, ἴση δὲ ἡ μὲν ὑπὸ τῶν ΑΗΓ τῇ ὑπὸ ΚΒΓ , ἡ δὲ ὑπὸ τῶν ΔΘΖ τῇ ὑπὸ τῶν
αὐτὰς ἐμπέπτωκεν εὐθεῖα ἡ ΓΒ ] , αἱ ἄρα ὑπὸ ΚΒΓ , ΗΓΒ γωνίαι δύο ὀρθαῖς εἰσιν ἴσαι . ὀρθὴ
5337608 ΙΕ
] ! ΟΤΙΠΑ ? ? ! φυσε [ ] ! ΙΕ [ ! ] ΕΙΑ ? [ ] ΤΑΥ !
ἢ καταπαυομένοις ἢ τὸ ποθεινότατον ; ΑΘΗΝΑΙΟΥ ΝΑΥΚΡΑΤΙΤΟΥ ΔΕΙΠΝΟΣΟΦΙΣΤΩΝ ⋮ ΙΕ ⋮ Δωρίδος ἐκ μητρὸς Φοίβου κοινώμασι βλαστών . χαῖρε
5303326 ΩϹ
ΑΠ [ ] [ ] ΤΩΙΨΗΙΚ [ ] [ ] ΩϹ καὶ Μ [ ] [ ] θανάτω ? [
: ΕΥΦ ! [ ! ] ! ! [ ] ΩϹ ! ! [ ] # ΚΑΡΝΕΙϹΚΟΥ # ΦΙΛΙϹΤΑ Β
5205745 ΡΦ
ἀποκλίνουσα θέσις ἐκ τῆς μεταλαμβανομένης ἐπιστροφῆς , ὡς ἔχουσιν αἱ ΡΦ καὶ ΤΧ γραμμαί . Λοιπὸν δὲ ἕνεκεν τοῦ προχείρου
Α πόλου μέγιστοι κύκλοι γεγράφθωσαν οἱ ΟΤ , ΠΥ , ΡΦ , ΣΧ . ἐπεὶ οὖν αἱ ΖΟ , ΟΗ
5171529 ΔΕΛ
καὶ ἡ μὲν ΛΕ γίνεται δ κβ , ἡ δὲ ΔΕΛ ὅλη τῶν αὐτῶν κβ ἔγγιστα , τοσαύτας ἀποστῆναι δεῖ
τξ , τοιούτων σμ , εἴη ἂν καὶ ἡ ὑπὸ ΔΕΛ τῶν λοιπῶν εἰς τὰς δύο ὀρθὰς ρκ . ὥστε
5120287 ΜΒΝ
. ἐπεὶ οὖν τὸ ΜΒΔ τρίγωνον ὀρθογώνιον ὅμοιόν ἐστιν τῷ ΜΒΝ τριγώνῳ ὀρθογωνίῳ , καὶ ἔστιν ἡμίσεια ὀρθῆς ἑκατέρα τῶν
δέ ἐστι τὸ ΔΜΒ : ἡμικύκλιον ἄρα ἐστὶ καὶ τὸ ΜΒΝ : κατὰ διάμετρον ἄρα ἐστὶ τὸ Μ σημεῖον τῷ
5090827 νενοησθω
μὲν τοῦ ΕΖΗΘ κύκλου , ὕψους δὲ τοῦ ΝΠ κύλινδρος νενοήσθω ὁ ΕΣ . καὶ ἐπεὶ ἴσος ἐστὶν ὁ ΑΞ
ΛΜ , καὶ ἐπεζεύχθωσαν αἱ ΜΒ , ΜΚ , καὶ νενοήσθω κῶνος , οὗ κορυφὴ μὲν τὸ Μ σημεῖον ,
4914144 ἐπιζευξας
τὴν ΑΖ , τῇ δὲ Δ τὴν ΖΗ , καὶ ἐπιζεύξας τὴν ΒΗ ταύτῃ παράλληλον ἤγαγον τὴν ΖΘ . ἐπεὶ
. εἰ δ ' ἀρεταί : ὅτι ἀρεταὶ κατάκειται εἴρηκεν ἐπιζεύξας πληθυντικῷ ἑνικὸν ῥῆμα τὸ κατάκειται . καὶ ὅτι ὀργὰν
4913447 ΚΡ
ἴση ἐστὶν ἡ μὲν ΚΜα τῇ ΒΔ , ἡ δὲ ΚΡ τῇ ΑΒ , ἡ δὲ ΒΕ τῇ ΚΘ ,
τῇ μὲν ΑΓ ἴσην θῶμεν τὴν ΓΔ , τῇ δὲ ΚΡ ἴσην τὴν ΡΧ , καὶ τὰ αὐτὰ κατασκευάσωμεν ,
4883973 ΕΓΗ
τῇ ὑπὸ ΕΓΖ , τὴν δὲ ὑπὸ ΒΑΚ τῇ ὑπὸ ΕΓΗ , τὴν δὲ ὑπὸ ΚΑΘ τῇ ὑπὸ ΗΓΖ :
περὶ τὸ ΓΕΗ ὀρθογώνιον κύκλος τξ , ἡ δὲ ὑπὸ ΕΓΗ γωνία , οἵων μέν εἰσιν αἱ β ὀρθαὶ τξ
4848764 φερεια
ἐπὶ τὸ Ψ . ὥστε καὶ ἡ ΩΞ περι - φέρεια ἴση ἐστὶ τῇ ΟΨ . ἐν ᾧ ἄρα τὸ
. ὥστε καὶ ἡ μὲν ἐπὶ τῆς ΕΖ περι - φέρεια τοιούτων ἐστὶν Ϙα νε , οἵων ὁ περὶ τὸ
4825753 συνεστατω
ἢ πολλαπλασία . Ἔστω γὰρ τρίγωνον τὸ ΑΒΓ , καὶ συνεστάτω τρίγωνον τὸ ΕΖΗ ἑκάστην πλευρὰν ἔχον ἑκάστης τῶν τοῦ
μείζων ἐστίν . ἔστω μείζων ἡ ὑπὸ ΑΒΓ . καὶ συνεστάτω πρὸς τῇ ΑΒ εὐθείᾳ καὶ τῷ πρὸς αὐτῇ σημείῳ
4806559 ἰσην
δολιχόσκιον ἔγχος , καὶ βάλεν Ἀτρεΐδαο κατ ' ἀσπίδα πάντοσε ἴσην , οὐδ ' ἔρρηξεν χαλκός , ἀνεγνάμφθη δέ οἱ
[ . εἶναι τὴν σελήνην ] . , Π . ἴσην τῶι ἡλίωι [ . εἶναι τὴν σελήνην ] :
4776653 Ζ͵
