εἰ γὰρ μή εἰσιν οἱ Ε , Ζ , Η ἐλάχιστοι τῶν τὸν αὐτὸν λόγον ἐχόντων τοῖς Α , Β | ||
Τοῖς μὲν οὖν πλησίον τῆς διακεκαυμένης καὶ πρὸς μεσημβρίαν οἰκοῦσιν ἐλάχιστοι γίνονται οἱ ἀρκτικοὶ διὰ τὸ καὶ τὴν ἔγκλισιν τοῦ |
οἱ δὲ ἐλάχιστοι ἀριθμοὶ τῶν τὸν αὐτὸν λόγον ἐχόντων αὐτοῖς μετροῦσι τοὺς τὸν αὐτὸν λόγον ἔχοντας ἰσάκις ὅ τε μείζων | ||
Δ πέντε . δῆλον δή , ὅτι τὸν τριάκοντα πάντες μετροῦσι , ὁ μὲν δύο μετὰ τοῦ ιε , ὁ |
ΒΔ . Ποιοῦσι δὲ τὰ αὐτὰ καὶ οἱ ἰσάκις αὐτῶν πολλαπλάσιοι . Τὸ γὰρ ἀπὸ τῆς ΓΒ τετράγωνον καὶ τὸ | ||
ὁ ζη τῷ κν : οἱ γὰρ τοῦ αὐτοῦ ἰσάκις πολλαπλάσιοι ἴσοι ἀλλήλοις εἰσίν . ἔστι δὲ καὶ ὁ ηθ |
ἑκατέρου αὐτῶν καὶ μονάδος μεταξὺ κατὰ τὸ συνεχὲς ἀνάλογον ἐμπίπτουσιν ἀριθμοί , τοσοῦτοι καὶ εἰς αὐτοὺς μεταξὺ κατὰ τὸ συνεχὲς | ||
τῷ ὀνόματι πέντε : γένη , εἴδη , ϲχήματα , ἀριθμοί , πτώϲειϲ . Γένη μὲν οὖν εἰϲι τρία : |
. Ἐπιτυχόντες δὲ τούτου , οὐκ ἐβούλοντο ἀπαλάσσεσθαι , ὡς συντιθέμενοι νύκτας καὶ ἡμέρας μένειν . Διὸ λέγεσθαι τοῦτο ἐπὶ | ||
, καὶ μένουσι νεαροί . ὁμοίως δὲ καὶ ἐν ἅλμῃ συντιθέμενοι διαμένουσιν . Ἀκμαίους τοὺς σικύους φυλάξεις , ἐὰν ἐν |
, Β οἱ ΓΔ , ΕΖ : λέγω , ὅτι ἰσάκις ὁ ΓΔ τὸν Α μετρεῖ καὶ ὁ ΕΖ τὸν | ||
ἔχον αὔξησιν τοιανδί , τουτέστιν ᾗ οὕτως ὑπερέχον , ἤγουν ἰσάκις : ποιότης γὰρ ὑπεροχῆς ἐστι τὸ ἰσάκις πολλαπλασιάζεσθαι . |
δὴ τοσούτων εἶναι μονάδων τοὺς δύο πρώτους ἀριθμούς , οἵπερ διπλάσιοι ἔσονται τῶν λοιπῶν δύο , ὄντων δηλονότι καὶ αὐτῶν | ||
, ὀγδοήκοντα δὲ ἐκ Μυκηνῶν καὶ ἐκ Φλιοῦντος διακόσιοι , διπλάσιοι δὲ τούτων Κορίνθιοι : παρεγένοντο δὲ καὶ Βοιωτῶν ἑπτακόσιοι |
' ἂν γένοιό γ ' ἀθλιωτάτη γυνή . ἴτω : περισσοὶ πάντες οὑν μέσωι λόγοι . ἀλλ ' εἶα χώρει | ||
μὲν οὖν ἄρτιον δεῖ εἶναι , ὅπως ἴσοι ἐνῶσιν οἱ περισσοὶ καὶ ἄρτιοι καὶ μὴ ἑτερομερῶς : ἐπεὶ γὰρ πρότερος |
εἶναι καὶ ἀριθμόν , συνάξει , ὅτι ἄρτιοί εἰσιν ἢ περιττοὶ οἱ ἀστέρες , οὔτε δὲ τὸ περιττοὺς αὐτοὺς εἶναι | ||
εἰς περιττόν . καὶ οἱ ἄρτιοι δὲ ἵπποι δύνανται καὶ περιττοὶ γενέσθαι ἑτέρου προσθήκῃ . ἀλλὰ καὶ τὸ χρῶμα εἰ |
αἱ διατριβαί . νεπόδεσσιν : ἰχθύσιν . ὁμοῖαι : καὶ ἴσοι , ἀττικόν . Οἱ μὲν γάρ : χωρισμὸς τῶν | ||
ἴσοι οἱ κοινωνοὶ ἐν δημοκρατίᾳ , κατ ' ἀναλογίαν δὲ ἴσοι οἱ ἐν ταῖς ὀλιγαρχίαις καὶ οἱ ἐν ταῖς ἀριστοκρατικαῖς |
τούτων λαμβανομένων μέσων γίνονται αἱ τρεῖς μεσότητες : οἷον ἔστωσαν ἄκροι ὅ τε μ καὶ ὁ ι . ἐὰν μὲν | ||
. Ἀλλὰ τριῶν ὄντων τοῦ γένους ἀρχηγετῶν , οἱ μὲν ἄκροι μετωνομάσθησαν , Ἀβραάμ τε καὶ Ἰακώβ , ὁ δὲ |
δὲ τῶν μὲν Ἑλλήνων ὥσπερ τροφέων ἐπιμελόμενοι , χεῖρά τε ὑπερέχοντες καὶ οἷον κειμένους ἀνιστάντες , τοὺς μὲν ἀρίστους καὶ | ||
ὁ πίθων , οὕτω παρὰ τοῖς ἄφροσι καὶ κόλαξιν οἱ ὑπερέχοντες λέγονται σοφοὶ καὶ πάντα ἔχειν τὰ ἀγαθά : δεῖ |
εἰσι ταῦτα τὰ στοιχεῖα , μεταξὺ δὲ δύο στερεῶν δύο μέσοι ἀνάλογοι γίνονται . ἐν δὲ ταῖς Πολιτείαις ζητεῖ εἰ | ||
παρ ' Αἰολεῦσι τὸ μέσοι , γαίας καὶ νιφόεντος ὠράνω μέσοι : τῇδε ἔχει καὶ ἀπὸ τοῦ τηλόθι τὸ τήλοι |
