρος διῃρημένοι , ἐν οἷς |
| ἡμέρα ἄρα ἔστιν . Οὗτοι μὲν οὖν εἰσιν οἱ θρυλούμενοι ἀναπόδεικτοι , πάντες δέ μοι δοκοῦσιν ἀσύνακτοι εἶναι κατὰ παρολκήν | ||
| φανήσεται . εὐθέως γάρ , ἵνα μικρὸν ἄνωθεν προλάβωμεν , ἀναπόδεικτοι λέγονται διχῶς , οἵ τε μὴ ἀποδεδειγμένοι καὶ οἱ |
| καὶ οὐ τῆς σπείρας . ἀντεστραμμένων γὰρ αὐτῶν καὶ ὡσανεὶ παραλλήλως κειμένων ἡ οὐρὰ τοῦ Δράκοντος μεταξὺ αὐτῶν διὰ μήκους | ||
| Ζηνόδοτος μετέθηκεν ὡς ταυτολογοῦντος πρωτοπαγεῖς νεοτευχέες , ἀγνοῶν ὅτι ἐνίοτε παραλλήλως τάσσει τὰς ἰσοδυναμούσας λέξεις . . . Ν . |
| τεσσάρων ἄλλων ἀριθμῶν ἐκτεθέντων κατὰ τὴν αὐτὴν τάξιν τοῖς προτέροις ὁμοταγεῖς κατὰ συνδυασμὸν τὸν προειρημένον τῶν ὁμοιοτάτων , ἀντὶ μὲν | ||
| τομεύς , πρὸς τοὺς περιγραφομένους περὶ τὸ ΑΒΓ τμῆμα τοὺς ὁμοταγεῖς τῷ ΓΒΗ . τῷ δ ' αὐτῷ τρόπῳ δειχθήσεται |
| ἐν τῷ χειμῶνι , αἱ δὲ γυναῖκες τῷ θέρει . χρόνοι δὲ ἱστάμενοι ταῖς κυούσαις καθάπερ τοῖς ἄλλοις ζῴοις οὐκ | ||
| παρ ' οὗ [ καὶ ] οἱ καιροὶ καὶ οἱ χρόνοι . Πλὴν αἴτιον οὐ πάντων ἀλλὰ μόνων ἀγαθῶν καὶ |
| ἓν κείμενα . Ἐπεὶ δὲ συνέβη ζυγεῖν μέν , οὐ στοιχεῖν δέ , τοῦτο ἡμῶν φροντιζόντων , στοιχεῖν λέγεται εἴ | ||
| αὐτὸς νόμους θέμενος , ὥστε φανερῶς συγγίνεσθαι αὐταῖς καὶ μιᾷ στοιχεῖν , καὶ σχεδὸν εὑρὼν τὰς δύο φύσεις , τοῦ |
| τῶν τετραπλασίων α δ ιϚ σνϚ : μετρεῖται γὰρ ὁ σνϚ καὶ ὑπὸ ἑτέρων ἀριθμῶν , οὐ μὴν ὑπὸ πρώτων | ||
| ٣ ١٠ ٤١ ἡ Θ ١٦ τὸ ἀπὸ τῆς Θ σνϚ ἡ ΚΛ ٨ ٢٦ ٥٤ ἡ ΖΒ ١٠ ١٨ |
| μετὰ τὰς μονάδας ὁ ἐφεξῆς ἀριθμός ἐστιν , οἱ δὲ δεύτεροι κοινῇ μὲν διαφορᾷ χρώμενοι τριάδι , τάξει δὲ οἱ | ||
| ἀπὸ μονάδος ἐπί τε πλάτος καὶ ἐπὶ βάθος γαμμοειδῶς οἱ δεύτεροι ἐφ ' ἑκάτερα καὶ αὐτοὶ γαμμοειδῶς ἀπὸ τετράδος ἀρχόμενοι |
| : καὶ οἱ ἀπὸ τῶν ΖΗ , ΔΛ ἄρα ἴσοι ⃞οί εἰσιν τοῖς ἀπὸ τῶν ΒΛ , ΔΕ ⃞οις : | ||
| : καὶ οἱ ἀπὸ τῶν ΖΗ , ΔΛ ἄρα ἴσοι ⃞οί εἰσιν τοῖς ἀπὸ τῶν ΒΛ , ΔΕ ⃞οις : |
