| πλευρῶν , καὶ τὸ ἐμβαδὸν εἰς ἴσα διαιρεῖται κατὰ τὴν διαγώνιον διὰ τὴν κοινὴν ἰδιότητα τῶν παραλληλογράμμων . ἐπὶ δὲ | ||
| βάσιν τέμῃ ἐκ τῆς κορυφῆς δίχα κατὰ τὴν τοῦ τετραγώνου διαγώνιον τὴν ἀπὸ τῆς ὀρθῆς , ἔσονται δύο στερεαὶ πυραμίδες |
| μὲν τοῦ ΕΖΗΘ κύκλου , ὕψους δὲ τοῦ ΝΠ κύλινδρος νενοήσθω ὁ ΕΣ . καὶ ἐπεὶ ἴσος ἐστὶν ὁ ΑΞ | ||
| ΛΜ , καὶ ἐπεζεύχθωσαν αἱ ΜΒ , ΜΚ , καὶ νενοήσθω κῶνος , οὗ κορυφὴ μὲν τὸ Μ σημεῖον , |
| τὴν ΑΖ , τῇ δὲ Δ τὴν ΖΗ , καὶ ἐπιζεύξας τὴν ΒΗ ταύτῃ παράλληλον ἤγαγον τὴν ΖΘ . ἐπεὶ | ||
| . εἰ δ ' ἀρεταί : ὅτι ἀρεταὶ κατάκειται εἴρηκεν ἐπιζεύξας πληθυντικῷ ἑνικὸν ῥῆμα τὸ κατάκειται . καὶ ὅτι ὀργὰν |
| δον μέρος τῆς ἀποκαταστάσεως , ἐπὶ τὰς ἡμέρας Ϛ νγʹ κʹʹ , ἀποτελοῦνται μοῖραι β δʹ : ταῦτα προσέθηκα τῇ | ||
| # λαʹ κʹʹ , κατὰ δὲ τὸ ἐλάχιστον # λεʹ κʹʹ , ἡ δὲ διάμετρος τοῦ κύκλου τῆς σκιᾶς κατὰ |
| τοῦ δʹ ἢ οὔ . Ἐρχέσθω πρότερον καὶ ἔστω τὸ αγδβʹ , καὶ ἐν τῇ περιφορᾷ τῆς σφαίρας μετακεκινήσθω τὸ | ||
| καὶ διὰ τῶν πόλων αὐτῶν μέγιστοι κύκλοι γεγραμμένοι εἰσὶν οἱ αγδβʹ αεζβʹ , ὁμοία ἄρα ἐστὶν ἡ γεʹ περιφέρεια τῇ |
| τὴν ΖΛ . δύο δὴ τρίγωνά ἐστι τὰ ΒΑΕ , ΗΖΛ μίαν γωνίαν μιᾷ γωνίᾳ ἴσην ἔχοντα τὴν ὑπὸ ΒΑΕ | ||
| πάλιν ἀποκατασταθῇ ὅθεν ἤρξατο φέρεσθαι , τὰ μὲν ΚΓΔ , ΗΖΛ ἡμικύκλια ἐνεχθήσεται κατὰ τῶν σφαιρῶν , τὸ δὲ ΑΖ |
| ἡ ΓΑ , ὀρθία δὲ ἡ ΓΛ , αἱ δὲ καταγόμεναι ἀπὸ τῶν τομῶν ἐπὶ τὴν ΓΑ καταχθήσονται ἐν τῇ | ||
| καὶ φανοῦνται παράλληλοι , αἱ δ ' ἐπὶ τὴν ΑΓ καταγόμεναι διαχθήσονται μὲν ἀπὸ τοῦ Κ , φανοῦνται δὲ τῇ |
| καὶ οἱ ἰσάκις ἶσοι ἰσάκις ἅπαντες , τουτέστι κύβοι τριχῆ διαστατοὶ ὄντες καὶ ταυτότητος ἐπὶ πλεῖον δοκοῦντες μετέχειν ἔργον εἰσὶ | ||
| λϚ , μθ , ξδ καὶ οἱ ἑξῆς διχῆ ὄντες διαστατοὶ καὶ ἐν τῇ ἐπιπέδῳ σχηματογραφίᾳ μῆκος καὶ πλάτος μόνον |
| καὶ παράλληλοί εἰσιν διὰ τὸ λγʹ τοῦ αʹ . τὸ ΚΒΟΣ ἄρα τετράπλευρον . , . ] τετράπλευρόν ἐστιν , | ||
| κύκλος . Ἤχθω ἀπὸ τοῦ Α σημείου ἐπὶ τὸ τοῦ ΚΒΟΣ τετραπλεύρου ἐπίπεδον κάθετος ἡ ΑΨ καὶ συμβαλλέτω τῷ ἐπιπέδῳ |
| εὐθείας κέντροις τοῖς πέρασιν αὐτῆς , διαστήματι δὲ τῇ ἀγομένῃ καθέτῳ ἀπὸ τῆς διχοτομίας αὐτῆς ἐπὶ τὴν παράλληλον αὐτῇ πλευρὰν | ||
| ὅπερ ἄτοπον . Ἐδείχθη γὰρ ἡ ΘΚ κάθετος τῇ ΜΝ καθέτῳ ἴση , αἵτινες κάθετοι ἤχθησαν ἀπὸ τῶν ἐπισταθεισῶν μετεώρων |
| ἁπλᾶς , ἀλλὰ καὶ τρίτην ἄλλην τὴν περὶ κύλινδρον ἕλικα γραφομένην : καὶ αὕτη γάρ , φασίν , ὁμοιομερὴς ὥσπερ | ||
| ἀρχαὶ ἀπὸ φωνηέντων ἐγίνοντο , τὴν ου συλλαβὴν ἑνὶ στοιχείῳ γραφομένην . τοῦτο δ ' ἦν ὥσπερ γάμμα διτταῖς ἐπὶ |
| δὲ καὶ ἑτέρῳ ἐπιπέδῳ τῷ ὑποκειμένῳ κατ ' εὐθεῖαν τὴν ΠΔΡ πρὸς ὀρθὰς τῇ ΗΔΘ , ἡ δὲ κοινὴ τομὴ | ||
| τὸ ΖΗΘ : καὶ ἡ κοινὴ ἄρα αὐτῶν τομὴ ἡ ΠΔΡ ὀρθή ἐστι πρὸς τὸ ΖΗΘ : καὶ πρὸς πάσας |
| ἐν δὲ τῇ γῇ τὸν ΗΘΚ , ἐν δὲ τῷ σκιάσματι τὴν ΝΞ περιφέρειαν , ἐν δὲ τῷ κώνῳ εὐθείας | ||
| Ϙ . Ἡ ὑποτείνουσα εὐθεῖα ὑπὸ τὴν ἀπολαμβανομένην ἐν τῷ σκιάσματι τῆς γῆς περιφέρειαν τοῦ κύκλου , καθ ' οὗ |