κατὰ πλάτος τριπλάσιοι , οἱ δὲ ὑποκάτω τῶν ἐπάνω ὁμοταγῶν ἐπίτριτοι , ὁμοταγεῖς ὁμοταγῶν : ἐκ γὰρ τῶν τριπλασίων οἱ | ||
κἀνταῦθα ἡ ἀναλογία κατὰ τάξιν . πάλιν γὰρ οἱ ἐφεξῆς ἐπίτριτοι ἔσονται καὶ ἐπιτέταρτοι καὶ ἐφεξῆς : λαβὲ γὰρ θ |
ιϚʹ κεʹ . μέσους δὲ ἔχουσι τοὺς ἑτερομήκεις οὕτως . τετράγωνοι δύο ἐφεξῆς ὅ τε αʹ καὶ δʹ : τούτων | ||
ἄνω μὲν εἷς ὀδοὺς προσπέφυκε , κάτω δὲ ἄλλος , τετράγωνοι δὲ ἄμφω , πυγόνος δὲ τὸ μῆκος . τοσοῦτον |
γοῦνα φέρει . . ἡ διπλῆ ὅτι σαφῶς οἱ Τρῶες ἐλάττονες συνίστανται τῶν Ἑλλήνων , καὶ τῶν ἐπικούρων ἐξεληλυθότων . | ||
τῆς ὑπὸ ΔΗΒ , τουτέστιν δύο τῶν ὑπὸ ΔΕΖ , ἐλάττονες γίνονται συναμφοτέραις τῇ τε ὑπὸ ΔΕΚ καὶ τῇ ὑπὸ |
θέλω ἴσους εἶναι Μο π : ἀλλ ' οἱ δύο συντεθέντες ʂ εἰσι δ καὶ Μο δ . ʂ ἄρα | ||
ἄρα ὁ αος ἔσται ʂ δ . καὶ οἱ τρεῖς συντεθέντες ποιοῦσι τὸν ἐπιταχθέντα ⃞ον , ΔΥ α ʂ β |
ΜΝΞ ἴσον ἐστὶ τῷ ὑπὸ γῆν τοῦ ΟΕΡΠ κύκλου τῷ ΟΠΡ . πάλιν ἐπεὶ αἱ ΖΘ , ΕΗ ἴσαι τε | ||
ΝΖ περιφέρεια τῇ ΖΠ περιφερείᾳ : οἱ ἄρα ΜΝΞ , ΟΠΡ κύκλοι ἴσον ἀπέχουσιν ὁποτερασοῦν τῶν διχοτομιῶν . οἱ δὲ |
. βʹ Ἐὰν ἀριθμὸς εἰς δύο ἀριθμοὺς διαιρεθῇ , δύο ἐπίπεδοι ἀριθμοὶ οἱ γενόμενοι ἔκ τε τοῦ ὅλου καὶ ἑκατέρου | ||
βέλεσιν αἱ βελοστάσεις κατασκευάζονται , αἱ μὲν [ ὀρυκταὶ ] ἐπίπεδοι [ καὶ κατώρυχοι ] , αἱ δὲ ὑπόγειοι πρὸς |
δὴ μεταξὺ τούτων τῶν τετραγώνων πείπτοντες ἀριθμοί εἰσιν προμήκεις : ἀνισάκις [ ] γὰρ ἄνισοι , ὡς οἱ ? μεταξὺ | ||
? [ ] οὖν ἀνισάκις ? ? ἄνισοι [ ] ἀνισάκις σφηνίσκοι [ καλοῦνται ] . , οἱ [ δέ |
τοὺς οἰκείους μᾶλλον τῶν πολεμίων : λαβόντες δ ' αὐτὸν ἱππέες τινες εἷλκον ἐς τὸν Πομπήιον , ἐπιβλασφημούμενον ὑπὸ τῶν | ||
τῆς ει διφθόγγου καὶ βασιλῆς ἀττικῶς διὰ τοῦ η , ἱππέες ἱππεῖς διὰ τῆς ει διφθόγγου καὶ ἱππῆς διὰ τοῦ |
τῶν ἐπιτετάρτων οἱ ἐπιτετραμερεῖς , καὶ ἐφεξῆς . οἷόν εἰσιν ἡμιόλιοι δ , Ϛ , θ . λαβὲ ἀπὸ τῶν | ||
πρὸς τὸ δεύτερον καὶ τὸ τρίτον πρὸς τὸ τέταρτον : ἡμιόλιοι γὰρ ἀμφότεροι ἀμφοτέρων . καὶ τὰ ἰσάκις τοίνυν πολλαπλάσια |
, ὁ ὅλος ἄρτιος ἔσται . Συγκείσθωσαν γὰρ περισσοὶ ἀριθμοὶ ὁσοιδηποτοῦν ἄρτιοι τὸ πλῆθος οἱ ΑΒ , ΒΓ , ΓΔ | ||
πλῆθος τῶν αβ βγ γδ δε εζ . Ἐὰν ὦσιν ὁσοιδηποτοῦν ὅροι ἐν ἴσῃ ὑπεροχῇ , ἑξῆς ἀλλήλων κείμενοι , |
τινὰ δὲ καὶ διάφωνα . σύμφωνα μὲν , ἐπειδὴ οἱ περιέχοντες φθόγγοι διάφοροι τῷ μεγέθει ὄντες , ἅμα κρουσθέντες ἢ | ||
σφισιν ἐφεστήκασι τρίποδες χαλκοῖ μέν , μνήμης δὲ ἄξια μάλιστα περιέχοντες εἰργασμένα . σάτυρος γάρ ἐστιν , ἐφ ' ᾧ |
ἐφεξῆς γωνίας τὰς ὑπὸ ΑΒΓ , ΑΒΔ δύο ὀρθαῖς ἴσας ποιείτωσαν : λέγω , ὅτι ἐπ ' εὐθείας ἐστὶ τῇ | ||
Ε , Ζ πολλαπλασιάσαντες τοὺς Η , Θ , Κ ποιείτωσαν : λέγω , ὅτι οἵ τε Δ , Ε |
, ἐπὶ μὲν τῶν περιττῶν ἐκθέσεων ὁ μέσος τῶν ἄκρων ὑποδιπλάσιος ἦν , ἐπὶ δὲ τῶν ἀρτίων ἴσοι οἱ μέσοι | ||
σνϚʹ πρὸς σμγʹ , καὶ οἱ τούτοις ὑπεναντίοι ὅ τε ὑποδιπλάσιος καὶ ὁ ὑποτριπλάσιος καὶ ὁ ὑποτετραπλάσιος καὶ ὁ ὑφημιόλιος |
καὶ ὁ η καὶ ὁ ι καὶ πάντες οἱ εὐτάκτως ἄρτιοι . πρόλογος δὲ τοῦ μὲν β ὁ γ , | ||
