| , τὸ πρός τι πῶς ἔχον , ᾧ δὴ πρότερον ἐφαρμόσαντες ταῖς θέσεσι τὰς κατὰ τὸ καλούμενον ἀμετάβολον σύστημα δυνάμεις | ||
| τὰς ΕΖΒ καὶ ΗΘΓ καθέτους γίνεσθαι καὶ πρὸς αὐτήν . ἐφαρμόσαντες δὴ τῇ χορδῇ κανόνιον καὶ μεταλαβόντες ἐπ ' αὐτοῦ |
| τὴν οἰκουμένην ἐν σφαίρᾳ καταγράφειν . Ἔκθεσις τῶν ἐντασσομένων τῇ καταγραφῇ μεσημβρινῶν καὶ παραλλήλων . Μέθοδος εἰς τὴν ἐν ἐπιπέδῳ | ||
| γεωγραφήσοντα τὰ μὲν διὰ τῶν ἀκριβεστέρων τηρήσεων εἰλημμένα προϋποτίθεσθαι τῇ καταγραφῇ καθάπερ θεμελίους , τὰ δ ' ἀπὸ τῶν ἄλλων |
| ΗΘΓ καθέτους γίνεσθαι καὶ πρὸς αὐτήν . ἐφαρμόσαντες δὴ τῇ χορδῇ κανόνιον καὶ μεταλαβόντες ἐπ ' αὐτοῦ τὸ ΕΗ μῆκος | ||
| ἐν μὲν τῷ αὐλῷ διὰ τρυπημάτων , ἐν δὲ τῇ χορδῇ δι ' ὑπαγωγέως , ἄλλον ἐξ ἄλλου τρόπον ἀποτελεῖσθαι |
| πλευρῶν , καὶ τὸ ἐμβαδὸν εἰς ἴσα διαιρεῖται κατὰ τὴν διαγώνιον διὰ τὴν κοινὴν ἰδιότητα τῶν παραλληλογράμμων . ἐπὶ δὲ | ||
| βάσιν τέμῃ ἐκ τῆς κορυφῆς δίχα κατὰ τὴν τοῦ τετραγώνου διαγώνιον τὴν ἀπὸ τῆς ὀρθῆς , ἔσονται δύο στερεαὶ πυραμίδες |
| ὁ γὰρ πρὸς τοῖς δυσὶ διαστήμασι τοῖς ἐν τῇ ἐπιπέδῳ σχηματογραφίᾳ θεωρουμένοις ἐπὶ μῆκος καὶ ἐπὶ πλάτος τρίτον διάστημα προσειληφώς | ||
| γὰρ καὶ α ὁ γ ἐστί , καὶ τῇ γε σχηματογραφίᾳ οὕτως συνίσταται : ἐπὶ μιᾷ μονάδι δύο μονάδες παράλληλοι |
| βʹ γʹ . ὅτι τὴν ἑξάδα ὁλομέλειαν προσηγόρευον οἱ Πυθαγορικοὶ κατακολουθοῦντες Ὀρφεῖ , ἤτοι παρόσον ὅλη τοῖς μέρεσιν ἢ μέλεσιν | ||
| ὑπάρχον οὐχ οἷοί τ ' ἦσαν κατασκευάζειν τῷ γεωμετρικῷ λόγῳ κατακολουθοῦντες , ἐπεὶ μηδὲ τὰς τοῦ κώνου τομὰς ῥᾴδιον ἐν |
| καὶ οἱ ἰσάκις ἶσοι ἰσάκις ἅπαντες , τουτέστι κύβοι τριχῆ διαστατοὶ ὄντες καὶ ταυτότητος ἐπὶ πλεῖον δοκοῦντες μετέχειν ἔργον εἰσὶ | ||
| λϚ , μθ , ξδ καὶ οἱ ἑξῆς διχῆ ὄντες διαστατοὶ καὶ ἐν τῇ ἐπιπέδῳ σχηματογραφίᾳ μῆκος καὶ πλάτος μόνον |
| , ἐπεὶ τὸ δακτυλικὸν διάστημα συμπληροῦται [ καὶ ] κεγχριαίαις διαμέτροις τὸ μῆκος ἔγγιστα δέκα δυσίν [ ὑπερμετρούντων καὶ ἡμίσεια | ||
| παράλληλοι ἀχθῶσι ταῖς ἐφαπτομέναις συμπίπτουσαι ταῖς τε ἐφαπτομέναις καὶ ταῖς διαμέτροις , τὸ γινόμενον ὑπ ' αὐτῶν τετράπλευρον πρὸς τῇ |
| τῶν ἄλλων ὑποκειμένων τῶν αὐτῶν : λέγω ὅτι ἡ ὑπὸ ΑΓΠ ὀξεῖά ἐστιν . Ἐπεὶ γάρ ἐστιν ὡς μὲν ἡ | ||
| τοῦ ΑΓΡ τριγώνου ἐλάσσων ἐστίν : ὀξεῖα ἄρα ἡ ὑπὸ ΑΓΠ γωνία : ἡ κλίσις ἄρα τῶν εἰρημένων ἐπιπέδων πρός |
| Αἰγόκερῳ προσνεύσει Κριῷ , ἐν Ὑδροχόῳ προσνεύσει Ἰχθύσι . δευτέρᾳ διχοτομίᾳ ἀποκρούσασα ἐν Ἰχθύσι προσνεύσει Ὑδροχόῳ , ἐν Κριῷ προσνεύσει | ||
| οὕτως μὲν αἱ στερήσεις ποιήσουσι διαφοράν , ἐν δὲ τῇ διχοτομίᾳ οὐ ποιήσουσιν . Ὅτι δ ' οὐκ ἐνδέχεται τῶν |
| , ταύτης τὴν λαμπρότητα ἀφανῆ ποιήσει . πάντων γὰρ τῇ ὑπεροχῇ διαφέρει . ” καταπλαγεὶς δὲ Νεκτεναβὼ τὴν εὐστοχίαν τῶν | ||
| τῶν ἐκκειμένων ὅρων . Ἐὰν ὦσιν ὁσοιδηποτοῦν ὅροι ἐν ἴσῃ ὑπεροχῇ , ἑξῆς ἀλλήλων κείμενοι , περισσοὶ τὸ πλῆθος , |
| ἐστι καὶ ἡ ΑΒ ἡ τρίπηχυς καὶ σύμμετρος μήκει τῇ προτεθείσῃ πηχυαίᾳ τῇ ΗΘ : ὁ γὰρ πῆχυς καὶ ἑαυτὸν | ||
| τούτου τοῦ βιβλίου . Τούτων ὑποκειμένων δείκνυται , ὅτι τῇ προτεθείσῃ εὐθείᾳ , τουτέστιν ἀφ ' ἧς θέσει τὰ μέτρα |