| , οὕτω καὶ νῦν εἰς τύχην ἀνάγει τὸν λόγον . ρπαʹ Τέχνῃ λαβεῖν Ἵνα τεχνικῶς τις διέλῃ πρῶτον εἰς δύο | ||
| ὁ λόγος ἐστὶ τῆς ΗΖ πρὸς τὴν ΖΘ ὁ τῶν ρπαʹ ∠ ʹʹγʹʹ πρὸς τὰ μϚʹ ∠ ʹʹ καὶ κʹʹ |
| ἕξει ἡ ἰσότης πρὸς τὴν ἀνισότητα , καθάπερ καὶ ἐν γραμμικοῖς ἡ ὀρθὴ γωνία πρὸς ἀμβλεῖαν καὶ ὀξεῖαν , καὶ | ||
| ἰσοδιάστατοι , καθ ' ὁμοιότητα καὶ αὐτοὶ λαμβανόμενοι τῶν ἐν γραμμικοῖς : καλοῦνται δ ' οὗτοι κύβοι καὶ τετράεδροι πυραμίδες |
| καὶ γυναῖκα παθεῖν ἐν Ἤλιδι λόγος ἀνδρὶ μὲν κατὰ νόμον ἠγμένην , Αἰθίοπι δὲ τὴν εὐνὴν κλέπτουσαν . κόρην μὲν | ||
| οἱ Πυθαγόρειοι λέγουσιν , ὥσπερ ἱκέτιν καὶ ἀφ ' ἑστίας ἠγμένην ὡς ἥκιστα δεῖν [ δοκεῖν ] ἀδικεῖν . . |
| ἀρχῆς τοῦ Καρκίνου , ὁμοταγῆ δὲ καὶ ἐν τῶι αὐτῶι ἐπιπέδωι γινόμενον πάντοτε τῶι ὁρίζοντι κατὰ τὴν τοῦ εἰρημένου δωδεκατημορίου | ||
| δὲ γραμμαὶ λέγονται παρ ' αὐτοῖς αἱ ἐν τῶι αὐτῶι ἐπιπέδωι οὖσαι καὶ μὴ συμπίπτουσαι ἐπὶ μηδέτερα μέρη . σαφηνείας |
| ἐφ ' ἑαυτόν , οὑτωσὶ καὶ τὸ τρίγωνον , ἀλλαχόθεν ἐπιζεύξαντες ἐπὶ τὰ πέρατα τῆς εὐθείας συγκροτοῦμεν ἐκ τούτων ἓν | ||
| ὑφ ' ἣν ὑποτείνει ἡ τοῦ τετραγώνου πλευρά , καὶ ἐπιζεύξαντες καὶ τὰ αὐτὰ τοῖς πρότερον κατασκευάσαντες δείξομεν τὸν διὰ |
| προσλαβὼν τὸν ἐλάσσονα ἀριθμὸν ἴσος ᾖ τῷ ἀπὸ τοῦ ἐλάσσονος κύβῳ προσλαβόντι τὸν μείζονα ἀριθμόν . Ἔστω ὁ μὲν ʂ | ||
| β ἐν μορίῳ τῷ ἀπὸ ΔΥ α # Μο β κύβῳ . καὶ ἔστιν τὸ μόριον κυβικόν : ἔστω ΔΥ |
| συνδοθήσεται , ὅπερ ἀποπτύσαντες αὖθις φλέγμα συνεστραμμένον ἐκβάλλουσιν , ἔπειτα διαστήσαντες μέρος τῆς τροφῆς καὶ τοῦ φαρμάκου μετὰ φλέγματος ἐμοῦσιν | ||
| τῆς ἀμπέλου καὶ τοῦ δένδρου σφῆνα ἐμβάλλουσιν , οὕτω δὲ διαστήσαντες ἐκ τοῦ δένδρου τὴν ἄμπελον , χώρημα αὐτὴν ἔχειν |
| ΗΒΓ τρίγωνον : ὅλον ἄρα τὸ ΑΒΓΔ παραλληλόγραμμον ὅλῳ τῷ ΕΒΓΖ παραλληλογράμμῳ ἴσον ἐστίν . Τὰ ἄρα παραλληλόγραμμα τὰ ἐπὶ | ||
| ΒΓ : λέγω , ὅτι ἴσον ἐστὶ τὸ ΑΒΓΔ τῷ ΕΒΓΖ παραλληλογράμμῳ . Ἐπεὶ γὰρ παραλληλόγραμμόν ἐστι τὸ ΑΒΓΔ , |
| ποδιαία ἥδε , καὶ ἔστω εὐθεῖα ἥδε οὔτε τὴν ποδιαίαν ποδιαίαν λαμβάνων οὔτε τὴν εὐθεῖαν εὐθεῖαν , οὐδὲ τοῖς καταγεγραμμένοις | ||
| σύμβολα αἱ γραφόμεναι . κἂν τοίνυν λέγωσι ποδιαίαν τὴν οὐ ποδιαίαν ἢ ἰσόπλευρον τὸ οὐκ ἰσόπλευρον , οὐχ οἷς γράφουσι |
| ϘϠ , τῷ δὲ ἄξονι αὐτοῦ τύμπανον ἔστω συμφυὲς ΜαΜβ ὠδοντωμένον ὀδοῦσιν λοξοῖς , οὗ ἡ διάμετρος πρὸς τὴν τοῦ | ||
| τῷ δὲ ἄξονι τοῦ ΥΦ τυμπάνου συμφυὲς γενέσθαι τὸ ΧΨ ὠδοντωμένον , οὗ ἡ διάμετρος πρὸς τὴν τοῦ ΥΦ τυμπάνου |
| . Ἦν δὲ τὸ προκείμενον ὑγιέστερον προτεῖναι καὶ οὕτως . ὀρθογωνίου τυχόντος ὑποκειμένου τοῦ ΑΒΓ λαβεῖν τι σημεῖον ἐντὸς τοῦ | ||
| τὸ δὲ τοῦ ἀμβλυγωνίου ὕψος μὴ ἔλαττον ᾖ τοῦ τοῦ ὀρθογωνίου ὕψους , ἡ πρὸς τῇ κορυφῇ γωνία τοῦ ὀρθογωνίου |
| ὁ γὰρ πρὸς τοῖς δυσὶ διαστήμασι τοῖς ἐν τῇ ἐπιπέδῳ σχηματογραφίᾳ θεωρουμένοις ἐπὶ μῆκος καὶ ἐπὶ πλάτος τρίτον διάστημα προσειληφώς | ||
| γὰρ καὶ α ὁ γ ἐστί , καὶ τῇ γε σχηματογραφίᾳ οὕτως συνίσταται : ἐπὶ μιᾷ μονάδι δύο μονάδες παράλληλοι |
