| ἐπὶ τὸ Ψ . ὥστε καὶ ἡ ΩΞ περι - φέρεια ἴση ἐστὶ τῇ ΟΨ . ἐν ᾧ ἄρα τὸ | ||
| . ὥστε καὶ ἡ μὲν ἐπὶ τῆς ΕΖ περι - φέρεια τοιούτων ἐστὶν Ϙα νε , οἵων ὁ περὶ τὸ |
| ἐναρμοσθῇ , μεταξὺ πεσεῖται τῶν Β καὶ Ε σημείων . ἐνηρμόσθω ἡ ΑΖ ἴση τῇ ἐκ τοῦ κέντρου , καὶ | ||
| εὐθειῶν ἐναρμόσαι τῷ ΑΚΓΗ κύκλῳ εὐθεῖαν ἴσην τῇ ΔΖ . ἐνηρμόσθω ἡ ΑΛΜ , καὶ ἐπεζεύχθω ἡ ΑΗ : ἴση |
| τὴν ΑΖ , τῇ δὲ Δ τὴν ΖΗ , καὶ ἐπιζεύξας τὴν ΒΗ ταύτῃ παράλληλον ἤγαγον τὴν ΖΘ . ἐπεὶ | ||
| . εἰ δ ' ἀρεταί : ὅτι ἀρεταὶ κατάκειται εἴρηκεν ἐπιζεύξας πληθυντικῷ ἑνικὸν ῥῆμα τὸ κατάκειται . καὶ ὅτι ὀργὰν |
| ἀποκλίνουσα θέσις ἐκ τῆς μεταλαμβανομένης ἐπιστροφῆς , ὡς ἔχουσιν αἱ ΡΦ καὶ ΤΧ γραμμαί . Λοιπὸν δὲ ἕνεκεν τοῦ προχείρου | ||
| Α πόλου μέγιστοι κύκλοι γεγράφθωσαν οἱ ΟΤ , ΠΥ , ΡΦ , ΣΧ . ἐπεὶ οὖν αἱ ΖΟ , ΟΗ |
| ἀπὸ τοῦ τῆς συμβολῆς τῶν περιφερειῶν σημείου ἐπὶ τὰ κέντρα ἐπιζεῦξαι εὐθείας περιεχούσας τὴν λείπουσαν εἰς τὰς δύο ὀρθὰς τῆς | ||
| Θ , καθ ' ὃ τέμνει τὴν τετραγωνίζουσαν , καὶ ἐπιζεῦξαι τὴν ΘΗ , καὶ δίχα τεμόντα τὴν ΑΒ καὶ |
| σημείου δοθέντος τοῦ Ϡ , λαβεῖν δύο σημεῖα ὡς Ε͵ Ζ͵ , ὥστε εἶναι ὡς μὲν τὴν ΔΗ πρὸς τὴν | ||
| τῆς ΔϠ , κἂν τὸ Θ͵ μεταξὺ βούληται πίπτειν τῶν Ζ͵ Ϡ . οὐδὲν γὰρ ἕξει καὶ ὧδε λέγειν ἀνασκευαστικόν |
| τοῦ κυλίνδρου , ἐπειδήπερ κἂν περὶ τὸν ΑΒΓΔ κύκλον τετράγωνον περιγράψωμεν , τὸ ἐγγεγραμμένον εἰς τὸν ΑΒΓΔ κύκλον τετράγωνον ἥμισύ | ||
| μείζων ἐστὶν ἢ τὸ ἥμισυ τοῦ κώνου , ἐπειδήπερ ἐὰν περιγράψωμεν περὶ τὸν κύκλον τετράγωνον , καὶ ἀπ ' αὐτοῦ |
| καὶ ἡ μὲν ΛΕ γίνεται δ κβ , ἡ δὲ ΔΕΛ ὅλη τῶν αὐτῶν κβ ἔγγιστα , τοσαύτας ἀποστῆναι δεῖ | ||
| τξ , τοιούτων σμ , εἴη ἂν καὶ ἡ ὑπὸ ΔΕΛ τῶν λοιπῶν εἰς τὰς δύο ὀρθὰς ρκ . ὥστε |
| τὴν ΔΑΓ καὶ διὰ τοῦ Α τῇ ΔΓ πρὸς ὀρθὴν ἀναστήσωμεν τὴν ΑΒ , δηλαδὴ ἴσης μενούσης τῆς μὲν ΔΑ | ||
| , ΓΔ , ΔΑ παραλληλόγραμμα , καὶ ἀπ ' αὐτῶν ἀναστήσωμεν στερεὰ παραλληλεπίπεδα ἰσοϋψῆ τῷ κυλίνδρῳ , ἑκάστου τῶν ἀνασταθέντων |
| , ἑξάκις ἂν τόσση μιν ὑποδράμοι : αὐτὰρ ἑκάστη ἴση μετρηθεῖσα δύω περιτέλλεται ἄστρα οὐ γραμματικοῦ τοῦτο νοῆσαι , ὅτι | ||
| τοῦ λίθου δυνάμει . Ἀλλὰ οὖσα πρώτη φύσις καὶ οὐ μετρηθεῖσα οὐδὲ ὁρισθεῖσα ὁπόσον δεῖ εἶναιταύτῃ γὰρ αὖ ἡ ἑτέρα |
| ἐν δὲ τῇ γῇ τὸν ΗΘΚ , ἐν δὲ τῷ σκιάσματι τὴν ΝΞ περιφέρειαν , ἐν δὲ τῷ κώνῳ εὐθείας | ||
| Ϙ . Ἡ ὑποτείνουσα εὐθεῖα ὑπὸ τὴν ἀπολαμβανομένην ἐν τῷ σκιάσματι τῆς γῆς περιφέρειαν τοῦ κύκλου , καθ ' οὗ |
| ἦν ἐν τῇ γʹ ἀκρωνύκτῳ , καὶ ἐπεζεύχθωσαν αἵ τε ΘΑΕ καὶ ΘΒΖ καὶ ΘΗΓ καὶ ΝΚΑ καὶ ΝΛΒ καὶ | ||
| περιφερείας τῆς ΓΒ ἐστι διπλῆ : ἴση ἄρα ἡ ὑπὸ ΘΑΕ γωνία τῇ ὑπὸ ΑΘΕ : ὥστε καὶ ἡ ΘΕ |
| τῇ εὐθείᾳ τὸ βάρος ὥστε ἠρεμεῖν : λέγω δὴ ὅτι ἐκβληθεῖσα ἡ ΑΒ εὐθεῖα συμπεσεῖται τῇ πρότερον ἐναπειλημμένῃ . εἰ | ||
| γενέσθαι . ὁμοίως δὲ καὶ ἀπὸ τῆς χολῆς , ἥτις ἐκβληθεῖσα καὶ ἀνατιναγεῖσα πρὸς τὸ τῶν πολεμίων μέρος ἧτταν τούτων |