σημείου δοθέντος τοῦ Ϡ , λαβεῖν δύο σημεῖα ὡς Ε͵ Ζ͵ , ὥστε εἶναι ὡς μὲν τὴν ΔΗ πρὸς τὴν
τῆς ΔϠ , κἂν τὸ Θ͵ μεταξὺ βούληται πίπτειν τῶν Ζ͵ Ϡ . οὐδὲν γὰρ ἕξει καὶ ὧδε λέγειν ἀνασκευαστικόν
4741095 ἐπιζευξαντες
ἐφ ' ἑαυτόν , οὑτωσὶ καὶ τὸ τρίγωνον , ἀλλαχόθεν ἐπιζεύξαντες ἐπὶ τὰ πέρατα τῆς εὐθείας συγκροτοῦμεν ἐκ τούτων ἓν
ὑφ ' ἣν ὑποτείνει ἡ τοῦ τετραγώνου πλευρά , καὶ ἐπιζεύξαντες καὶ τὰ αὐτὰ τοῖς πρότερον κατασκευάσαντες δείξομεν τὸν διὰ
4693065 δοθησεται
τῆς μεγάλης , ὅσοι ἔσονται λαὸς ἅγιος : τότε αὐτοῖς δοθήσεται πᾶσα εὐφροσύνη τοῦ παραδείσου , καὶ ἔσται ὁ θεὸς
ἡ ΕΞ καὶ ἡ ΞΟ , καὶ ἡ ΕΟ ὑποτείνουσα δοθήσεται καὶ ἡ ὑπὸ ΟΕΞ γωνία : ὥστε καὶ ἡ
4690832 ΙΝ
: ἀσπίς ῥανίς κρηπίς κνημίς ἁψίς . Εἰ δὲ εἰς ΙΝ ἔχουσι τὴν αἰτιατικὴν , περισπῶνται : Βενδῖς Μολῖς Τοτῖς
λοιπὴ ἡ ΙΝ ἑνός : τριπλῆ ἄρα ἡ ΛΙ τῆς ΙΝ : λέγω οὖν ὅτι δώδεκα τὰ ἀπὸ ΟΝ μείζονά
4662582 διερχεσθω
δύνει : ἐν δὲ τῷ τῆς ἡμέρας χρόνῳ ὁ ἥλιος διερχέσθω περιφέρειαν τὴν οπʹ , καὶ τῇ ποʹ ἴση ἔστω
πεποιήσθω κατὰ τὸ Η , τὴν δὲ λοιπὴν τὴν ΗΕ διερχέσθω ἐν τετάρτῳ μέρει περιφορᾶς . Λέγω , ὅτι διὰ
4653816 τρου
ἀφεψήματοϲ πιτύρων καὶ ϲικύου ἀγρίου ῥίζηϲ καὶ κενταυρίου νί - τρου τε καὶ μέλιτοϲ ἢ ἅλμῃ ϲὺν μέλιτι καὶ ἐλαίῳ
ἐγὼ μέντοι καὶ τοιούτῳ χρῶμαι ἐναργῶς ποιοῦντι . ἀφρονί - τρου γο . βʹ . βρέχων ἐν οἴνῳ Ἀμιναίῳ κυάθων
4639820 ΘΑΕ
ἦν ἐν τῇ γʹ ἀκρωνύκτῳ , καὶ ἐπεζεύχθωσαν αἵ τε ΘΑΕ καὶ ΘΒΖ καὶ ΘΗΓ καὶ ΝΚΑ καὶ ΝΛΒ καὶ
περιφερείας τῆς ΓΒ ἐστι διπλῆ : ἴση ἄρα ἡ ὑπὸ ΘΑΕ γωνία τῇ ὑπὸ ΑΘΕ : ὥστε καὶ ἡ ΘΕ
4625475 ἡμικυλινδριου
ἔλαττον ἡμισφαιρίου . Κυλίνδρου ὁπωσδηποτοῦν ὑπὸ ἑνὸς ὄμματος ὁρωμένου ἔλαττον ἡμικυλινδρίου ὀφθήσεται . ἔστω κύλινδρος , οὗ ἔστω κέντρον τῆς
, ἐπὶ δὲ τῆς ΑΔ ἡμικύκλιον ὀρθὸν ἐν τῷ τοῦ ἡμικυλινδρίου παραλληλογράμμῳ κείμενον : τοῦτο δὴ τὸ ἡμικύκλιον περιαγόμενον ὡς
4620054 ΝΞ
, διότι ἡ τῆς ΜΓ ἀναφορὰ ἡ αὐτὴ λαμβάνεται τῇ ΝΞ οὐ προοδεύεται δὲ τὸ θεώρημα τοῦτο οὐκ - έτι
τουτέστιν τὰς καὶ ΠΝ , καὶ τὰς ἴσας αὐταῖς τὰς ΝΞ καὶ ΕΞ . καὶ πάλιν , ἐπεὶ δέδοται ἡ
4608902 ΞΛ
τουτέστι ΔΕ , ΕΖ , ἐλάττους ἔσονται τῶν ΜΞ , ΞΛ , τουτέστι τῆς ΜΝ : ἀλλ ' ἡ ΜΝ
τουτέστιν αἱ ΔΕ , ΕΖ , δύο ταῖς ΜΞ , ΞΛ , τουτέστι τῇ ΜΝ , ἴσαι εἰσίν . ἀλλὰ
4608811 ἐκβληθεισαι
ἀπέχουσα ἐν ἀρχῇ τοῦ Σκορπίου ὥρας ἰσημερινὰς δ , καὶ ἐκβληθεῖσαι αἱ ΓΔ , ΑΒ περιφέρειαι τεμνέτωσαν ἀλλήλας μὲν κατὰ
καὶ ἐπιζευχθεῖσαι αἱ ΚΕ , ΚΖ , ΚΗ , ΚΘ ἐκβληθεῖσαι προσπιπτέτωσαν ἐπιπέδῳ τινὶ παραλλήλῳ ὄντι τῷ ΑΒΓΔ κατὰ τὰ
4595304 διηκται
καὶ διάμετρος ἐκβληθεῖσα ἡ ΑΓΔ , καὶ ἀπὸ τοῦ Δ διῆκται πρὸς τὴν κοίλην περιφέρειαν ἡ ΔΛΞ , περιφέρεια ἄρα