δὶς μέρος τὸν δὲ λβ δύναμιν : καὶ ἀμφότεροι ἀρτιάκις ἄρτιοι : καὶ πάλιν τὸν λβ ἐπὶ τὸν β πολλαπλασιάζεις |
κατὰ τοὺς κυνόδοντας ἐπῆρται , οἷς δὲ τὰ κατὰ τοὺς τομεῖς , κυνώδεις . Τῶν ἐρώντων ὑπάρχει σημεῖα τοιαῦτα : | ||
τὰ αὐτὰ δὴ καὶ οἱ ΘΕΖ , ΘΖΜ , ΘΜΝ τομεῖς ἴσοι ἀλλήλοις εἰσίν . ὁσαπλασίων ἄρα ἐστὶν ἡ ΛΒ |
μετ ' αὐτοὺς πεντάγωνοι , εἶτα ἐπὶ τούτοις ἑξάγωνοι καὶ ἑπτάγωνοι καὶ ἐπ ' ἄπειρον : προσαγορεύονται δέ , ὡς | ||
, μέχρις ἄν τις θέλῃ . οἱ δὲ τούτοις ἀκόλουθοι ἑπτάγωνοι τοὺς μὲν γνώμονας ἔχουσι πεντάδι μὲν διαφέροντας , τετράδι |
ἐν τῷ ἀπὸ τῆς μονάδος ἀριθμῷ εὐτάκτῳ τῶν ἐφεξῆς πάντων τριπλάσιοί εἰσι προχωροῦντες , ἐφ ' ὅσον βούλεταί τις παρακολουθεῖν | ||
τὸ βάθος καὶ τὴν ὑποτείνουσαν . ἐκ μὲν γὰρ διπλασίων τριπλάσιοί τε καὶ ἡμιόλιοι φύσονται , ἐκ δὲ τριπλασίων τετραπλάσιοί |
, τριπλάσιόν ἐστι τοῦ ἀπὸ τῆς ΕΚ . καὶ ἐπεὶ τριπλασίων ἐστὶν ἡ ΑΒ τῆς ΒΓ , ὡς δὲ ἡ | ||
τριπλασίων ἢ ἐλάσσων ἢ τριπλασίων . ἔστω πρότερον μείζων ἢ τριπλασίων , καὶ ἐγγεγράφθω εἰς τὸν ΑΒΓΔ κύκλον τετράγωνον τὸ |
διοικῶν . ἄξονες καὶ κύρβεις διαφέρουσιν . οἱ μὲν γὰρ ἄξονες ἦσαν τετράγωνοι , οἱ δὲ κύρβεις τρίγωνοι . καὶ | ||
, ὧν κορυφαὶ μὲν τὰ Α , Β σημεῖα , ἄξονες δὲ αἱ ΑΗ , ΒΘ εὐθεῖαι , τὰ δὲ |
τετράκις δʹ ιϚʹ . οἱ μὲν οὖν τετράγωνοι πάντες τοὺς ἑτερομήκεις περιλαμβάνουσι κατὰ τὴν γεωμετρικὴν ἀναλογίαν καὶ μέσους αὐτοὺς ποιοῦσι | ||
πρὸς ἑαυτοὺς διαφορὰς τοὺς περισσοὺς μόνον ἔχουσιν , οἱ δὲ ἑτερομήκεις τοὺς ἀρτίους : ἂν δὲ καὶ τὸν πρῶτον ἑτερομήκη |
, οἱ πρῶτοι κατὰ πλάτος καὶ οἱ ὑπ ' αὐτοὺς τετραπλάσιοι πάντες εἰσίν , οἱ δὲ ὑποκάτω τῶν ἐπάνω ἐπιτέταρτοι | ||
' αὐτῶν ἐπίτριτοι καὶ ἀπὸ τούτων ἐπιτριμερεῖς , εἰ δὲ τετραπλάσιοι ἐπιτέταρτοί τε καὶ ἐπιτετραμερεῖς καὶ ἀεὶ οἱ ἑξῆς , |
ἑκάστῳ καὶ ὄνομα οἰκεῖον πρόσκειται . οἱ μέν γε δύο λόχοι διλοχία καλεῖται , ἐξ ἀνδρῶν δύο καὶ τριάκοντα , | ||
: ἤδη δὲ καὶ ἐς λόχους καταχωρισθέντων τῶν πεζῶν , λόχοι ἐνεβλήθησαν ἐναλλὰξ τῶν ψιλῶν . τὸν δὲ ἀριθμὸν τάξεώς |
στοι κινδυνεύουσι νόθοι νόθους εἰσποιεῖσθαι , χρόνῳ τὴν ἀρχαίαν φύσιν διαφθείραντες , ὥσπερ ἐν συνοικίᾳ τῇ πάσῃ γῇ ζῶντες , | ||
δὲ ὀλιγωρίας προτιμήσαντες καὶ χαρισάμενοι τὰς οὐσίας , ἀλλὰ μὴ διαφθείραντες , ἵνα καὶ ἑτέρους καὶ ἑαυτοὺς ὠφελήσωσι , | |
καὶ διλοχίτης ὁ τούτου ἡγούμενος : οἱ δὲ τέσσαρες λόχοι τετραρχία , καὶ ὁ τούτου ἡγούμενος τετράρχης τεσσάρων καὶ ἑξήκοντα | ||
διλοχία καὶ πόσων ἀνδρῶν καὶ τίς ὁ διλοχίτης . Τί τετραρχία καὶ τίς ὁ τετράρχης καὶ ὁπόσων ἀνδρῶν . Τί |
' ὅτε τὴν τάξιν αὐτῶν ἀμείβοντες , τινὰ δὲ καὶ ἐλλείποντες . Μαρκελλίνου . Θαυμασίως ἀπὸ τοῦ τελείου στοχασμοῦ πρῶτον | ||
τὸ μὴ πάνυ εὑρίσκεσθαι . οἱ γὰρ περὶ τὰς ἡδονὰς ἐλλείποντες καὶ τοῦ δέοντος ἔλαττον ἐπιθυμοῦντες αὐτῶν οὐ πάνυ γίνονται |
δύναμιν διαρρέουσαν συνιστᾶσιν , εὐαισθησίας δὲ ποιητικοί : οἱ δὲ νοτιώτεροι συμπληρωτικοὶ κεφαλῆς καὶ τῶν αἰσθητηρίων ἀμβλυντικοί , κοιλίαν δὲ | ||
γνωριζομένων : ἤδη δὲ τἀπέκεινα διὰ ψῦχος ἀοίκητά ἐστι . νοτιώτεροι δὲ τούτων καὶ οἱ ὑπὲρ τῆς Μαιώτιδος Σαυρομάται καὶ |