| ἥλιος εἰς τὰ ἐναντία τῶν ζῳδίων κινούμενος πέντε ζῳδίων περιφέρειαν κεκινήσθω καὶ ἔστω ἐπὶ τοῦ πʹ τόπου : ἀπὸ μὲν | ||
| , τὸ δὲ Δ τὸ κέντρον τοῦ ζῳδιακοῦ , καὶ κεκινήσθω περὶ μὲν τὸ Γ σημεῖον τὸ Ζ κέντρον τοῦ |
| μὲν τοῦ ΕΖΗΘ κύκλου , ὕψους δὲ τοῦ ΝΠ κύλινδρος νενοήσθω ὁ ΕΣ . καὶ ἐπεὶ ἴσος ἐστὶν ὁ ΑΞ | ||
| ΛΜ , καὶ ἐπεζεύχθωσαν αἱ ΜΒ , ΜΚ , καὶ νενοήσθω κῶνος , οὗ κορυφὴ μὲν τὸ Μ σημεῖον , |
| τὴν ΖΛ . δύο δὴ τρίγωνά ἐστι τὰ ΒΑΕ , ΗΖΛ μίαν γωνίαν μιᾷ γωνίᾳ ἴσην ἔχοντα τὴν ὑπὸ ΒΑΕ | ||
| πάλιν ἀποκατασταθῇ ὅθεν ἤρξατο φέρεσθαι , τὰ μὲν ΚΓΔ , ΗΖΛ ἡμικύκλια ἐνεχθήσεται κατὰ τῶν σφαιρῶν , τὸ δὲ ΑΖ |
| δον μέρος τῆς ἀποκαταστάσεως , ἐπὶ τὰς ἡμέρας Ϛ νγʹ κʹʹ , ἀποτελοῦνται μοῖραι β δʹ : ταῦτα προσέθηκα τῇ | ||
| # λαʹ κʹʹ , κατὰ δὲ τὸ ἐλάχιστον # λεʹ κʹʹ , ἡ δὲ διάμετρος τοῦ κύκλου τῆς σκιᾶς κατὰ |
| . ἐπεὶ οὖν τὸ ΜΒΔ τρίγωνον ὀρθογώνιον ὅμοιόν ἐστιν τῷ ΜΒΝ τριγώνῳ ὀρθογωνίῳ , καὶ ἔστιν ἡμίσεια ὀρθῆς ἑκατέρα τῶν | ||
| δέ ἐστι τὸ ΔΜΒ : ἡμικύκλιον ἄρα ἐστὶ καὶ τὸ ΜΒΝ : κατὰ διάμετρον ἄρα ἐστὶ τὸ Μ σημεῖον τῷ |
| καὶ παράλληλοί εἰσιν διὰ τὸ λγʹ τοῦ αʹ . τὸ ΚΒΟΣ ἄρα τετράπλευρον . , . ] τετράπλευρόν ἐστιν , | ||
| κύκλος . Ἤχθω ἀπὸ τοῦ Α σημείου ἐπὶ τὸ τοῦ ΚΒΟΣ τετραπλεύρου ἐπίπεδον κάθετος ἡ ΑΨ καὶ συμβαλλέτω τῷ ἐπιπέδῳ |
| δύνει : ἐν δὲ τῷ τῆς ἡμέρας χρόνῳ ὁ ἥλιος διερχέσθω περιφέρειαν τὴν οπʹ , καὶ τῇ ποʹ ἴση ἔστω | ||
| πεποιήσθω κατὰ τὸ Η , τὴν δὲ λοιπὴν τὴν ΗΕ διερχέσθω ἐν τετάρτῳ μέρει περιφορᾶς . Λέγω , ὅτι διὰ |
| ἐφ ' ἑαυτόν , οὑτωσὶ καὶ τὸ τρίγωνον , ἀλλαχόθεν ἐπιζεύξαντες ἐπὶ τὰ πέρατα τῆς εὐθείας συγκροτοῦμεν ἐκ τούτων ἓν | ||
| ὑφ ' ἣν ὑποτείνει ἡ τοῦ τετραγώνου πλευρά , καὶ ἐπιζεύξαντες καὶ τὰ αὐτὰ τοῖς πρότερον κατασκευάσαντες δείξομεν τὸν διὰ |
| τουτέστιν οἱ κινοῦντες ἔστωσαν ἄνθρωποι μʹ , ἡ δὲ ὑπὸ ΚΜΝ γωνία , τουτέστιν ἡ ὑπὸ ΕΘΛ , διμοίρου ὀρθῆς | ||
| , καὶ τῇ ὑπὸ ΑΘΔ γωνίᾳ ἴση συνεστάτω ἡ ὑπὸ ΚΜΝ , καὶ ἀπὸ τῶν Κ Λ κάθετοι αἱ ΛΟ |
| Ὑδροχόον : ἅπερ οὐ φαίνεται . δῆλον οὖν ὅτι ὁ εζη κύκλος ἤτοι ἐπὶ τὰ αὐτὰ τῷ παντί , βραδύτερον | ||
| τὴν ξμ κίνησιν ἀποκαθεστακέτω τὸν χψ ἐπὶ τὸν ἐπίκυκλον τὸν εζη , καὶ αὐτὸς ὁ ἥλιος , ἐνεχθεὶς ὁμοίαν λοιπὴν |
| καὶ διάμετρος ἐκβληθεῖσα ἡ ΑΓΔ , καὶ ἀπὸ τοῦ Δ διῆκται πρὸς τὴν κοίλην περιφέρειαν ἡ ΔΛΞ , περιφέρεια ἄρα | ||
| καὶ ἀπὸ τῆς κατὰ τὸ Α ἐπαφῆς εἰς τὸν κύκλον διῆκται εὐθεῖα ἡ ΑΓ , ἡ ἄρα ὑπὸ ΘΑΓ ἴση |
| ΑΠ [ ] [ ] ΤΩΙΨΗΙΚ [ ] [ ] ΩϹ καὶ Μ [ ] [ ] θανάτω ? [ | ||
| : ΕΥΦ ! [ ! ] ! ! [ ] ΩϹ ! ! [ ] # ΚΑΡΝΕΙϹΚΟΥ # ΦΙΛΙϹΤΑ Β |
| . Ταὐτὸ δεῖ νοεῖν ἐπὶ πάντα τὸν κύκλον τοῦ τε ὑπεργείου καὶ ὑπογείου μέρους καὶ μήτινα ἔχειν ἀμφιβολίαν . Καὶ | ||
| οὔσης αὐτῆς . Ἐπειδὴ πολλὰ ἔργα τῆς γεωργίας ποτὲ μὲν ὑπεργείου , ποτὲ δὲ ὑπογείου τῆς σελήνης οὔσης , προβαίνειν |