| ἡ φίλησις γίνηται : καὶ τὸ δίκαιον δὲ ἐν τῇ ἰσότητι σώζεται . ἀλλ ' οὐχ ὁμοίως ἔχει τὸ ἴσον | ||
| πάθεσιν εἴκουσι . παυσάσθωσαν οἷοί εἰσι , καὶ ἀγαπήσουσι πάντας ἰσότητι ἀρετῆς . τί δὲ οἴεσθε , ὦ ἄνθρωποι , |
| . οὐκ ἐχρησάμεθα δὲ ἐνταῦθα τῇ τοῦ τετάρτου τῶν ὡρῶν παραυξήσει διά τε τὸ συνεχεῖς ἤδη γίγνεσθαι τοὺς παραλλήλους καὶ | ||
| ἐστιν ἰσημερινῶν ιϚ . ἐχρησάμεθα δὲ τῇ καθ ' ἕκαστον παραυξήσει ἐπὶ μὲν τῶν κλιμάτων τῇ καθ ' ἡμιώριον πάλιν |
| , κέχρηται δὲ ἤδη τὸ πρότερον εἶδος τῇ τοῦ πηλίκου ἀναλογίᾳ δὲ χρήσεται καὶ τοῦτο τῇ τοῦ ποσοῦ ὡς ἂν | ||
| τοῦτον ὁ βασιλεὺς πρὸς τὸν λαόν καὶ χρήσασθαι οὕτω τῇ ἀναλογίᾳ , μὴ εἴποι οὕτως ἀλλὰ ποιμένα καλέσαι λαῶν τὸν |
| ἐπεχείρησε μεθ ' Ἱπποκράτην μεθόδῳ τὴν ἰατρικὴν συστήσασθαι , τοιαύτῃ διαιρέσει χρώμενος . καὶ εἰ δοκεῖ , τὴν ἐκείνου διαίρεσιν | ||
| ὡς παῖς πάϊς . Συναίρεσις δὲ ἡ τοὐναντίον ποιοῦσα τῇ διαιρέσει , οἷον Δημοσθένεϊ Δημοσθένει . Παρένθεσις δέ ἐστι προσθήκη |
| μὲν ἡ ϲυμμετρία πλείοϲιν ἁρμόττει ϲώμαϲιν . ἡ παραλλαγὴ δὲ ἑκάϲτοτε τῇ γεύϲει τοῦ κάμνοντοϲ κρινέϲθω , ἵνα ἔχῃ τὸ | ||
| ἢ ϲτομαχικῶν καὶ μεταποιῶν αὐτοῦ τὴν δύναμιν πρὸϲ τὴν παροῦϲαν ἑκάϲτοτε διάθεϲιν . παρέχω δὲ αὐτὸ οὐ μόνον τοῖϲ ὕπνου |
| τὴν ΑΖ , τῇ δὲ Δ τὴν ΖΗ , καὶ ἐπιζεύξας τὴν ΒΗ ταύτῃ παράλληλον ἤγαγον τὴν ΖΘ . ἐπεὶ | ||
| . εἰ δ ' ἀρεταί : ὅτι ἀρεταὶ κατάκειται εἴρηκεν ἐπιζεύξας πληθυντικῷ ἑνικὸν ῥῆμα τὸ κατάκειται . καὶ ὅτι ὀργὰν |
| τὸ ὑπὸ ΕΔΗ , καὶ γεγράφθω , ὡς ἐν τῇ ἀναλύσει ἐλέγομεν , περὶ διάμετρον ΔΕ ὑπερβολή : λέγω ὅτι | ||
| ὅταν ζητῶμεν ὡς εἴρηται ἀναλύομεν καὶ τὸ ἔσχατον ἐν τῇ ἀναλύσει πρῶτον ἐν τῇ γενέσει τῆς πράξεως ποιούμεθα . βουλευόμενοι |
| δὲ καὶ ἑτέρῳ ἐπιπέδῳ τῷ ὑποκειμένῳ κατ ' εὐθεῖαν τὴν ΠΔΡ πρὸς ὀρθὰς τῇ ΗΔΘ , ἡ δὲ κοινὴ τομὴ | ||
| τὸ ΖΗΘ : καὶ ἡ κοινὴ ἄρα αὐτῶν τομὴ ἡ ΠΔΡ ὀρθή ἐστι πρὸς τὸ ΖΗΘ : καὶ πρὸς πάσας |
| ἐχρῆν γὰρ θρυλίγμασι τῶν δέρτρων , ἵν ' ᾖ ταῖς διαιρέσεσι τοῦ σώματος . δέρτροισι καὶ σώμασι θρυλλιγμάτων καὶ συντριμμάτων | ||
| κυριεύσας ἐν ποίῳ τόπῳ ἔπεστιν . ἐν δὲ ταῖς ἰδίαις διαιρέσεσι τῶν χρόνων σκοπεῖν , ἀπὸ ποίου τόπου εἰς τίνα |
| καὶ ἕνδεκα καὶ δώδεκα καὶ δεκαπέντε . ἐν δὲ τῇ παραλλαγῇ τῶν ἁπλῶν συμφωνιῶν ὁ τόνος κατείληπται , καὶ τούτῳ | ||
| ἔννοιαν ἀριθμοῦ τοὺς ἀνθρώπους ἐληλυθέναι εἰπὼν ἡμερῶν πρὸς νύκτας τῇ παραλλαγῇ , τῇ τῶν πραγμάτων ἑτερότητι διδοὺς τὴν νόησιν , |
| ὡς ι τὸ πλῆθος . διὸ καὶ περιλαβεῖν ταύτας μιᾷ προτάσει ἐνδεχόμενον εὑρόντες οὕτως ἐγράψαμεν : ἐὰν ὑπτίου ἢ παρυπτίου | ||
| , ἐν δὲ τῷ τρίτῳ καὶ τετάρτῳ καὶ ἕκτῳ καθολικῇ προτάσει εἶναι πάντως : μὴ γινομένης δὲ τῆς ἀποδείξεως δι |
| ' ἐγγὺς ὁ θάνατος . ἔδοξε γὰρ τούτῳ τῇ ἄνω περιόδῳ καὶ τῇ ἀνεπιτηδειότητι τοῦ σώματος . μέλλει οὖν ἐκδιαφορηθῆναι | ||
| χοριαμβικὸν δίμετρον ἀκατάληκτον , τὸ βʹ ἐν μὲν τῇ πρώτῃ περιόδῳ ἐστὶν ἰαμβικόν , ἐν δὲ τῇ δευτέρᾳ περιόδῳ χοριαμβικόν |
| τε ἀγκῶνας πυκνὰ πονεῖν τῶν τοιούτων ὀργάνων . τῆς δὲ ἐπιζυγίδος τὸ μὲν πάχος ἀρκεῖν γενόμενον τοῦ πέμπτου μέρους τῆς | ||
| καὶ ἐυεργέστερον ἀντὶ τοῦ ὀρθοῦ ἄξονος ἀπὸ τῆς τῶν μεσοστατῶν ἐπιζυγίδος ἀρτήματι κρεμάσαι τὸν κάμακα τοῦτον ὡς κριὸν , οὕτως |