ὑπεροχάς . . Ἐπεὶ ὁ τρίτος καὶ ὁ τέταρτος δὶς λαμβανόμενοι μετὰ τοῦ πρώτου καὶ δευτέρου ἅπαξ λαμβανομένων ὑπερέχουσι τοῦ | ||
τῶν προτάσεων τὸ Δίων ἀληθεύει . ὅσον δὴ οἱ οὕτως λαμβανόμενοι τῶν ἐκείνως διαφέρουσι , τοσοῦτον καὶ οἱ κατηγορικοὶ συλλογισμοὶ |
ἐπιζευγνυμένη εὐθεῖα ἐν τῷ αὐτῷ ἐπιπέδῳ ἐστὶ ταῖς παραλλήλοις . Ἔστωσαν δύο εὐθεῖαι παράλληλοι αἱ ΑΒ , ΓΔ , καὶ | ||
ἀπάγεται γὰρ εἰς τὰ πτωτικὰ τοῦ ἑπτακαιδεκάτου . κγʹ . Ἔστωσαν δύο κύκλοι οἱ ΑΒ ΓΔ , καὶ ἐκβεβλήσθω ἡ |
ἐκεῖνο ἐν τῇ ἀποκυήσει ὡροσκοπήσει . Τῶν μακρῶν ἀνδρῶν οἱ οἰκοδεσπόται τῆς γεννήσεως ἐν τοῖς ἀπογείοις εἰσὶ καὶ ὡροσκόποι τούτων | ||
τὸν Ὑδροχὸν ὁ Κρόνος τε καὶ Ἑρμῆς τοὺς Διδύμους , οἰκοδεσπόται πέφυκαν τοῦ τοιούτου τριγώνου . καὶ τὸν μὲν Κρόνον |
. καὶ ἐπεὶ οἱ ἀπὸ τοῦ αου τρεῖς τοῦ δου ὑπερέχουσι Μο κ , ᾧ δὲ ὑπερέχουσιν οἱ αου τρεῖς | ||
ταῖς οἰκοδομαῖς αἰεὶ κατὰ τὴν εἰς τὸν λόφον ἀνάβασιν ἀλλήλων ὑπερέχουσι καὶ τὸ σχῆμα τῆς ὅλης πόλεως θεατροειδὲς ἀποτελοῦσι . |
πρόσφορα τοῖς ἑκάστοτε ὑποκειμένοις προσώποις : παρ ' ὃ καὶ μικρότεροι ἐν ταῖς τῶν ἠθῶν χρείαις εἰσίν , ὁπόταν καὶ | ||
ἐν γὰρ τοῖς μετὰ ταῦτα τόποις καὶ τοῖς περὶ Βαρύγαζα μικρότεροι καὶ τῷ χρώματι χλωροὶ καὶ χρυσίζοντες ὑπαντῶσιν . Μετὰ |
ληψόμεθα τὰς δύο μέσας ἀνάλογον ἐν τῇ συνεχεῖ ἀναλογίᾳ . ἐκκείσθωσαν γὰρ ταῖς ΕΔ ΔΖ ΔΜ ἴσαι αἱ ΕΔ ΔΖ | ||
: ποδηγεῖ γὰρ πρὸς τὴν τοῦ ζητουμένου κατάληψιν . οἷον ἐκκείσθωσαν ταυταδὶ τὰ στοιχεῖα ἰσάριθμα ὄντα καὶ ἀναλογοῦντα τοῖς νοήμασι |
πρὸς τὸ ΗΘΚΛΜ πολύγωνον : ὅπερ ἔδει δεῖξαι . Οἱ κύκλοι πρὸς ἀλλήλους εἰσὶν ὡς τὰ ἀπὸ τῶν διαμέτρων τετράγωνα | ||
Ζ σημεῖα . λέγω , ὅτι οἱ ΑΒ , ΓΔ κύκλοι μέγιστοί εἰσιν . ἐπεζεύχθω γὰρ ἡ ΕΖ : ἡ |
γένωνται , πάθεσιν ἀκαθάρτοις καὶ παρὰ φύσιν ἡδοναῖς χρήσονται . ἑξάγωνοι δὲ πρὸς ἀλλήλους τὴν αὐτὴν ἀποτελεσματογραφίαν τοῖς τριγώνοις ἔχουσιν | ||
πεντάγωνοι , ἐκ δὲ τῶν πενταγώνων καὶ τῶν τριγώνων οἱ ἑξάγωνοι , ἐκ δὲ τῶν ἑξαγώνων καὶ τῶν τριγώνων οἱ |
ὀρθότατος μὲν αὐτῶν ἐστιν ὁ ΒΖΓ , ταπεινότατος δὲ ὁ ΥΘ , οἱ δὲ ΜΝΞ , ΟΠΡ ὁμοίως εἰσὶ κεκλιμένοι | ||
ὅτι οἱ ΜΝΞ , ΒΖΓ , ΟΠΡ , ΣΤ , ΥΘ κύκλοι κεκλιμένοι ἔσονται πρὸς τὸν ΑΒΓ κύκλον , καὶ |
παράκειται . ἰστέον ὅτι ἑτερόμηκες νῦν καλεῖ κοινότερον καὶ τοὺς προμήκεις κατὰ τὸν καθόλου γεωμετρικὸν κανόνα τὸν νῦν ἡμῖν δεδειγμένον | ||
δυάδος μονάδι μόνῃ μείζων ἐστί : καὶ ἐφεξῆς ὁμοίως . προμήκεις δέ εἰσιν οἱ πλείοσι μονάσιν ἔχοντες τὸ ἄνισον . |
πολλὰ ἐφέστια ὅλα ἐξηλείφθη μέρους αὐτῶν μεθισταμένου : οὐ γὰρ ἐδικαίουν οἱ προσήκοντες τοῖς ἐξιοῦσιν ἀπολείπεσθαί τε τῶν φιλτάτων καὶ | ||
διατάξι ἐγένετο λόγων πολλὸς ὠθισμὸς Τεγεητέων τε καὶ Ἀθηναίων : ἐδικαίουν γὰρ αὐτοὶ ἑκάτεροι ἔχειν τὸ ἕτερον κέρας , καὶ |
, οἱ δὲ ἔλαττον , ἔτι δὲ καὶ τοῖς μεγέθεσι διαλλάττοντες , διὰ τὸ ποτὲ μὲν ἀπογειότεροι , ποτὲ δὲ | ||
, δύο δὲ οἱ χαυλιόδοντες πολὺ τῷ μεγέθει τῶν ἄλλων διαλλάττοντες . σαρκο - φαγεῖ δ ' οὐ μόνον ἀνθρώπους |