| εἰς τοσαῦτα μέρη διῃρημένης καλῶς ἔχειν ἐνόμισα τά τε λόγῳ γεωμετρικῷ θεωρούμενα [ καὶ ἀναγκαιότατα περὶ τὴν τῶν βαρῶν κίνησιν | ||
| γὰρ τῷ μουσικῷ , καθὸ μουσικός ἐστιν , οὐδὲ τῷ γεωμετρικῷ . οὐκοῦν ὠφελῆσαι θέλεις ; πρὸς τί ; εἰπὲ |
| ἀπέχουσα ἐν ἀρχῇ τοῦ Σκορπίου ὥρας ἰσημερινὰς δ , καὶ ἐκβληθεῖσαι αἱ ΓΔ , ΑΒ περιφέρειαι τεμνέτωσαν ἀλλήλας μὲν κατὰ | ||
| καὶ ἐπιζευχθεῖσαι αἱ ΚΕ , ΚΖ , ΚΗ , ΚΘ ἐκβληθεῖσαι προσπιπτέτωσαν ἐπιπέδῳ τινὶ παραλλήλῳ ὄντι τῷ ΑΒΓΔ κατὰ τὰ |
| ἴσα τμήματα ἴσων κύκλων τὰ ΑΒΓ , ΔΕΖ , καὶ ἀπειλήφθωσαν ἴσαι περιφέρειαι αἱ ΑΒ , ΔΕ , καὶ κάθετοι | ||
| δὲ τῶν ζῳδίων κύκλος θέσιν ἐχέτω τὴν ΑΕΓΔ , καὶ ἀπειλήφθωσαν ἴσαι περιφέρειαι αἱ ΑΔ , ΓΕ : κατὰ διάμετρον |
| ΓΘΖ ἐστιν ἴση . ἡ δὲ ὑπὸ ΓΘΖ τῇ ὑπὸ ΔΘΗ ἴση : κατὰ κορυφὴν γάρ : καὶ ἡ ὑπὸ | ||
| Β τοῦ ΓΗΒ τριγώνου ἴση τῇ πρὸς τῷ Η τοῦ ΔΘΗ τριγώνου , ἡ δὲ πρὸς τῷ Β τῇ πρὸς |
| τινὸς κύκλου τοῦ ΑΔ περιφερείας τὰς ΑΕ , ΕΔ ἴσας ἀφαιρείτωσαν πρὸς τὸν μέγιστον τῶν παραλλήλων τὸν ΖΕΗ , καὶ | ||
| , ὦ θεοί , ἢ ἀκροάσασθαι ἐπικύψαντας αὐτῶν ; ὥστε ἀφαιρείτωσαν αἱ Ὧραι τὸν μοχλὸν ἤδη καὶ ἀπάγουσαι τὰ νέφη |
| αὐτῶν ια . καὶ ἔστιν ὡς τξ πρὸς μζ μβʹ μʹʹ οὕτως πγ πρὸς ια . . . , . | ||
| σκιᾶς κατὰ μὲν τὸ μέγιστον ἀπόστημα τῆς σελήνης ἑξηκοστὰ μʹ μʹʹ , κατὰ δὲ τὸ ἐλάχιστον ἀπόστημα ἑξηκοστὰ μϚʹ . |
| σκιᾶς πλάτος σεληνῶν εἶναι δύο . Ϛʹ . Τὴν σελήνην ὑποτείνειν ὑπὸ πεντεκαιδέκατον μέρος ζῳδίου . Ἐπιλογίζεται οὖν τὸ τοῦ | ||
| τῇ ὑπὸ ΕΑΓ ἴση διὰ τὸ καὶ τὸ ΔΓ τμῆμα ὑποτείνειν αὐτάς . Πόθεν , ὅτι ἡ πρὸς ὀρθὰς αὐτῇ |
| τὸ Η , ἐπειδὴ περὶ τὸ περίγειόν ἐστιν , καὶ ἐπιζευχθεισῶν τῆς τε ΕΗ καὶ τῆς ΒΗ , ἵνα ἡ | ||
| Γ ση μείων ἐν τῇ περιφερείᾳ τοῦ ἐκκέντρου ὄντων . ἐπιζευχθεισῶν τοίνυν τῶ ΖΓ , ΖΑ , ἑκατέρα τῶν Α |
| τὴν ] ὀρθὴν γωνίαν εὐθείας περιστρεφόμενον τὸ τρίγωνον ποιεῖ τὴν κωνικὴν ἐπιφάνειαν ἡ ΘΛ [ ἀπὸ τοῦ ] Θ τῆς | ||
| ἄπειρον αὔξεται τῆς γραφούσης εὐθείας εἰς ἄπειρον προσεκβαλλομένης , καλῶ κωνικὴν ἐπιφάνειαν , κορυφὴν δὲ αὐτῆς τὸ μεμενηκὸς σημεῖον , |
| , τὰ δὲ νότια μᾶλλον τῷ ὁρίζοντι πελάζειν διὰ τὸ ἐγκεκλίσθαι ἀπὸ τῶν βορείων ἐπὶ τὰ νότια τὸν κόσμον ἐν | ||
| Τούτου δ ' αἴτιόν ἐστι τὸ μὴ ἐπίσης παρὰ πᾶσιν ἐγκεκλίσθαι τὸν κόσμον , μηδὲ τὸν βόρειον τῶν πόλων τὰς |
| ] ! ΟΤΙΠΑ ? ? ! φυσε [ ] ! ΙΕ [ ! ] ΕΙΑ ? [ ] ΤΑΥ ! | ||
| ἢ καταπαυομένοις ἢ τὸ ποθεινότατον ; ΑΘΗΝΑΙΟΥ ΝΑΥΚΡΑΤΙΤΟΥ ΔΕΙΠΝΟΣΟΦΙΣΤΩΝ ⋮ ΙΕ ⋮ Δωρίδος ἐκ μητρὸς Φοίβου κοινώμασι βλαστών . χαῖρε |
| . . . . . μζ κε : ἡ δὲ μεσημβρινὴ τῇ ἐπιζευγνυούσῃ τὰ ἐκτεθειμένα δύο πέρατα γραμμῇ παρὰ τὴν | ||
| παραλλήλου λαμβάνεται , οὔθ ' ἡ διορίζουσα εὐθεῖα τὰς σφραγῖδας μεσημβρινὴ εἴρηται : ὥστ ' οὐδὲν εἴρηται πρὸς αὐτόν . |
| ἢ πολλαπλασία . Ἔστω γὰρ τρίγωνον τὸ ΑΒΓ , καὶ συνεστάτω τρίγωνον τὸ ΕΖΗ ἑκάστην πλευρὰν ἔχον ἑκάστης τῶν τοῦ | ||
| μείζων ἐστίν . ἔστω μείζων ἡ ὑπὸ ΑΒΓ . καὶ συνεστάτω πρὸς τῇ ΑΒ εὐθείᾳ καὶ τῷ πρὸς αὐτῇ σημείῳ |
