| ἀπὸ τῆς Γ ἀφελεῖν . ἔστω αὐτῇ ἴση ἡ ὑπὸ ΔΓΗ γωνία : ἔστιν ἄρα ὡς ἡ ΖΔ πρὸς τὴν | ||
| , ὧν κέντρον μὲν τὸ Γ , ἀσύμπτωτοι δὲ αἱ ΔΓΗ , ΕΓΖ , καὶ διήχθω τις εὐθεῖα τέμνουσα ἑκατέραν |
| ἢ πολλαπλασία . Ἔστω γὰρ τρίγωνον τὸ ΑΒΓ , καὶ συνεστάτω τρίγωνον τὸ ΕΖΗ ἑκάστην πλευρὰν ἔχον ἑκάστης τῶν τοῦ | ||
| μείζων ἐστίν . ἔστω μείζων ἡ ὑπὸ ΑΒΓ . καὶ συνεστάτω πρὸς τῇ ΑΒ εὐθείᾳ καὶ τῷ πρὸς αὐτῇ σημείῳ |
| ΓΘΖ ἐστιν ἴση . ἡ δὲ ὑπὸ ΓΘΖ τῇ ὑπὸ ΔΘΗ ἴση : κατὰ κορυφὴν γάρ : καὶ ἡ ὑπὸ | ||
| Β τοῦ ΓΗΒ τριγώνου ἴση τῇ πρὸς τῷ Η τοῦ ΔΘΗ τριγώνου , ἡ δὲ πρὸς τῷ Β τῇ πρὸς |
| δύο σημείων τῶν Β Ε κλάσαι τὴν ΒΝΞΕ καθόλου τῇ δοθείσῃ εὐθείᾳ ἴσην τῶν κλασμάτων τὸ πλῆθος δοθὲν ἔχουσαν . | ||
| ΒΓ . Διὰ τοῦ δοθέντος ἄρα σημείου τοῦ Α τῇ δοθείσῃ εὐθείᾳ τῇ ΒΓ παράλληλος εὐθεῖα γραμμὴ ἦκται ἡ ΕΑΖ |
| δολιχόσκιον ἔγχος , καὶ βάλεν Ἀτρεΐδαο κατ ' ἀσπίδα πάντοσε ἴσην , οὐδ ' ἔρρηξεν χαλκός , ἀνεγνάμφθη δέ οἱ | ||
| [ . εἶναι τὴν σελήνην ] . , Π . ἴσην τῶι ἡλίωι [ . εἶναι τὴν σελήνην ] : |
| ὑπὸ ΒΑΔ , ἡ δὲ ΓΔ τὸ ΔΒΑΓ τμῆμα ἔχον δοθεῖσαν γωνίαν τὴν ὑπὸ ΔΑΓ : δοθὲν ἄρα καὶ τὸ | ||
| κερατοειδῆ γωνίαν τεμεῖν . τὸ δὲ νῦν πρόβλημά ἐστι τὴν δοθεῖσαν εὐθύγραμμον γωνίαν δίχα τεμεῖν . χρῆται γὰρ ἐν τούτῳ |
| γὰρ ἐκ τοῦ πόλου αὐτοῦ ἴση ἐστὶ τῇ τοῦ τετραγώνου πλευρᾷ τοῦ ἐγγραφομένου εἰς τὸν μέγιστον κύκλον . καὶ ἐπεζεύχθωσαν | ||
| ἡμῶν δὲ εἷς [ καὶ ] ὁ κυβερνήτης , τρίγλης πλευρᾷ διαπαρεὶς τὸ μετάφρενον . ἐκείνην μὲν οὖν τὴν ἡμέραν |
| Ἰστέον , ὡς τὰ μεγέθη τριχῶς : ἢ γὰρ ἐν γραμμῇ ἢ ἐν ἐπιφανείᾳ ἢ ἐν σώματι . ἐν γοῦν | ||
| δὲ τῷ τρίτῳ τῶν γεωγραφικῶν καθιστάμενος τὸν τῆς οἰκουμένης πίνακα γραμμῇ τινι διαιρεῖ δίχα ἀπὸ δύσεως ἐπ ' ἀνατολὴν παραλλήλῳ |
| , οὐδὲ ἄλλο τι τῶν τοιούτων . πρόδηλον οὖν ὡς ὁμόλογος ἥ τε ἀποκοπή , οὐδέν τε ἐμπόδιον ἐπιγινομένου τοῦ | ||
| καὶ ἔστιν οὕτως ἅπας ὁ περὶ εὐδαιμονίας λόγος πρὸς ἑαυτὸν ὁμόλογος , τῶν προηγουμένων καὶ ἐφεπομένων μηδαμῇ διαφωνούντων πρὸς ἄλληλα |
| Α σφαίρας : λέγω ὅτι μείζων ἐστὶν ἡ σφαῖρα . Νοείσθω γὰρ εἰς τὸ πολύεδρον ἐγγεγραμμένη σφαῖρα , ὥστε τῶν | ||
| ἐν ταῖς μέσαις συνόδοις τε καὶ πανσελήνοις ὑποτιθεμένης ἀποτελεῖσθαι . Νοείσθω ἐν τῷ λοξῷ τῆς σελήνης ἐπιπέδῳ ὁμόκεντρος κύκλος τῷ |
| οὖν τῷ ἀπὸ τῆς ΚΗ τετραγώνῳ ἴσον παρὰ τὴν ΒΚ παραβέβληται ὑπερβάλλον τῷ ἀπὸ τῆς ΚΛ τετραγώνῳ , τὸ ἄρα | ||
| τετάρτῳ μέρει τοῦ ἀπὸ τῆς ΜΖ ἴσον παρὰ τὴν ΓΜ παραβέβληται ἐλλεῖπον εἴδει τετραγώνῳ τὸ ὑπὸ τῶν ΓΚ , ΚΜ |
| Ἐνστάσεως λύσις τοῦ ληʹ θεωρήματος . Τοῦ θεωρήματος κατὰ τὸν στοιχειωτὴν ἀποδεικνυμένου ἔνστασις παρακολουθεῖ . οὐ γὰρ ἔχομεν ἀποδεδειγμένον , | ||
| δὲ ἴσων ὑπαρχουσῶν τῶν βάσεων , μίαν ἀπόδειξιν παρέχεσθαι τὸν στοιχειωτὴν ἐν τῷ Ϛʹ βιβλίῳ ἐν τῷ αʹ θεωρήματι . |