Πυθαγόρας προσθεὶς τὴν διὰ πασῶν συνεστήσατο ἁρμονίαν . Πῶς οἱ ἀριθμητικοὶ τῶν φθόγγων λόγοι εὑρέθησαν . Περὶ τῆς κατὰ τὸ | ||
τῶν δαπανημάτων : καὶ γὰρ τὸ ἁπλοῦν λογίζεσθαι , οἱ ἀριθμητικοὶ λογισταί . ἀπολογεῖσθαι δὲ ἐπὶ τοῦ λόγῳ τὴν κατηγορίαν |
οἷς θεμελιοῦται δεκάς , ἑβδομάδος φύσιν περιέχειν : οἱ γὰρ λεχθέντες ἀριθμοὶ τέσσαρας μὲν ἔχουσιν ὅρους , τὸν πρῶτον , | ||
[ ] . : ἐπεὶ τόλμαν γε καὶ θάρσος οἱ λεχθέντες ὑπ ' αὐτοῦ λόγοι τῶν γραφέντων μᾶλλον εἶχον , |
δὲ ἄξιον , τὸ πείθεσθαι τοῖς ἄρχουσιν , οὗτοι μὲν κράτιστοι κατὰ γῆν , ὑμεῖς δὲ κατὰ θάλατταν . ἔπειτα | ||
τῶν διανοημάτων μνημονεύειν ; Ἐπεὶ οὐδ ' οἱ αὐτοὶ διανοεῖσθαι κράτιστοι καὶ μνημονεύειν , καὶ ἐπίσης αἰσθήσει χρησάμενοι οὐκ ἐπίσης |
καὶ ποιοῦσι τὸ πρόβλημα . λα . Εὑρεῖν δύο ἀριθμοὺς ἴσους τετραγώνῳ , ὅπως ὁ ὑπ ' αὐτῶν , ἐάν | ||
ιϚ # ʂ ιϚ . βούλομαι τοὺς δύο λοιπὸν συντεθέντας ἴσους εἶναι Μο ιϚ . ΔΥ ἄρα ε Μο ιϚ |
, ἐν πλείστῳ δὲ χρόνῳ δύνειν Κριόν . Πάλιν ἐπεὶ ταπεινότατος γίνεται ὁ τῶν ζῳδίων κύκλος Αἰγόκερω αης μοίρας μεσουρανούσης | ||
κύκλον , καὶ ὀρθότατος μὲν αὐτῶν ἔσται ὁ ΒΖΓ , ταπεινότατος δὲ ὁ ΥΘ , οἱ δὲ ΜΝΞ , ΟΠΡ |
ἀπὸ τῶν ρκ μονάδων καὶ τὰς ρ μονάδας . Ἐναπελείφθησαν Ϟοὶ ε ἴσοι μονάσιν κ . . Ἐπεὶ ἡ λεῖψις | ||
ιβ . Κοινὴ προσκείσθω ἡ λεῖψις . δυ ἄρα γ Ϟοὶ λ μο θ ἴσα δυνάμεσι δ μονάσιν θ . |
τὸν μέγιστον πόδα τοῦ ἐλαχίστου πενταπλάσιον . Διαφέρουσι δὲ οἱ μείζονες πόδες τῶν ἐλαττόνων ἐν τῷ αὐτῷ γένει ἀγωγῇ . | ||
δέκα , οἱ δὲ καὶ τριάκοντα , ἱστοροῦνται δὲ καὶ μείζονες . φολίσι τε κέχρηνται καθ ' ὅλον τὸ σῶμα |
καὶ μὴ πρότερον , ἀλλὰ νῦν γε εἰρημένον , οἱ μέγιστοι τῶν ἐν ταῖς τέχναις οὐχ ᾧ μετεσχήκασι τῆς τέχνης | ||
πόλος δὲ ἔστω τῶν παραλλήλων ὁ Α , καὶ γεγράφθωσαν μέγιστοι κύκλοι οἱ ΑΜ ΑΝ ΑΞ : δεῖξαι ὅτι μείζων |
βάσις πρὸς τὴν ΓΔ . ἐπεὶ γὰρ ἴσοι εἰσὶν οἱ κῶνοι , ὡς ἄρα ὁ περὶ τὸ Η κέντρον κύκλος | ||
γὰρ καὶ κατὰ τρίγωνα ὁρώσης τῆς ὄψεως , ὅταν οἱ κῶνοι ἐξ ἀμφοτέρων τῶν ὀμμάτων ἐξίωσι καὶ προσβάλωσιν αἱ ὄψεις |
μακροῦ ὄντων , ἐπαρθεὶς ὁ στρατηγὸς αὐτῶν , ὅτι καὶ πενταπλάσιοι τῶν πολεμίων ἦσαν οἱ σφέτεροι , τήν τε παρεμβολὴν | ||
τὸν ε οὕτως ὡς ὁ ε πρὸς τὴν μονάδα : πενταπλάσιοι γὰρ ἀμφότεροι . Καὶ διὰ τοῦτο ὅσων ἐστὶν ἡ |
: μάλιστα μὲν οὖν τυχόντες κακοποιοὶ μαρτυροῦντες τοῖς τόποις ἢ ἐναντιούμενοι : ἐὰν δὲ ἀγαθοποιοὶ τύχωσιν ἐπίκεντροι ἀνατολικοὶ καὶ προσθετικοί | ||
ὑπὸ Θουκυδίδου γραφέντων συκοφαντεῖν ἐπιβαλοίμεθα , οὐ ταῖς κοιναῖς μόνον ἐναντιούμενοι δόξαις , ἃς ἅπαντες ἐκ τοῦ μακροῦ χρόνου παραλαβόντες |
πρὸς τὸν ΒΘΕΖ κῶνον : ὅπερ ἔδει δεῖξαι . Οἱ ἰσοϋψεῖς κῶνοι ὀρθοὶ διπλασίονα λόγον ἔχουσι πρὸς ἀλλήλους ἤπερ τὰ | ||
, ΚΘΕΖ κῶνοι πρὸς ἀλλήλους εἰσὶν ὡς αἱ βάσεις , ἰσοϋψεῖς ἄρα εἰσὶ διὰ τὸ ἀντίστροφον τοῦ θεωρήματος τοῦ ιβʹ |
ἐφεξῆς ἀριθμοί , ἀπογεννῶντες τριγώνους ἢ τετραγώνους ἢ πολυγώνους , γνώμονες καλοῦνται . τοσούτων δὲ μονάδων ἕκαστον τρίγωνον ἔχει πλευρὰς | ||