| τὰ οὖν ΗΘ ΘΙ τμήματα ἐλάττω ἐστὶ τοῦ περὶ τὴν ΗΙ τμήματος τοῖς τμήμασι [ καὶ ] τοῖς ὑπὸ τοῦ | ||
| τμήμασιν ἀπὸ τοῦ ἐντὸς κύκλου . τὸ γὰρ ἐπὶ τῆς ΗΙ τμῆμα ἴσον ἦν τοῖς τε ΗΘ ΘΙ τμήμασι καὶ |
| ἁπλᾶς , ἀλλὰ καὶ τρίτην ἄλλην τὴν περὶ κύλινδρον ἕλικα γραφομένην : καὶ αὕτη γάρ , φασίν , ὁμοιομερὴς ὥσπερ | ||
| ἀρχαὶ ἀπὸ φωνηέντων ἐγίνοντο , τὴν ου συλλαβὴν ἑνὶ στοιχείῳ γραφομένην . τοῦτο δ ' ἦν ὥσπερ γάμμα διτταῖς ἐπὶ |
| περιφέρειαν . γεγράφθω γὰρ διὰ τοῦ Η παράλληλος κύκλος ὁ ΝΗΞ , καὶ ἔστωσαν κοιναὶ τομαὶ τῶν ἐπιπέδων αἱ ΑΚ | ||
| ὁ ΑΒΓ κύκλος ὀρθός ἐστι πρὸς ἕκαστον τῶν ΔΛΜ , ΝΗΞ , ΒΕΓ κύκλων . ἐπεὶ οὖν ἐν σφαίρᾳ παράλληλοι |
| , τοὺς βουλευτὰς ᾐτησάμην . καὶ τοίνυν διοικήσεως νῦν πρῶτον ἀχθείσης πολλὰ ὑπὸ πολλῶν ἠδικημένος , ὥσπερ εἰκός ἐστι τὸν | ||
| τοῦ ἐκκέντρου πηλικότησιν . κατὰ ταὐτὰ δὲ καὶ ἐνθάδε καθέτου ἀχθείσης ἐπὶ τὴν ΔΒ τῆς ΑΛ , ἐάν τε τὴν |
| μένοντι ὡς οἱ κινούμενοι κῶνοι καὶ σφαῖραι περὶ τὸν ἴδιον ἄξονα . τῆς δ ' εἰς εὐθὺ φορᾶς πλείονά ἐστιν | ||
| . καὶ ὡς ἄρα ὁ ΗΘ ἄξων πρὸς τὸν ΚΛ ἄξονα , οὕτως ὅ τε ΑΒΗ κῶνος πρὸς τὸν ΓΔΚ |
| τοῦ δʹ ἢ οὔ . Ἐρχέσθω πρότερον καὶ ἔστω τὸ αγδβʹ , καὶ ἐν τῇ περιφορᾷ τῆς σφαίρας μετακεκινήσθω τὸ | ||
| καὶ διὰ τῶν πόλων αὐτῶν μέγιστοι κύκλοι γεγραμμένοι εἰσὶν οἱ αγδβʹ αεζβʹ , ὁμοία ἄρα ἐστὶν ἡ γεʹ περιφέρεια τῇ |
| γωνιῶν μείζων ἐστίν . Ἔστω τρίγωνον τὸ ΑΒΓ , καὶ προσεκβεβλήσθω αὐτοῦ μία πλευρὰ ἡ ΒΓ ἐπὶ τὸ Δ : | ||
| μὴ ὑπάρχοντος ἡλίου . κείσθω κάτοπτρον τὸ ΔΖ , καὶ προσεκβεβλήσθω τῇ ΕΔ ἐπ ' εὐθείας ἡ ΔΒ , ἄχρις |
| , ὥστ ' εἰς δύο γενέσθαι . οὐκοῦν οὐδ ' ἡμικύκλιον ἔσται , ἀλλὰ τὸ κέντρον ἀεὶ θατέρῳ μέρει τοῦ | ||
| δὲ καὶ κύκλος καὶ ἡμικύκλιον ἔχουσιν : ὁριζόμενοι γὰρ τὸ ἡμικύκλιον κεχρήμεθα τῷ κύκλῳ , οὐκέτι ἀνάπαλιν . ὁμοίως καὶ |
| μεῖζόν ἐστιν : ὅπερ ἔδει δεῖξαι . Ϛʹ , λʹ ΑΛΛΩΣ Ἔστω ἡ δοθεῖσα εὐθεῖα ἡ ΑΒ . δεῖ δὴ | ||
| ΚΟΤΕΕΙ . Ζηλοῖ , ὀργίζεται , φθονεῖ , βασκαίνει . ΑΛΛΩΣ . Προτρέπεται πρὸς γεωργίαν διὰ τοῦτο . Ἐν γὰρ |
| διατιθέμενον δὲ καὶ τὸν ὠκεανὸν ὑπ ' αὐτῆς κατὰ τοὺς ἑβδομαδικοὺς ἀριθμοὺς ὁρῶμεν : νουμηνίᾳ μὲν μέγιστος ἐν τῷ πλημμύρειν | ||
| Κρόνου , ἐν αἷς κατεδικάσθη . Ἢ πάλιν πειρατέον τοὺς ἑβδομαδικοὺς κύκλους εἰς μθʹετηρίδας κατάξαντας ἀπολύειν ἀπὸ τοῦ ἀφέτου ἀνὰ |
| ΓΑ , ΑΒ . καὶ φανερόν , ὅτι , ἐὰν διαχθῇ τις καὶ ἄλλη εὐθεῖα διὰ τοῦ Α ὡς ἡ | ||
| τὸν ΑΒΓ κύκλον ὁμοίως εἰσὶ κεκλιμένοι . Ἐὰν εἰς κύκλον διαχθῇ τις εὐθεῖα εἰς ἄνισα τέμνουσα τὸν κύκλον , καὶ |
| ΘΜ ἐπὶ τὸν ἀπὸ τοῦ ΚΒ ⃞ον , μετὰ τοῦ ηκις ὑπὸ ΗΘ . ΚΒ , καὶ ὁ ἀπὸ τοῦ | ||
| ΒΔ , τῷ ἴσῳ ἀλλήλων ὑπερεχέτωσαν : δεικτέον ὅτι ὁ ηκις ὑπὸ ΑΒ . ΒΓ , προσλαβὼν τὸν ἀπὸ τοῦ |
| ΓΕΝ ! καὶ ΟΥ ! [ ] [ καθάπερ ] ΠΡΑ ! ! [ ] [ ] ΚΕΙΝΠΑ ! [ | ||
| ΡΑΞ γωνία τῆς ὑπὸ ΠΑΝ . ὅτι δὲ ἡ ὑπὸ ΠΡΑ γωνία ἀμβλεῖά ἐστιν , ἐκδηλότερον οὕτω δειχθήσεται : ἐπεὶ |