| οἷον τὸ κα ἐλλεῖπον εἴδει τετραγώνῳ τῷ θ , τὸ παραβληθὲν οἷον τὸ κα ἴσον ἐστὶ τῷ ὑπὸ τῶν ἐκ | ||
| μ παρὰ ῥητὴν τὴν οὖσαν τριῶν μονάδων ἤτοι τὴν ΓΔ παραβληθὲν πλάτος ποιεῖ τὴν ΕΔ ἤτοι μία θ ιϚ . |
| κέντρου οὖσαν δίχα τέμνουσα : ὥστε καὶ πρὸς ὀρθὰς αὐτὴν τεμεῖ , καὶ ἐὰν πρὸς ὀρθὰς αὐτὴν τέμνῃ , καὶ | ||
| τῶν πόλων τέμνει , δίχα τε αὐτὸν καὶ πρὸς ὀρθὰς τεμεῖ . καί ἐστι κοινὴ τομὴ αὐτῶν ἡ ΒΓ : |
| ἧς τὴν ἀναθυμίασιν ἐπινέμεται . Πλάτων Πυθαγόρας Ἀριστοτέλης παρὰ τὴν λόξωσιν τοῦ ζῳδιακοῦ κύκλου , δι ' οὗ φέρεται λοξοπορῶν | ||
| καλουμένον ζῳδιακὸν ὑποβεβλῆσθαι . Πυθαγόρας δὲ πρῶτος ἐπινενοηκέναι λέγεται τὴν λόξωσιν τοῦ ζῳδιακοῦ κύκλου , ἣν Οἰνοπίδης ὁ Χῖος ὡς |
| . κατὰ πρόσληψιν δὲ καλεῖ ὁ Ἀριστοτέλης τὴν πρότασιν τὴν ἰσοδυναμοῦσαν συλλογισμῷ τὴν δύο ὅρους ἐνεργείᾳ ἔχουσαν καὶ ἕνα [ | ||
| να , εἰ μὲν ἡ προτεθεῖσα καταφατικὴ εἴη , τὴν ἰσοδυναμοῦσαν ἀποφατικὴν εἶναι καὶ κατὰ τὸ κατηγορούμενον : οὐδὲν δὲ |
| , οὕτως ἡ ΘΣ πρὸς τὴν ΘΤ , καὶ ἡ ΤΘ πρὸς τὴν ΘΡ , ” αὐτόθεν ἐλέγχεται τὸ ζητούμενον | ||
| ΘΣ , οὕτως ἡ ΣΘ πρὸς τὴν ΘΤ καὶ ἡ ΤΘ πρὸς τὴν ΘΦ , ὡς δὲ ἡ ΛΜ πρὸς |
| , καὶ τῇ κοινῇ τομῇ αὐτῶν τῇ ΓΔ πρὸς ὀρθὰς ἦκται ἐν τῷ ΓΝΔ ἐπιπέδῳ ἡ ΟΦ , ἡ ΟΦ | ||
| : τὸ μετεωρίζεσθαι καὶ ἐπαίρεσθαι καὶ γαυριᾶν : παρὰ τὸ ἦκται ἀκτός καὶ ῥῆμα ἀκτῶ , ἀφ ' οὗ ἀκταίνω |
| τῶν ὄντων . Ἆρ ' οὖν τῇ ἐπινοίᾳ καὶ τῇ ἐπιβολῇ ἢ καὶ τῇ ὑποστάσει ; Σκεπτέον δὲ ὧδε : | ||
| τῶν δ ' ὀδόντων ἤδη παρακυψάντων χρῆσθαι τρυφερῶν ἐρίων καθαρῶν ἐπιβολῇ τραχήλου καὶ κεφαλῆς καὶ σιαγόνων ἐμβροχῇ τε τῶν αὐτῶν |
| , καὶ ἐφαπτόμεναι μὲν αἱ ΑΔΓ , ἀσύμπτωτοι δὲ αἱ ΕΖΗ , καὶ ἐπεζεύχθω ἡ ΑΓ , καὶ διὰ τοῦ | ||
| ἔστω ὁ ΒΖΓ , ἀπὸ δὲ τοῦ λοξοῦ κύκλου τοῦ ΕΖΗ ἴσαι περιφέρειαι ἀπειλήφθωσαν αἱ ΛΚ , ΚΘ ἑξῆς ἐπὶ |
| πόδας βʹ , ἔστω κανὼν ἔχων τὸ μῆκος πόδας [ δζʹ ] , τὸ δὲ πλάτος καὶ τὸ ὕψος πόδα | ||
| . Εἰ γὰρ μὴ ἔστιν ὁμοία ἡ γεʹ περιφέρεια τῇ δζʹ , ἔστω ὁμοία ἡ γεʹ τῇ δηʹ : ἐν |
| : ὁμοίως καὶ ἐὰν ὁ τοῦ μητρικοῦ κλῆρος ἐν τῷ διαμέτρῳ εὑρεθῇ καὶ ὁ τοῦ διαμέτρου τοῦ κλήρου τῆς μητρὸς | ||
| ἐστὶ τῷ ΑΖ . Ἐὰν παραβολῆς εὐθεῖα ἐπιψαύουσα συμπίπτῃ τῇ διαμέτρῳ , καὶ ἀπὸ τῆς ἁφῆς εὐθεῖα καταχθῇ ἐπὶ τὴν |
| τὴν ἔγγιον τῆς ἀπωτέρω , ἐλαχίστην δὲ τὴν πρὸς τῇ ἐφαπτομένῃ , καθ ' ἣν ἡ μέση κίνησίς ἐστιν , | ||
| συμπτώσει τῶν ἐφαπτομένων διαφέρει τῷ ἀπολαμβανομένῳ τριγώνῳ πρός τε τῇ ἐφαπτομένῃ καὶ τῇ διὰ τῆς ἁφῆς ἀγομένῃ διαμέτρῳ . ἔστωσαν |
| τουτέστι ΔΕ , ΕΖ , ἐλάττους ἔσονται τῶν ΜΞ , ΞΛ , τουτέστι τῆς ΜΝ : ἀλλ ' ἡ ΜΝ | ||
| τουτέστιν αἱ ΔΕ , ΕΖ , δύο ταῖς ΜΞ , ΞΛ , τουτέστι τῇ ΜΝ , ἴσαι εἰσίν . ἀλλὰ |
| τομὴν τῶν ἀναγκαίων ὁμιλίαν τοῦ ἄρρενος πρὸς τὸ θῆλυ , τέμνουσαν καὶ καταβάλλουσαν σπέρμα εἰς μήτραν καὶ γεννῶσαν ἄνθρωπον ἐν | ||
