| πράγματος προκόπτει . Τῆς τοῦ τόπου νοήσεως δεδηλωμένης καὶ τῶν συζυγούντων αὐτῷ πραγμάτων ὑποδεδειγμένων ἀπολείπεται , ὡς ἔστιν ἔθος τοῖς | ||
| τῇδε δὲ ἀπὸ δυάδος ἀρτίους ἀπὸ μέσων ἐπὶ πέρατα , συζυγούντων κατ ' ἰσότητα τῶν ἑκατέρωθεν εὐτάκτων . Ἐπιμόριος δὲ |
| καὶ ποιοῦσι τὸ πρόβλημα . λα . Εὑρεῖν δύο ἀριθμοὺς ἴσους τετραγώνῳ , ὅπως ὁ ὑπ ' αὐτῶν , ἐάν | ||
| ιϚ # ʂ ιϚ . βούλομαι τοὺς δύο λοιπὸν συντεθέντας ἴσους εἶναι Μο ιϚ . ΔΥ ἄρα ε Μο ιϚ |
| ρκεʹ . χρήσιμον δὲ ἔσται καὶ τὸ τοῖς κολλάβοις ἑτέρους ἰσαρίθμους θεματίζειν ἐν τοῖς ἀντικειμένοις τοῦ κανόνος πέρασιν ὑπὲρ τοῦ | ||
| πάντας μετὰ τῶν τροπικῶν ἑπτά , ταῖς τῶν τόνων μεταβολαῖς ἰσαρίθμους . τετάξονται δὲ οἱ μὲν ὀξύτεροι τοῦ δωρίου τόνου |
| τριάδος καὶ ἡ δυὰς τῷ ἑαυτῆς ἡμίσει ὑπερέχεται ὑπὸ τῆς τριάδος . καὶ τοὺς ἄκρους δὲ συντεθέντας ἀλλήλοις καὶ ὑπὸ | ||
| τοῦ γ πρῶτος διπλασιεπίτριτος ἦν , λάμβανε πάντας τοὺς ἀπὸ τριάδος τριάδι διαφέροντας καὶ τοὺς ἀπὸ ἑπτάδος ἑπτάδι , καὶ |
| ἥδε . Τῶν μερῶν τοῦ λόγου ἃ μὲν μετασχηματίζεται εἰς ἀριθμοὺς καὶ πτώσεις , ὡς τὸ ὄνομα καὶ τὰ ἄλλα | ||
| αὐτὰ ἄτοπα συμβαίνει καὶ εἴ τινες τῶν παρ ' ἡμῖν ἀριθμοὺς ὡς ἐπὶ τοῦ κροκοδείλου λαμβάνουσι τὴν ἑξηκοντάδα ὡς οἰκείαν |
| Ἰλλυρὶς περιορίζεται ἀπὸ μὲν ἄρκτων ταῖς δυσὶ Παννονίαις κατὰ τοὺς ἐκτεθειμένους ὅρους : ἀπὸ δὲ δύσεως τῇ Ἰστρίᾳ κατὰ γραμ | ||
| μεσονυκτίου , καθ ' ἣν ὥραν ὁ ἥλιος κατὰ τοὺς ἐκτεθειμένους ἡμῖν ἐπιλογισμοὺς ἐπεῖχεν ἀκριβῶς τῶν Ἰχθύων μοίρας κδ ∠ |
| ὁ πολλαπλάσιός ἐστιν , εἶτα ὁ ἐπιμόριος , καὶ τοῦ ἐπιμορίου πρότερος ὁ ἡμιόλιος , εἶτα καὶ ὁ ἐπίτριτος , | ||
| δὲ καὶ τῶν ἀριθμῶν ἐπὶ πέντε τούτων εἰδῶν θεωροῦνται : ἐπιμορίου , ἐπιμεροῦς , πολλαπλασίου , πολλαπλασιεπιμορίου , πολλαπλασιοεπιμεροῦς , |
| πενταγωνισμὸν ἀπὸ πενταγώνου βάσεως , εἶτα ἀνάλογον ἀπὸ ἑξαγώνου καὶ ἑπταγώνου καὶ ὀκταγώνου καὶ ἀεὶ ἐπ ' ἄπειρον . καθάπερ | ||
| η ∠ ʹ ιδʹ . τοσοῦτον ἔσται ἡ πλευρὰ τοῦ ἑπταγώνου . Ἐὰν θέλῃς τὴν διάμετρον εὑρεῖν ἀπὸ τῆς πλευρᾶς |