| δύο δοθεισῶν εὐθειῶν πρὸς ὀρθὰς ἀλλήλαις τῶν ΑΓ , ΓΛ γεγράφθωσαν ἀντικείμεναι αἱ ΖΑΗ , ΘΓΚ , ὧν διάμετρος μὲν | ||
| διὰ τοῦ Α καὶ ἑκατέρου τῶν Μ Ν μέγιστοι κύκλοι γεγράφθωσαν : ἥξουσιν δὴ καὶ διὰ τοῦ ἑτέρου πόλου . |
| τοὺς οἰκείους μᾶλλον τῶν πολεμίων : λαβόντες δ ' αὐτὸν ἱππέες τινες εἷλκον ἐς τὸν Πομπήιον , ἐπιβλασφημούμενον ὑπὸ τῶν | ||
| τῆς ει διφθόγγου καὶ βασιλῆς ἀττικῶς διὰ τοῦ η , ἱππέες ἱππεῖς διὰ τῆς ει διφθόγγου καὶ ἱππῆς διὰ τοῦ |
| τοῦ ὅλου φαντασίαν συμπληρωτικοί , καθάπερ καὶ οἱ διὰ πασῶν φθόγγοι τοῦ ἑνὸς κατὰ ὁμοίαν ἀντίληψιν ἀπεργαστικοί . Τὰ μὲν | ||
| . ἔμψυχον μὲν ἡ τῶν ζῴων φωνή , ἄψυχον δὲ φθόγγοι καὶ ἦχοι . τῆς τοῦ ἐμψύχου φωνῆς ἡ μέν |
| καὶ οἱ ἕνα διαλείποντες πάντες οὕτως ἐστίν : ὅτι ἀριθμῶν ἐκτεθέντων ἀπὸ μονάδος κατὰ ἀναλογίαν οἷον διπλάσιος ὡς ἡ μονὰς | ||
| τὸ πλῆθος αὐτῶν ποιοῦσιν ἀριθμὸν διπλάσιον τοῦ συγκειμένου ἐκ τῶν ἐκτεθέντων . Ἔστωσαν γὰρ ἀριθμοὶ ὁποσοιοῦν , οἱ Α , |
| κράσεων ἐννέα διαφοροὶ , τέσσαρες μὲν ἁπλαῖ , τέσσαρες δὲ σύνθετοι , καὶ πρὸς τούτοις ἡ εὔκρατος . καὶ τῶν | ||
| σῴζειν τὰς ἀναλογίας . Τῶν ῥυθμῶν τοίνυν οἱ μέν εἰσι σύνθετοι , οἱ δὲ ἀσύνθετοι , οἱ δὲ μικτοί , |
| Πυθαγόρας προσθεὶς τὴν διὰ πασῶν συνεστήσατο ἁρμονίαν . Πῶς οἱ ἀριθμητικοὶ τῶν φθόγγων λόγοι εὑρέθησαν . Περὶ τῆς κατὰ τὸ | ||
| τῶν δαπανημάτων : καὶ γὰρ τὸ ἁπλοῦν λογίζεσθαι , οἱ ἀριθμητικοὶ λογισταί . ἀπολογεῖσθαι δὲ ἐπὶ τοῦ λόγῳ τὴν κατηγορίαν |
| ἀπὸ τῶν ρκ μονάδων καὶ τὰς ρ μονάδας . Ἐναπελείφθησαν Ϟοὶ ε ἴσοι μονάσιν κ . . Ἐπεὶ ἡ λεῖψις | ||
| ιβ . Κοινὴ προσκείσθω ἡ λεῖψις . δυ ἄρα γ Ϟοὶ λ μο θ ἴσα δυνάμεσι δ μονάσιν θ . |
| ἴση τῇ ἐκ τοῦ κέντρου , αἱ διάμετροι πᾶσαι ἴσαι φανήσονται : ὥστε ὁ τροχὸς κυκλοειδὴς φαίνεται . ἐὰν δὲ | ||
| λέγω , ὅτι ἄνισοι αἱ διάμετροι αἱ ΑΒ , ΓΔ φανήσονται , καὶ μεγίστη μὲν ἡ ΓΔ , ἐλαχίστη δὲ |
| ἀλγυνῶ . τί ταῦτ ' ἄλλως ἐλέγχεις ; διόπερ οἱ λοιποὶ τὰς ἀντιστρόφους ἀπὸ τούτου παρεδέχοντο πάντες , ὡς ἔοικεν | ||