| οὕτως γράφω : διὰ τοῦ δοθέντος σημείου εὐθεῖαν γραμμὴν ἀγαγεῖν τέμνουσαν ἀπὸ τῶν τῇ θέσει δοθεισῶν δύο εὐθειῶν πρὸς τοῖς |
| : ὁμοία ἄρα ἐστὶν ἡ μὲν ΗΝ περιφέρεια ἑκατέρᾳ τῶν ΩΟ , ΧΕ , ἡ δὲ ΘΩ τῇ ΨΧ : | ||
| ΤΖ ΤΗ ἴσαι εἰσίν , ἄνισοι ἄρα εἰσὶν αἱ ΡΩ ΩΟ ἀρχόμεναι ἀπὸ μεγίστης τῆς ΡΩ . πάλιν ἐπεὶ αἱ |
| : ὁ δὲ χρόνος , ἐν ᾧ τὸ Ψ τὴν ΨΧ διαπορεύεται , ὁ χρόνος ἐστίν , ἐν ᾧ τὸ | ||
| ὁ ἥλιος τὴν ΨΧ περιφέρειαν διαπορεύεται , καὶ ἔστιν τῆς ΨΧ ἡμίσεια ἡ Ψ͵Β , ἐν ἄρα τῷ ἡμίσει τῆς |
| κάθετος ἡ ΕΝ : ἴση ἄρα ἐστὶν ἡ ΖΝ τῇ ΝΘ . ἦν δὲ καὶ ἡ ΜΞ τῇ ΞΘ : | ||
| αὐτῶν ρκ ἔγγιστα : ὥστε καί , οἵων ἐστὶν ἡ ΝΘ εὐθεῖα ξδ ι , τοιούτων καὶ ἡ ΘΗ ἔσται |
| τοῦ κέντρου ἀναγραφῇ εἴδη παραλληλόγραμμα ἰσογώνια , ἔχῃ δὲ ἡ κατηγμένη πλευρὰ πρὸς τὴν λοιπὴν τοῦ εἴδους πλευρὰν τὸν συγκείμενον | ||
| Ε παρὰ τὴν ΑΓ ἡ ΕΜ : τεταγμένως ἄρα ἔσται κατηγμένη ἐπὶ τὴν ΑΒ : καὶ ἔσται , ὡς ἡ |
| συμπίπτουσα τῇ ΗΑ κατὰ τὸ Κ , ἡ δὲ ΗΛ συμπίπτουσα τῇ ΒΚ κατὰ τὸ Μ . ἐπεὶ οὖν ἴση | ||
| ἀχθῇ πρὸς ὁποιανοῦν τῶν τομῶν , καὶ ταύτῃ παράλληλος ἀχθῇ συμπίπτουσα ταῖς ἐφεξῆς τρισὶ τομαῖς , τὸ περιεχόμενον ὑπὸ τῶν |
| ἴση ἐστὶν ἡ μὲν ΚΜα τῇ ΒΔ , ἡ δὲ ΚΡ τῇ ΑΒ , ἡ δὲ ΒΕ τῇ ΚΘ , | ||
| τῇ μὲν ΑΓ ἴσην θῶμεν τὴν ΓΔ , τῇ δὲ ΚΡ ἴσην τὴν ΡΧ , καὶ τὰ αὐτὰ κατασκευάσωμεν , |
| τοῦ ἀντίχειρος λεγομένου . Ἡ ἀρχὴ τοῦ ἐπιδέσμου κατὰ τὴν ἀντικειμένην λαγόνα τάσσεται , ἔπειτα ἀπὸ τῆς ὀσφύος ἄγεται λοξὴ | ||
| γενέσθαι τὰς ἑκατέρωθεν ἐπεκτεταμένας διαιρέσεις . παραπλησίως δὲ καὶ τὴν ἀντικειμένην πλευρὰν τὴν ἐπὶ τῇ ὀφρύι ἐπιδιελοῦμεν ἐφ ' ἑκάτερα |
| ΒΖ τῷ ΧΦΨ : καὶ ὁ ΧΦΨ ἄρα πρὸς τὸν ΞΚΟ κέκλιται ὡς ἐπὶ τὰ Ξ μέρη . καὶ ἐπεὶ | ||
| , ΒΖ κοινῇ τομῇ . ἡ δὲ κοινὴ τομὴ τῶν ΞΚΟ , ΒΖ ἐστιν ἡ ἀπὸ τοῦ Ο σημείου διάμετρος |
| . . . . πολλοῦ δεῖ Κυναιγείρῳ πρὸς Καλλίμαχον εἶναι παραβολήν : ὁ μὲν γὰρ ἅπαντας εἰς Μαραθῶνα ἦγε συνθήματι | ||
| : Ἰστέον ὅτι τὸ ὡς τριάκοντα σημαίνει παρὰ Τρύφωνι . παραβολήν ‚ ὥς τε λέων ἐχάρη ‚ : ἀνταπόδοσιν , |
| ἡ καταβολὴ προδείκνυσιν . Αἱ μέντοι πόρρωθεν διαστάσεις βραδυτέραν τὴν ἀποτελεσματογραφίαν κέκτηνται , αἱ δὲ πλησίον σύντομον . τινὲς δὲ | ||
| μοῖρα καθέστηκε τριταία ἡμέρα . ἡ δὲ ἑβδομαία εὑρεθήσεται πρὸς ἀποτελεσματογραφίαν ἐν τῇ τετραγώνῳ πλευρᾷ περὶ Ὑδροχόου μοίρας ζʹ : |
| ἡ ΡΠ τῆς ΘΗ . καὶ ἐπεί ἐστιν ὡς ἡ ΡΠ πρὸς ΠΣ , οὕτως ἡ ΘΗ πρὸς τὴν ΗΝ | ||
| ΡΠ , ΣΠ . Λέγω , ὅτι ἐλάσσων ἐστὶν ἡ ΡΠ τῆς ΠΣ . Ἐπεὶ γὰρ τοῦ ΜΞΝ ὁ πόλος |
| , τῶν περὶ γεωμετρίαν ἀναστρεφομένων οἰομένους τὴν τοῦ κυλίνδρου πλαγίαν τομὴν ἑτέραν εἶναι τῆς τοῦ κώνου τομῆς τῆς καλουμένης ἐλλείψεως | ||
| τροπικοῖς προσούσης τῶν ζῳδίων κακὸν εἰς τὸ χειρούργημα καὶ πρὸς τομὴν ὑπάρχει : Σελήνη συνοδεύουσα Ἡλίῳ τόδε φέρει : τοῦτο |