καὶ ἀπὸ τῆς κατὰ τὸ Α ἐπαφῆς εἰς τὸν κύκλον διῆκται εὐθεῖα ἡ ΑΓ , ἡ ἄρα ὑπὸ ΘΑΓ ἴση
4592674 ΡΠ
ἡ ΡΠ τῆς ΘΗ . καὶ ἐπεί ἐστιν ὡς ἡ ΡΠ πρὸς ΠΣ , οὕτως ἡ ΘΗ πρὸς τὴν ΗΝ
ΡΠ , ΣΠ . Λέγω , ὅτι ἐλάσσων ἐστὶν ἡ ΡΠ τῆς ΠΣ . Ἐπεὶ γὰρ τοῦ ΜΞΝ ὁ πόλος
4582795 ΞΚ
τὸ ΜΖ : πολλῷ ἄρα τὸ ΜΖ μεῖζόν ἐστι τοῦ ΞΚ . καὶ ἐπεὶ τὰ ΞΝ , ΝΛ , ΛΚ
, ἡ δὲ ΞΛ τῆς ΠΡ , ὅλη ἄρα ἡ ΞΚ ὅλης τῆς ΚΡ ἐστὶ διπλῆ . Πάλιν ἐπεὶ διπλῆ
4577782 ΒΛΓ
, τὸ ΜΛΓ πρὸς τὸ ΜΑΓ , καὶ τὸ διπλάσιον ΒΛΓ πρὸς τὸ ΒΑΓ : καὶ συνθέντι ἄρα πρὸς συγκείμενον
δὲ τὸ ΔΛ τετράπλευρον τῷ ΑΕΗ τριγώνῳ , τὸ δὲ ΒΛΓ τῷ ΑΓΘ : ὡς ἄρα τὸ ὑπὸ ΖΕΔ πρὸς
4574479 ΚΗΛ
ἐν ᾧ δὲ τὸ Ν ἀρξάμενον ἀπὸ τοῦ Κ τὴν ΚΗΛ περιφέρειαν διαπορεύεται , ἐν τούτῳ καὶ τὸ κατὰ διάμετρον
ἴσον ἐστὶν τῷ ἀπὸ ΚΗ διὰ τὸ ἰσογώνια εἶναι τὰ ΚΗΛ ΚΗΔ τρίγωνα , ἔστιν ἄρα ὡς τὸ ὑπὸ ΔΗΘ
4573950 ΔΓΗ
ἀπὸ τῆς Γ ἀφελεῖν . ἔστω αὐτῇ ἴση ἡ ὑπὸ ΔΓΗ γωνία : ἔστιν ἄρα ὡς ἡ ΖΔ πρὸς τὴν
, ὧν κέντρον μὲν τὸ Γ , ἀσύμπτωτοι δὲ αἱ ΔΓΗ , ΕΓΖ , καὶ διήχθω τις εὐθεῖα τέμνουσα ἑκατέραν
4570394 ΛΖ
. Ποιείσθω οὖν κατὰ τὸ Λ , καὶ κείσθω τῇ ΛΖ περιφερείᾳ ἴση περιφέρεια ἡ ΜΗ . Ἐπεὶ οὖν ὁ
καὶ ἡμέρας χρόνος ἐστίν , ἐν ᾧ ὁ ἥλιος τὴν ΛΖ περιφέρειαν διαπορεύεται , καὶ ἔστιν ἴση ἡ ΛΖ τῇ
4533726 ΑΔΘ
: καὶ τῆς ὑπὸ ΓΗΑ ἄρα μείζων ἐστὶν ἡ ὑπὸ ΑΔΘ γωνία : ὥστε μεῖζόν ἐστιν τὸ ὑπὸ ΔΒΓ τοῦ
κοιναὶ τομαὶ ἡ ΑΒ καὶ ἡ ΗΖ , τοῦ δὲ ΑΔΘ κύκλου καὶ τοῦ ΑΗΒΖ κοινὴ τομὴ ἡ ΑΘ ,
4523220 ΛΞ
, ἐκεῖνον τὸν λόγον ἔδει ἔχειν καὶ τὴν ΑΓ πρὸς ΛΞ , καὶ τὰ λοιπὰ ὁμοίως κατασκευάζειν . [ καὶ
, ἐπεὶ μέσον ἐστὶ τὸ ΔΘ καί ἐστιν ἴσον τῷ ΛΞ , μέσον ἄρα ἐστὶ καὶ τὸ ΛΞ . ἐπεὶ
4520987 ١٢
٣ ١٩ ٥٨ ٥٠ ٣٢ τὸ συναμφότερον τῶν ἀπό ٣٢ ١٢ ٤٣ ٥٦ ٥٠ ἡ ΕΜ ٨ ٣ ٤٠ ٥٩
٤ ἡ ΑΒ ٢ ٥٩ ٢٨ ἡ ΓΖ ٢ ١٤ ١٢ ٤ ١٢ ἡ ΒΗ ٢ ١٣ ٤٣ ἡ ΑΗ
4520307 ΤΩ
ἡ δὲ ΦΩ τῆς παραλλάξεως τοῦ ἡλίου , καὶ ἡ ΤΩ # μβ . ἀλλὰ καὶ ἡ ΡΥ τῶν αὐτῶν
ἀνακειμένου , ὄτι μέγιστός ἐστιν ὁ ἀνδριὰς καὶ ἀξιοθαύμαστος . ΤΩ δεσπότῃ μου καὶ σοφῷ στεφηφόρῳ Λέοντι , τῷ κρατοῦντι
4512194 ΡΝ
ΘΚ , τῇ δὲ ΡΛ ἴση ἑκατέρα τῶν ΡΜ , ΡΝ : ἑκάστη ἄρα τῶν ΑΒ , ΒΓ , ΔΕ
: ἐπ ' εὐθείας ἄρα [ ἐστὶ ] καὶ ἡ ΡΝ τῇ ΝΟ . καὶ συμπεπληρώσθω τὸ ΣΠ τετράγωνον :
4510191 ٣٦
٢٠ τὸ ΛΜ ١١٧ ٣٥ ٤٧ ٢٠ τὸ ΝΞ ٣ ٣٦ ٣٥ ٢٠ ὑπὸ ῥητῆς . , ] ταύτης δηλονότι
٤٢ Ἡ πλευρὰ τοῦ ΕΓ ٥ ٤٢ ١٤ τὸ ΒΓ ٣٦ ἡ ΖΗ ٤ τὸ ΕΓ ٣٢ ٣٢ ٩ ٥٢
4499934 ΞΒ
ἐστιν ὡς ἡ ΟΞ πρὸς τὴν ΨΧ , οὕτως ἡ ΞΒ πρὸς ΒΧ : καὶ ὡς ἄρα ἡ ΧΑ πρὸς
ἄρα ἴση ἐστὶν τῇ ΛΜ . ἔστι δὲ καὶ ἡ ΞΒ ἴση τῇ ΒΛ , διὰ τὸ τὸ Β σημεῖον
4497961 ΚΝ
, διὰ δὲ τοῦ Κ τῇ ΑΒ παράλληλος ἤχθω ἡ ΚΝ , καὶ ἐκβεβλήσθω ἡ ΔΘ ἐπὶ τὸ Ν .