| . ἐκομίζοντο ἐπ ' οἴκου : ἐπεραιοῦντο . ὑπερενεγκόντες : ὑπερβιβάσαντες . ʃ τὸ ἔργον ἡρωϊκόν φ ὅπως μὴ περιπλέοντες | ||
| δὲ τοῦ ἀπὸ ταύτης ἕως τῆς τελευτῆς διαστήματος τὸ ὄγδοον ὑπερβιβάσαντες ἕξομεν τὴν τρίτην συνημμένων τόνῳ βαρυτέραν . τὸ δὲ |
| τῇ ἐς τὰ κυνηγέσια , πρὸς δὲ καὶ τῇ θεραπείᾳ περισσῇ χρώμενος , ἐς φιλίαν ἰσχυρὰν ἐπάγεται τὴν Δάφνην . | ||
| οἰκείᾳ μὲν γινόμενος οὐδέποτε περαίνεται , ὅταν δ ' ἐν περισσῇ γένηται , αὐτός τε πέρατος τυγχάνει καὶ τὴν πλευρὰν |
| οὐρῶμεν : γίνεται δὲ οὕτω διὰ παράλυσιν μυὸς ἐν τῇ οὐρήθρᾳ καὶ δεῖ τοῖς πρὸς παράλυσιν βοηθήμασι χρῆσθαι , τουτέστι | ||
| καὶ πρὸς τὴν χρείαν τότε ἡ πάπυρος περιγλύφεται ἀναλόγως τῇ οὐρήθρᾳ , εἶτ ' εἰς τὸν οὐρητικὸν πόρον ἐντίθεται . |
| Ἀναλύεται ἑκάστη τῶν κε μονάδων εἰς ιϚ ιϚα , καὶ πολλαπλασιαζομένων πασῶν μετὰ τῆς δυνάμεως ἥτις ἦν ιϚ ιϚων , | ||
| πλῆθος ἀπογεννᾷ , οὐκ ἔστιν ἀριθμός , τῶν ἀριθμῶν πεφυκότων πολλαπλασιαζομένων πλέον συνάγειν ἢ συντιθεμένων : τρὶς μὲν γὰρ τρεῖς |
| τὸν ἐπίτριτον , καὶ ὁ ε πρὸς τὸν δ τὸν ἐπιτέταρτον , καὶ ἐφεξῆς ὡσαύτως . ἀπὸ δὲ τοῦ τρίτου | ||
| λόγου πρὸς ἡμιόλιον καὶ ἡμιολίου πρὸς ἐπίτριτον καὶ ἐπιτρίτου πρὸς ἐπιτέταρτον : ἐν μὲν γὰρ τοῖς βʹ δʹ Ϛʹ ὅροις |
| φύσιν , οἷον δὲ ὁρισμὸν αὐτοῦ ποιούντων , τὰς διαφορὰς ἐκθώμεθα . συγκεφαλαιούμενοι δὲ καὶ τούτων οἱ τρόποι εὐαρίθμητοι γίνονται | ||
| τὴν τοῦ ὅρου ἐξήγησιν ἡμῖν ἰτέον . καὶ πρῶτον αὐτὸν ἐκθώμεθα , εἶτα δείξομεν ὅτι οὐδὲν οὔτε περισσὸν ἔχει οὔτε |
| οἰκεῖον τῇ τετράδι . ἡ γὰρ πρώτη πυραμὶς ἐν τῇ τετράδι θεωρεῖται , τριγώνου μὲν βάσεως ὑποτεθείσης τοῦ τρία , | ||
| τὸ ὑπὸ τῶν ἄκρων ἔλαττόν ἐστι τοῦ ἀπὸ τοῦ μέσου τετράδι . διὰ τί τετράδι ; ἐπειδὴ καὶ ἡ ὑπεροχὴ |
| τὸ μὴ ταὐτὸν εἶναι τὸ τῷ ὁρισμῷ καὶ τὸ τῇ ἀποδείξει δεικνύμενον , τὰς ἐπιστήμας ἐκεῖσε παρέθετο ὡς τοῦ ὅτι | ||
| ῥητόν , οὕτως ἂν ἐκλήψοιτο ὅτι δὲ τὸ ὅτι ἔστιν ἀποδείξει δείκνυται , δηλοῦσιν αἱ ἐπιστῆμαι : ὁ γὰρ γεωμέτρης |
| καὶ ἡ ΑΕ τῇ Γ ἐστιν ἴση . Δύο ἄρα δοθεισῶν εὐθειῶν ἀνίσων τῶν ΑΒ , Γ ἀπὸ τῆς μείζονος | ||
| μείζων ἐστὶν τῆς ΕΒ ἡμισείας . ] Ἔστω δὲ νῦν δοθεισῶν τῶν ΖΒ ΒΓ τὴν μείζονα ἄκραν εὑρεῖν . Ἤχθω |
| τὸ σημεῖον καὶ τὸ σημειωτὸν ὑφ ' ἕνα καιρὸν παρόντα συνυπάρξει ἀλλήλοις , καὶ οὐδέτερον οὐδετέρου γενήσεται μηνυτικόν , ἀλλ | ||
| ἀναπνεῖν , οὐ μὴν ἀκολουθία ἐστὶν αὐτῷ . οὐ τῇ συνυπάρξει τοίνυν κριτέον τὴν ἀκολουθίαν , ἀλλ ' οὗ ἀνασκευαζομένου |
| κατέλεγε . Τοὺς γοῦν πολλάκις ἐν τῇ κατ ' ἀλλήλων συμπλοκῇ ἀρίστους ἀναφανέντας Ἀθανάτους ὠνόμασε καὶ οὕτως ξυνέβη πάντας τοὺς | ||
| δυνάμει ἐργάζονται . ἐπεὶ οἱ σχοινοπλόκοι συμπεριάγονται τῇ τῶν σχοινίων συμπλοκῇ διὰ τῆς τροχιλίας . τούτους ἐκάλουν καὶ σχοινιοσυμβόλους . |
| , οὕτω καὶ νῦν εἰς τύχην ἀνάγει τὸν λόγον . ρπαʹ Τέχνῃ λαβεῖν Ἵνα τεχνικῶς τις διέλῃ πρῶτον εἰς δύο | ||
| ὁ λόγος ἐστὶ τῆς ΗΖ πρὸς τὴν ΖΘ ὁ τῶν ρπαʹ ∠ ʹʹγʹʹ πρὸς τὰ μϚʹ ∠ ʹʹ καὶ κʹʹ |
| οὕτως , ἀλλὰ τοὺς χρόνους τῆς μέσης κατεμέρισαν τῇ τε ἐνεργητικῇ καὶ παθητικῇ , παρακειμένους μὲν τῆς μέσης καὶ ὑπερσυντελίκους | ||