| παραδοξότερον φανεῖται τὸ μὴ μόνον συναμφότερον συναμφοτέρῳ , ἀλλὰ καὶ ἑκατέραν τῶν συνισταμένων ἐντὸς ἑκατέρᾳ τῶν ἐκτὸς καὶ ἴσην εἶναι | ||
| ἐστι τὸ ΑΒΓ τρίγωνον , φανερὰ ἡ δεῖξις διὰ τὸ ἑκατέραν τῶν πρὸς τῷ Δ γίνεσθαι ὀρθήν . ἀλλὰ δὴ |
| . Ποιείσθω οὖν κατὰ τὸ Λ , καὶ κείσθω τῇ ΛΖ περιφερείᾳ ἴση περιφέρεια ἡ ΜΗ . Ἐπεὶ οὖν ὁ | ||
| καὶ ἡμέρας χρόνος ἐστίν , ἐν ᾧ ὁ ἥλιος τὴν ΛΖ περιφέρειαν διαπορεύεται , καὶ ἔστιν ἴση ἡ ΛΖ τῇ |
| ΑΗΒ γωνία καθ ' ὑπόθεσιν ἴση ἐστὶν τῇ ὑπὸ ΔΘΕ γωνίᾳ : ὅμοιον ἄρα ἐστὶν τὸ ΑΒΗ τρίγωνον τῷ ΔΕΘ | ||
| περιέχωσι , τὸ δὲ Δ σημεῖον ᾖ ἐν τῇ ἐφεξῆς γωνίᾳ τῆς ὑπὸ τῶν ἀσυμπτώτων περιεχομένης , ἡ ἀπὸ τῆς |
| , ἐκεῖνον τὸν λόγον ἔδει ἔχειν καὶ τὴν ΑΓ πρὸς ΛΞ , καὶ τὰ λοιπὰ ὁμοίως κατασκευάζειν . [ καὶ | ||
| , ἐπεὶ μέσον ἐστὶ τὸ ΔΘ καί ἐστιν ἴσον τῷ ΛΞ , μέσον ἄρα ἐστὶ καὶ τὸ ΛΞ . ἐπεὶ |
| τὸ ΖΗΛ τρίγωνον , οὕτως τὸ ΑΒΓΔΕ πολύγωνον πρὸς τὸ ΖΗΘΚΛ πολύγωνον . ἀλλὰ τὸ ΑΒΕ τρίγωνον πρὸς τὸ ΖΗΛ | ||
| . ἀλλὰ μὴν καὶ ὡς ἡ ΖΗΘ βάσις πρὸς τὴν ΖΗΘΚΛ βάσιν , οὕτως ἦν καὶ ἡ ΖΗΘΝ πυραμὶς πρὸς |
| οὐκ ἠκολούθησεν αὐτῷ . ἐκοινώνησε δὲ καὶ Ἀμεινίᾳ Διοχαίτα τῷ Πυθαγορικῷ , ὡς ἔφη Σωτίων , ἀνδρὶ πένητι μέν , | ||
| ἄρτιον ἡ μονὰς ἀλλὰ περιττόν . Ἀριστοτέλης δὲ ἐν τῷ Πυθαγορικῷ τὸ ἕν φησιν ἀμφοτέρων μετέχειν τῆς φύσεως : ἀρτίῳ |
| δὲ καὶ ἑτέρῳ ἐπιπέδῳ τῷ ὑποκειμένῳ κατ ' εὐθεῖαν τὴν ΠΔΡ πρὸς ὀρθὰς τῇ ΗΔΘ , ἡ δὲ κοινὴ τομὴ | ||
| τὸ ΖΗΘ : καὶ ἡ κοινὴ ἄρα αὐτῶν τομὴ ἡ ΠΔΡ ὀρθή ἐστι πρὸς τὸ ΖΗΘ : καὶ πρὸς πάσας |
| ἄλλων εὐανδρεῖ , τὴν δὲ πρὸς νότον τὴν Μακεδονικὴν ἀπὸ Θεσσαλονικείας μέχρι Στρυμόνος : τινὲς δὲ καὶ τὴν ἀπὸ Στρυμόνος | ||
| παραλίας τῆς Μακεδονικῆς ἀπὸ τοῦ μυχοῦ τοῦ Θερμαίου κόλπου καὶ Θεσσαλονικείας ἡ μὲν τεταμένη πρὸς νότον μέχρι Σουνίου , ἡ |
| , φανερὸν ὅτι μείζων ἐστὶν ἢ διπλῆ τῇ ὁμοιότητι ἡ ΛΦ τῆς ΜΨ . ἀλλ ' ἐν ᾧ μὲν τὸ | ||
| πόλου γὰρ τοῦ ΕΖΗΘ κύκλου : ἡ δὲ ΛΩ τῇ ΛΦ : ἐκ πόλου γὰρ τοῦ ΨΩΧ : ὅλη ἄρα |
| καὶ μέρει μέρους , τί κωλύει καὶ τὸ πᾶν τῇ ἀπλανεῖ τὴν πλανωμένην ὁρᾶν , καὶ ταύτῃ τὴν γῆν καὶ | ||
| ἐπὶ τὸ αὐτὸ ἀποκαταστήσεται , κατὰ τὰ αὐτὰ φερομένη τῇ ἀπλανεῖ : ἤτοι δὲ ἐν ἴσῳ χρόνῳ ἐπὶ τὸ αὐτὸ |
| Α , καὶ τῇ ΓΔ παράλληλος ἤχθω ἐν τῇ ἑτέρᾳ τομῇ ἡ ΕΖ , καὶ τετμήσθω δίχα κατὰ τὸ Η | ||
| τυχόντα σημεῖα , καὶ ἀπ ' αὐτῶν ἀχθῶσιν ἐν τῇ τομῇ παρὰ τὰς ἐφαπτομένας τέμνουσαι ἀλλήλας τε καὶ τὴν γραμμήν |
| ὡς μὲν τὴν ΔΗ πρὸς τὴν ΗΕ͵ , οὕτως τὴν ΗΕ͵ πρὸς ΗΖ͵ , καὶ τὴν ΗΖ͵ πρὸς τὴν ΗϠ | ||
| Ζ͵ , ὥστε εἶναι ὡς μὲν τὴν ΔΗ πρὸς τὴν ΗΕ͵ , οὕτως τὴν ΗΕ͵ πρὸς ΗΖ͵ , καὶ τὴν |
| , τῇ δὲ τούτων θεωρίᾳ συνεισφέρει καὶ τὴν περὶ τῶν τραπεζίων διδασκαλίαν : διῄρηται γὰρ τὸ τετράπλευρον εἴς τε τὸ | ||
| τὸ δὲ ῥομβοειδὲς πάντων ἔλαττον . πρῶτον δὲ ἐνταῦθα τῶν τραπεζίων ἐμνημόνευσε . περὶ τούτων δὲ ἐν ταῖς ὑποθέσεσιν ἐδίδαξεν |