| γεγράφθω κύκλος ὁ ΑΕΖΓ , καὶ ἐκβεβλήσθωσαν αἱ ΑΒΕ , ΑΔΖ , ΑΗΘ : ἴση ἄρα διὰ τὸ πρὸ τούτου | ||
| γωνία τὴν ἡμίσειαν αὐτῆς ὑποτείνουσα δεδομένη ἔσται καὶ ὅλον τὸ ΑΔΖ τρίγωνον , δῆλον : ἐπεὶ δὲ τῆς ΑΓ εὐθείας |
| νοήσωμεν μεσημβρινὸν κύκλον τὸν ΑΒΓΔ καὶ ζῳδιακοῦ μὲν ἡμικύκλιον τὸ ΑΕΖΓ , ὁρίζοντος δὲ τὸ ΒΕΔ περὶ πόλον τὸ Η | ||
| διαστήματι δὲ ὁποτερῳοῦν τῶν ΒΑ , ΒΓ γεγράφθω κύκλος ὁ ΑΕΖΓ , καὶ ἐκβεβλήσθωσαν αἱ ΑΒΕ , ΑΔΖ , ΑΗΘ |
| ἐστιν καρκίνου ἑπόμενον τῷ ἡμικυκλίῳ , καὶ τὸ Ζ ἡγούμενον αἰγόκερω ἀρχή , ἔστιν ἄρα τὸ Ζ δυτικὸν καὶ τὸ | ||
| αὐτογένεσιν ἀπερχόμενοι . Καταβατικὴ δ ' αὐτοῖς ἡ ἀπ ' αἰγόκερω ὁδός : διὸ ἰαννούαν εἰπόντες τὴν θύραν καὶ ἰαννουάριον |
| πλευρῶν , καὶ τὸ ἐμβαδὸν εἰς ἴσα διαιρεῖται κατὰ τὴν διαγώνιον διὰ τὴν κοινὴν ἰδιότητα τῶν παραλληλογράμμων . ἐπὶ δὲ | ||
| βάσιν τέμῃ ἐκ τῆς κορυφῆς δίχα κατὰ τὴν τοῦ τετραγώνου διαγώνιον τὴν ἀπὸ τῆς ὀρθῆς , ἔσονται δύο στερεαὶ πυραμίδες |
| ὁ γὰρ πρὸς τοῖς δυσὶ διαστήμασι τοῖς ἐν τῇ ἐπιπέδῳ σχηματογραφίᾳ θεωρουμένοις ἐπὶ μῆκος καὶ ἐπὶ πλάτος τρίτον διάστημα προσειληφώς | ||
| γὰρ καὶ α ὁ γ ἐστί , καὶ τῇ γε σχηματογραφίᾳ οὕτως συνίσταται : ἐπὶ μιᾷ μονάδι δύο μονάδες παράλληλοι |
| λέγω ὅτι μείζων ἐστὶν ἡ ὑπὸ ΚΔΛ τῆς ὑπὸ τῶν ΖΔΘ . προγράφεται δὲ τάδε . ληʹ . Ἔστω κύκλος | ||
| ΖΔΘ : ἡ ἄρα ὑπὸ ΚΔΛ μείζων ἐστὶν τῆς ὑπὸ ΖΔΘ . μαʹ . Ἐὰν ἡ ἀπὸ τοῦ ὄμματος προσπίπτουσα |
| κέντρου τοῦ θ , καὶ τῆς μεταξὺ τῶν κέντρων τῆς θκ ἐκβληθείσης ἐφ ' ἑκάτερα , ἐὰν κέντρῳ τῷ θ | ||
| κέντρῳ μὲν τῷ θ τοῦ παντός , διαστήματι δὲ τῷ θκ , γεγράφθαι νοήσωμεν κύκλον τὸν κπρ , ἔπειτα τοῦτον |
| ὁ κόσμος ἀπὸ τῆς δʹ ἀνατολῆς ἐπὶ δύσιν τὴν γʹ στρεφέσθω , ὁ δὲ ἥλιος εἰς τὰ ἐναντία τῷ ζῳδιακῷ | ||
| , πόλοι δὲ αὐτῆς τὰ αʹ βʹ σημεῖα , καὶ στρεφέσθω ὁμαλῶς περὶ τὸν ἑαυτῆς ἄξονα τὸν αβʹ : λέγω |
| καὶ συμπεπληρώσθω τὸ ΣΠ τετράγωνον : φανερὸν δὴ ἐκ τοῦ προδεδειγμένου , ὅτι τὸ ΜΡ μέσον ἀνάλογόν ἐστι τῶν ΣΝ | ||
| ἐπορευόμην χωρίον οὐκ ἄλλης πτώσεώς ἐστιν ἢ τῆς αἰτιατικῆς , προδεδειγμένου τοῦ ἐν εὐθείᾳ μὴ δύνασθαι τὰς προθέσεις καταγίνεσθαι , |
| ἀσύνετον γὰρ τὸ δίχα τοῦ ἄρθρου : χρὴ γὰρ ἀμφότερα συναναφέρεσθαι , ἐπεί τοι , εἰ λείψει τὸ ἄρθρον τοῦ | ||
| ἀτονήσας περὶ τὴν ἑλκτικὴν τοῦ μελαγχολικοῦ ἐνέργειαν , ἐάσῃ τοῦτον συναναφέρεσθαι τῷ αἵματι . κἀντεῦθεν πλεονάσαντος αὐτοῦ καὶ σαπέντος , |
| ἔχει ἀλλ ' ἔτι γίνεται : τὸ δὲ γινόμενον οὐκ ἀπήρτισται . σπουδὴ δὲ καὶ τοῦδε : ἡ τούτου δὲ | ||
| ταύτηι , ἧι ἡ μὲν σφαῖρα κυκλοτερῶς πανταχόθεν εἰς λειότητα ἀπήρτισται , τὸ σφαιροειδὲς δὲ κύκλος , οὐ μὴν ἴσος |
| ἀνωμαλίας ἡ κατ ' ἐπίκυκλον ὑπόθεσις , ὡς ἔφαμεν , περιεχέτω τὸν τρόπον τοῦτον . νοείσθω γὰρ ἐν τῇ τῆς | ||
| ὃς καλείσθω ζῳδιακός . ἡ δὲ κλίσις τῶν ἐπιπέδων τούτων περιεχέτω γωνίαν τοιούτων κγ να κ , οἵων ἐστὶν ἡ |