| τινος ἄλλης ἐγκλίσεως , τοῦτο πάντως ἐν διαθέσει καταγίνεται τῇ ἐνεργητικῇ . χρὴ γὰρ νοεῖν ὅτι ἡ ἐνέργεια ὡς πρὸς |
| τῷ μέλει παρακαλῶν , οὐ καρτερῶν αὐτὸς μένειν ἐν τῇ τάξει τῶν λόγων , ὡσπερεὶ Σαρδανάπαλλος τῇ κερκίδι τὴν κρόκην | ||
| καὶ πρεσβυτέρων γιγνόμενα θήσει μὲν ἁμαρτήματα καὶ ὡς ἁμαρτάνουσιν νόμους τάξει , πρᾳοτάτους γε μὴν πάντων καὶ συγγνώμης πλείστης ἐχομένους |
| ὡς τῆς ὕλης ὑποστατική , εἴπερ ἀνάλογον ἕστηκε τῇ ἀορίστῳ δυάδι . ἔπειτα τίς ἀνάγκη τῆς αὐτῆς ὕλης οὔσης τὰ | ||
| σνϚψκθ / . καὶ ἐὰν δυάδα μερίσωμεν εἰς τὸν τοῦδε δυάδι ἐλάσσονα , εὑρήσομεν τὸν ʂ μονάδος σιζφιβ / , |
| παρατασσομένῳ στρατῷ , προσετάξαντο τοῦ παλουδίου καὶ σχηματισάμενοι ἐν τῇ συμβολῇ τὴν φυγὴν κατὰ τὸν εἰρημένον τρόπον προέτρεψαν τοὺς ἐχθροὺς | ||
| . εἰσὶ καὶ εἰκόνες χαλκαῖ Φωκέων ἀναθέντων , ἡνίκα δευτέρᾳ συμβολῇ τὸ ἱππικὸν ἐτρέψαντο τὸ ἐκ Θεσσαλίας . Φλιάσιοι δὲ |
| ζητούμενον καὶ δῆλόν πως . ἔσται γὰρ καὶ ὡς ἡ ΚΜα πρὸς ΣΜβ , οὕτως ἡ ΣΜβ πρὸς ΤΜΓ καὶ | ||
| ἡ ΤΜΓπρὸς τὴν ΡΜδ . καὶ ἴση ἐστὶν ἡ μὲν ΚΜα τῇ ΒΔ , ἡ δὲ ΚΡ τῇ ΑΒ , |
| δυάδι αὐτοῦ λειπόμενα , πρόσω μὲν ὡς τὸ ἐκ τῶν ββ συγκείμενον , ὀπίσω δὲ ὡς τὸ ἐκ τῶν γγ | ||
| τῇ δγ καὶ εα : ἡ μὲν γὰρ δγ τῆς ββ ὑπερέχει τῇ δγ , ἡ δὲ ββ τῆς εα |
| ἔχει καθόλου τὴν δύναμιν . ἡμεῖς μέντοι τῇ τῶν θερμῶν διαφορᾷ προσέ - χοντες , διάφορον αὐτοῦ καὶ τὴν δύναμιν | ||
| καὶ τὸ ἐλλείπειν τὰς τῶν ἄλλων ποιότητας καὶ ἅμα τῇ διαφορᾷ διδάξαι καὶ τὴν αἰτίαν , δι ' ἣν διαφέρουσιν |
| μϚ ∠ ʹ διὰ τὸ τὴν ἑσπερίαν ἴσην οὖσαν τῇ ἑῴᾳ τετηρῆσθαι μοιρῶν κγ δʹ . Τούτων δὴ προεφωδευμένων λοιπὸν | ||
| , ἑσπερίᾳ ἀνατολῇ , ἑσπερίᾳ δύσει , ἑῴᾳ ἀνατολῇ , ἑῴᾳ δύσει καὶ τῇ ἄνευ τούτων ἁπλῇ περιπολήσει : εἶτα |
| ἐν μὲν τοῖς ἀορίστοις τῷ ὅρῳ τοῦ ζητήματος ἤτοι τῇ ὑποκειμένῃ ὕλῃ προσέχειν δεῖ : ἐν δὲ τοῖς ὡρισμένοις τοῖς | ||
| . ὅθεν ἀκολούθως καὶ τῷ ἔθει τῷ παλαιῷ καὶ τῇ ὑποκειμένῃ ὑποθέσει ἀπὸ Διὸς πεποίηται τὴν ἀρχήν . ὅτι διὰ |
| οὕτως , οἱ δὲ Πυθαγόρειοι τὸ μὲν σημεῖον ἀνάλογον ἐλάμβανον μονάδι , δυάδι δὲ τὴν γραμμὴν καὶ τριάδι τὸ ἐπίπεδον | ||
| πρὸ γὰρ τοῦ ζ ὁ Ϛ , ὃς ἄρτιος : μονάδι οὖν διαφέρει τοῦ ἀρτίου . ὡσαύτως καὶ ὁ ἄρτιος |
| , ὡς ἐν τοῖς Ἀποδεικτικοῖς αὐτὸς ἡμᾶς ἐδίδαξε . καὶ τετραγωνίσαι παραλληλόγραμμον ὀρθογώνιον οὐδὲν ἦν ἄλλο ἢ τῆς μέσης εὕρεσις | ||
| ὅρος τοῦτο , ἀποδείξις δὲ ὁ αὐτὸς οὕτως : ὁ τετραγωνίσαι βουλόμενος μέσην ἀνάλογον ζητεῖ εὑρεῖν : ἡ μέση εὑρεθεῖσα |
| λε # ʂ β . θέλομεν δὴ ταῦτα πλευρὰν εἶναι κυβικὴν τῶν γενομένων ΚΥ κζ , τουτέστι ʂ γ : | ||
| , εὑρίσκομεν Μο η . θέλομεν δὲ τοὺς ʂ η κυβικὴν εἶναι πλευρὰν τῶν η Μο : Μο ἄρα β |
| Α , καὶ τῇ ΓΔ παράλληλος ἤχθω ἐν τῇ ἑτέρᾳ τομῇ ἡ ΕΖ , καὶ τετμήσθω δίχα κατὰ τὸ Η | ||
| τυχόντα σημεῖα , καὶ ἀπ ' αὐτῶν ἀχθῶσιν ἐν τῇ τομῇ παρὰ τὰς ἐφαπτομένας τέμνουσαι ἀλλήλας τε καὶ τὴν γραμμήν |
| ἁρμονίαν μέχρι τῶν στερεῶν προάγειν . ἀριθμῶν καὶ δυσὶ συναρμόζεσθαι μεσότησιν , ὅπως διὰ παντὸς ἐλθοῦσα τοῦ τελείου στερεοῦ κοσμικοῦ | ||
| οὕτως διακειμένων τῶν τεσσάρων ἐπιφαίνεσθαι τὴν γεωμετρικὴν ἐμπλέγδην ἀμφοτέραις ταῖς μεσότησιν ἀντεξεταζομένην , ὡς ὁ μέγιστος πρὸς τὸν τρίτον ἀπ |