| ἐστὶ δοθεὶς διὰ τὸ δοθεῖσαν εἶναι τὴν ὑπὸ τῶν ΒΑΓ γωνίαν : καὶ τοῦ Δ ἄρα χωρίου πρὸς τὸ ὑπὸ | ||
| πλευραὶ ἄνισοι , καὶ ἡ μείζων ὑποτείνει τὴν δεδομένην μείζονα γωνίαν . εἰ γὰρ μή ἐστιν ἡ τὴν μείζονα γωνίαν |
| ΘΠ τοῖς # δ , καὶ τῇ γενομένῃ διαστάσει τῆς ΘΠ τοῖς # μϚ ἴσην θῶμεν τὴν ΘΤ , καὶ | ||
| , καὶ τριῶν οὐσῶν περιφερειῶν ὁμοιογενῶν ἀνίσων τῶν ΚΘ , ΘΠ , ΗΘ εἰλήφθω τις περιφέρεια ἡ ΘΡ μείζων μὲν |
| τετράγωνον , ὡς τριῶν δακτύλων , καὶ ἐς μὲν τὴν καταγλυφὴν ταύτην , ὅταν δοκέῃ προσδεῖν , ξύλον ἐμπηγνύναι ἐναρμόζον | ||
| ἔτι τετράγωνον ὡς τριῶν δακτύλων , καὶ ἐς μὲν τὴν καταγλυφὴν ταύτην , ὅταν προσδεῖν δέῃ , ξύλον ἐμπηγνύντα ἐναρμόσον |
| ἐπέχουσα : τὸ δ ' ἑωθινὸν τῷ Ῥήνῳ ποταμῷ περιγραφομένη παράλληλον ἔχοντι τὸ ῥεῦμα τῇ Πυρήνῃ : τὸ δὲ νότιον | ||
| ἂν εἶεν καὶ οἱ ἀπὸ Μασσαλίας ἐπὶ τὸν διὰ Βορυσθένους παράλληλον , ὅς γε διὰ τῆς Κελτικῆς παρωκεανίτιδος ἂν εἴη |
| ὄμμα ἐγγυτέρω καὶ ἔστω τὸ Η , ἀφ ' οὗ προσπιπτέτω ἀκτὶς διὰ τοῦ Γ ἡ ΗΘ . ἐπεὶ οὖν | ||
| ἐπιγνῶναι ὕψος , πόσον ἐστί , τὸ ΒΓ , καὶ προσπιπτέτω ἀκτὶς ἡλίου διὰ τοῦ Β ἡ ΒΔ . οὐκοῦν |
| ὀκταέδρου δὲ τρίγωνον τὸ ΣΡΠ ἔστω , καὶ ὁμοίως ἡ ΧΨ κάθετος , ἣν δεῖ ἐλάσσονα δεῖξαι τῆς ΥΩ καθέτου | ||
| ἀπὸ τῆς ΚΓ μείζονα λόγον ἔχει ἤπερ ιβʹ τὰ ἀπὸ ΧΨ πρὸς ιεʹ τὰ ἀπὸ ΩΦ : ὥστε καὶ λϚʹ |
| ἡ ΗΘΚ σφαῖρα πρὸς τὸ ἐν τῇ ΔΕΖ σφαίρᾳ στερεὸν πολύεδρον . μείζων δὲ ἡ ΑΒΓ σφαῖρα τοῦ ἐν αὐτῇ | ||
| περὶ τὸ αὐτὸ κέντρον οὐσῶν εἰς τὴν μείζονα σφαῖραν στερεὸν πολύεδρον ἢ καὶ ἀρτιόπλευρον ἐγγράψαι μὴ ψαῦον τῆς ἐλάσσονος σφαίρας |
| ΚΟ δίχα τε καὶ πρὸς ὀρθὰς τεμεῖ τὴν ΖΡ . τεμνέτω κατὰ τὸ Σ . καὶ ἐπεὶ ἡμίσους ὀρθῆς ἐστιν | ||
| τινα τῶν ἐν τῇ σφαίρᾳ κύκλων τὸν γδβʹ αἰεὶ δίχα τεμνέτω , μηδέτερος δὲ αὐτῶν μήτε πρὸς ὀρθὰς ἔστω τῷ |
| συντονοῦνται , φίλων κούφων δούλων , μονογενῆ δὲ τῇ ἰδίᾳ εὐθείᾳ , πτερά πτερῶν , ξυρά ξυρῶν , ὀστᾶ ὀστῶν | ||
| . Πρὸς ἄρα τῷ δοθέντι σημείῳ τῷ Α τῇ δοθείσῃ εὐθείᾳ τῇ ΒΓ ἴση εὐθεῖα κεῖται ἡ ΑΛ : ὅπερ |
| , ἐν δὲ τῷ δʹ κατὰ τὸ Λ , καὶ προσδιελθὼν τὴν ΛΜ οὖσαν περιφορὰν πάλιν ἀνατελεῖ κατὰ τὸ Μ | ||
| , τὴν ἀνομίαν τε τοῖς νόμοις κατέσβεσεν . καὶ ὀλίγα προσδιελθὼν ἐπιφέρει οὕτω δὲ πρῶτον οἴομαι πεῖσαί τινα θνητοὺς νομίζειν |
| μὲν τοῦ ΕΖΗΘ κύκλου , ὕψους δὲ τοῦ ΝΠ κύλινδρος νενοήσθω ὁ ΕΣ . καὶ ἐπεὶ ἴσος ἐστὶν ὁ ΑΞ | ||
| ΛΜ , καὶ ἐπεζεύχθωσαν αἱ ΜΒ , ΜΚ , καὶ νενοήσθω κῶνος , οὗ κορυφὴ μὲν τὸ Μ σημεῖον , |
| ἡ ΣΘ πρὸς ΘΤ , ὡς δὲ ἡ ΣΘ πρὸς ΘΤ , οὕτως ἡ ΘΤ πρὸς ΘΦ , καὶ ἀφῃρήσθω | ||
| ὡς ἡ ΚΘ πρὸς ΘΣ , οὕτως ἡ ΣΘ πρὸς ΘΤ , ὡς δὲ ἡ ΣΘ πρὸς ΘΤ , οὕτως |
| τὰ παρακείμενα ὀρθογώνια παρὰ τὴν ἑτέραν εὐθεῖαν πλάτος ἔχοντα τὴν ἀπολαμβανομένην ὑπ ' αὐτῶν πρὸς τῇ κορυφῇ τῆς τομῆς ἐλλείποντα | ||