| τὴν ] ὀρθὴν γωνίαν εὐθείας περιστρεφόμενον τὸ τρίγωνον ποιεῖ τὴν κωνικὴν ἐπιφάνειαν ἡ ΘΛ [ ἀπὸ τοῦ ] Θ τῆς | ||
| ἄπειρον αὔξεται τῆς γραφούσης εὐθείας εἰς ἄπειρον προσεκβαλλομένης , καλῶ κωνικὴν ἐπιφάνειαν , κορυφὴν δὲ αὐτῆς τὸ μεμενηκὸς σημεῖον , |
| δύνει : ἐν δὲ τῷ τῆς ἡμέρας χρόνῳ ὁ ἥλιος διερχέσθω περιφέρειαν τὴν οπʹ , καὶ τῇ ποʹ ἴση ἔστω | ||
| πεποιήσθω κατὰ τὸ Η , τὴν δὲ λοιπὴν τὴν ΗΕ διερχέσθω ἐν τετάρτῳ μέρει περιφορᾶς . Λέγω , ὅτι διὰ |
| Ἰστέον , ὡς τὰ μεγέθη τριχῶς : ἢ γὰρ ἐν γραμμῇ ἢ ἐν ἐπιφανείᾳ ἢ ἐν σώματι . ἐν γοῦν | ||
| δὲ τῷ τρίτῳ τῶν γεωγραφικῶν καθιστάμενος τὸν τῆς οἰκουμένης πίνακα γραμμῇ τινι διαιρεῖ δίχα ἀπὸ δύσεως ἐπ ' ἀνατολὴν παραλλήλῳ |
| τῆς Α , ἴσον παρὰ τὴν ΒΓ παραβεβλήσθω ἐλλεῖπον εἴδει τετραγώ - νῳ , καὶ ἔστω τὸ ὑπὸ τῶν ΒΔ | ||
| τετραγώνισον τὸν κζ , εἶτα λαβὲ τὴν πλευρὰν τοῦ γεγονότος τετραγώ - νου ἀπὸ τοῦ κζ , εἶτα ἀναβίβασον αὐτὴν |
| Βάστουλοι , τὴν δὲ ὑπὲρ τούτους μεσόγειον καὶ πρὸς τῇ Ταρρακωνησίᾳ Τούρδουλοι , ἐν οἷς μεσόγειοι πόλεις Σεγίδα θʹ Ϛʹʹ | ||
| τοῦ Δορίου ποταμοῦ , ἀπὸ δὲ τῶν ἀνατολῶν τῇ αὐτῇ Ταρρακωνησίᾳ , ἀπὸ δὲ δύσεως τῷ δυτικῷ ὠκεανῷ , ἀπὸ |
| , τῇ δὲ τούτων θεωρίᾳ συνεισφέρει καὶ τὴν περὶ τῶν τραπεζίων διδασκαλίαν : διῄρηται γὰρ τὸ τετράπλευρον εἴς τε τὸ | ||
| τὸ δὲ ῥομβοειδὲς πάντων ἔλαττον . πρῶτον δὲ ἐνταῦθα τῶν τραπεζίων ἐμνημόνευσε . περὶ τούτων δὲ ἐν ταῖς ὑποθέσεσιν ἐδίδαξεν |
| Α , καὶ τῇ ΓΔ παράλληλος ἤχθω ἐν τῇ ἑτέρᾳ τομῇ ἡ ΕΖ , καὶ τετμήσθω δίχα κατὰ τὸ Η | ||
| τυχόντα σημεῖα , καὶ ἀπ ' αὐτῶν ἀχθῶσιν ἐν τῇ τομῇ παρὰ τὰς ἐφαπτομένας τέμνουσαι ἀλλήλας τε καὶ τὴν γραμμήν |
| σημείου δοθέντος τοῦ Ϡ , λαβεῖν δύο σημεῖα ὡς Ε͵ Ζ͵ , ὥστε εἶναι ὡς μὲν τὴν ΔΗ πρὸς τὴν | ||
| τῆς ΔϠ , κἂν τὸ Θ͵ μεταξὺ βούληται πίπτειν τῶν Ζ͵ Ϡ . οὐδὲν γὰρ ἕξει καὶ ὧδε λέγειν ἀνασκευαστικόν |
| , ὅταν ἡ σελήνη ἐν τῇ πρὸς αὐτὸν συνόδῳ κατὰ κάθετον ὑπελθοῦσα ἐπισκοτήσῃ , εἰδὼς φαίνεται . προειπὼν γὰρ ὅτι | ||
| δύο κεραίαιϲ ταῖϲ πρὸϲ τῇ ὀρθῇ γραμμῇ [ ἢ κατὰ κάθετον ] δραχμὴν ϲημαίνουϲι , ⋖ , τὴν ϲυνωνύμωϲ καὶ |
| , ἐὰν πρὸς πάσας τὰς ἐπιφανείας πᾶς ὁπλίτης παρατάσσηται ἐν ἑτερομήκει σχήματι : πλινθίον δέ , ἐὰν ἴσαις ταῖς φάλαγξι | ||
| τὸ γοῦν ἀπὸ ταύτης ἀναγραφὲν τετράγωνον ἴσον ἔσται τῷ προρρηθέντι ἑτερομήκει . δὶς γὰρ ηʹ ιϚʹ : οὕτω γὰρ ἐκείνῳ |
| , τὸ πρός τι πῶς ἔχον , ᾧ δὴ πρότερον ἐφαρμόσαντες ταῖς θέσεσι τὰς κατὰ τὸ καλούμενον ἀμετάβολον σύστημα δυνάμεις | ||
| τὰς ΕΖΒ καὶ ΗΘΓ καθέτους γίνεσθαι καὶ πρὸς αὐτήν . ἐφαρμόσαντες δὴ τῇ χορδῇ κανόνιον καὶ μεταλαβόντες ἐπ ' αὐτοῦ |
| ἐναρμοσθῇ , μεταξὺ πεσεῖται τῶν Β καὶ Ε σημείων . ἐνηρμόσθω ἡ ΑΖ ἴση τῇ ἐκ τοῦ κέντρου , καὶ | ||
| εὐθειῶν ἐναρμόσαι τῷ ΑΚΓΗ κύκλῳ εὐθεῖαν ἴσην τῇ ΔΖ . ἐνηρμόσθω ἡ ΑΛΜ , καὶ ἐπεζεύχθω ἡ ΑΗ : ἴση |
| λι , λι . τινὲϲ δὲ τὴν ἑτέραν τοῦ λ γραμμὴν λοξῶϲ τέμνοντεϲ δηλοῦϲι τὴν λίτραν , # . Τὸ | ||