| : ὁμοίως καὶ ἐὰν ὁ τοῦ μητρικοῦ κλῆρος ἐν τῷ διαμέτρῳ εὑρεθῇ καὶ ὁ τοῦ διαμέτρου τοῦ κλήρου τῆς μητρὸς | ||
| ἐστὶ τῷ ΑΖ . Ἐὰν παραβολῆς εὐθεῖα ἐπιψαύουσα συμπίπτῃ τῇ διαμέτρῳ , καὶ ἀπὸ τῆς ἁφῆς εὐθεῖα καταχθῇ ἐπὶ τὴν |
| ὀξυμέλιτοϲ , ἔπειτα ἀμυχὰϲ βαλὼν ἑκάϲτῃ ἐλαίᾳ γ ἔμβαλλε τῇ ϲκευαϲίᾳ καὶ ἐάϲαϲ ἡμέραϲ ὀλίγαϲ χρῶ , διδοὺϲ ἐν τροφῇ | ||
| φλεγματώδειϲ καὶ καυϲώδειϲ τῇ κοιλίᾳ . προϲλαμβάνουϲι γὰρ ἐν τῇ ϲκευαϲίᾳ ἀπὸ τῆϲ ἐπεμβαλλομένηϲ πυτίαϲ δριμύτητα , τήν τε ὑγρότητα |
| ἡ ὑγρότης περὶ τὸ βάθος καὶ τίκτονται πνεύματα , ὧνπερ πολυπλασιαζομένων καὶ βουλομένων τὴν ἔξω φορὰν διῶξαι , ποιοῦσί τινας | ||
| τοῦ χρόνου γίνονται ιβ προτάσεις . εἶτα τούτων τῶν ιβ πολυπλασιαζομένων ἐπὶ τὴν τριμέρειαν τῆς ὕλης γίνονται λϚ . αὗται |
| Κρόνος διακείμενος συνοδεύσει ἀστέρι ἢ ἀκτῖνι ἀστέρος ἢ κλήρῳ ἢ δωδεκατημορίῳ ἢ ἐναντίῳ σχή - ματι ἐπιβλέψει τούτους κατὰ πῆξιν | ||
| καὶ ἐπεὶ ὅροι ὁσοιδηποτοῦν εἰσιν αἱ τῶν ἐν τῷ αβ δωδεκατημορίῳ τριακοστημορίων τῶν ἑξῆς ἀλλήλοις κειμένων ἀναφοραὶ ἐν ἴσῃ ὑπεροχῇ |
| ξύλον ταύτην . καταφανὴς γὰρ ὁ σολοικισμὸς ἐνταῦθα τῇ τε ἐγγύτητι καὶ τῇ τῶν γενῶν ὑπαλλαγῇ καὶ τῶν πτώσεων : | ||
| προεξορμῶσα , ἡ δὲ διαδεχομένη κρίνουσιν , ὥσπερ παραλαβοῦσαι τῇ ἐγγύτητι τὸ δύνασθαι . ταῦτά τοι , οὐδὲ φαύλας τὰς |
| καὶ τὸ ὅλον εἰς δύναμιν οὐκ ἀνήσομεν ἀπεριήγητον καθάπερ τινὶ περιγραφῇ : τοῦτο δὲ δεήσει συμπληροῦν ὑμᾶς τὸ περιηγηθέν . | ||
| ὅρου ἐξετάζουσα καὶ ἕκαστον τούτων δεικνύουσα καλῶς εἰλημμένον ἐν τῇ περιγραφῇ , οἷον ὡς ἐπὶ ἰατρικῆς . ἀποδεδομένης γὰρ αὐτῆς |
| ὑπεπίτριτος , τοῦ δὲ δώδεκα ὑποδιπλάσιος , μείζων δὲ ὁ ὑπεπίτριτος λόγος τοῦ ἡμίσεως . τὸ ΑΒ ἄρα πρὸς τὸ | ||
| Τ τὰ η : ὅ τε γὰρ ιη τοῦ κδ ὑπεπίτριτος καὶ ὁ Ϛ τοῦ η . Τὸ τοιοῦτον πολύγωνον |
| μεταξὺ τῶν Ρ Θ , πάντες δὲ οἱ μείζους τοῦ πενταπλασίου ποιοῦσι τὸ σημεῖον τῆς τομῆς μεταξὺ τῶν Ρ Τ | ||
| τοῦ εἰκοσαέδρου καθέτου τὸ δυνάμει δωδεκαπλάσιον μεῖζόν ἐστιν τοῦ δυνάμει πενταπλασίου τῆς πλευρᾶς τοῦ εἰκοσαέδρου . Ἐκκείσθω κύκλος ὁ ΑΒΓ |
| ἐκβεβλήσθω ἡ ΑΒΕ , καὶ κείσθω ἡ ΒΕ ἴση τῇ ἡμισείᾳ τῆς ἐκ τοῦ κέντρου , καὶ ἐν τῷ ὀρθῷ | ||
| αὐτὰς ἐνθέρμους καταβάπτομεν εἰς γλεῦκος καὶ θάλασσαν ἑψημένην ἐφ ' ἡμισείᾳ , καὶ ἀνελόμενοι ἐπιτιθέμεθα εἰς τὴν ληνὸν νύκτα καὶ |
| ἂν εὑρίσκηται : καὶ ἐὰν τὸ ἕτερον μέρος τῶν ἀντιδίκων ὁποτερῳοῦν τούτων χρήσηται , τῇ ἀντιλήψει λέγω ἢ τῇ μεταλήψει | ||
| , ἢ ἐξ ἀντισπάστου καὶ βακχείου . τὸ τρίτον ὅμοιον ὁποτερῳοῦν τῶν ἐν τῇ παρόδῳ . τὸ τέταρτον ἐκ διτροχαίου |
| . ἐπεὶ δὲ βούλονταί τινες ὑπεναντίαν ἀμφοτέραις ἀριθμητικῇ τε καὶ γεωμετρικῇ ταύτην ἐκδέχεσθαι , ἔφαμεν δὲ ἡμεῖς τῇ ἀριθμητικῇ μόνῃ | ||
| α˙ωιϚιγ˙τκα / . β . Εὑρεῖν τρεῖς ἀριθμοὺς ἐν τῇ γεωμετρικῇ ἀναλογίᾳ , ὅπως ἕκαστος αὐτῶν προσλαβὼν τὸν δοθέντα ποιῇ |
| τε καὶ ἀσκήσει καὶ ἐκ τάξεως ἐς τάξιν ἄλλην εὐπετῶς μετακινήσει , τοῦτο ἐπασκητέον . τοσόνδε μέντοι συμβουλεύσαιμ ' ἂν | ||
| δόξαν παρέξουσιν ἐκείνοις , καὶ αὐτὸ τὸ στράτευμα ἐν τῇ μετακινήσει ἀσθενέστερον ἅμα καὶ ἀτακτότερον καθιστᾶσιν . ἀλλὰ τοὺς ψιλοὺς |