| ἀνάλογον πλάτος ἔχον τὴν ὑπ ' αὐτῆς τῆς τεταγμένως ἀχθείσης ἀπολαμβανομένην πρὸς τῇ τομῇ ἐλλεῖπον εἴδει ὁμοίῳ τῷ περιεχομένῳ ὑπὸ |
| λέγω , ὅτι ἴσον ἐστὶ τὸ ΒΚ παραπλήρωμα τῷ ΚΔ παραπληρώματι . Ἐπεὶ γὰρ παραλληλόγραμμόν ἐστι τὸ ΑΒΓΔ , διάμετρος | ||
| ΚΖ , καὶ τὸ ΚΖ παραπλήρωμα ἴσον ἐστὶ τῷ ΚΓ παραπληρώματι . τὸ ΕΤ ἄρα μεῖζόν ἐστι τοῦ ΚΓ . |
| τὸ ἀπὸ τῆς ΑΤ πρὸς τὸ ὑπὸ τῶν ΑΤ , ΤΡ , τουτέστι πρὸς τὸ ὑπὸ τῶν ΒΤ , ΤΓ | ||
| βάσις καὶ τὸ ΨΥ στερεόν . καὶ ἐπεὶ δύο αἱ ΤΡ , ΡΥ δυσὶ ταῖς ΑΛ , ΛΒ ἴσαι εἰσίν |
| σύγκρισις καὶ τὰ πρός τι τῇ ἐν κοινῷ τόπῳ τριπλῇ συγκρίσει : ἀπὸ τοῦ μείζονος , ἀπὸ τοῦ ἴσου , | ||
| αὐτὰ τοιαῦτα τυγχάνειν ὁποῖα φαίνεται : νῦν δὲ ἐν τῇ συγκρίσει ἀνεπίκριτον εὑρίσκοντες μάχην , καθ ' ἣν τὰ ἕτερα |
| ἐπεζεύχθω ἡ ΗΘ . καὶ ἐπεί , ἐὰν ᾖ ἐν σφαίρᾳ κύκλος , ἡ διὰ τῶν πόλων αὐτοῦ ἀγομένη εὐθεῖα | ||
| κύκλον ἐγγραφομένων . ὅπερ ἔδει δεῖξαι . Δωδεκάεδρον συστήσασθαι καὶ σφαίρᾳ περιλαβεῖν , ᾗ καὶ τὰ προειρημένα σχήματα , καὶ |
| ] Κ [ ] Κ ! ! ! [ ] ΤΑ ! [ ] ΠΙ [ ] ΡΙΤ [ ] | ||
| λευκοπώλῳ φέγγος ἡμέρᾳ φλέγειν . Καὶ τὰ λοιπά . . ΤΑ ΔΕ ΛΕΙΨΕΤΑΙ . Τουτέστι , τὸ τῶν κακῶν ἔσχατον |
| ἐστιν , ἔστιν ἄρα , ὡς ἡ ΕΚ πρὸς τὴν ΚΞ , οὕτως ἡ ΕΑ πρὸς τὴν ΑΖ . ἐπεὶ | ||
| ΡΤ . ἐπεὶ δὲ ζητῶ τίς περιφέρεια ἡ ΕΚ τῇ ΚΞ , ζητήσω ἄρα τίς γωνία ἡ ὑπὸ ΕΟΚ τῇ |
| ἄρα ἐστὶ καὶ τῆς ὑπὸ ΓΕΔ ἡ ὑπὸ ΓΕΑ . ἐκκείσθω τῷ τοῦ κύκλου ἡμικυκλίῳ ἴσον τὸ ΚΑΛ , καὶ | ||
| γραμμὴ ἡ ΓΔ , καὶ ἐπεζεύχθω ἡ ΔΒ , καὶ ἐκκείσθω κύκλος ὁ ΕΖΗΘΚ , οὗ ἡ ἐκ τοῦ κέντρου |
| σύγκρισιν τῶν ἐν αὐτοτελείᾳ καταγινομένων ῥημάτων καὶ μὴ πάντως ἐπιζητούντων πλαγίαν . . Οὐ μέντοι μοι δοκεῖ βίαιον εἶναι τὸ | ||
| μὲν ἡ ΓΕ πρὸς Η , ἡ ὀρθία πρὸς τὴν πλαγίαν , ὡς δὲ ἡ Η πρὸς ΔΕ , ἡ |
| περίκειται καὶ λίαν ὑψηλὴ καὶ τὸ ἱερὸν καὶ τὸ ὕδωρ ἀπολαμβάνουσα ἐν κοίλῳ τόπῳ καὶ βαθεῖ . τὰς μὲν οὖν | ||
| κύκλον δεδομένον τῷ μεγέθει τὸν ΔΑΓ διῆκται εὐθεῖα ἡ ΒΓ ἀπολαμβάνουσα τμῆμα τὸ ΒΑΓ δεχόμενον γωνίαν δοθεῖσαν τὴν ὑπὸ τῶν |
| ἄρα αὐτῶν τομαὶ παράλληλοί εἰσιν : παράλληλος ἄρα ἐστὶν ἡ ΗΠ τῇ ΘΟ . ἐπεὶ οὖν δύο εὐθεῖαι ἁπτόμεναι ἀλλήλων | ||
| ἔστω τὸ ἐπιταχθὲν μέρος τοῦ ΑΒΓ τριγώνου τὸ ὑπὸ ΚΜ ΗΠ [ τοῦτο γὰρ προδέδεικται ] , καὶ τῇ ΚΜ |
| ΓΑΔ . λέγω , ὅτι ἡ ΓΑΔ τῇ Β οὐ συμπεσεῖται . ἤχθω ἀπὸ τοῦ Α ἐφαπτομένη ἡ ΕΑΖ . | ||
| Η σημεῖον κέντρον ἐστὶ τῆς ΑΒ τομῆς , ἡ ΓΖ συμπεσεῖται τῇ ΑΒ , εἴτε μή ἐστιν , ὑποκείσθω τὸ |
| ὡς ἡ ΒΞ πρὸς ΞΗ , οὕτως ἡ ΕΟ πρὸς ΟΘ . ἀλλὰ καὶ ὡς ἡ ΗΞ πρὸς ΞΚ , | ||
| κύκλων ἐπιπέδῳ οὖσα , καὶ ἤχθω διὰ τῶν ΟΠ , ΟΘ εὐθειῶν ἐπίπεδον : ποιήσει δὴ τομὴν ἐν τῷ κώνῳ |
| ٣ ١٩ ٥٨ ٥٠ ٣٢ τὸ συναμφότερον τῶν ἀπό ٣٢ ١٢ ٤٣ ٥٦ ٥٠ ἡ ΕΜ ٨ ٣ ٤٠ ٥٩ | ||
| ٤ ἡ ΑΒ ٢ ٥٩ ٢٨ ἡ ΓΖ ٢ ١٤ ١٢ ٤ ١٢ ἡ ΒΗ ٢ ١٣ ٤٣ ἡ ΑΗ |