| ἀπὸ τῶν ἴσων γωνιῶν ἐπὶ τὰς βάσεις κάθετοι εὐθεῖαι γραμμαὶ ἀχθῶσιν , ᾖ δέ , ὡς ἡ τοῦ πρώτου τριγώνου | ||
| τομῶν β σημεῖα ληφθῇ , καὶ ἀφ ' ἑκατέρου παράλληλοι ἀχθῶσιν , ὁμοίως ἴσα ἔσται τὰ γινόμενα ὑπ ' αὐτῶν |
| ἀπέχοντες , ὅσον καὶ ἡ ὑποκειμένη ἑκάστη μοῖρα ἔχει τὸν σταδιασμόν , καὶ οὐκ ἔστι χρεία ποιεῖν τὸν λόγον πρὸς | ||
| ἀπέχοντες , ὅσον καὶ ἡ ὑποκειμένη ἑκάστη μοῖρα ἔχει τὸν σταδιασμόν , καὶ οὐκ ἔστι χρεία ποιεῖν τὸν λόγον πρὸς |
| μαθηματικοῦ , γραμμικῶς αὐτὸ ἀποδεικνύντος , ὅτι τὸ ἕκτον τοῦ ζωδιακοῦ κύκλου μέρος ἀπὸ τῆς μέχρι τῆς ἀνατολῆς ἐκβαλλομένης εὐθείας | ||
| ὡς καὶ ὁ Ἄρατος πρῶτον ἀναγράφει τὰ βορειότερα ἄστρα τοῦ ζωδιακοῦ , ἔπειθ ' οὕτως τὰ νοτιώτερα . Καὶ τὰς |
| Ἔστω ἡ ΑΒ ἡ ἐκ δύο ὀνομάτων ρπ , καὶ διῃρήσθω εἰς τὰ ὀνόματα ὡς εἶναι τὸ μεῖζον ὄνομα ρνε | ||
| τρόπον τοῦ ἐπιδέσμου . ἐπὶ τούτοις ἀμυχαῖς ἐπιπολαίοις τὸ δέρμα διῃρήσθω , μή ποτε τῇ στεγνότητι τῆς πτέρνης μὴ διαφορήσεως |
| τε νάπαι βρέμονται : κύκλῳ δὲ περί σε κισσὸς εὐπέταλος ἕλικι θάλλει . Ἐνταῦτα νῦν οἰμῶξι πρὸς τὴν αἰτρίαν . | ||
| καὶ ὡς ἡ τοῦ ἡμισφαιρίου ἐπιφάνεια πρὸς τοὺς ἐγγραφομένους τῇ ἕλικι τομέας , οὕτως ὁ ΑΖΓ τομεὺς πρὸς τοὺς ἐγγραφομένους |
| τῆς σελήνης ὢν ὑποβέβληται τῷ ζῳδιακῷ παρ ' ὅλον αὐτὸν ἐγκεκλιμένος . Καὶ γὰρ τοῦ βορείου ἐφάπτεται , ἐφ ' | ||
| κάτωθεν νότιος : ἐὰν δ ' ὀρθὸς καὶ μὴ καλῶς ἐγκεκλιμένος μέχρι τετράδος καὶ εὔκυκλος εἴωθε χειμάζειν μέχρι διχομηνίας . |
| καὶ πολὺ , ἀσθενές : σφεδρόν : σφεδανῶ , τὸ θανατῶ : σεσημείωται τὸ σφαῖρα . Πᾶσα λέξις ἐκ τῆς | ||
| καὶ πολὺ , ἀσθενές : σφεδρόν : σφεδανῶ , τὸ θανατῶ : σεσημείωται τὸ σφαῖρα . Πᾶσα λέξις ἐκ τῆς |
| γωνίας ἀπό τινος ὁρωμένου ἀφεθῇ τις εὐθεῖα , πρὸς τὸ κέντρον τοῦ ἐνόπτρου πεσεῖται . Οὐκέτι ὁρᾶται . , ] | ||
| ἐξ ἀμοιβῆς γὰρ ἄλλοτε ἄλλῃ συγκοιμῶνται . μέτρον : γράφεται κέντρον : ζῆλος . Περί : ἕνεκα . ὀλέκονται : |
| χρόνῳ ἀνατέλλουσιν . Ἐπεὶ γὰρ ἐν ἴσῳ χρόνῳ ἀνατέλλει τὸ ΒΘΓ ἡμικύκλιον τῷ ΘΓΗ , κοινὸς ἀφῃρήσθω ὁ τῆς ΘΓ | ||
| ἐχέτω ὡς τὴν ΒΕΓΖ , καὶ ἔστω ὑπὸ γῆν τὸ ΒΘΓ ἡμικύκλιον , καὶ ἀπειλήφθωσαν ἴσαι τε καὶ ἀπεναντίον περιφέρειαι |
| ὁ Ε : καὶ ὁ μὲν ΓΔ τὸν ΒΖ μετρῶν λειπέτω ἑαυτοῦ ἐλάσσονα τὸν ΖΑ , ὁ δὲ ΑΖ τὸν | ||
| ἐλάσσονα τὸν ΗΓ , ὁ δὲ ΗΓ τὸν ΖΘ μετρῶν λειπέτω μονάδα τὴν ΘΑ . Ἐπεὶ οὖν ὁ Ε τὸν |
| ἀπὸ ΑΚ πρὸς τὸ ἀπὸ ΑΖ , τουτέστι τὸ ὑπὸ ΑΖΚ . ὀρθία ἄρα ἐστὶν ἡ ΓΔ τῆς τομῆς : | ||
| διάμετρον τὴν ΚΑ κύκλος ὀρθὸς ὢν πρὸς τὸ διὰ τῶν ΑΖΚ ἐπίπεδον . ἔσται δὴ ὀρθὸς ὁ κῶνος : ἴση |
| ἐργάζονται . ὁ μισθός : ὁ δοθησόμενος ὑμῖν . ἁ τομά : φησὶ δεῖν ἀπεστραμμένην τοῦ ἀνέμου κεῖσθαι ὑπὲρ τοῦ | ||
| : οὕτω γὰρ ἂν λιπαρὸς διαμένοι ὁ καρπός . ἁ τομά : παρατετηρημένως λέγει τοὺς τὰς ἀμάλας θημονοθετοῦντας οὕτω τιθέναι |
| ὁ ΑΒΓ κύκλου τινὸς τῶν ἐν τῇ σφαίρᾳ τοῦ ΓΔ ἐφαπτέσθω κατὰ τὸ Γ σημεῖον . λέγω , ὅτι ὁ | ||