| μάλιστα ὁμοιουμένου διὰ τὸ ἐπιπέδων τριγώνων κατάρχειν , ὧν τὸ συμμετρότατον τετράγωνον ἰσότητα ὀρθογωνίου καὶ πλευρῶν ἔχει , καὶ πρὸς | ||
| ὑπερβάλλοντα κατὰ τὸν τῆς κράσεως λόγον φαίνεται . πάντων δὲ συμμετρότατον ἐξετάζουσιν , ἄνθρωπος , καὶ κανών τις ὅδε συμμέτρου |
| λβ καὶ τοῦτο δι ' ὅλου : ἐν δὲ περισσαῖς ἐκθέσεσιν ἶσον τὸ ἅπαξ ξδ τῷ δὶς λβ καὶ τοῦτο | ||
| διὰ τετάρτης ἀπαντᾶν ἡμέρας , ὡς ἐν ταῖς αὐτῶν ἀνάλογον ἐκθέσεσιν εἰς τὰς τετάρτας πάντως οἱ κύβοι ἀποτελοῦνται χώρας : |
| ὀλιγαρχίας μίσους πρόφασις , ὅτι συνύφηναν τὴν δευτέραν ἀρχὴν τῇ προτέρᾳ δήμου τε ὑπεριδόντες καὶ βουλῆς καταφρονήσαντες : ἔπειθ ' | ||
| λυπηρῶς διάγοι καὶ εἰ μὴ παρέχοι ἑαυτήν , τἀναντία τῇ προτέρᾳ σημαίνει : χρὴ γὰρ ἡγεῖσθαι τὰς ἀγνοουμένας γυναῖκας εἰκόνας |
| μέτρον , καὶ τοῦτο τὸ μέτρον αὐτῶν καθ ' ὃ συμβλητὰ γίνονται , εἰπὼν κυρίως μὲν τὴν χρείαν εἶναι , | ||
| δηλοῖ διὰ τοῦ ἐκμαίνει . ἐκμαίνει : ἐκμαίνεσθαι ποιεῖ . συμβλητὰ ἀντὶ τοῦ συγκρίσεως ἄξια . λέγει δὲ τὴν διαφορὰν |
| ἄγραφον , οἷον : καὶ ἐπὶ τὸ βυβλίον σου πάντες γραφήσονται : δῆλον , ὅτι ἄγραφον . βιβλίον δὲ τὸ | ||
| τὸ ἄγραφον , οἷον καὶ ἐπὶ τὸ βυβλίον σου πάντες γραφήσονται : βιβλίον τὸ γεγραμμένον . βοτάνη ἡ βοσκομένη , |
| ταῦτα . Τοὺς δ ' ἀνδροφόνους ἐξεῖναι ἀποκτείνειν ἐν τῇ ἡμεδαπῇ καὶ ἀπάγειν , ὡς ἐν τῷ αʹ ἄξονι ἀγορεύει | ||
| ἀγκὼν τοῦ Καυκάσου , τὸ δὲ περὶ τοῦ ἐν τῇ ἡμεδαπῇ Ταύρου λεγόμενον , ὡς ὑπὲρ τὴν Ἀρμενίαν πορεύοιτο , |
| , ΒΕΓ τρίγωνα . ἔστιν ἄρα , ὡς τὸ ἀπὸ ΤΝ πρὸς τὸ ἀπὸ ΤΟ , οὕτως τὸ ἀπὸ ΒΕ | ||
| διελθὸν ἐπὶ τὸ Ξ παραγίγνεται : ὁμοία ἄρα ἐστὶν ἡ ΤΝ τῇ ΞΡ . Ἔστω τῆς μὲν ΤΜ ἡμίσεια ἡ |
| ὅπως ἅμα τῇ τοῦ ἡλίου ἢ καὶ ἄλλου του ὑποκειμένου διοπτεύσει καὶ ἡ σελήνη ἢ καὶ ἄλλο τι τῶν ζητουμένων | ||
| σελήνη . τούτων γὰρ συμβαινόντων καὶ τῆς φαινομένης ἐν τῇ διοπτεύσει κατὰ μῆκος ἀποστάσεως τῆς αὐτῆς γινομένης τῇ ἀκριβεῖ λαμβάνοιτο |
| εἶναι τὰς παρυπάτας ἀμφοτέρων τῶν γενῶν , γίγνεται γὰρ ἐμμελὲς τετράχορδον ἐκ παρυπάτης τε χρωματικῆς τῆς βαρυτάτης καὶ διατόνου λιχανοῦ | ||
| διὰ πασῶν , σύστημα δὲ διαστημάτων ποιὰν περιοχήν , οἷον τετράχορδον , πεντάχορδον , ὀκτάχορδον . ἁρμονία δέ ἐστι συστημάτων |
| ἡμῖν ἕτερόν ποτε σύμφωνον , ὅπερ ἂν τῇ ἕκτῃ χαρισαίμεθα συζυγίᾳ , ἐξ ἀνάγκης διὰ γυμνοῦ τοῦ ω ἡ ἕκτη | ||
| . Μ . Ν . Ρ . τῇ πέμπτῃ ταῦτα συζυγίᾳ προσανατίθεσο καὶ ἴδε μοι τὸν ἀριθμὸν τῶν συμφώνων , |
| ἑστῶτος , τοῦ δ ' ἐν κινήσει ἤδη καὶ εὐτάκτῳ μεταβάσει σφαιρική . εἰ δὲ τῶν ὄντων εἶδος ὁ ἀριθμός | ||
| ἑστῶτος , τοῦ δ ' ἐν κινήσει ἤδη καὶ εὐτάκτῳ μεταβάσει σφαιρική . εἰ δὲ τῶν ὄντων εἶδος ὁ ἀριθμός |
| πολύγωνον καὶ τοῦτο ἀεὶ ποιῶν ὥστε ποτὲ δαπανωμένου τοῦ ἐπιπέδου ἐγγραφήσεσθαί τι πολύγωνον τούτῳ τῷ τρόπῳ ἐν τῷ κύκλῳ , | ||
| πολύγωνον καὶ τοῦτο ἀεὶ ποιῶν ὤιετό ποτε δαπανωμένου τοῦ ἐπιπέδου ἐγγραφήσεσθαί τι πολύγωνον τούτωι τῶι τρόπωι ἐν τῶι κύκλωι , |
| δὲ οὕτως ὥστε ἵστασθαι μέχρι τοῦ γένους . οἷον τῇ τριάδι ὑπάρχει μὲν [ ἀριθμὸς καὶ ] τὸ ὄν , | ||