| τῆς Σαρματίας , ἀπὸ δὲ δυσμῶν Ἰβηρίᾳ κατὰ τὴν ἀφωρισμένην γραμμὴν , ἀπὸ δὲ μεσημβρίας Ἀρμενίας τῆς Μεγάλης μέρει , |
| ΒΓ τῇ ΣΛ , καὶ ὅμοιον τὸ ΘΓΒ τρίγωνον τῷ ΘΛΖ , καί ἐστιν , ὡς ἡ ΘΒ πρὸς ΓΒ | ||
| ἡ ΣΥ . λέγω , ὅτι τὸ ΣΛΥ τρίγωνον τοῦ ΘΛΖ τριγώνου μεῖζόν ἐστι τῷ ΘΓΒ . ἤχθω γὰρ διὰ |
| ἔλαττον ἡμισφαιρίου . Κυλίνδρου ὁπωσδηποτοῦν ὑπὸ ἑνὸς ὄμματος ὁρωμένου ἔλαττον ἡμικυλινδρίου ὀφθήσεται . ἔστω κύλινδρος , οὗ ἔστω κέντρον τῆς | ||
| , ἐπὶ δὲ τῆς ΑΔ ἡμικύκλιον ὀρθὸν ἐν τῷ τοῦ ἡμικυλινδρίου παραλληλογράμμῳ κείμενον : τοῦτο δὴ τὸ ἡμικύκλιον περιαγόμενον ὡς |
| : ἡ μὲν ἄρα αγ ἀνενεχθήσεται ἐν ο μϚʹ λγʹʹ κʹʹʹ , ἡ δὲ δβ ἐν ο μʹ Ϛʹʹ μʹʹʹ | ||
| . αἱ δὲ τοσαῦται ὑπεροχαὶ αἱ ἀνὰ ο οʹ ιγʹʹ κʹʹʹ συντεθεῖσαι γίγνονται ο Ϛʹ κϚʹʹ μʹʹʹ : ὥστε καὶ |
| μενούσης τῆς ΒΔ τὸ ΑΒΓ τμῆμα περιενεχθὲν εἰς τὸ αὐτὸ ἀποκατασταθῇ , ἔσται σφαιρικὴ ἐπιφάνεια , πρὸς ἣν αἱ πρὸς | ||
| τὴν ὀρθὴν γωνίαν τὴν Κ περιενεχθὲν εἰς τὸ αὐτὸ πάλιν ἀποκατασταθῇ , ὅθεν ἤρξατο φέρεσθαι , ἡ μὲν ΒΓ καθ |
| ὅτι δὲ ταῦτα οὐ μοναχῶς ἀλλ ' ὀλίγου δέω λέγειν ἀπειραχῶς ἐν τοῖς οὖσιν ἔστι , πάλαι καὶ πρόπαλαι θεολόγων | ||
| ΗΛ , τουτέστιν συναμφοτέρῳ τῇ ΕΒΓ ἴση , καὶ γίνεται ἀπειραχῶς . κϚʹ . Ἔστω δὴ νῦν ἰσοσκελὲς τὸ ΑΒΓ |
| κατὰ πάντων φέρεται , ὅλον τὸ ἐντὸς τῆς περιφερείας πλάτος καταμετρήσει , πλάτος δὲ καταμετροῦν ἕξει πλάτος : τὸ γὰρ | ||
| ὁ πῆχυς τὸ μῆκος τῷ λαβεῖν τι μῆκος , ὃ καταμετρήσει τὸ ὅλον . ἡ γὰρ ὥρα τί ἐστιν ἄλλο |
| ὡς ἔστι κατὰ πολὺ ἀφεστῶσα τῆς ἀκολουθίας τῶν ἄρθρων , περιγράφει τὸ μόριον τῆς τούτων ἰδέας , ἀλλὰ καὶ ἔτι | ||
| Ἀφροδίτης : παρὰ δ ' αὐτὸν ὀλίγος ἰσθμὸς πολλὴν πάνυ περιγράφει χερρόνησον , ἐφ ' ἧς ἡ πόλις μικρὸν ὑπὲρ |
| , ὡς ἐν τοῖς Ἀποδεικτικοῖς αὐτὸς ἡμᾶς ἐδίδαξε . καὶ τετραγωνίσαι παραλληλόγραμμον ὀρθογώνιον οὐδὲν ἦν ἄλλο ἢ τῆς μέσης εὕρεσις | ||
| ὅρος τοῦτο , ἀποδείξις δὲ ὁ αὐτὸς οὕτως : ὁ τετραγωνίσαι βουλόμενος μέσην ἀνάλογον ζητεῖ εὑρεῖν : ἡ μέση εὑρεθεῖσα |
| ἀπὸ τῶν ἴσων γωνιῶν ἐπὶ τὰς βάσεις κάθετοι εὐθεῖαι γραμμαὶ ἀχθῶσιν , ᾖ δέ , ὡς ἡ τοῦ πρώτου τριγώνου | ||
| τομῶν β σημεῖα ληφθῇ , καὶ ἀφ ' ἑκατέρου παράλληλοι ἀχθῶσιν , ὁμοίως ἴσα ἔσται τὰ γινόμενα ὑπ ' αὐτῶν |
| ' ὃ συμβάλλουσιν ἀλλήλαις , ἐπὶ τὰ κέντρα ἐπιζευγνύμεναι ὁμοίως περιέξουσι τὴν λείπουσαν εἰς τὰς δύο ὀρθὰς τῆς κλίσεως τῶν | ||
| αἱ ἀπὸ τῆς κοινῆς τομῆς ἐπὶ τὰ κέντρα ἐπιζευγνύμεναι εὐθεῖαι περιέξουσι τὴν λείπουσαν εἰς τὰς δύο ὀρθὰς τῆς ἐπιζητουμένης κλίσεως |
| Συναγ . . , . : Τὰ Εὐκλείδου βιβλία δ Κωνικῶν Ἀπολλώνιος ἀναπλώσας καὶ προσθεὶς ἕτερα δ παρέδωκεν η Κωνικῶν | ||
| σκοπεῖν , ἔξεστι ταῦτα παρατιθέντι τοῖς ἐν τῷ πρώτῳ τῶν Κωνικῶν εἰρημένοις αὐτῷ δι ' αὑτοῦ βεβαιῶσαι τὸ προκείμενον : |
| βʹ γʹ . ὅτι τὴν ἑξάδα ὁλομέλειαν προσηγόρευον οἱ Πυθαγορικοὶ κατακολουθοῦντες Ὀρφεῖ , ἤτοι παρόσον ὅλη τοῖς μέρεσιν ἢ μέλεσιν | ||