Ἐν Ἀλεξανδρείᾳ δὲ τῇ αὐτῇ ὥρᾳ ἀποβάλλουσιν οἱ τῶν ὡρολογίων γνώμονες σκιάν , ἅτε πρὸς ἄρκτῳ μᾶλλον τῆς Συήνης ταύτης |
Οἵ τε γὰρ εὐηθέστατοι τῶν πυρετῶν καὶ ἐπὶ σημείων ἀσφαλεστάτων βεβῶτες τεταρταῖοι παύονται , ἢ πρόσθεν : οἵ τε κακοηθέστατοι | ||
τοὺς ἀνωτάτω καὶ τὸ τρίγλυφον , πάντες ἐν διαστήματι συμμέτρῳ βεβῶτες . ἡ δὲ ναῦς πᾶσα οἰκείαις γραφαῖς ἐπεπόνητο . |
ἐλπίδα ἔχει σωτηρίας τῇ πόλει , Πελοποννησίων ναῦς τε οὐκ ἐλάσσους σφῶν ἐν τῇ θαλάσσῃ ἀντιπρῴρους ἐχόντων καὶ πόλεις ξυμμαχίδας | ||
ἀπεκρίναντο . ἀπέθανον δὲ Βοιωτῶν μὲν ἐν τῇ μάχῃ ὀλίγῳ ἐλάσσους πεντακοσίων , Ἀθηναίων δὲ ὀλίγῳ ἐλάσσους χιλίων καὶ Ἱπποκράτης |
ἡ ΤΠ τῇ ΠΕ ; ἀλλ ' ἡ ΠΕ τῇ ΠΗ ἴση : ἔχει δὴ σύγκρισιν : ἔστιν γὰρ μείζων | ||
ΛΚ ἄξων τῷ ΚΜ ἄξονι , ἴσος ἐστὶ καὶ ὁ ΠΗ κύλινδρος τῷ ΗΧ κυλίνδρῳ , εἰ δὲ μείζων ἐστὶν |
ὁ ἐκ πάντων συγκείμενος ὁ αζ τοῦ μέσου τοῦ γδ πολλαπλασίων ἐστὶ κατὰ τὸ πλῆθος αὐτῶν . ἐπεὶ γὰρ οἱ | ||
καὶ τὰ ἰσάκις πολλαπλάσια τοῦ πρώτου καὶ τρίτου τῶν ἰσάκις πολλαπλασίων τοῦ δευτέρου καὶ τετάρτου ἢ ἅμα ὑπερέχουσιν ἢ ἅμα |
ὡς ἄρα ἡ ΑΠ πρὸς ΠΔ , ἡ ΑΡ πρὸς ΡΒ : καὶ διελόντι ἄρα ἐστὶν ὡς ἡ ΑΔ πρὸς | ||
καὶ τῇ ΒΔ ἴση ἡ ΒΕ . καὶ ἐπιζευχθεῖσα ἡ ΡΒ , ἐκβεβλήσθω ἐπὶ τὸ Θ , καὶ ἀπὸ τοῦ |
ὕψεσιν , ἴσοι εἰσὶν ἐκεῖνοι . Ἔστωσαν ἴσοι κῶνοι καὶ κύλινδροι , ὧν βάσεις μὲν οἱ ΑΒΓΔ , ΕΖΗΘ κύκλοι | ||
ΟΠΡΣ , ΤΥΦΧ ἴσοι ὄντες τοῖς ΑΒΓΔ , καὶ νενοήσθωσαν κύλινδροι οἱ ΠΡ , ΡΒ , ΔΤ , ΤΧ . |
Ἀσκληπιάδης ὁ ἰατρὸς συγγυμνασίαν τῶν αἰσθήσεων . Οὗτοι πάντες οἱ προτεταγμένοι ἀσώματον τὴν ψυχὴν ὑποτίθενται , φύσιν λέγοντες αὐτοκίνητον καὶ | ||
ἦρχε . τῆς δὲ βασιλικῆς ἴλης καὶ τῶν ἄλλων ἑταίρων προτεταγμένοι ἦσαν τῶν τε Ἀγριάνων καὶ τῶν τοξοτῶν οἱ ἡμίσεες |
Τάνταλον , καὶ θαυμάσαντες ὅτι τοῦ παιδὸς αὐτοῦ κατεφρόνησε , συντιθέασι τὰ κρέα , καὶ ἀποτελοῦσι σῶον τὸν Πέλοπα . | ||
: σέ ποτε Διὸς ἀνὰ πύματα νεαρὲ κόρε νεβροχίτων . συντιθέασι δέ τινες καὶ ἑτέρῳ τρόπῳ τὸ τετράμετρον , ὥστε |
τοιούτοις οἱ σάτυροι καθηδύνουσι . λυρικοὶ δέ , οἱ καὶ κυκλικοὶ καὶ διθύραμβοι , ἢ ᾔνουν κυδαίνοντες ἀθλητὰς ἀγῶσι νικῶντας | ||
ὁ αὐτός ἐστιν , ὁμοίως δὲ καὶ εἰ οἱ κοσμικοὶ κυκλικοὶ τῆς γενέσεως σύμφωνοι ἢ οἱ αὐτοί . πρὸς ἐπὶ |
φανερόν , ὡς ἔοικεν , οἳ καὶ τὸν τούτου πατέρα ἀπεστέρουν ὄντα ἐπίτιμον , ὅτι ἡμῖν ἑκόντες οὐκ ἂν ἀπέδοσαν | ||
φανερόν , [ ὡς ] οἵ γε τὸν τούτου πατέρα ἀπεστέρουν ὄντα ἐπίτιμον , ὅτι ἡμῖν ἑκόντες οὐκ ἂν ἀπέδοσαν |
: καὶ οἱ ἀπὸ τῶν ΖΗ , ΔΛ ἄρα ἴσοι ⃞οί εἰσιν τοῖς ἀπὸ τῶν ΒΛ , ΔΕ ⃞οις : | ||
: καὶ οἱ ἀπὸ τῶν ΖΗ , ΔΛ ἄρα ἴσοι ⃞οί εἰσιν τοῖς ἀπὸ τῶν ΒΛ , ΔΕ ⃞οις : |
οὗτοι οὖν οἱ κόκκοι σκληροί τέ εἰσι καὶ μέλανες , στρογγύλοι , ἰσομεγέθεις κέγχροις , οἳ συνεψόμενοι τοῖς ὀσπρίοις οὐ | ||
παίζων ὤφθη σφαίραις τισὶν Ἡρακλείοις . αὗται δέ εἰσι λίθοι στρογγύλοι σταθμὸν ἄγοντες οὐκ ὀλίγον . τούτων κτύπος τε ἀκούεται |
. Ἀλλ ' οἱ μὲν ἐπὶ τοῦ δεξιοῦ ταχθέντες ἐξαρχῆς ἀκέραιοι διέμενον , ὡς αὐτός φησι : τὸ δὲ λοιπὸν | ||