| ἀριθμός ἐστιν , οἱ δὲ δεύτεροι κοινῇ μὲν διαφορᾷ χρώμενοι τριάδι , τάξει δὲ οἱ ἐπιμόριοι ἀφ ' ἡμιολίου ἀρχόμενοι |
| δύνει : ἐν δὲ τῷ τῆς ἡμέρας χρόνῳ ὁ ἥλιος διερχέσθω περιφέρειαν τὴν οπʹ , καὶ τῇ ποʹ ἴση ἔστω | ||
| πεποιήσθω κατὰ τὸ Η , τὴν δὲ λοιπὴν τὴν ΗΕ διερχέσθω ἐν τετάρτῳ μέρει περιφορᾶς . Λέγω , ὅτι διὰ |
| λόγου δύναμιν δείκνυσι τὴν ῥητορικήν , ὅτι πρᾶγμά ἐστιν ἐν μεσότητι θεωρούμενον , ᾧ ἔξεστι χρήσασθαι καὶ καλῶς καὶ κακῶς | ||
| τοῦ ἴσου καὶ τοῦ προσήκοντος , ἐμπεριεχομένη ἀριθμοῦ τετραγώνου περισσοῦ μεσότητι . πρῶτον δὴ ἐκθετέον στιχηδὸν τοὺς μέχρι τούτου ἀριθμοὺς |
| ὁ Ε : καὶ ὁ μὲν ΓΔ τὸν ΒΖ μετρῶν λειπέτω ἑαυτοῦ ἐλάσσονα τὸν ΖΑ , ὁ δὲ ΑΖ τὸν | ||
| ἐλάσσονα τὸν ΗΓ , ὁ δὲ ΗΓ τὸν ΖΘ μετρῶν λειπέτω μονάδα τὴν ΘΑ . Ἐπεὶ οὖν ὁ Ε τὸν |
| συνδοθήσεται , ὅπερ ἀποπτύσαντες αὖθις φλέγμα συνεστραμμένον ἐκβάλλουσιν , ἔπειτα διαστήσαντες μέρος τῆς τροφῆς καὶ τοῦ φαρμάκου μετὰ φλέγματος ἐμοῦσιν | ||
| τῆς ἀμπέλου καὶ τοῦ δένδρου σφῆνα ἐμβάλλουσιν , οὕτω δὲ διαστήσαντες ἐκ τοῦ δένδρου τὴν ἄμπελον , χώρημα αὐτὴν ἔχειν |
| καὶ ὕστεροι αὐτῶν ἔσονται ; τὸ γὰρ συμπέρασμα τῆς αὐτὸ περαινούσης ἀποδείξεως ὕστερον . ἀλλ ' οὐδὲ ἅμα ἄμφω , | ||
| πέφυκε . Συνέστηκε δὲ φυσικώτατα ἔκ τε τῆς ἀπείρου καὶ περαινούσης καὶ ἐκ τῆς ἀρτιοπερίσσου φύσεως καὶ αὐτὴ καὶ τὰ |
| ἐφ ' ὧν δὲ καταψύχεται ὁ στόμαχος , τῇ προειρημένῃ σκευασίᾳ προσπλέκειν δεῖ καστορίου γο . αʹ . καὶ διδόναι | ||
| τούτων ἔτι ἐστὶν ὑγρότερα . μεγίστη δ ' ἐν τῇ σκευασίᾳ διαφορὰ γίνεται κατὰ τὴν τῶν ἐπεμβαλλομένων αὐτοῖς δύναμιν , |
| . Διδύμων κα # νο μζ εʹ ὁ ἐν τῇ ἐκφύσει τοῦ ἀριστεροῦ μηροῦ . . . . . . | ||
| ἡμιπήχιον , ἔσχατον δὲ τοῦ τε Ἐνγόνασιν ὁ ἐν τῇ ἐκφύσει τοῦ ἀριστεροῦ μηροῦ , καὶ τοῦ Τοξότου ἡ ἀκίς |
| ἐχρήσαντο , τὸ μὴ δυνηθῆναι διὰ τοῦτο μετασχεῖν τῆς τῶν διαβατηρίων θυσίας . εἶτ ' ἐδέοντο μὴ ἔλαττον τῶν ἄλλων | ||
| ὁ δὲ Ἀριστόβουλος προστίθησιν ὡς εἴη ἐξ ἀνάγκης τῇ τῶν διαβατηρίων ἑορτῇ μὴ μόνον τὸν ἥλιον ἰσημερινὸν διαπορεύεσθαι τμῆμα , |
| οἵ γ ' ἀπηρκέσθησαν : οὐδὲ οἱ Κρῆτες Ἕλληνες ὄντες ἠρκέσθησαν τιμωρησάμενοι τοὺς βαρβάρους καὶ ἀντὶ τῆς Ἰοῦς τὴν Εὐρώπην | ||
| . ὥσπερ δὲ οἱ τὰ κωνικὰ πραγματευσάμενοι τῶν παλαιῶν οὐκ ἠρκέσθησαν τῇ κοινῇ ἐννοίᾳ τοῦ κώνου , ὅτι τριγώνου περιενεχθέντος |
| ταῦτα τὰ ἔτη καὶ τὰς ἡμέρας ἐν τῇ τῶν χρόνων ἀφέσει ποιοῦμαι . Καθάπερ δὲ ἑκάστης περιόδου τὸ ιβʹ τῶν | ||
| ἄλλως τε καὶ ἐπὶ τῶν συνοδικῶν ἢ πανσεληνιακῶν τῇ αὐτῇ ἀφέσει † εὑρεθήσεται , εἴγε εἰς ἓν ζῴδιον ὅ τε |
| ἡ ἐπίζευξις τῇ παρονομασίᾳ , ὁμώνυμον καὶ ἡ πλοκὴ τῇ ἀναφορᾷ ἢ ἐπαναφορᾷ καὶ ἡ ἐπιβολή , τῇ ἐπαναδόσει ἢ | ||
| Λογικός ; ῥητέον , ὅτι τῇ πρὸς τοὺς ἐνδεικνυμένους σκοποὺς ἀναφορᾷ . εἰδὼς γὰρ , ὅτι τάδε μὲν τὰ συμπτώματα |
| τῇ ἀντιστρεφομένῃ , εἰ δὲ ἐν τρίτῳ , τῇ μὴ ἀντιστρεφομένῃ : αὗται γὰρ μείζονες γίνονται ἐν τῇ εἰς τὸ | ||
| βούλεται τὸ συμπέρασμα , εἰ δὲ ἐν δευτέρῳ , τῇ ἀντιστρεφομένῃ , εἰ δὲ ἐν τρίτῳ , τῇ μὴ ἀντιστρεφομένῃ |
| νυνὶ μὲν συστέλλεσθαι νυνὶ δὲ ἐκτείνεσθαι δυνάμενον κοινὸν σὺν τῇ προσῳδίᾳ . ἀλλ ' ὁ μὲν χαρακτὴρ κατ ' ἰδίαν | ||