| ὑπάρχον οὐχ οἷοί τ ' ἦσαν κατασκευάζειν τῷ γεωμετρικῷ λόγῳ κατακολουθοῦντες , ἐπεὶ μηδὲ τὰς τοῦ κώνου τομὰς ῥᾴδιον ἐν |
| ὄντος πρὸς τῷ νʹ [ διὰ τὸ ἴσην εἶναι τὴν ζηʹ περιφέρειαν τῇ λνʹ περιφερείᾳ ] : καὶ ἔσται ὁ | ||
| τῷ ηʹ ] : λέγω ὅτι τοῦ ἡλίου διαπορευομένου τὴν ζηʹ περιφέρειαν τὸ εʹ ἄστρον οὐ φαίνεται . Ἔστω γὰρ |
| ΘΚ , ἴσα ἀλλήλοις ἐστί . γεγράφθω περὶ τὴν ΒΓ διάμετρον κύκλος ὁ ΒΛΓΜ , καὶ ἐπεζεύχθωσαν αἱ ΑΛ , | ||
| κατὰ σῶμα ἢ κατὰ σχῆμα , καὶ μάλιστα τετράγωνον ἢ διάμετρον , κακίστη γίνεται ἡ καταρχὴ ἐκείνη καὶ κλιμακτηριώδης , |
| λοιπὰ ὁμοίως ἀναγράφει : τὴν δὲ κεφαλὴν τοῦ Ὀφιούχου γράφει ἀνατέλλουσαν καὶ τὴν ἀριστερὰν μόνον χεῖρα : . . . | ||
| τοῦ Καρκίνου , ὁ Ἄρατος θεωρῶν τὴν κεφαλὴν τοῦ Λέοντος ἀνατέλλουσαν καὶ ὑπολαμβάνων τὸ κατὰ τὸν Λέοντα δωδεκατημόριον ἀναφέρεσθαι , |
| ἀπέχουσα ἐν ἀρχῇ τοῦ Σκορπίου ὥρας ἰσημερινὰς δ , καὶ ἐκβληθεῖσαι αἱ ΓΔ , ΑΒ περιφέρειαι τεμνέτωσαν ἀλλήλας μὲν κατὰ | ||
| καὶ ἐπιζευχθεῖσαι αἱ ΚΕ , ΚΖ , ΚΗ , ΚΘ ἐκβληθεῖσαι προσπιπτέτωσαν ἐπιπέδῳ τινὶ παραλλήλῳ ὄντι τῷ ΑΒΓΔ κατὰ τὰ |
| τὴν οἰκουμένην ἐν σφαίρᾳ καταγράφειν . Ἔκθεσις τῶν ἐντασσομένων τῇ καταγραφῇ μεσημβρινῶν καὶ παραλλήλων . Μέθοδος εἰς τὴν ἐν ἐπιπέδῳ | ||
| γεωγραφήσοντα τὰ μὲν διὰ τῶν ἀκριβεστέρων τηρήσεων εἰλημμένα προϋποτίθεσθαι τῇ καταγραφῇ καθάπερ θεμελίους , τὰ δ ' ἀπὸ τῶν ἄλλων |
| τὴν ΔΑΓ καὶ διὰ τοῦ Α τῇ ΔΓ πρὸς ὀρθὴν ἀναστήσωμεν τὴν ΑΒ , δηλαδὴ ἴσης μενούσης τῆς μὲν ΔΑ | ||
| , ΓΔ , ΔΑ παραλληλόγραμμα , καὶ ἀπ ' αὐτῶν ἀναστήσωμεν στερεὰ παραλληλεπίπεδα ἰσοϋψῆ τῷ κυλίνδρῳ , ἑκάστου τῶν ἀνασταθέντων |
| . . . . . μζ κε : ἡ δὲ μεσημβρινὴ τῇ ἐπιζευγνυούσῃ τὰ ἐκτεθειμένα δύο πέρατα γραμμῇ παρὰ τὴν | ||
| παραλλήλου λαμβάνεται , οὔθ ' ἡ διορίζουσα εὐθεῖα τὰς σφραγῖδας μεσημβρινὴ εἴρηται : ὥστ ' οὐδὲν εἴρηται πρὸς αὐτόν . |
| γὰρ ἐκ τοῦ πόλου αὐτοῦ ἴση ἐστὶ τῇ τοῦ τετραγώνου πλευρᾷ τοῦ ἐγγραφομένου εἰς τὸν μέγιστον κύκλον . καὶ ἐπεζεύχθωσαν | ||
| ἡμῶν δὲ εἷς [ καὶ ] ὁ κυβερνήτης , τρίγλης πλευρᾷ διαπαρεὶς τὸ μετάφρενον . ἐκείνην μὲν οὖν τὴν ἡμέραν |
| Κρόνος διακείμενος συνοδεύσει ἀστέρι ἢ ἀκτῖνι ἀστέρος ἢ κλήρῳ ἢ δωδεκατημορίῳ ἢ ἐναντίῳ σχή - ματι ἐπιβλέψει τούτους κατὰ πῆξιν | ||
| καὶ ἐπεὶ ὅροι ὁσοιδηποτοῦν εἰσιν αἱ τῶν ἐν τῷ αβ δωδεκατημορίῳ τριακοστημορίων τῶν ἑξῆς ἀλλήλοις κειμένων ἀναφοραὶ ἐν ἴσῃ ὑπεροχῇ |
| ἦν ἐν τῇ γʹ ἀκρωνύκτῳ , καὶ ἐπεζεύχθωσαν αἵ τε ΘΑΕ καὶ ΘΒΖ καὶ ΘΗΓ καὶ ΝΚΑ καὶ ΝΛΒ καὶ | ||
| περιφερείας τῆς ΓΒ ἐστι διπλῆ : ἴση ἄρα ἡ ὑπὸ ΘΑΕ γωνία τῇ ὑπὸ ΑΘΕ : ὥστε καὶ ἡ ΘΕ |
| καὶ τεσσάρων καὶ πέντε συμπληροῦσιν ἀριθμὸν τὸν δώδεκα , τοῦ ζῳοφόρου κύκλου παράδειγμα , διπλασιασθείσης . . . . . | ||
| τόπῳ αὐτῆς περὶ τὸ αὐτὸ στρεφομένης , ἐνεργούσης δὲ τὴν ζῳοφόρου κύκλου . . . , παραδιδοῦσα τὸ πᾶν τοῦτο |
| : ἀσπίς ῥανίς κρηπίς κνημίς ἁψίς . Εἰ δὲ εἰς ΙΝ ἔχουσι τὴν αἰτιατικὴν , περισπῶνται : Βενδῖς Μολῖς Τοτῖς | ||