| ἀφαιροῦμεν μονάδας ξ , τουτέστιν ἀπὸ ὁμοίων ὅμοια . Καὶ λοιποὶ Ϟοὶ τρεῖς ἴσοι Ϟῷ ἑνὶ καὶ μονάσι μ . |
| , τριπλάσιόν ἐστι τοῦ ἀπὸ τῆς ΕΚ . καὶ ἐπεὶ τριπλασίων ἐστὶν ἡ ΑΒ τῆς ΒΓ , ὡς δὲ ἡ | ||
| τριπλασίων ἢ ἐλάσσων ἢ τριπλασίων . ἔστω πρότερον μείζων ἢ τριπλασίων , καὶ ἐγγεγράφθω εἰς τὸν ΑΒΓΔ κύκλον τετράγωνον τὸ |
| τῶν εʹ : γίνονται ρπʹ . Ἐὰν δὲ Τόσοι πόδες εὐθυμετρικοὶ πόσοι πήχεις εὐθυμετρικοί ; ποίει τὸ ἀνάπαλιν . Ἐὰν | ||
| καὶ ὧν ἥμισυ γίνεται ρνʹ . Ἐὰν δὲ Τόσοι πόδες εὐθυμετρικοὶ πόσοι πήχεις εὐθυμετρικοί ; τὸ ἀνάπαλιν ποίει : δὶς |
| μέν εἰσι τέλειοι , οἱ ἀπὸ προσώπων ἅμα καὶ πραγμάτων συνεστηκότες , οἱ δὲ ἀτελεῖς οἱ θατέρου τούτων ἐλλιπεῖς , | ||
| ἴσα κτήσηται τοῖς πολλοῖς ὑμῶν , καὶ πάλιν πλούσιοι πολλοὶ συνεστηκότες , τὸ δοκεῖν τινες εἶναι δι ' εὐπορίαν προσειληφότες |
| ιδ πρὸς τὸν δ καὶ ἁπλῶς οἱ καθ ' ἑβδομάδα προχωροῦντες πρὸς τοὺς ἀπὸ δυάδος εὐτάκτους ἀρτίους . εἶτα πάλιν | ||
| καὶ ἀπὸ ἑξαγώνου καὶ ἑπταγώνου βάσεως καὶ ἐπὶ πλεῖον ἀεὶ προχωροῦντες πυραμίδας συστησόμεθα τοὺς ἀναλογοῦντας ἑκάστῃ πολυγώνους ἐπισωρεύοντες ἀλλήλοις ἀπὸ |
| ἐλάσσονος κύκλου τοῦ ΕΖ , καὶ φανερόν , ὅτι τὸ ἐγγραφόμενον πολύγωνον ἀρτιόπλευρόν ἐστιν : ὅπερ ἔδει δεῖξαι . Δύο | ||
| τε σπέρματι καὶ τοῖς τρόποις . ὃν ὁρῶν εἰς ὑμᾶς ἐγγραφόμενον ἐγέλων ἐννοῶν , ὡς αὐτίκα μάλα αὐτὸν ἐξαλείψει τὸ |
| καὶ πολλοὶ τοὺς καλλίστους βασιλέας , ὡς μέχρι νῦν οἱ Ἀθάνατοι καλούμενοι Αἰθίοπες , ὥς φησι Βίων ἐν Αἰθιοπικοῖς . | ||
| συνέστησεν , ὥστε τοὺς ἀντιπάλους τρέψασθαι . Οἱ μὲν οὖν Ἀθάνατοι τοῦτον τὸν τρόπον πάντες ᾤχοντο : ὁ δὲ Κομνηνὸς |
| εἰ γὰρ μή εἰσιν οἱ Ε , Ζ , Η ἐλάχιστοι τῶν τὸν αὐτὸν λόγον ἐχόντων τοῖς Α , Β | ||
| Τοῖς μὲν οὖν πλησίον τῆς διακεκαυμένης καὶ πρὸς μεσημβρίαν οἰκοῦσιν ἐλάχιστοι γίνονται οἱ ἀρκτικοὶ διὰ τὸ καὶ τὴν ἔγκλισιν τοῦ |