| λι : τινὲϲ δὲ τὴν ἑτέραν τοῦ λ γραμμὴν ἄλλῃ λοξῇ τέμνοντεϲ δηλοῦϲι τὴν λίτραν , # . τὸ δὲ | ||
| οὕτω ] σφαιρῶν , ὁμαλῇ καὶ ἁπλῇ καὶ τεταγμένῃ , λοξῇ δὲ καὶ διὰ βραδυτῆτα μόνον ὑπολειπομένῃ τῶν ἀπλανῶν ἢ |
| , ἴση ἐστὶν ἡ ὑπὸ ΗΓΘ τῇ ὑπὸ ΘΓΒ : ἡμικυκλίων γάρ . οὐκοῦν ἡ ὑπὸ ΗΓΔ ἐλάσσων τῆς ὑπὸ | ||
| γωνίαι ἡμικυκλίων ἴσων εἰσὶν γωνίαι : πᾶσαι αἱ τῶν ἴσων ἡμικυκλίων γωνίαι ἴσαι : αἱ ΑΓ , ΒΔ ἄρα γωνίαι |
| ἔστιν ἄρα ὡς ἡ ΞΑ πρὸς ΑΜ , οὕτως ἡ ΟΔ πρὸς ΔΝ . ἐπεὶ δέ ἐστιν ὡς τὸ ὑπὸ | ||
| τῇ ΔΩ παράλληλος ἤχθω ἡ ͵αΤϠ , καὶ ἐκβεβλήσθω ἡ ΟΔ κατὰ τὸ ͵α , καὶ συμπεπληρώσθω τὰ ΩΨ , |
| τὰ ἐν ἀρχῇ . καὶ πρὸς τούτοις εἴ τις ὑμένα προσφύσει περὶ τὸν δάκτυλον , οὐδὲν ἧττον ἅμα τῇ θίξει | ||
| ῥεύσεται : ἢν δὲ αὐτὴν ἀφέλῃς τὴν κονδύλωσιν ἐν τῇ προσφύσει , οὐ ῥεύσεται . Ἢν μὲν οὖν οὕτω καθίσταται |
| ἔχων τὰς καλλίστας προαιρέσεις τῇ διανοίᾳ θεωρήσας οὕτω πρὸς τὴν τεταγμένην τῶν κατὰ μέρος τρέπηται διοίκησιν . οὐ γὰρ μόνον | ||
| διαδεξάμενοι αὐτοῦ τὴν φιλοσοφίαν , ὅσαι οὐκ εἴρηνται εἰς τὴν τεταγμένην κατὰ τὰς ἀρετὰς περὶ αὐτοῦ διήγησιν . Τίς ἡ |
| ἐν δὲ τῇ γῇ τὸν ΗΘΚ , ἐν δὲ τῷ σκιάσματι τὴν ΝΞ περιφέρειαν , ἐν δὲ τῷ κώνῳ εὐθείας | ||
| Ϙ . Ἡ ὑποτείνουσα εὐθεῖα ὑπὸ τὴν ἀπολαμβανομένην ἐν τῷ σκιάσματι τῆς γῆς περιφέρειαν τοῦ κύκλου , καθ ' οὗ |
| τρίγωνον ἐξ ἓξ τὸν ἀριθμὸν ὄντων γέγονεν . τρίγωνα δὲ ἰσόπλευρα συνιστάμενα τέτταρα κατὰ σύντρεις ἐπιπέδους γωνίας μίαν στερεὰν γωνίαν | ||
| ὡς τὰ ῥομβοειδῆ , τὰ δὲ ὀρθογώνια μέν , οὐκ ἰσόπλευρα δέ , ὡς τὰ ἑτερομήκη , τὰ δὲ ἔμπαλιν |
| διὰ τῶν ἐπιπέδων εὑρεῖν ἔστιν εὐθεῖαν ἴσην τῇ τοῦ κύκλου περιφερείᾳ χρησάμενον τοῖς ἐπὶ τῆς ἕλικος εἰρημένοις θεωρήμασιν . Σοφίας | ||
| πάλιν , ἐπεὶ ὁμοία ἐστὶν ἡ ΘΗ περιφέρεια τῇ ΠΝ περιφερείᾳ , ἐν ᾧ ἄρα χρόνῳ τὸ Θ ἐπὶ τὸ |
| τῶν ζῳδίων κύκλου τὸ Ε , καὶ κέντρῳ τῷ Β γεγράφθω ὁ ἐπίκυκλος τῆς σελήνης ὁ ΖΗΘ , περιαγέσθω δ | ||
| πάλιν κέντρῳ τῷ Γ , διαστήματι δὲ τῷ ΓΒ κύκλος γεγράφθω ὁ ΔΚΒ , καὶ πάλιν κέντρῳ τῷ Α , |
| καὶ ἡ ΑΕ τῇ Γ ἐστιν ἴση . Δύο ἄρα δοθεισῶν εὐθειῶν ἀνίσων τῶν ΑΒ , Γ ἀπὸ τῆς μείζονος | ||
| μείζων ἐστὶν τῆς ΕΒ ἡμισείας . ] Ἔστω δὲ νῦν δοθεισῶν τῶν ΖΒ ΒΓ τὴν μείζονα ἄκραν εὑρεῖν . Ἤχθω |
| : ἡ ἄρα ηδʹ ἐλάττων ἐστὶν ἡμίσους ζῳδίου : καὶ ἀπειλήφθω ἡμίσους ζῳδίου περιφέρεια ἡ δθʹ καὶ ἔτι ἡ κγʹ | ||
| χώραν τὴν ὑπὸ τὸν τόνον πίπτουσαν δακτύλων β ⊂ . ἀπειλήφθω δὲ ἀπὸ μὲν τῶν ἄκρων τῆς καταζυγίδος ἐξ ἑκατέρου |
| τὴν ἔνδειαν τῶν ζῴων εὐπειθεῖς ἔσχεν . Εὐρυσθεὺς δ ' ἀχθεισῶν πρὸς αὐτὸν τῶν ἵππων ταύτας μὲν ἱερὰς ἐποίησεν Ἥρας | ||
| διάμετρον εὑρεῖν . γεγονέτω , καὶ ἔστω ἡ ΓΘ . ἀχθεισῶν δὴ τεταγμένως τῶν ΔΖ , ΕΘ καὶ ἐκβληθεισῶν ἔσται |
| τουτέστιν ἡ ὑπὸ ΗΚΘ τῇ ὑπὸ ΟΛΗ , τουτέστιν ἡ ΠΘ περιφέρεια τῇ ΟΗ . ἀλλὰ καὶ ἡ ΘΣ τῇ | ||