| λοιπὴ ἡ ΙΝ ἑνός : τριπλῆ ἄρα ἡ ΛΙ τῆς ΙΝ : λέγω οὖν ὅτι δώδεκα τὰ ἀπὸ ΟΝ μείζονά |
| ἐπέχουσα : τὸ δ ' ἑωθινὸν τῷ Ῥήνῳ ποταμῷ περιγραφομένη παράλληλον ἔχοντι τὸ ῥεῦμα τῇ Πυρήνῃ : τὸ δὲ νότιον | ||
| ἂν εἶεν καὶ οἱ ἀπὸ Μασσαλίας ἐπὶ τὸν διὰ Βορυσθένους παράλληλον , ὅς γε διὰ τῆς Κελτικῆς παρωκεανίτιδος ἂν εἴη |
| νοήσωμεν μεσημβρινὸν κύκλον τὸν ΑΒΓΔ καὶ ζῳδιακοῦ μὲν ἡμικύκλιον τὸ ΑΕΖΓ , ὁρίζοντος δὲ τὸ ΒΕΔ περὶ πόλον τὸ Η | ||
| διαστήματι δὲ ὁποτερῳοῦν τῶν ΒΑ , ΒΓ γεγράφθω κύκλος ὁ ΑΕΖΓ , καὶ ἐκβεβλήσθωσαν αἱ ΑΒΕ , ΑΔΖ , ΑΗΘ |
| λε # ʂ β . θέλομεν δὴ ταῦτα πλευρὰν εἶναι κυβικὴν τῶν γενομένων ΚΥ κζ , τουτέστι ʂ γ : | ||
| , εὑρίσκομεν Μο η . θέλομεν δὲ τοὺς ʂ η κυβικὴν εἶναι πλευρὰν τῶν η Μο : Μο ἄρα β |
| ٣ ١٩ ٥٨ ٥٠ ٣٢ τὸ συναμφότερον τῶν ἀπό ٣٢ ١٢ ٤٣ ٥٦ ٥٠ ἡ ΕΜ ٨ ٣ ٤٠ ٥٩ | ||
| ٤ ἡ ΑΒ ٢ ٥٩ ٢٨ ἡ ΓΖ ٢ ١٤ ١٢ ٤ ١٢ ἡ ΒΗ ٢ ١٣ ٤٣ ἡ ΑΗ |
| γζʹ αἱ γʹ νικῶσιν . γηʹ αἱ ηʹ νικῶσιν . γθʹ αἱ γʹ νικῶσιν . δδʹ ὁ ἐγκαλούμενος νικᾷ καὶ | ||
| ἐστὶν ἡμίσους ζῳδίου . Καὶ ἀπειλήφθω ἡμίσους ζῳδίου περιφέρεια ἡ γθʹ , καὶ ἡ ηγκʹ , καὶ ἔτι ἥ τε |
| ἄρα αὐτῶν τομαὶ παράλληλοί εἰσιν : παράλληλος ἄρα ἐστὶν ἡ ΗΠ τῇ ΘΟ . ἐπεὶ οὖν δύο εὐθεῖαι ἁπτόμεναι ἀλλήλων | ||
| ἔστω τὸ ἐπιταχθὲν μέρος τοῦ ΑΒΓ τριγώνου τὸ ὑπὸ ΚΜ ΗΠ [ τοῦτο γὰρ προδέδεικται ] , καὶ τῇ ΚΜ |
| , τῶν περὶ γεωμετρίαν ἀναστρεφομένων οἰομένους τὴν τοῦ κυλίνδρου πλαγίαν τομὴν ἑτέραν εἶναι τῆς τοῦ κώνου τομῆς τῆς καλουμένης ἐλλείψεως | ||
| τροπικοῖς προσούσης τῶν ζῳδίων κακὸν εἰς τὸ χειρούργημα καὶ πρὸς τομὴν ὑπάρχει : Σελήνη συνοδεύουσα Ἡλίῳ τόδε φέρει : τοῦτο |
| , τὴν αγ ἴσην ἐποίησε τῇ γβ καὶ εὗρε τὴν διχοτομίαν τῆς αβ , οὕτω καὶ ἐπὶ τῆς ἀνισότητος τῆς | ||
| ΑΒΓ ἄλλο τρίγωνον συστήσασθαι τὴν ἀπὸ τῆς κορυφῆς ἐπὶ τὴν διχοτομίαν τῆς βάσεως ἴσην ἑκατέρᾳ τῷ ΔΕ , ΔΑ καὶ |
| , ΒΕΓ τρίγωνα . ἔστιν ἄρα , ὡς τὸ ἀπὸ ΤΝ πρὸς τὸ ἀπὸ ΤΟ , οὕτως τὸ ἀπὸ ΒΕ | ||
| διελθὸν ἐπὶ τὸ Ξ παραγίγνεται : ὁμοία ἄρα ἐστὶν ἡ ΤΝ τῇ ΞΡ . Ἔστω τῆς μὲν ΤΜ ἡμίσεια ἡ |
| εἰς τοσαῦτα μέρη διῃρημένης καλῶς ἔχειν ἐνόμισα τά τε λόγῳ γεωμετρικῷ θεωρούμενα [ καὶ ἀναγκαιότατα περὶ τὴν τῶν βαρῶν κίνησιν | ||
| γὰρ τῷ μουσικῷ , καθὸ μουσικός ἐστιν , οὐδὲ τῷ γεωμετρικῷ . οὐκοῦν ὠφελῆσαι θέλεις ; πρὸς τί ; εἰπὲ |
| πενταγωνισμὸν ἀπὸ πενταγώνου βάσεως , εἶτα ἀνάλογον ἀπὸ ἑξαγώνου καὶ ἑπταγώνου καὶ ὀκταγώνου καὶ ἀεὶ ἐπ ' ἄπειρον . καθάπερ | ||
| η ∠ ʹ ιδʹ . τοσοῦτον ἔσται ἡ πλευρὰ τοῦ ἑπταγώνου . Ἐὰν θέλῃς τὴν διάμετρον εὑρεῖν ἀπὸ τῆς πλευρᾶς |
| . οὐκ ἐχρησάμεθα δὲ ἐνταῦθα τῇ τοῦ τετάρτου τῶν ὡρῶν παραυξήσει διά τε τὸ συνεχεῖς ἤδη γίγνεσθαι τοὺς παραλλήλους καὶ | ||
| ἐστιν ἰσημερινῶν ιϚ . ἐχρησάμεθα δὲ τῇ καθ ' ἕκαστον παραυξήσει ἐπὶ μὲν τῶν κλιμάτων τῇ καθ ' ἡμιώριον πάλιν |
| ἐπὶ τὴν ἑξάδα : οὐδεὶς διὰ τῶν Ϛʹ διέστηκεν . μεταβαίνω ἐπὶ τὸν στίχον τῆς ἑβδομάδος : εὑρίσκεται δὲ τῆς | ||