τὸ Α ὄμμα ἐπὶ τὸ Ν , καὶ περὶ τὴν ΚΝ κύκλος γεγράφθω , καὶ ἐπεζεύχθωσαν αἱ ΝΡ , ΡΚ
4485394 ΑΠ
εἶναι τῇ ΠΡ . ἐπεὶ οὖν ἐστιν ὡς μὲν ἡ ΑΠ πρὸς ΠΔ , ἡ ΘΑ πρὸς ΛΔ , ὡς
μὲν ἔχει λόγον ἡ ΑΛ πρὸς ΛΒ , ἐχέτω ἡ ΑΠ πρὸς ΠΒ , ὃν δὲ ἡ ΔΛ πρὸς ΛΓ
4468176 ΜΛ
. καὶ ἐπεὶ ὡς ἡ ΜΑ πρὸς ΑΒ , ἡ ΜΛ πρὸς ΛΚ , ὡς δὲ ἡ ΜΛ πρὸς ΛΚ
ὡς ἡ ΖΗ πρὸς ΗΕ , οὕτως ἡ ΝΜ πρὸς ΜΛ . Δέδοται ἄρα . , ] ἐπεὶ οὖν δεδομέναι
4456572 καθετῳ
εὐθείας κέντροις τοῖς πέρασιν αὐτῆς , διαστήματι δὲ τῇ ἀγομένῃ καθέτῳ ἀπὸ τῆς διχοτομίας αὐτῆς ἐπὶ τὴν παράλληλον αὐτῇ πλευρὰν
ὅπερ ἄτοπον . Ἐδείχθη γὰρ ἡ ΘΚ κάθετος τῇ ΜΝ καθέτῳ ἴση , αἵτινες κάθετοι ἤχθησαν ἀπὸ τῶν ἐπισταθεισῶν μετεώρων
4455517 ΔΘΗ
ΓΘΖ ἐστιν ἴση . ἡ δὲ ὑπὸ ΓΘΖ τῇ ὑπὸ ΔΘΗ ἴση : κατὰ κορυφὴν γάρ : καὶ ἡ ὑπὸ
Β τοῦ ΓΗΒ τριγώνου ἴση τῇ πρὸς τῷ Η τοῦ ΔΘΗ τριγώνου , ἡ δὲ πρὸς τῷ Β τῇ πρὸς
4437396 παραπληρωματι
λέγω , ὅτι ἴσον ἐστὶ τὸ ΒΚ παραπλήρωμα τῷ ΚΔ παραπληρώματι . Ἐπεὶ γὰρ παραλληλόγραμμόν ἐστι τὸ ΑΒΓΔ , διάμετρος
ΚΖ , καὶ τὸ ΚΖ παραπλήρωμα ἴσον ἐστὶ τῷ ΚΓ παραπληρώματι . τὸ ΕΤ ἄρα μεῖζόν ἐστι τοῦ ΚΓ .
4436095 ΚΞ
ἐστιν , ἔστιν ἄρα , ὡς ἡ ΕΚ πρὸς τὴν ΚΞ , οὕτως ἡ ΕΑ πρὸς τὴν ΑΖ . ἐπεὶ
ΡΤ . ἐπεὶ δὲ ζητῶ τίς περιφέρεια ἡ ΕΚ τῇ ΚΞ , ζητήσω ἄρα τίς γωνία ἡ ὑπὸ ΕΟΚ τῇ
4429719 ΗΠ
ἄρα αὐτῶν τομαὶ παράλληλοί εἰσιν : παράλληλος ἄρα ἐστὶν ἡ ΗΠ τῇ ΘΟ . ἐπεὶ οὖν δύο εὐθεῖαι ἁπτόμεναι ἀλλήλων
ἔστω τὸ ἐπιταχθὲν μέρος τοῦ ΑΒΓ τριγώνου τὸ ὑπὸ ΚΜ ΗΠ [ τοῦτο γὰρ προδέδεικται ] , καὶ τῇ ΚΜ
4411349 ΝΘ
κάθετος ἡ ΕΝ : ἴση ἄρα ἐστὶν ἡ ΖΝ τῇ ΝΘ . ἦν δὲ καὶ ἡ ΜΞ τῇ ΞΘ :
αὐτῶν ρκ ἔγγιστα : ὥστε καί , οἵων ἐστὶν ἡ ΝΘ εὐθεῖα ξδ ι , τοιούτων καὶ ἡ ΘΗ ἔσται
4408778 ΗΕ͵
ὡς μὲν τὴν ΔΗ πρὸς τὴν ΗΕ͵ , οὕτως τὴν ΗΕ͵ πρὸς ΗΖ͵ , καὶ τὴν ΗΖ͵ πρὸς τὴν ΗϠ
Ζ͵ , ὥστε εἶναι ὡς μὲν τὴν ΔΗ πρὸς τὴν ΗΕ͵ , οὕτως τὴν ΗΕ͵ πρὸς ΗΖ͵ , καὶ τὴν
4404463 ἐνηρμοσθω
ἐναρμοσθῇ , μεταξὺ πεσεῖται τῶν Β καὶ Ε σημείων . ἐνηρμόσθω ἡ ΑΖ ἴση τῇ ἐκ τοῦ κέντρου , καὶ
εὐθειῶν ἐναρμόσαι τῷ ΑΚΓΗ κύκλῳ εὐθεῖαν ἴσην τῇ ΔΖ . ἐνηρμόσθω ἡ ΑΛΜ , καὶ ἐπεζεύχθω ἡ ΑΗ : ἴση
4401481 ΝΜ
πρὸς τὴν ΜΚ : ὡς ἄρα ἡ ΓΚ πρὸς τὴν ΝΜ , οὕτως ἐστὶν ἡ ΝΜ πρὸς τὴν ΚΜ :
ᾧ τότε Ρ τὴν ΝΜ διέρχεται καὶ τὸ Η τὴν ΝΜ . Ἐκ περισσοῦ . τῶν αὐτῶν ὑποκειμένων ἀπειλήφθω ἡ
4385494 ΦΑ
ἐστιν ἴση : ἔστιν ἄρα ὡς ἡ ΒΦ πρὸς τὴν ΦΑ , οὕτως ἡ ΚΧ πρὸς τὴν ΧΑ : παράλληλος
ὡς δὲ τὸ ΜΘ πρὸς ΘΑ , ἡ ΜΦ πρὸς ΦΑ , τουτέστιν ἡ ΖΛ πρὸς ΛΑ : καὶ ὡς
4371374 συναμφοτερας
ὑπεροχὴν τῶν παραλλάξεων μείζονα εἶναι τῶν α κζ , ἢ συναμφοτέρας τὰς παραλλάξεις πλείονα τῶν αὐτῶν συνάγειν τμημάτων , ὅταν
ἐφ ' ἧς συνεστάτω τρίγωνον ἰσοσκελὲς τὸ ΑΖΓ , ὥστε συναμφοτέρας τὰς ΑΖΓ ἴσας εἶναι συναμφοτέραις ταῖς ΑΒΓ διὰ τὸ
4363412 ΛΥ
δοθὲν ἄρα καὶ τὸ ὑπὸ ΛΥΦ : καὶ δοθέντα τὰ ΛΥ : δοθὲν ἄρα τὸ Φ : ἀπῆκται οὖν εἰς