| , κέντρον δὲ τὸ Γ , καὶ τῆς Α τομῆς ἐφαπτέσθω ἡ ΚΛ , καὶ ἐπεζεύχθω ἡ ΛΓ καὶ ἐκβεβλήσθω |
| , ἴση δὲ ἡ μὲν ὑπὸ τῶν ΑΗΓ τῇ ὑπὸ ΚΒΓ , ἡ δὲ ὑπὸ τῶν ΔΘΖ τῇ ὑπὸ τῶν | ||
| αὐτὰς ἐμπέπτωκεν εὐθεῖα ἡ ΓΒ ] , αἱ ἄρα ὑπὸ ΚΒΓ , ΗΓΒ γωνίαι δύο ὀρθαῖς εἰσιν ἴσαι . ὀρθὴ |
| ποτ ' ἄλλαλα , ὃν τὰ τετράγωνα τὰ ἀπὸ τᾶν ἐπιψαυουσᾶν : ὁμόλογον δὲ ἐσσεῖται τὸ περιεχόμενον ὑπὸ τῶν τᾶς | ||
| ποτ ' ἄλλαλα , ὃν τὰ τετράγωνα τὰ ἀπὸ τᾶν ἐπιψαυουσᾶν : ὁμόλογον δὲ ἐσσεῖται τὸ περιεχόμενον ὑπὸ τῶν τᾶς |
| . οὐκ ἐχρησάμεθα δὲ ἐνταῦθα τῇ τοῦ τετάρτου τῶν ὡρῶν παραυξήσει διά τε τὸ συνεχεῖς ἤδη γίγνεσθαι τοὺς παραλλήλους καὶ | ||
| ἐστιν ἰσημερινῶν ιϚ . ἐχρησάμεθα δὲ τῇ καθ ' ἕκαστον παραυξήσει ἐπὶ μὲν τῶν κλιμάτων τῇ καθ ' ἡμιώριον πάλιν |
| ἀφεψήματοϲ πιτύρων καὶ ϲικύου ἀγρίου ῥίζηϲ καὶ κενταυρίου νί - τρου τε καὶ μέλιτοϲ ἢ ἅλμῃ ϲὺν μέλιτι καὶ ἐλαίῳ | ||
| ἐγὼ μέντοι καὶ τοιούτῳ χρῶμαι ἐναργῶς ποιοῦντι . ἀφρονί - τρου γο . βʹ . βρέχων ἐν οἴνῳ Ἀμιναίῳ κυάθων |
| τῆς Α , ἴσον παρὰ τὴν ΒΓ παραβεβλήσθω ἐλλεῖπον εἴδει τετραγώ - νῳ , καὶ ἔστω τὸ ὑπὸ τῶν ΒΔ | ||
| τετραγώνισον τὸν κζ , εἶτα λαβὲ τὴν πλευρὰν τοῦ γεγονότος τετραγώ - νου ἀπὸ τοῦ κζ , εἶτα ἀναβίβασον αὐτὴν |
| , ὡς ἐπὶ τἀγαθὸν καὶ τὴν ἀρχὴν τὴν πρώτην , κείσθω διωμολογημένον καὶ διὰ πολλῶν δεδειγμένον : καὶ δὴ καὶ | ||
| . Καὶ ὁ μὲν κατὰ τὰς ἡλικίας λόγος ὧδέ πη κείσθω ἱκανῶς ῥηθείς νῦν δὲ καὶ περὶ τῶν λοιπῶν ῥητέον |
| ΚΟ δίχα τε καὶ πρὸς ὀρθὰς τεμεῖ τὴν ΖΡ . τεμνέτω κατὰ τὸ Σ . καὶ ἐπεὶ ἡμίσους ὀρθῆς ἐστιν | ||
| τινα τῶν ἐν τῇ σφαίρᾳ κύκλων τὸν γδβʹ αἰεὶ δίχα τεμνέτω , μηδέτερος δὲ αὐτῶν μήτε πρὸς ὀρθὰς ἔστω τῷ |
| μενούσης τῆς ΒΔ τὸ ΑΒΓ τμῆμα περιενεχθὲν εἰς τὸ αὐτὸ ἀποκατασταθῇ , ἔσται σφαιρικὴ ἐπιφάνεια , πρὸς ἣν αἱ πρὸς | ||
| τὴν ὀρθὴν γωνίαν τὴν Κ περιενεχθὲν εἰς τὸ αὐτὸ πάλιν ἀποκατασταθῇ , ὅθεν ἤρξατο φέρεσθαι , ἡ μὲν ΒΓ καθ |
| ΜΝ , καὶ ἔτι τὴν ΗΚ τῇ ΝΛ , καὶ περιγεγράφθω περὶ τὸ ΛΜΝ τρίγωνον κύκλος ὁ ΛΜΝ καὶ εἰλήφθω | ||
| οὗ ἔστω κέντρον τῆς βάσεως τὸ Α σημεῖον , καὶ περιγεγράφθω περὶ τὸ Α κύκλος ὁ ΒΓ , καὶ κείσθω |
| λοιπὰ ὁμοίως ἀναγράφει : τὴν δὲ κεφαλὴν τοῦ Ὀφιούχου γράφει ἀνατέλλουσαν καὶ τὴν ἀριστερὰν μόνον χεῖρα : . . . | ||
| τοῦ Καρκίνου , ὁ Ἄρατος θεωρῶν τὴν κεφαλὴν τοῦ Λέοντος ἀνατέλλουσαν καὶ ὑπολαμβάνων τὸ κατὰ τὸν Λέοντα δωδεκατημόριον ἀναφέρεσθαι , |
| καὶ πρὸς τοῖς Γ , Δ , Ε σημείοις ἔστω ἔνοπτρα ἐπίπεδα , ἀφ ' ὧν ὁρᾶται τὸ Α , | ||
| με πολυδάκρυτον Ἑλλάδι λάτρευμα γᾶθεν ἐξορίζει , χρύσεα δ ' ἔνοπτρα , παρθένων χάριτας , ἔχουσα τυγχάνει Διὸς κόρα : |
| τοῦ γεγονότος τετραγώ - νου ἀπὸ τοῦ κζ , εἶτα ἀναβίβασον αὐτὴν καὶ εὑρήσεις οὐδένα ἄλλον ἢ τὸν ε ια | ||
| καὶ ὅρα ταῦτα , πῶς κεῖνται ٣٠ ٦٦ ٢٧٦ ταῦτα ἀναβίβασον , καὶ γίνονται λα ι λϚ , ἅτινα λα |