| : Ποῦ μένεις ; ὁ δὲ εἶπεν : † Ἐκεῖθεν μεταβαίνω . Δυσκόλῳ τις ναυκλήρῳ ἀπαντήσας εἶπε : Τὸν ἐπίπλουν |
| τρίγωνον ὀρθογώνιον ὄν : ὥστε καὶ ἡ τοῦ κώνου κορυφὴ ὀρθογώνιός ἐστιν . εἰ δὲ μείζων ἐστὶν ἡ ΒΓ τῆς | ||
| κύκλος , ἀλλὰ τεταρτημορίου σφαίρας ἐστὶν ἐπιφάνεια , εἴπερ γε ὀρθογώνιός ἐστιν ὁ τῆς ὄψεως κῶνος ὡς ἐδείξαμεν . ἐπιβάλλομεν |
| ἐκτὸς αὐτῆς ἐστιν . Ἐπὶ τίνος οὖν ὀχούμενος τὴν γῆν ἐπικυκλοῖ ; πάντες γὰρ ὅσοι τοῦτο εἶπον ἀτόπως ὑπέθεντο . | ||
| ἐκτὸς αὐτῆς ἐστιν . Ἐπὶ τίνος οὖν ὀχούμενος τὴν γῆν ἐπικυκλοῖ ; πάντες γὰρ ὅσοι τοῦτο εἶπον ἀτόπως ὑπέθεντο . |
| , τοὺς βουλευτὰς ᾐτησάμην . καὶ τοίνυν διοικήσεως νῦν πρῶτον ἀχθείσης πολλὰ ὑπὸ πολλῶν ἠδικημένος , ὥσπερ εἰκός ἐστι τὸν | ||
| τοῦ ἐκκέντρου πηλικότησιν . κατὰ ταὐτὰ δὲ καὶ ἐνθάδε καθέτου ἀχθείσης ἐπὶ τὴν ΔΒ τῆς ΑΛ , ἐάν τε τὴν |
| δοθὲν ἄρα καὶ τὸ ὑπὸ ΛΥΦ : καὶ δοθέντα τὰ ΛΥ : δοθὲν ἄρα τὸ Φ : ἀπῆκται οὖν εἰς | ||
| ΛΖ βάσις τῇ ΝΖ βάσει , ἴσον ἐστὶ καὶ τὸ ΛΥ στερεὸν τῷ ΝΥ στερεῷ , καὶ εἰ ὑπερέχει ἡ |
| ὡς μὲν τὴν ΔΗ πρὸς τὴν ΗΕ͵ , οὕτως τὴν ΗΕ͵ πρὸς ΗΖ͵ , καὶ τὴν ΗΖ͵ πρὸς τὴν ΗϠ | ||
| Ζ͵ , ὥστε εἶναι ὡς μὲν τὴν ΔΗ πρὸς τὴν ΗΕ͵ , οὕτως τὴν ΗΕ͵ πρὸς ΗΖ͵ , καὶ τὴν |
| : ὁμοίως καὶ ἐὰν ὁ τοῦ μητρικοῦ κλῆρος ἐν τῷ διαμέτρῳ εὑρεθῇ καὶ ὁ τοῦ διαμέτρου τοῦ κλήρου τῆς μητρὸς | ||
| ἐστὶ τῷ ΑΖ . Ἐὰν παραβολῆς εὐθεῖα ἐπιψαύουσα συμπίπτῃ τῇ διαμέτρῳ , καὶ ἀπὸ τῆς ἁφῆς εὐθεῖα καταχθῇ ἐπὶ τὴν |
| περιφέρεια τῆς ΒΑΔ περιφερείας , καὶ ἐπὶ τῆς ΒΔ ὀρθὸν τμῆμα κύκλου ἐφεστάτω τὸ ΒΕΔ μὴ μεῖζον ἡμικυκλίου , καὶ | ||
| τῆς ΕΖ ἄκρον καὶ μέσον λόγον τεμνομένης , μεῖζον ἔσται τμῆμα ἡ ΑΓ : ἡ ἄρα ΕΖ πρὸς τὴν ΑΓ |
| τῶν ἄλλων ὑποκειμένων τῶν αὐτῶν : λέγω ὅτι ἡ ὑπὸ ΑΓΠ ὀξεῖά ἐστιν . Ἐπεὶ γάρ ἐστιν ὡς μὲν ἡ | ||
| τοῦ ΑΓΡ τριγώνου ἐλάσσων ἐστίν : ὀξεῖα ἄρα ἡ ὑπὸ ΑΓΠ γωνία : ἡ κλίσις ἄρα τῶν εἰρημένων ἐπιπέδων πρός |
| ἀνωμαλίας ἡ κατ ' ἐπίκυκλον ὑπόθεσις , ὡς ἔφαμεν , περιεχέτω τὸν τρόπον τοῦτον . νοείσθω γὰρ ἐν τῇ τῆς | ||
| ὃς καλείσθω ζῳδιακός . ἡ δὲ κλίσις τῶν ἐπιπέδων τούτων περιεχέτω γωνίαν τοιούτων κγ να κ , οἵων ἐστὶν ἡ |
| πρὸς τὴν ΗΚ . ὅμοια ἄρα ἐστὶ τὰ ΑΖΒ , ΛΗΚ τρίγωνα , ὡς δέδεικται ἐν τῷ ἕκτῳ θεωρήματι τοῦ | ||
| ΒΜΘ , ἡ δὲ ΒΜΘ τῆς ΛΗΚ , ἡ δὲ ΛΗΚ τῆς ΓΕ , ἐν πλείονι ἄρα χρόνῳ τὸ Α |
| , κἀκείνῃ χρησάμενος ἀναλάμβανε τὸ πλῆθος τῶν ἡμερῶν ἕως τῆς ἐπιζητουμένης ἡμέρας , ἐάνπερ ἐπιδέχηται . εἰ δ ' οὖν | ||
| Θηβαῖοι τοὺς τότε βοιωταρχήσαντας καταδικάσαντες , πολλοῖς χρήμασιν ἐζημίωσαν . ἐπιζητουμένης δὲ τῆς αἰτίας , πῶς ὁ τοιοῦτος ἀνὴρ ἰδιώτης |
| ἐπιθύουσι , παρ ' Ὁμήρῳ δὲ τέθειται καὶ ἐπὶ τῆς βάσεως , ἀπὸ τοῦ βεβηκέναι . Ἠὼς , λαμβάνεται παρ | ||
| : ὑψηλοῖς , μεγάλοις , παχυτάτοις , τοῖς λειπομένοις τῆς βάσεως . ὀψέ : μόλις , ἀργῶς . Πάντεσσιν : |
| ἡ ρξʹ : κοινὴ προσειλήφθω ἡ ροʹ : ἡ ἄρα ξοʹ ὅλῃ τῇ ρπʹ ἴση ἐστίν : ἡ δὲ ξοʹ | ||
| : ἡ δὲ νθʹ ἡμίσους ἐστὶ ζῳδίου : καὶ ἡ ξοʹ ἄρα ἡμίσους ἐστὶ ζῳδίου περιφέρεια : καὶ ἐπεὶ τοῦ |