| κατὰ συζυγίαν πολλαπλάσιός ἐστι κατὰ τὸν ἥμισυν τοῦ πλήθους τῶν ἐκκειμένων ὅρων . ἐπεὶ γὰρ ἡ τῶν αβ βγ ὑπεροχὴ | ||
| γδ , τουτέστιν ὅσον ἐστὶ τὸ ἥμισυ τοῦ πλήθους τῶν ἐκκειμένων ὅρων : ὥστε ὁ αη δύο τῶν κατὰ συζυγίαν |
| τὴν λυπέουσαν ἀπὸ τοῦ σώματος ἢ ἐν ἄλλῃ τινὶ τῶν περισσῶν ἡμερέων κατὰ τὸν πρότερον εἰρημένον λόγον : οὐ γὰρ | ||
| πάλιν αἱ διαλύσεις . Ἔτι δὲ τῇ μονάδι τῶν ἐφεξῆς περισσῶν γνωμόνων περιτιθεμένων , ὁ γινόμενος ἀεὶ τετράγωνός ἐστι τῶν |
| πονηρὸς ἔδοξεν , ὥστε μηδ ' ἐκεῖ ⌈ ⌉ τῶν ἴσων ἀξιοῦσθαι τοῖς ἄλλοις , ἀλλὰ κλέπτην ὥς φασι ληφθέντα | ||
| δυσὶ πλευραῖς ἴσας ἔχοντα ἑκατέραν ἑκατέρᾳ καὶ τὰς ὑπὸ τῶν ἴσων εὐθειῶν περιεχομένας γωνίας ἴσας : καὶ τὴν βάσιν ἄρα |
| τῆς ΓΘ μοιρῶν ρξ μθ λϚ . ταύταις δ ' ἀκολούθως καὶ ἡ μὲν ὑπὸ ΖΑΘ γωνία τοιούτων κδ κθ | ||
| τῆς ΘΓ μοιρῶν ρμα κη ιδ . ταύταις δ ' ἀκολούθως καὶ ἡ μὲν ὑπὸ ΘΑΖ γωνία τοιούτων λε ιγ |
| λέγονται μερικαὶ γνώσεις , οὕτω καὶ εἰσὶ καὶ καθ ' ὅρους μόνον βεβήκασι καὶ ἄνευ συνθέσεως ἐν ἑνὶ τῷ ὑποκειμένῳ | ||
| γὰρ μεταπίπτειν . Θέσει ἄρα . , ] διὰ τοὺς ὅρους . κύκλος γὰρ τῇ θέσει καὶ τῷ μεγέθει δεδόσθαι |
| ῥητὴν ἔχουσι τὴν πλευράν , καί ἐστιν ἐπὶ τῶν ἀρτίων ἀριθμῶν δεικνύμενον οὕτως : λαμβάνει τὸ ἥμισυ τοῦ προκειμένου αὐτῷ | ||
| τοῦ δευτέρου . † . Ἐὰν ἄρα ἀπὸ τῶν τριῶν ἀριθμῶν τὴν ὑπεροχὴν τῶν μονάδων κ καὶ ἀπὸ τοῦ δὶς |
| μεσότητα ἐμβάλλω εἰς τοὺς προκειμένους ἀρτίους ὅρους , τὰ τῆς γεωμετρικῆς ἰδιώματα ἀνακύπτει , ἐξαπόλλυνται δὲ τὰ τῆς ἀριθμητικῆς : | ||
| . παραινεῖ τε πρῶτον μὲν ἔμπειρον γενέσθαι ἀριθμητικῆς , ἔπειτα γεωμετρικῆς , τρίτον δὲ στερεομετρίας , τέταρτον ἀστρονομίας , ἥν |
| καὶ τεσσάρων καὶ πέντε συμπληροῦσιν ἀριθμὸν τὸν δώδεκα , τοῦ ζῳοφόρου κύκλου παράδειγμα , διπλασιασθείσης . . . . . | ||
| τόπῳ αὐτῆς περὶ τὸ αὐτὸ στρεφομένης , ἐνεργούσης δὲ τὴν ζῳοφόρου κύκλου . . . , παραδιδοῦσα τὸ πᾶν τοῦτο |