στέφανον , εἰς πολλὴν κατέστησαν ἔριν . οἱ μὲν γὰρ ἀκέραιοι κριταὶ τὸν Ἀριστόδημον ἐβούλοντο τιμῆσαι , καὶ ἦν ὁ |
δηλοῦσιν αἱ προκείμεναι καταγραφαί . Καὶ παραγγέλλει : ! τουτέστι δεκάρχαι : ! πεντάρχαι : ! τετράρχαι : ! Καὶ | ||
τοῖς ἐπιλέκτοις ξυντεταγμένοι καὶ οἱ τῶν σωματοφυλάκων ἡγεμόνες , καὶ δεκάρχαι οἱ τῶν ἐπιλέκτων . ἔστωσαν δὲ ἀμφ ' αὐτὸν |
μείζονος τμήματος ἤπερ ὁ ΟΠΡ . λέγω , ὅτι οἱ ΜΝΞ , ΒΖΓ , ΟΠΡ , ΣΤ , ΥΘ κύκλοι | ||
ὀρθῷ πρὸς τὸ ΜΖΝ τρίγωνον , καὶ ποιεῖ τομὴν τὸν ΜΝΞ κύκλον , τέτμηται δὲ καὶ ἑτέρῳ ἐπιπέδῳ τῷ ὑποκειμένῳ |
, τοιούτων ἐστὶ τὸ γδ τεσσάρων , οἵων δὲ τὸ γδ τεσσάρων , τοιούτων τὸ εζ τριῶν , καὶ οἵων | ||
τοῦ εζ ἐστι τριπλάσιον , ἴσον δὲ τὸ αη τῷ γδ , καὶ τὸ αη ἄρα τοῦ εζ ἐστι τριπλάσιον |
τῶν Ε , Ζ . Ἐὰν ἄρα ᾖ ὁποσαοῦν μεγέθη ὁποσωνοῦν μεγεθῶν ἴσων τὸ πλῆθος ἕκαστον ἑκάστου ἰσάκις πολλαπλάσιον , | ||
, Ε ἰσάκις πολλαπλάσια , ἐπειδήπερ ἐὰν ᾖ ὁποσαοῦν μεγέθη ὁποσωνοῦν μεγεθῶν ἴσων τὸ πλῆθος ἕκαστον ἑκάστου ἰσάκις πολλαπλάσιον , |
: ἤλπιζον γὰρ καὶ τοὺς μὴ προειδότας , εἰ καὶ ὁποσοιοῦν τολμήσειαν , ἐκ τοῦ παραχρῆμα ἔχοντάς γε ὅπλα ἐθελήσειν | ||
ὁ ΑΕ : ὅπερ ἔδει δεῖξαι . Ἐὰν περισσοὶ ἀριθμοὶ ὁποσοιοῦν συντεθῶσιν , τὸ δὲ πλῆθος αὐτῶν ἄρτιον ᾖ , |
κύλινδρος πρὸς τὸν ΖΔ κύλινδρον . Τῶν ἴσων κώνων καὶ κυλίνδρων ἀντιπεπόνθασιν αἱ βάσεις τοῖς ὕψεσι , καὶ ὧν κώνων | ||
. αἱ μὲν οὖν τοῦ στέγους πλευραὶ κατὰ μέσον ἑκάστη κυλίνδρων ὡραΐζονται τμήμασιν , ὁ δὲ κύκλος ἀνειμένος ταῖς αὔραις |
καὶ ὄνομα οἰκεῖον πρόσκειται . οἱ μέν γε δύο λόχοι διλοχία καλεῖται , ἐξ ἀνδρῶν δύο καὶ τριάκοντα , καὶ | ||
δὲ λόχον ἑξκαίδεκα . Ἔσονται δὴ οἱ μὲν δύο λόχοι διλοχία καὶ ὁ ἐπ ' αὐτοῖς ἄρχων διλοχίτης , οἱ |
ηʹ χρησόμεθα ἢ πάλιν τὰς διὰ δύο : οἱ γὰρ συνέχοντες ἀριθμοὶ τὴν ηʹ εἰσὶ βʹ καὶ δʹ : δὶς | ||
τὴν τύχην αὐτῶν νομίσαντες , χειρὶ δὲ χεῖρα πάντες ἀλλήλων συνέχοντες , σαγηνείας εἰκόνα τὴν Ἐρετριέων ἔδειξαν πόρθησιν . ἐπειδὴ |
μεγίστων κινδύνων ἐπηγγέλλοντο πάντα συμπράξειν αὐτῷ προθύμως : οἵ τε ἀργυράσπιδες Μακεδόνες , ὄντες περὶ τρισχιλίους , ὁμοίως ἀπήντησαν μετὰ | ||
πολλοὶ δὲ καὶ κυάνεα εἶχον περιβόλαια . προειστήκεσαν δὲ τούτων ἀργυράσπιδες Μακεδόνες πεντακόσιοι . κατὰ δὲ μέσην τὴν σκηνὴν χρυσοῦς |
οὐκ ἐδέχοντο αὐτόν , ἀλλὰ Φαρναβάζῳ ἔσῳζον αὐτὰς οἱ ἐνόντες φρουροί . ἐκ δὲ τούτου ὁ Μειδίας πέμψας δῶρα τῷ | ||
παράδοσις τῶν αἰσθήσεων πρὸς τὰς μνήμας νοῦς πόλις φύλακες ταύτης φρουροί νέοι εὐφυέστατοι καὶ ὀξεῖς ἐξαγγελία νέων πρὸς τοὺς πρεσβύτας |
ὀξυβελεῖς μεγίστους , εἰς δὲ τὰς ἀνωτάτας ὀξυβελεῖς τε τοὺς ἐλαχίστους καὶ πετροβόλων πλῆθος , ἄνδρας τε τοὺς χρησομένους τούτοις | ||
ἐκ δὲ τῶν ἄλλων πολιτῶν , ἵν ' ὡς εἰς ἐλαχίστους τὴν βλασφημίαν ἀγάγω , τὸν μαθητήν , εἰ δὲ |
ἐναντίοις ὑπάρχειν : εἰ δὲ πάντας , χωρισθέντες ἂν καὶ μερισθέντες ἀσθενεστέρως διακέοιντο πρὸς τοὺς ὑπεναντίους ἀθρόους ὄντας , εἰ | ||
ἐγκρατεῖς ἦσαν οἱ Κερκυραῖοι , ἀλλὰ καὶ τῆς ἠπείρου . μερισθέντες οὖν οἱ νησιῶται πρὸς τοὺς ἠπειρώτας ἐπεφέροντο , ἐκ |