ΛΖ βάσις τῇ ΝΖ βάσει , ἴσον ἐστὶ καὶ τὸ ΛΥ στερεὸν τῷ ΝΥ στερεῷ , καὶ εἰ ὑπερέχει ἡ
4363079 Ταρρακωνησιᾳ
Βάστουλοι , τὴν δὲ ὑπὲρ τούτους μεσόγειον καὶ πρὸς τῇ Ταρρακωνησίᾳ Τούρδουλοι , ἐν οἷς μεσόγειοι πόλεις Σεγίδα θʹ Ϛʹʹ
τοῦ Δορίου ποταμοῦ , ἀπὸ δὲ τῶν ἀνατολῶν τῇ αὐτῇ Ταρρακωνησίᾳ , ἀπὸ δὲ δύσεως τῷ δυτικῷ ὠκεανῷ , ἀπὸ
4358632 ΘΚ
σημεῖον . Κείσθω γὰρ τῇ ΖΗ περιφερείᾳ ἴση περιφέρεια ἡ ΘΚ . Ἐπεὶ οὖν ὁ ἥλιος ἀνατείλας κατὰ τὸ Ζ
, ΗΛ ἐν ἴσῳ χρόνῳ δύνουσιν : ὁμοίως καὶ αἱ ΘΚ , ΛΜ . διὰ τὰ αὐτὰ δὴ καὶ αἱ
4348313 Παραλληλογραμμον
ὅλη ἄρα ἡ ὑπὸ ΛΘΚ μείζων τῆς ὑπὸ ΓΒΔ . Παραλληλόγραμμόν ἐστι . , ] ἀλλὰ καὶ ἴσον τῷ ΓΖ
ὅλη ἄρα ἡ ὑπὸ ΛΘΚ μείζων τῆς ὑπὸ ΓΒΔ . Παραλληλόγραμμόν ἐστι . , ] ἀλλὰ καὶ ἴσον τῷ ΓΖ
4340025 καταγομεναι
ἡ ΓΑ , ὀρθία δὲ ἡ ΓΛ , αἱ δὲ καταγόμεναι ἀπὸ τῶν τομῶν ἐπὶ τὴν ΓΑ καταχθήσονται ἐν τῇ
καὶ φανοῦνται παράλληλοι , αἱ δ ' ἐπὶ τὴν ΑΓ καταγόμεναι διαχθήσονται μὲν ἀπὸ τοῦ Κ , φανοῦνται δὲ τῇ
4329311 ΠΡΑ
ΓΕΝ ! καὶ ΟΥ ! [ ] [ καθάπερ ] ΠΡΑ ! ! [ ] [ ] ΚΕΙΝΠΑ ! [
ΡΑΞ γωνία τῆς ὑπὸ ΠΑΝ . ὅτι δὲ ἡ ὑπὸ ΠΡΑ γωνία ἀμβλεῖά ἐστιν , ἐκδηλότερον οὕτω δειχθήσεται : ἐπεὶ
4320868 ΣΝ
ὑποτείνουσιν . ἴση ἄρα ἐστὶν ἡ ὑπὸ τῶν ΓΣ , ΣΝ γωνία τῇ ὑπὸ τῶν ΛΣ , ΣΑ . κοινὴ
ΣΝ , τὸ δὲ ΗΚ ἴσον τῷ ΝΠ : τῶν ΣΝ , ΝΠ ἄρα μέσον ἀνά - λογόν ἐστι τὸ
4315134 διαγωνιον
πλευρῶν , καὶ τὸ ἐμβαδὸν εἰς ἴσα διαιρεῖται κατὰ τὴν διαγώνιον διὰ τὴν κοινὴν ἰδιότητα τῶν παραλληλογράμμων . ἐπὶ δὲ
βάσιν τέμῃ ἐκ τῆς κορυφῆς δίχα κατὰ τὴν τοῦ τετραγώνου διαγώνιον τὴν ἀπὸ τῆς ὀρθῆς , ἔσονται δύο στερεαὶ πυραμίδες
4275405 ΖΜ
ἐπὶ τῆς ἐκκειμένης ἀποχῆς τῶν Ϙ λ μοιρῶν ἐδείξαμεν τὴν ΖΜ περιφέρειαν μοιρῶν οὖσαν ιβ α , ἵνα , ἐπειδήπερ
τῆς διχοτομίας τῆς μείζονος τῆς ΓΜ , ἐπεὶ ἔσται ἡ ΖΜ τῇ ΓΜ ἴση . οὐ μὴν οὐδὲ μεταξὺ τῶν
4272438 προσπιπτετω
ὄμμα ἐγγυτέρω καὶ ἔστω τὸ Η , ἀφ ' οὗ προσπιπτέτω ἀκτὶς διὰ τοῦ Γ ἡ ΗΘ . ἐπεὶ οὖν
ἐπιγνῶναι ὕψος , πόσον ἐστί , τὸ ΒΓ , καὶ προσπιπτέτω ἀκτὶς ἡλίου διὰ τοῦ Β ἡ ΒΔ . οὐκοῦν
4271088 ΚΑ
κέντρου δύναται τὸ ὑπὸ ΟΓ ΚΑ ἢ τὸ ὑπὸ Θ ΚΑ ἐλάσσων ἐστὶν τῆς σφαιρικῆς τοῦ τμήματος ἐπιφανείας . ἀλλὰ
, οἵων ἐστὶν ἡ ΑΖ διάμετρος ρκ , ἡ δὲ ΚΑ τῶν αὐτῶν ργ νε : ὥστε καί , οἵων
4255558 ἀφαιρειτωσαν
τινὸς κύκλου τοῦ ΑΔ περιφερείας τὰς ΑΕ , ΕΔ ἴσας ἀφαιρείτωσαν πρὸς τὸν μέγιστον τῶν παραλλήλων τὸν ΖΕΗ , καὶ
, ὦ θεοί , ἢ ἀκροάσασθαι ἐπικύψαντας αὐτῶν ; ὥστε ἀφαιρείτωσαν αἱ Ὧραι τὸν μοχλὸν ἤδη καὶ ἀπάγουσαι τὰ νέφη
4245074 ΣΚ
μετὰ τοῦ ἀπὸ ΣΚ . ᾧ ἄρα διαφέρει τὸ ἀπὸ ΣΚ τοῦ ἀπὸ ΚΡ , τούτῳ διαφέρει τὸ ὑπὸ ΜΡΝ
ἑκατέρας τῶν ΣΚ , ΚΨ , μείζων ἄρα καὶ ἡ ΣΚ τῆς ΚΨ . ἀλλ ' ἡ μὲν ΣΚ τῇ
4244795 ἐκβαλωμεν
ἀλλήλους παρακαλέσαντες τὴν μὲν νῦν οὖσαν περὶ τῆς πόλεως δόξαν ἐκβάλωμεν , φανῶμεν δὲ ἄξιοι βασιλεῖ τῆς προτέρας ἐλπίδος .