| καὶ τῇ ὑστεραίῃ ἱδρὼς ἐγένετο , καὶ τὰς ἄλλας τὰς ἀρτίους ἐγένετο αἰεί . Ἔτι δὲ ὁ πυρετὸς εἶχεν : | ||
| ἐκθέσθαι δεῖ πάντας ἑξῆς ἀπὸ τριάδος , τοὺς δὲ ἀρτιάκις ἀρτίους αὐτοὺς ἐπὶ ἑαυτῶν καὶ γνώμονες ἀπὸ τετράδος τάξει , |
| . ὅταν οὖν μάλιστα ἡ ☾ τῷ φωτὶ καὶ τοῖς ἀριθμοῖς ἀφαιρεῖ , ἔσονται διπλαῖ σημασίαι . καὶ οἱ πυρετοὶ | ||
| ☾ οὔσης ♑ κατακλιθῇ τις ἀφαιρούσης τῆς ☾ καὶ τοῖς ἀριθμοῖς καὶ τῷ φωτὶ ♄ συνόντος αὐτῇ , ἢ ☍ |
| καὶ γραμματικὴν καὶ τὰς συγγενεῖς καλοῦμεν τέχνας καὶ γὰρ οἱ ἀποτελούμενοι δι ' αὐτῶν τεχνῖται λέγονται μουσικοί τε καὶ γραμματικοί | ||
| δοτῆρες γίνονται . καὶ οἱ μὲν διὰ τῶν παραιρέτων ἀστέρων ἀποτελούμενοι κλιμακτῆρες νόσων καὶ κινδύνων καὶ πένθους παραίτιοι χρηματίζουσιν , |
| ὃς σύγκειται ἐκ δύο τετραγώνων , μεταδιελεῖν εἰς δύο ἑτέρους τετραγώνους . Ἔστω τὸν ιγ , συγκείμενον ἔκ τε τοῦ | ||
| τρεῖς ἀριθμοὺς ὅπως ὁ ὑπὸ δύο ὁποιωνοῦν ποιῇ τοὺς δοθέντας τετραγώνους ἀριθμούς . Ἐὰν γὰρ ὦσιν οἱ δοθέντες τετράγωνοι , |
| οὐ γεννᾶι οὔτε γεννᾶται ὑπ ' ἄλλου ἀριθμοῦ πλὴν ὑπὸ μονάδος : διὸ καὶ καλεῖται ὑπὸ τῶν Πυθαγορείων παρθένος ἀμήτωρ | ||
| ιη , καὶ α καὶ ιθ . ἐπὶ μέντοι τῆς μονάδος οὐκέτι τοῦτο , ἀλλὰ τοῦ μὲν μετ ' αὐτὴν |
| καὶ οἱ ἕνα διαλείποντες πάντες οὕτως ἐστίν : ὅτι ἀριθμῶν ἐκτεθέντων ἀπὸ μονάδος κατὰ ἀναλογίαν οἷον διπλάσιος ὡς ἡ μονὰς | ||
| τὸ πλῆθος αὐτῶν ποιοῦσιν ἀριθμὸν διπλάσιον τοῦ συγκειμένου ἐκ τῶν ἐκτεθέντων . Ἔστωσαν γὰρ ἀριθμοὶ ὁποσοιοῦν , οἱ Α , |
| ὁ ἐκ πάντων συγκείμενος ὁ αζ τοῦ μέσου τοῦ γδ πολλαπλασίων ἐστὶ κατὰ τὸ πλῆθος αὐτῶν . ἐπεὶ γὰρ οἱ | ||
| καὶ τὰ ἰσάκις πολλαπλάσια τοῦ πρώτου καὶ τρίτου τῶν ἰσάκις πολλαπλασίων τοῦ δευτέρου καὶ τετάρτου ἢ ἅμα ὑπερέχουσιν ἢ ἅμα |
| αὐξανομένη . πάλιν γὰρ μεταξὺ τοῦ Ϛ καὶ τοῦ ιβ ἑτερομηκῶν ὄντων ἀπόθου τὸν θ τετράγωνον : καὶ ἡ ὑπεροχὴ | ||
| ἡ διαγώνιος ἔσται μόνων τετραγώνων , ἑκάστου παρασπιζομένου ὑπὸ δύο ἑτερομηκῶν κατά τε μῆκος καὶ πλάτος , ὡς κἀνταῦθα σῴζεσθαι |