| , ΑΖ μιᾷ σεληνιακῇ διαμέτρῳ καὶ τῷ τετάρτῳ μέρει τῆς διαμέτρου . Ἑκατέρας δὲ τῶν ΑΓ καὶ ΑΕ δʹ μέρει | ||
| τουτέστιν οὔτε τῶν ἐπὶ τῆς διαμέτρου οὔτε τῶν ἐκτὸς τῆς διαμέτρου . ἔστω κοῖλον ἔνοπτρον τὸ ΑΓΔ , διάμετρος δὲ |
| ἐστὶ δοθεὶς διὰ τὸ δοθεῖσαν εἶναι τὴν ὑπὸ τῶν ΒΑΓ γωνίαν : καὶ τοῦ Δ ἄρα χωρίου πρὸς τὸ ὑπὸ | ||
| πλευραὶ ἄνισοι , καὶ ἡ μείζων ὑποτείνει τὴν δεδομένην μείζονα γωνίαν . εἰ γὰρ μή ἐστιν ἡ τὴν μείζονα γωνίαν |
| Ὑδροχόον : ἅπερ οὐ φαίνεται . δῆλον οὖν ὅτι ὁ εζη κύκλος ἤτοι ἐπὶ τὰ αὐτὰ τῷ παντί , βραδύτερον | ||
| τὴν ξμ κίνησιν ἀποκαθεστακέτω τὸν χψ ἐπὶ τὸν ἐπίκυκλον τὸν εζη , καὶ αὐτὸς ὁ ἥλιος , ἐνεχθεὶς ὁμοίαν λοιπὴν |
| τὸ Γ , καὶ εἰλήφθω τι σημεῖον ἐπὶ τῆς ΑΒ τομῆς τὸ Δ , καὶ δι ' αὐτοῦ ἤχθω παρὰ | ||
| ἡ ἀπὸ τῆς συμπτώσεως ἐπὶ τὸ Δ ἐφάψεται τῆς ἀντικειμένης τομῆς . ἔστω γὰρ τὰ αὐτὰ , καὶ τὸ Δ |
| τὰ οὖν ΗΘ ΘΙ τμήματα ἐλάττω ἐστὶ τοῦ περὶ τὴν ΗΙ τμήματος τοῖς τμήμασι [ καὶ ] τοῖς ὑπὸ τοῦ | ||
| τμήμασιν ἀπὸ τοῦ ἐντὸς κύκλου . τὸ γὰρ ἐπὶ τῆς ΗΙ τμῆμα ἴσον ἦν τοῖς τε ΗΘ ΘΙ τμήμασι καὶ |
| μεταξὺ τῶν Ρ Θ , πάντες δὲ οἱ μείζους τοῦ πενταπλασίου ποιοῦσι τὸ σημεῖον τῆς τομῆς μεταξὺ τῶν Ρ Τ | ||
| τοῦ εἰκοσαέδρου καθέτου τὸ δυνάμει δωδεκαπλάσιον μεῖζόν ἐστιν τοῦ δυνάμει πενταπλασίου τῆς πλευρᾶς τοῦ εἰκοσαέδρου . Ἐκκείσθω κύκλος ὁ ΑΒΓ |
| τῇ τοῦ παντὸς οὐρανοῦ σφαίρᾳ διῃρῆσθαι εἰς πέντε ζώνας , ἀρκτικὴν θερινὴν χειμερινὴν ἀνταρκτικὴν ἰσημερινήν , ὧν ἡ μέση τὸ | ||
| μέσον κʹ γʹʹ μδʹ ∠ ʹʹ Κατέχουσι δὲ τὴν μὲν ἀρκτικὴν παράλιον ἀπὸ τοῦ Σηκοάνα ποταμοῦ Καλῆται , ὧν πόλις |
| τὸ Η , ἐπειδὴ περὶ τὸ περίγειόν ἐστιν , καὶ ἐπιζευχθεισῶν τῆς τε ΕΗ καὶ τῆς ΒΗ , ἵνα ἡ | ||
| Γ ση μείων ἐν τῇ περιφερείᾳ τοῦ ἐκκέντρου ὄντων . ἐπιζευχθεισῶν τοίνυν τῶ ΖΓ , ΖΑ , ἑκατέρα τῶν Α |
| μεῖζόν ἐστιν : ὅπερ ἔδει δεῖξαι . Ϛʹ , λʹ ΑΛΛΩΣ Ἔστω ἡ δοθεῖσα εὐθεῖα ἡ ΑΒ . δεῖ δὴ | ||
| ΚΟΤΕΕΙ . Ζηλοῖ , ὀργίζεται , φθονεῖ , βασκαίνει . ΑΛΛΩΣ . Προτρέπεται πρὸς γεωργίαν διὰ τοῦτο . Ἐν γὰρ |
| ἥλιος εἰς τὰ ἐναντία τῶν ζῳδίων κινούμενος πέντε ζῳδίων περιφέρειαν κεκινήσθω καὶ ἔστω ἐπὶ τοῦ πʹ τόπου : ἀπὸ μὲν | ||
| , τὸ δὲ Δ τὸ κέντρον τοῦ ζῳδιακοῦ , καὶ κεκινήσθω περὶ μὲν τὸ Γ σημεῖον τὸ Ζ κέντρον τοῦ |
| κωνικὴν ποιήσει ἐπιφάνειαν τῇ ΑΠ εὐθείᾳ , ἣ δὴ περιαγομένη συμβαλεῖ τῇ κυλινδρικῇ γραμμῇ κατά τι σημεῖον . ἅμα δὲ | ||
| τοῦ Γ σημείου ἐντὸς τῆς τομῆς ἀγομένη παρὰ τεταγμένως κατηγμένην συμβαλεῖ τῇ ΑΒ διαμέτρῳ καὶ δίχα τμηθήσεται ὑπ ' αὐτῆς |
| ὀρθὰς τέμνοντες τούτους , γραφόμενοι δὲ διὰ τῶν πόλων , καταμετρεῖ τὴν μὲν οἰκήσιμον ἐμβατεύων , τὴν δ ' ἄλλην | ||
| τοῦ Ϛ μέρη ἐστί , δύο τρίτα . οὐ γὰρ καταμετρεῖ ὁ δ τὸν Ϛ οὔτε μεθ ' ἑαυτοῦ ἤτοι |
| τροπῇ τοῦ δ εἰς ζ καὶ τοῦ ε εἰς η ἐκβληθέντος τοῦ ι , οἱονεὶ τὸ μὴ ἔχον διέχειαν ἢ | ||
| σὺ δὲ πετάσῃς ἵνα πλήξῃς ἐκεῖνον , εὐθὺς τεθνήξῃ , ἐκβληθέντος τοῦ κέντρου : ζωὴ γὰρ ἐν σοὶ ἐνυπάρχει τὸ |