τῆς σφαίρας ἀπ ' αὐτοῦ ἐπιζεύξωμεν ἐπὶ τὸ ὁρώμενον καὶ ἐκβάλωμεν ὡς ἐν τοῖς πρὸς αὐτοῦ , θεωρηθήσεται τὸ ΕΔ
4229402 ΣΤ
καὶ ἀπεναντίον περιφέρεια ἡ ΣΤ καὶ μεταξὺ τῶν ΞΗ , ΣΤ ὁ ἰση - μερινὸς ἔστω ὁ ΥΧΦ . καὶ
ΠΗΡ , ΣΘ , ΤΥΚ : μείζων ἄρα ἐστὶν ἡ ΣΤ περιφέρεια τῆς ΣΠ περι - φερείας . ἀλλ '
4220293 ἀναστησωμεν
τὴν ΔΑΓ καὶ διὰ τοῦ Α τῇ ΔΓ πρὸς ὀρθὴν ἀναστήσωμεν τὴν ΑΒ , δηλαδὴ ἴσης μενούσης τῆς μὲν ΔΑ
, ΓΔ , ΔΑ παραλληλόγραμμα , καὶ ἀπ ' αὐτῶν ἀναστήσωμεν στερεὰ παραλληλεπίπεδα ἰσοϋψῆ τῷ κυλίνδρῳ , ἑκάστου τῶν ἀνασταθέντων
4217103 ΠΑ
καὶ Δωρικῶς : ἄλλη ἀλλαχοῦ . . ΠΑΡΑΚΛΙΝΟΥΣΙ . Τὸ ΠΑ μακρὸν ἐδέξατο , καὶ τὸ ΚΛΙ βραχύ : ὢ
! [ ] [ ἀναγκ ] [ ] [ ] ΠΑ ? ? [ ] [ ] ΟΞΩ ! [
4206576 πλευ
τῆς ἀπάτης ἔρχεται : καὶ νῦν οὔτε βουλευτὴς εἰς τὰς πλευ - ρὰς ὕβρισται κέρδος τε οὐδὲν κεκράτηκε τῆς ψυχῆς
, εἰ καὶ μὴ πρότερον ; οὐκ ἐπὶ τὴν ἐκείνου πλευ - σόμεθα ; ποῖ οὖν προσορμιούμεθ ' ; ἤρετό
4204520 ΑΓΛ
δὲ κοινὴ ἡ ΑΛ . ὥστε δύο τρίγωνά ἐστι τὰ ΑΓΛ , ΑΛΔ τὰς δύο πλευρὰς ταῖς δυσὶ πλευραῖς ἴσας
τῇ ὑπὸ ΜΖΑ ἐστιν ἴση : ἰσογώνιον ἄρα ἐστὶ τὸ ΑΓΛ τρίγωνον τῷ ΑΜΖ τριγώνῳ : ἀνάλογον ἄρα ἐστὶν ὡς
4200751 ΛΜ
Ψ τῇ ΚΞ παράλληλος ἡ ΨΩ , καὶ ἔστω ὡς ΛΜ πρὸς ΜΩ , οὕτως ἡ ΩΜ πρὸς ΜΑ͵ .
. ἀλλὰ καὶ διὰ τὸ τρεῖς εἶναι παραλλήλους τὰς ΔΕ ΛΜ ΗΘ ἴση γίνεται ἡ ΕΜ τῇ ΜΚ . εἴη
4190629 ΕΝ
Ἠγείρετο δὲ πολὺς κτύπος τούτων μαχομένων . . . ΙΔΕΙ ΕΝ ΑΙΝΟΤΑΤΩι . Τὸν καιρὸν λέγει τῆς μάχης . Ἴδει
, ] πῶς ἔλασσον τὸ Ξ στερεὸν τῆς ἐν τῷ ΕΝ κώνῳ πυραμίδος ; δείξομεν οὕτως : ἐπεὶ ὁ ΕΝ
4188831 κεισθω
, ὡς ἐπὶ τἀγαθὸν καὶ τὴν ἀρχὴν τὴν πρώτην , κείσθω διωμολογημένον καὶ διὰ πολλῶν δεδειγμένον : καὶ δὴ καὶ
. Καὶ ὁ μὲν κατὰ τὰς ἡλικίας λόγος ὧδέ πη κείσθω ἱκανῶς ῥηθείς νῦν δὲ καὶ περὶ τῶν λοιπῶν ῥητέον
4185435 ΑΚ
ἡ ΚΒΛ . λέγω , ὅτι ἐστίν , ὡς ἡ ΑΚ πρὸς ΚΘ , οὕτως ἡ ΑΗ πρὸς ΗΘ .