| ἀπὸ ΕΘ , ΘΗ : καὶ λοιπὸν ἄρα τὸ ἀπὸ ΠΘ λοιπῷ τῷ ἀπὸ ΘΡ ἴσον ἐστίν : ἴση ἄρα |
| τῆς παραγωγῆς οὐκ ἐν τῷ συμπεράσματι ἀλλ ' ἐν τῇ ἀντιφάσει , ἥτις εἶχε τὸ διττόν : τὸ γὰρ ἆρ | ||
| τῆς διαλεκτικῆς περὶ τὸν ἀποφαντικὸν εἰλεῖσθαι λόγον τῷ συνηγορεῖν τῇ ἀντιφάσει καὶ τοῖς ἀντικειμένοις : διὰ τοῦτο οὖν καὶ τὰ |
| : καὶ κέντρῳ τῷ Η καὶ διαστήματι τῷ ἀπέχοντι αὐτοῦ σημείῳ ἐπὶ τῆς ΗΖ τμήματα οθʹ κύκλον γράψομεν τὸν ἐσόμενον | ||
| θρέψοντα προάγει , καὶ τὴν ἐκ τῶν θηρατῶν ἐπιβουλὴν διδάσκει σημείῳ τινὶ ἀτεκμάρτῳ , καὶ τῶν τόπων ὧν οὐ χρὴ |
| ' ἐρεῖ τις : καὶ τί μᾶλλον τὰ δεξιὰ ἔοικε νευρᾷ πλὴν τῆς Καράμβιδος ἢ τὰ ἀριστερὰ τοῖς κέρασι πλὴν | ||
| , ἐοικυῖα Σκυθικῷ τόξῳ . Τὰ μὲν γὰρ δεξιὰ τῇ νευρᾷ παρομοιοῦσι , πάντοθεν γάρ ἐστιν ἰθυτενῆ πλὴν τῆς ἀνεχούσης |
| δρῇν δὲ τῷ ἑτέρῳ ἐπιβεβῶτα , μὴ τῷ κατὰ τὴν δρῶσαν χεῖρα : ὕψος γούνατος πρὸς βουβῶνας , ὡς ἐν | ||
| καὶ καταφεύγουσι καὶ οὗτοι πρὸς τὴν πόλιν : ἣν ὁτιοῦν δρῶσαν κακὸν αὐτοὺς οὐκ ἄν ποτε τὴν ἱκανὴν δίκην ἔχειν |
| εὐθείας κέντροις τοῖς πέρασιν αὐτῆς , διαστήματι δὲ τῇ ἀγομένῃ καθέτῳ ἀπὸ τῆς διχοτομίας αὐτῆς ἐπὶ τὴν παράλληλον αὐτῇ πλευρὰν | ||
| ὅπερ ἄτοπον . Ἐδείχθη γὰρ ἡ ΘΚ κάθετος τῇ ΜΝ καθέτῳ ἴση , αἵτινες κάθετοι ἤχθησαν ἀπὸ τῶν ἐπισταθεισῶν μετεώρων |
| πρὸς τὴν ΗΛ . καί ἐστι παράλληλος ἡ ΕΘ τῇ ΗΛ : εὐθεῖα ἄρα ἐστὶν ἡ διὰ τῶν Θ , | ||
| τοῦ κύκλου ἐπιπέδῳ τῇ ΓΔ πρὸς ὀρθὰς αἱ ΚΒ , ΗΛ , καὶ ἐπεζεύχθω ἡ ΒΛ . ἐπεὶ οὖν δύο |
| καὶ ἤχθω διὰ τοῦ Ε κέντρου τῇ ΜΝ παράλληλος ἡ ΕΘ , καὶ κάθετος ἐπ ' αὐτὴν ἀπὸ τοῦ Λ | ||
| ἡ μὲν ΘΗ τῇ ΗΖ ἐστιν ἴση , ἡ δὲ ΕΘ τῆς ΔΗ διπλῆ , καὶ λοιπὴν τὴν ΓΘ ἕξομεν |
| ٢٠ τὸ ΛΜ ١١٧ ٣٥ ٤٧ ٢٠ τὸ ΝΞ ٣ ٣٦ ٣٥ ٢٠ ὑπὸ ῥητῆς . , ] ταύτης δηλονότι | ||
| ٤٢ Ἡ πλευρὰ τοῦ ΕΓ ٥ ٤٢ ١٤ τὸ ΒΓ ٣٦ ἡ ΖΗ ٤ τὸ ΕΓ ٣٢ ٣٢ ٩ ٥٢ |
| γὰρ τρήματα ὡς γλῶσσα . * δικρῇ : διπλῇ διχῇ διῃρημένῃ ἢ διστόμως * νέατον : κατὰ τὸν ἄκρον κατὰ | ||
| τῶν ὀλιγωτέρων προεπιχειρούντων : ἡμεῖς δ ' οὐκ ἐς πολλὰ διῃρημένῃ τῇ στρατιᾷ χρησόμεθα , ἀλλὰ ἀθρόᾳ , οὐδ ' |
| ΘΚ , ἴσα ἀλλήλοις ἐστί . γεγράφθω περὶ τὴν ΒΓ διάμετρον κύκλος ὁ ΒΛΓΜ , καὶ ἐπεζεύχθωσαν αἱ ΑΛ , | ||
| κατὰ σῶμα ἢ κατὰ σχῆμα , καὶ μάλιστα τετράγωνον ἢ διάμετρον , κακίστη γίνεται ἡ καταρχὴ ἐκείνη καὶ κλιμακτηριώδης , |
| προσδοκῶσα σαρκικῶς αὐτῷ συμμιγῆναι , αὐτὸς δὲ ὡς ἰδίαν μητέρα περιλαμβάνων , καὶ τοῖς ὀφθαλμοῖς περιλάμπων οὓς ἐθήλασε μασθούς , | ||
| μὲν τοῦ φάναι ὃν ἀριθμὸς πρὸς ἀριθμὸν ἐπλεόναζεν ὁ ὅρος περιλαμβάνων καὶ τὰ μὴ συμμέτρους ἔχοντα τὰς πλευράς , διὰ |
| δυνάμει πεφυκυῖα , δύο μεσότητας ἔχει , ἀριθμητικήν τε καὶ ἁρμονικήν , φαίνεταί τε τὰ μέρη αὐτῆς καὶ τὰ μεγέθη | ||
| δεύτερος πρὸς τὸν τρίτον , οἷον δʹ Ϛʹ θʹ , ἁρμονικήν δὲ ὅταν τριῶν ἀριθμῶν ἀνίσων , εἰ ὡς ὁ |