νώμησεν δ ' ἄρα πᾶσιν ἐπισταδόν : οἱ δὲ θεοῖσι λείψαντες μακάρεσσι πίον μελιηδέα οἶνον . αὐτὰρ ἐπεὶ σπεῖσάν τε | ||
τοῦ ἐξ ἀρχῆς ⃞ου πλευράν , ὥστε οἱ τέσσαρες , λείψαντες αὐτῶν τὰς πλ . , καὶ προσλαβόντες Μοος δ |
ἔχοντα τελέως κινεῖται , ἀλλ ' , ὥς φασιν οἱ εἰρημένοι πρό - τερον ἄνδρες , Πτολεμαῖος , Ξέναρχος , | ||
τῶν ἀγωνιστικῶν λόγων καὶ μέρη τῶν εἰδῶν καὶ τρόποι οἱ εἰρημένοι . ὃ | δὲ ἐν τοῖς Τοπικοῖς εἴρηται , |
σὺν ναρκισσίνῳ , καὶ κλύσαι . Κλυσμοὶ καθαρτήριοι : ὄλυνθοι χειμερινοὶ καυθέντες , καὶ βραχέντες ἐν ὕδατι : ἀποχέαι δὲ | ||
θερινὸς μὲν τροπικὸς κύκλος ὁ παρ ' ἡμῖν ἰσημερινός , χειμερινοὶ δὲ οἱ δύο τροπικοί : φύσει γὰρ λέγοιτ ' |
τρίτην ἑκατέρας τῶν δυεῖν ἐλάσσονα , ἰσάκις ἴσοι ἐλαττονάκις , πλινθίδες ἐκλήθησαν : οἱ δὲ δύο μὲν ἴσας , τὴν | ||
, ἢ ἰσάκις ἴσων ἀνισάκις , ἵνα ἢ δοκίδες ἢ πλινθίδες ὦσιν , εἴτε ἀνισάκις ἀνίσων ἀνισάκις , ἵνα σκαληνοί |
καὶ τὰς αὐτὰς ὠδῖνας διαλυσάμενοι . Ξ ὁμοσπόροι ] οἱ ὁμογενεῖς . Ξ τεθνήκασιν ] ἀπέθανον . τεθνήκασιν ] + | ||
, ὁμογενῆ ἀναγορεύεις τοῖς ἐφημέροις . Λέγω μὲν καὶ ὅτι ὁμογενεῖς αὐτοὺς ἔφην εἶναι , ὡς ἀμφοτέρους ἐκ προκαταρκτικῆς αἰτίας |
τῆς ἀπειρίας τῶν ἀριθμῶν ἐστι , περὶ ὃν ὡς καμπτῆρα εἱλοῦνται καὶ ἀνακάμπτουσι . . § : ἄρτιον γὰρ καὶ | ||
ὅρος τῆς ἀπειρίας τῶν ἀριθμῶν ἐστι περὶ ὃν ὡς καμπτῆρα εἱλοῦνται καὶ ἀνακάμπτουσι . . . . , ὅθεν καὶ |
τοῦ Ἀλκιμέδοντος πρόγονοι . ὕμνον . ἐπειδὴ Τιμοσθένης καὶ Ἀλκιμέδων ἕκτοι ἀπὸ Βλεψιαδῶν ἦσαν . τῶν τὰ στεφάνων φύλλα τοῖς | ||
δώριον , οἱ δὲ πέμπτοι τὸν ὑπολύδιον , οἱ δὲ ἕκτοι τὸν ὑποφρύγιον , οἱ δὲ ἔσχατοι τὸν ὑποδώριον . |
ἑνοειδῆ τὴν ἐξ αὐτῶν φωνὴν γενέσθαι καὶ οἷον μίαν : διάφωνοι δὲ , ὅταν διεσχισμένη πως καὶ ἀσύγκρατος ἡ ἐξ | ||
βαρεῖς καλοῦνται , καὶ πάλιν τῶν οὐχ ὁμοφώνων οἱ μὲν διάφωνοι προσαγορεύονται οἱ δὲ σύμφωνοι , καὶ διάφωνοι μὲν οἱ |
ὄντων . τοιοῦτοι γὰρ οἱ σπουδαῖοι πρακτικοὶ τῶν καλῶν καὶ θεωρητικοὶ τῶν ὄντων . ἐπεὶ τοίνυν τὸ ἀγαθὸν καὶ ἡδὺ | ||
τὸ ὅμοιον μεταβάσεως αὐτοὺς δυσωπεῖν . εἴπερ γὰρ τοῦ ὁμοίου θεωρητικοὶ καθεστήκασιν , ἐπεὶ τῷ εἰς ἀντικνήμιον τύπτεσθαι ἀνάλογόν ἐστι |
ἄπιοι δὲ καὶ ῥοιαὶ ὁμοίως αἱ τοιαῦται ψύχουσιν . οἱ στύφοντες φοίνικες ψυχρὸν ἔχουσι χυμόν , θρίδαξ , ἴντυβοι μετριώτερον | ||
' ἧττον ὄντες ὑγροί τε καὶ ξηροὶ καὶ γλυκεῖς καὶ στύφοντες : ἀλλὰ τῶν ἄκρων ἀφορισθέντων εὐφορώτατον ἤδη σοι τὸ |
ἀσπίδα εἶχεν οὐχ ἕκαστος , ὅσοι δὲ ἠπόρουν τούτων , περιεβέβληντο αἰγῶν νάκας καὶ προβάτων , οἱ δὲ καὶ θηρίων | ||
σκηνὴν ὑπέκειντο κίονες εἰκοσαπήχεις περίχρυσοι καὶ διάλιθοι καὶ περιάργυροι . περιεβέβληντο δὲ ἐν τῷ περιβόλῳ πολυτελεῖς αὐλαῖαι ζῳωτοὶ καὶ διάχρυσοι |
πελειάδες ἀμφὶς ἕκαστον χρύσειαι νεμέθοντο , δύω δ ' ὑπὸ πυθμένες ἦσαν , ἀκουστέον οὐ πυθμένας δύο , ἀλλ ' | ||
γὰρ διπλασιεπιδιμεροῦς τρίτων ἐν πέμπτῳ μέρει τῶν διαφορῶν ἐνοφθήσονται οἱ πυθμένες , τῆς διπλασιεπιτριμεροῦς τετάρτων ἐν ἑβδόμῳ , τῆς δὲ |