ἴση ἡ ΚΛ τῇ ΚΗ . ἐπεὶ οὖν τὰ ἀπὸ ΑΚ , ΚΗ τοῖς ἀπὸ ΑΒ , ΒΗ ἴσα ἐστί
4182446 ΗΖΛ
τὴν ΖΛ . δύο δὴ τρίγωνά ἐστι τὰ ΒΑΕ , ΗΖΛ μίαν γωνίαν μιᾷ γωνίᾳ ἴσην ἔχοντα τὴν ὑπὸ ΒΑΕ
πάλιν ἀποκατασταθῇ ὅθεν ἤρξατο φέρεσθαι , τὰ μὲν ΚΓΔ , ΗΖΛ ἡμικύκλια ἐνεχθήσεται κατὰ τῶν σφαιρῶν , τὸ δὲ ΑΖ
4182340 ΕΛ
ΕΒ λοιπῆς τῆς ΓΕ διπλῆ . ἀλλὰ ἡ ΒΕ τῇ ΕΛ ἐστὶν ἴση διὰ τὸ εἶναι ὡς τὴν ΒΓ πρὸς
οὕτως ἡ ΓΔ πρὸς τὴν ΚΛ . μείζων δὲ ἡ ΕΛ τῆς ΕΔ : μείζων ἄρα καὶ ἡ ΚΛ τῆς
4181051 ΝΠ
κατασκευασθέντων , ἐπεί ἐστιν ὡς ἡ ΕΘ βάσις πρὸς τὴν ΝΠ βάσιν , οὕτως τὸ τοῦ ΓΔ στερεοῦ ὕψος πρὸς
δεδύκασιν αἱ ΠΝ ΝΜ περιφέρειαι : ἅμα ἄρα δύνει ἡ ΝΠ περιφέρεια καὶ ἡ ΝΜ . ἐν ᾧ δὲ ἡ
4180556 ΕΘ
καὶ ἤχθω διὰ τοῦ Ε κέντρου τῇ ΜΝ παράλληλος ἡ ΕΘ , καὶ κάθετος ἐπ ' αὐτὴν ἀπὸ τοῦ Λ
ἡ μὲν ΘΗ τῇ ΗΖ ἐστιν ἴση , ἡ δὲ ΕΘ τῆς ΔΗ διπλῆ , καὶ λοιπὴν τὴν ΓΘ ἕξομεν
4164716 Συνεστατω
ΔΕΖ , τὴν δὲ ὑπὸ ΑΓΒ τῇ ὑπὸ ΔΖΕ . Συνεστάτω γὰρ πρὸς τῇ ΔΖ εὐθείᾳ καὶ τοῖς πρὸς αὐτῇ
] ἑκάτερον ἄρα τῶν ΔΘ , ΕΚ ῥητόν ἐστιν . Συνεστάτω οὖν τῷ μὲν ΑΙ ἴσον τετράγωνον τὸ ΛΜ ,
4141594 ΖΚ
καί ἐστι τὸ μὲν ὑπὸ τῶν ΓΖ , ΖΑ τὸ ΖΚ : ἴση γὰρ ἡ ΑΖ τῇ ΖΗ : τὸ
ἄρα ἐστὶν ταῖς ΑΔ ΒΕ , καὶ ἴση ἐστὶν ἡ ΖΚ τῇ ΚΗ . ἐπεὶ δὲ τρεῖς εἰσιν παράλληλοι αἱ
4140663 ΡΗ
τὸ ΝΓ πρὸς τὸ ΓΘ , τὸ ΓΡ πρὸς τὸ ΡΗ . καὶ ὡς ἓν πρὸς ἕν , οὕτως ἅπαντα
ὡς δὲ ἡ ΓΣ πρὸς ΣΗ , τὸ ΡΓ πρὸς ΡΗ : καὶ ὡς ἄρα τὸ ΝΓ πρὸς τὸ ΓΘ
4139800 ΟΘ
ὡς ἡ ΒΞ πρὸς ΞΗ , οὕτως ἡ ΕΟ πρὸς ΟΘ . ἀλλὰ καὶ ὡς ἡ ΗΞ πρὸς ΞΚ ,
κύκλων ἐπιπέδῳ οὖσα , καὶ ἤχθω διὰ τῶν ΟΠ , ΟΘ εὐθειῶν ἐπίπεδον : ποιήσει δὴ τομὴν ἐν τῷ κώνῳ
4135294 ΘΡ
ΘΚ , σύμμετρος δὲ τῇ ΗΘ , καὶ κείσθω τῇ ΘΡ ἴση ἡ ΣΗ , καὶ διὰ τῶν Σ ,
ΞΖ , ΖΟ , ΟΗ , ΗΠ , ΠΘ , ΘΡ , ΡΕ τριγώνων πυραμὶς ἰσοϋψὴς τῷ κώνῳ . ἑκάστη
4132505 ΡΤ
διῆκταί τις ἡ ΗΤ , ἡ ΟΡ ἄρα πρὸς τὴν ΡΤ μείζονα λόγον ἔχει ἤπερ ἡ ὑπὸ ΡΤΗ γωνία πρὸς
ἡ ΡΤ : ἴση ἄρα ἐστὶ καὶ ἡ ΜΣ τῇ ΡΤ . ἔστι δὲ καὶ ὅλη ἡ ΜΣΞΥ ὅλῃ τῇ
4127744 συναναφερεσθαι
ἀσύνετον γὰρ τὸ δίχα τοῦ ἄρθρου : χρὴ γὰρ ἀμφότερα συναναφέρεσθαι , ἐπεί τοι , εἰ λείψει τὸ ἄρθρον τοῦ
ἀτονήσας περὶ τὴν ἑλκτικὴν τοῦ μελαγχολικοῦ ἐνέργειαν , ἐάσῃ τοῦτον συναναφέρεσθαι τῷ αἵματι . κἀντεῦθεν πλεονάσαντος αὐτοῦ καὶ σαπέντος ,
4122536 ΚΘ
ῥηταί εἰσι δυνάμει μόνον σύμμετροι : ἀποτομὴ ἄρα ἐστὶν ἡ ΚΘ , προσαρμόζουσα δὲ ταύτῃ ἡ ΖΚ . ἤτοι δὴ
ΞΔ πρὸς ΔΜ . ἀλλ ' ὡς ἡ ΛΚ πρὸς ΚΘ , οὕτως ἡ ΕΚ πρὸς ΚΒ : καὶ ὡς
4114864 μετακινησει
τε καὶ ἀσκήσει καὶ ἐκ τάξεως ἐς τάξιν ἄλλην εὐπετῶς μετακινήσει , τοῦτο ἐπασκητέον . τοσόνδε μέντοι συμβουλεύσαιμ ' ἂν
δόξαν παρέξουσιν ἐκείνοις , καὶ αὐτὸ τὸ στράτευμα ἐν τῇ μετακινήσει ἀσθενέστερον ἅμα καὶ ἀτακτότερον καθιστᾶσιν . ἀλλὰ τοὺς ψιλοὺς