| ] ! ! ! τως ἀκουστέον , ἐπεὶ ὁ Λέων κατηστέρισται [ ] ? ? ? ? ? ? ὑπὸ | ||
| Πύρρος Παρμενίσκος Σμίνθης Τιμόθεος . . . . . : κατηστέρισται δὲ εἰς τιμὴν τοῦ Ποσειδῶνος : ἐρασθέντος γὰρ τῆς |
| ἴσως ἐπεμοίρασαν τὴν νύκταν καὶ ἡμέραν . ἡ δὲ Ἡλίου λόξωσις καὶ ἡ φορὰ τοῦ πόλου ποτὲ μὲν χθαμαλώτερον τὸν | ||
| θέσιν καὶ ἐπὶ τὰ αὐτὰ μέρη καθὰ δὴ καὶ ἡ λόξωσις οὐχ ὁμοίαν ποιεῖ τὴν θέσιν πανταχοῦ ἐπὶ τοῦ ὁρίζοντος |
| τὸ ἐγγεγραμμένον εἰς τὸν ΑΒΓΔ κύκλον τετράγωνον ἥμισύ ἐστι τοῦ περιγεγραμμένου : καί ἐστι τὰ ἀπ ' αὐτῶν ἀνιστάμενα στερεὰ | ||
| οὐδὲ μέχρι τινὸς ὡρισμένου χρόνου καὶ παραγεγραμμένου , ὅ ἐστι περιγεγραμμένου . Παραγγελία : Δημοσθένης ἐν τῷ κατ ' Αἰσχίνου |
| σκληρὰν ἔχουσι τὴν σάρκα , πλὴν τοῦ παρὰ Ῥωμαίοις καλουμένου γαλαξίου ἐνδοξατάτου τε καὶ ἁπαλοῦ τυγχάνοντος : ἔστι γὰρ καὶ | ||
| τὰ οὐράνια σώματα καὶ ἡ περὶ τούτων ζήτησις , περὶ γαλαξίου περὶ ἄστρων περὶ ἡλίου καὶ σελήνης , ἢ περὶ |
| ἐν πλείονι χρόνῳ ἀνατέλλει ἡ ΕΛ τῆς ΛΜ , καὶ ὀρθοτέρα ἡ ΛΜ περιφέρεια , ἥτις ἐστὶν τοῦ λέοντος , | ||
| δὲ τὴν μὲν Ἰδαίαν τὴν δὲ παραλίαν : τούτων δὲ ὀρθοτέρα καὶ μακροτέρα καὶ τὸ φύλλον ἔχουσα παχύτερον ἡ Ἰδαία |
| , ὡς ἐν τοῖς Ἀποδεικτικοῖς αὐτὸς ἡμᾶς ἐδίδαξε . καὶ τετραγωνίσαι παραλληλόγραμμον ὀρθογώνιον οὐδὲν ἦν ἄλλο ἢ τῆς μέσης εὕρεσις | ||
| ὅρος τοῦτο , ἀποδείξις δὲ ὁ αὐτὸς οὕτως : ὁ τετραγωνίσαι βουλόμενος μέσην ἀνάλογον ζητεῖ εὑρεῖν : ἡ μέση εὑρεθεῖσα |
| ἡ ΓΑ , ὀρθία δὲ ἡ ΓΛ , αἱ δὲ καταγόμεναι ἀπὸ τῶν τομῶν ἐπὶ τὴν ΓΑ καταχθήσονται ἐν τῇ | ||
| καὶ φανοῦνται παράλληλοι , αἱ δ ' ἐπὶ τὴν ΑΓ καταγόμεναι διαχθήσονται μὲν ἀπὸ τοῦ Κ , φανοῦνται δὲ τῇ |
| ἀνθρώπων ἀποτέλεσμα ἀπαραλλάκτως εὑρισκόμενον , κἂν ἐπὶ τοῦ μεσουρανήματος καὶ ἀντιμεσουρανήματος εὑρεθῶσιν , ἑαυτοὺς ἀναμετροῦντες εἷς μὲν ἄνω , εἷς | ||
| ἰατρῶν καὶ σπασμοῖς ἀποθνῄσκοντας , ἐπὶ δὲ τοῦ μεσουρανήματος ἢ ἀντιμεσουρανήματος σταυροῖς ἀνορθουμένους , καὶ μάλιστα περὶ τὸν Κηφέα καὶ |
| ταπεινοῦται μικρόν , σὺ δὲ κατὰ τὸ τῆς ἀποστάσεως ἀνάλογον συλλογίζου περὶ τῆς τοῦ μεγέθους πηλικότητος . οἷον ἔστω ὁ | ||
| ταπεινοῦται μικρόν , σὺ δὲ κατὰ τὸ τῆς ἀποστάσεως ἀνάλογον συλλογίζου περὶ τῆς τοῦ μεγέθους πηλικότητος . οἷον ἔστω ὁ |
| ὡς μὲν τὴν ΔΗ πρὸς τὴν ΗΕ͵ , οὕτως τὴν ΗΕ͵ πρὸς ΗΖ͵ , καὶ τὴν ΗΖ͵ πρὸς τὴν ΗϠ | ||
| Ζ͵ , ὥστε εἶναι ὡς μὲν τὴν ΔΗ πρὸς τὴν ΗΕ͵ , οὕτως τὴν ΗΕ͵ πρὸς ΗΖ͵ , καὶ τὴν |
| αὐτῇ προσαρμοζομένης πρὸς τὰ ἔσχατα γινώσκειν τε τὰ ὄντα καὶ ἐναρμόζειν διὰ τὸ ἔχειν ἐν αὑτῇ τὰ στοιχεῖα κατὰ ἁρμονίαν | ||
| ἢ ἀπολαύσεις ἡδονῶν : πάντα ταῦτα , κἂν πρὸς ὀλίγον ἐναρμόζειν δόξῃ , κατεκράτησεν ἄφνω καὶ παρήνεγκεν . σὺ δέ |
| ἐστὶ τοῦ τοιούτου μέρους τοῦ ἐξ ἀρχῆς ἀριθμοῦ . . Ἀφῃρήσθω κοινὴ λεῖψις τὰ κ . Ϟοὶ ἄρα τρεῖς λείψει | ||
| ὅτι μεῖζόν ἐστιν τὸ ὑπὸ ΔΒΓ τοῦ Ε χωρίου . Ἀφῃρήσθω γὰρ τὸ δοθὲν χωρίον τὸ ὑπὸ ΑΒΗ : λοιποῦ |