| τεκμαιρόμενοι οὖν Ἀθηναῖοι καὶ διὰ τῆς τάξεως τὴν ἐνοῦσαν τῇ προσῳδίᾳ φύσιν οὐκ ἐπὶ τῶν φωνηέντων αὐτὴν τιθέασιν ὥσπερ τὰς |
| , ἐὰν πρὸς πάσας τὰς ἐπιφανείας πᾶς ὁπλίτης παρατάσσηται ἐν ἑτερομήκει σχήματι : πλινθίον δέ , ἐὰν ἴσαις ταῖς φάλαγξι | ||
| τὸ γοῦν ἀπὸ ταύτης ἀναγραφὲν τετράγωνον ἴσον ἔσται τῷ προρρηθέντι ἑτερομήκει . δὶς γὰρ ηʹ ιϚʹ : οὕτω γὰρ ἐκείνῳ |
| πράγματος προκόπτει . Τῆς τοῦ τόπου νοήσεως δεδηλωμένης καὶ τῶν συζυγούντων αὐτῷ πραγμάτων ὑποδεδειγμένων ἀπολείπεται , ὡς ἔστιν ἔθος τοῖς | ||
| τῇδε δὲ ἀπὸ δυάδος ἀρτίους ἀπὸ μέσων ἐπὶ πέρατα , συζυγούντων κατ ' ἰσότητα τῶν ἑκατέρωθεν εὐτάκτων . Ἐπιμόριος δὲ |
| ὁρᾶται : φανερὸν δέ , καθ ' ἃ ἠναντίωται τῇ ἁρμονικῇ : τῶν γὰρ αὐτῶν ἄκρων ἀμφοτέραις ὑπαρχόντων καὶ ἐν | ||
| Ζ ὑπεροχήν , ὅπερ ἐστὶ κατὰ τὴν μεσότητα τὴν τῇ ἁρμονικῇ ὑπεναντίαν . δῆλον δ ' ὅτι καί , μονάδων |
| συνθέμενοι , διὰ τὴν ἐπιμιξίαν ταύτης ἔτυχον τῆς προσηγορίας . δυεῖν δ ' ἐθνῶν ἀλκίμων μιχθέντων καὶ χώρας ὑποκειμένης ἀγαθῆς | ||
| δ ' ἀπ ' ἀργυροῦ πίνακος ἄγοντος μνᾶν τάριχος ἐνίοτε δυεῖν ὀβολῶν ἔσθοντας ἢ τριωβόλου καὶ κάππαριν χαλκῶν τριῶν ἐν |
| εἰσιέναι ] . Δοτέον δὲ καὶ αὐτὴν τὴν φορὰν ποιεῖσθαι συνεργοῦσαν καὶ ἀποπληροῦσαν παρ ' αὐτῆς , ἃ δεῖ τελεῖν | ||
| συμβαίνει τῇ γνώμῃ τῶν πολιτῶν : λῃστεύοντες γὰρ ἔχουσιν αὐτὴν συνεργοῦσαν , ἐπιτηδείαν ἔχουσαν τὴν θέσιν πρὸς ἁρπαγήν . οὐ |
| δὲ τὸ ἄτομον λέγεται , κατὰ πλάτος ἐγράφομεν ἐν τῇ Εἰσαγωγῇ Πορφυρίου . περὶ δὲ τοῦ ποσαχῶς τὸ ἓν λέγεται | ||
| καὶ ἐκ τοῦ Πέλοπος Πελοπίδαι , ὡς εἴρηται ἐν τῇ Εἰσαγωγῇ Πορφυρίου , καὶ ὅτι ἀπὸ ἀρρένων λέγονται τὰ γένη |
| . οὐ μὴν ἀλλὰ καὶ εἰ λοξῇ πάσῃ τῇ ἰδίᾳ φάλαγγι προσβάλλει κατὰ θάτερον κέρας τῶν πολεμίων , οὐκ ἂν | ||
| παρεταττόμεθα αὐτοῖς , καὶ τοὺς ἐκ πλείστου ἐθάδας τῶν ἐν φάλαγγι ἀγώνων οὕτως ἀγωνιζόμενοι ἐνικῶμεν . οὐκ ἦν ὁ Σαυνιτικὸς |
| τῷ μήκει ἴσας ταῖς τοῦ τριγώνου πλευραῖς καθ ' ὕψος συννευούσας εἰς ἓν καὶ τὸ αὐτὸ σημεῖον , πυραμὶς ἂν | ||
| καὶ ἐπὶ τῶν περάτων αὐτῆς ἑστώσας πρὸς ὀρθάς , εἶτα συννευούσας εἰς τριγώνου γένεσιν , ὁρῶμεν , ὅτι , καθ |
| γωνίας τεταγμένων πολυγώνων , τὴν δὲ περίμετρον ἴσην , τὸ πολυγωνότερον ἀεὶ καὶ μεῖζόν ἐστιν . αʹ . Ἔστω δύο | ||
| ὁπότε τὰς περιμέτρους ἴσας εἶχεν , ἀεὶ μεῖζον ἀπεδείκνυτο τὸ πολυγωνότερον , καὶ πάντων ὁ κύκλος μείζων , ὥσπερ ἐδείχθη |
| εἰ μὴ κικίννους ἀξίους λίτραιν δυοῖν . σὺν δὲ τῇ λίτρᾳ καὶ ἄλλα ὠνόμασε νομισμάτων ὀνόματα Ἐπίχαρμος ἐν Ἁρπαγαῖς ὥσπερ | ||
| γὰρ ια καὶ ιγ # τοῦ ἐλαίου μίξειϲ τότε τῇ λίτρᾳ τοῦ κηροῦ . Ἐν ταῖϲ ἑψήϲεϲι τῶν φαρμάκων ἡ |
| ἡ τοιαύτη ἀρετὴ φιλίᾳ : πρότερον μὲν γὰρ ἐν τῇ διαγραφῇ κοινότερον αὐτὴν φιλίαν εἶπε , νῦν δὲ διαιρεῖ ὅτι | ||
| ἐφεπτακαιδέκατον : δι ' ἃ κἀν τῇ καθ ' ἡμιτόνιον διαγραφῇ διπλῆ γίνεται τῶν στοιχείων ἔκθεσις , ἵν ' ὅτε |
| παραδραμεῖσθε , ὡς μηδὲν αὐτῶν κατατάξαι ἐν τῇ τῶν ἀγαθῶν μερίδι ; ὀλυμπίου καὶ οὐρανίου ταῦτα ψυχῆς τὰ μεγάλα τολμήματα | ||
| προσετίθεντο καὶ τοὺς ὑπάτους ἠξίουν μάλιστα μὲν τῇ κρείττονι προσχωρῆσαι μερίδι διαλογιζομένους , ὅτι βασιλικὸν ἔχουσι τὸ τῆς ἀρχῆς κράτος |