4112635 καταγεγραπται
περιφέρεια εἰς ἴσας ὁποσασοῦν , καὶ ἐφαπτόμεναι ἤχθωσαν , ὡς καταγέγραπται , ὥστε ἑκάστην αὐτῶν ἐλάσσονα εἶναι τῆς δυναμένης τὸ
παροξυϲμοί : διὰ τάδε μὲν ὦν καὶ ἐν τοῖϲι ὀξέϲι καταγέγραπται ἡ ἐπιληψίη . ἢν δὲ ἐϲ μελέτην μὲν ἥκῃ
4102298 προσεκβεβλησθω
γωνιῶν μείζων ἐστίν . Ἔστω τρίγωνον τὸ ΑΒΓ , καὶ προσεκβεβλήσθω αὐτοῦ μία πλευρὰ ἡ ΒΓ ἐπὶ τὸ Δ :
μὴ ὑπάρχοντος ἡλίου . κείσθω κάτοπτρον τὸ ΔΖ , καὶ προσεκβεβλήσθω τῇ ΕΔ ἐπ ' εὐθείας ἡ ΔΒ , ἄχρις
4093767 ΕΓ
Δ , καὶ ἀπ ' αὐτοῦ πρὸς ὀρθὰς ἀγαγὼν τῇ ΕΓ τὴν ΔΒ , καὶ ἐπιζεύξας τὴν ΕΒ , καὶ
ἡ ΑΕ τῇ ΕΒ : ἐλάττων ἄρα ἡ ΔΕ τῆς ΕΓ : τὰ Γ , Δ ἄρα σημεῖα οὐκ ἴσον
4092962 ٥١
ἡ ΖΝ ١ ٢٦ ٤١ ٤٠ ٣٢ Τὸ ΓΕ ٥ ٥١ ١٨ ١٢ ἡ ΒΗ ١ ٤٤ ٣٠ ἡ ΑΒ
. ٥ ٢٨ ٣٨ ἡ πλευρὰ τοῦ ΕΓ ٢ ٥٤ ٥١ τὸ ΒΓ τὸ καὶ μέσον ٢٤ ٢٩ ٣٧ ٤٨
4088629 ἐφαπτομενῃ
τὴν ἔγγιον τῆς ἀπωτέρω , ἐλαχίστην δὲ τὴν πρὸς τῇ ἐφαπτομένῃ , καθ ' ἣν ἡ μέση κίνησίς ἐστιν ,
συμπτώσει τῶν ἐφαπτομένων διαφέρει τῷ ἀπολαμβανομένῳ τριγώνῳ πρός τε τῇ ἐφαπτομένῃ καὶ τῇ διὰ τῆς ἁφῆς ἀγομένῃ διαμέτρῳ . ἔστωσαν
4076255 ΜΖ
, ἡ δὲ ΜΓ ὁμοίως # ιϚ , ἡ δὲ ΜΖ ὅλη ξ ιϚ , διὰ τοῦτο δὲ καὶ ἡ
. ἐπεὶ οὖν δύο εὐθεῖαι ἄνισοί εἰσιν αἱ ΓΜ , ΜΖ , καὶ τῷ τετάρτῳ μέρει τοῦ ἀπὸ τῆς ΖΜ
4064827 ΕΖΓ
καὶ τῶν γωνιῶν ἡ ὑπὸ ΕΒΓ καὶ οὐχὶ ἡ ὑπὸ ΕΖΓ . ἔνθεν καὶ πρὸς τὸ ποιήσασθαί τινα κἂν μερικὴν
τῇ ὑπὸ ΗΖΑ γωνίᾳ : ὅλη ἄρα ἡ ὑπὸ τῶν ΕΖΓ ὅλῃ τῇ ὑπὸ τῶν ΓΖΗ γωνίᾳ ἴση ἐστίν :
4057273 παραλληλον
ἐπέχουσα : τὸ δ ' ἑωθινὸν τῷ Ῥήνῳ ποταμῷ περιγραφομένη παράλληλον ἔχοντι τὸ ῥεῦμα τῇ Πυρήνῃ : τὸ δὲ νότιον
ἂν εἶεν καὶ οἱ ἀπὸ Μασσαλίας ἐπὶ τὸν διὰ Βορυσθένους παράλληλον , ὅς γε διὰ τῆς Κελτικῆς παρωκεανίτιδος ἂν εἴη
4054183 ΗΚ
τὸ ΗΚ . ἴσον δή ἐστι τὸ ΑΒ στερεὸν τῷ ΗΚ στερεῷ : ἐπί τε γὰρ ἴσων βάσεών εἰσι τῶν
ἄρα καὶ ἡ ΑΗ τῇ ΗΚ . ὥστε καὶ ἡ ΗΚ τῇ ΗΒ ἐστιν ἴση : ὅπερ ἀδύνατον . οὐκ
4050026 ἀχθεισης
, τοὺς βουλευτὰς ᾐτησάμην . καὶ τοίνυν διοικήσεως νῦν πρῶτον ἀχθείσης πολλὰ ὑπὸ πολλῶν ἠδικημένος , ὥσπερ εἰκός ἐστι τὸν
τοῦ ἐκκέντρου πηλικότησιν . κατὰ ταὐτὰ δὲ καὶ ἐνθάδε καθέτου ἀχθείσης ἐπὶ τὴν ΔΒ τῆς ΑΛ , ἐάν τε τὴν
4044491 ΟΥ
ΕΥΘΥΜΙΗΙ ΚΑΙ ΧΟΡΟΙΣ ΗΔΕΤΑΙ ΕΠΙ ΠΟΛΥ ΔΕ ΤΗΙ ΤΟΙΑΥΤΗΙ ΡΥΘΜΟΠΟΙΙΑΙ ΟΥ ΠΑΝΥ ΧΡΑΤΑΙ [ Ο ] ΡΥΘΜΟΣ ΟΥΤΟΣ ΧΡΗΣΑΙΤΟ ?
[ ] [ ] Κ [ ] [ ] ! ΟΥ [ ] [ ] ΑϹΥ [ ] [ ]
4042151 ΔΘ
ΒΓ ΕΖ τοῖς Η Θ , καὶ ἐπεζεύχθωσαν αἱ ΑΗ ΔΘ , καὶ ἔστωσαν ἴσαι , καὶ μηδετέρα τῶν ΑΗ
ΓΘ τῇ Ε : τὸ ἄρα ΒΗ ἴσον ἐστὶ τῷ ΔΘ . καί ἐστιν ἰσογώνια . τῶν δὲ ἴσων καὶ
4036887 κʹʹ
δον μέρος τῆς ἀποκαταστάσεως , ἐπὶ τὰς ἡμέρας Ϛ νγʹ κʹʹ , ἀποτελοῦνται μοῖραι β δʹ : ταῦτα προσέθηκα τῇ
# λαʹ κʹʹ , κατὰ δὲ τὸ ἐλάχιστον # λεʹ κʹʹ , ἡ δὲ διάμετρος τοῦ κύκλου τῆς σκιᾶς κατὰ

Back