| ἐπιμερισμῷ ἢ συνεπιμερισμῷ ἔσται κατὰ τὸ διαφέρον τῶν σχημάτων τῶν ἐπιμεριζόντων ἢ συνεπιμεριζόντων ἀστέρων . ἐπιτακτικώτεραι δὲ αἱ ἐνέργειαι αὐτῶν | ||
| κακοποιὸς κακοποιῷ . Καὶ ἕτεροι η τρόποι λαμβανόμενοι ἐκ τῶν ἐπιμεριζόντων καὶ συνεπιμεριζόντων αὐτοῖς ἀγαθοποιῶν ἢ κακοποιῶν σωματικῶς ἢ ἀκτινοβολικῶς |
| ἕξει ἡ ἰσότης πρὸς τὴν ἀνισότητα , καθάπερ καὶ ἐν γραμμικοῖς ἡ ὀρθὴ γωνία πρὸς ἀμβλεῖαν καὶ ὀξεῖαν , καὶ | ||
| ἰσοδιάστατοι , καθ ' ὁμοιότητα καὶ αὐτοὶ λαμβανόμενοι τῶν ἐν γραμμικοῖς : καλοῦνται δ ' οὗτοι κύβοι καὶ τετράεδροι πυραμίδες |
| ρα κβ ἢ ταῖς ἀπὸ σνη λη μέχρις σϘ μα συνεμπίπτῃ , τότε μόνον ἐν τοῖς ἐκκειμένοις τόποις δυνατὸν ἔσται | ||
| τῶν νβʹ , καὶ εὑρόντα πρῶτον ἐννεαδικὸν ζητεῖν , μὴ συνεμπίπτῃ αὐτῷ ἑβδομαδικός . οὐκ ἀρέσκει δέ τισι τὸ [ |
| μέρος τῆς χορδῆς ἐγκόψεις τῇ κρού - σει , περαιτέρω προχωρεῖν οὐκ ἐῶν τὸν κραδασμὸν , ἐπίτριτον ἂν πρὸς τὸ | ||
| πάντως γε κατὰ δύναμιν . τοῦτο οὖν δείκνυσι μὴ δυνάμενον προχωρεῖν ἐπὶ τῶν μετὰ τρόπου προτάσεων , κατασκευάζειν πρότερον διὰ |
| καὶ περὶ τὰς τέτταρας περιεχομένας λόγοις τοῖς ἐφεξῆς ἀπὸ τοῦ ἐπογδόου μέχρι τοῦ ἐπὶ ιαʹ . ποιοῦσι μὲν οὖν τὸ | ||
| τούτων τῶν δεσμῶν ἐν ταῖς πρόσθεν διαστάσεσιν , τῷ τοῦ ἐπογδόου διαστήματι τὰ ἐπίτριτα πάντα συνεπληροῦτο , λείπων αὐτῶν ἑκάστου |
| , ὄρθιον δὲ ὅ τι περ ἂν τὸ βάθος τοῦ μήκους . λοξὴ δὲ ὀνομάζεται φάλαγξ ἡ τὸ μὲν ἕτερον | ||
| εἰς ἀσάφειαν προάγομεν τὸν λόγον ἢ διὰ τὸ σαφῶς εἰπεῖν μήκους δεόμεθα . χρὴ τοίνυν τὴν συντομίαν σκοπεῖν , εἰ |
| ] διὰ τί αὐτὴν ἤλασε μακρῶι δρόμωι ; συγκόλλως : συμφώνως . τίν ' . . . ἄλλον ] ὁ | ||
| Κηφέως διημαρτημένως : τοὐναντίον γὰρ περὶ μὲν τοῦ Κηφέως εἴρηκε συμφώνως τοῖς φαινομένοις , περὶ δὲ τῶν ἄλλων διαφώνως . |
| μεταξὺ τῶν Ρ Θ , πάντες δὲ οἱ μείζους τοῦ πενταπλασίου ποιοῦσι τὸ σημεῖον τῆς τομῆς μεταξὺ τῶν Ρ Τ | ||
| τοῦ εἰκοσαέδρου καθέτου τὸ δυνάμει δωδεκαπλάσιον μεῖζόν ἐστιν τοῦ δυνάμει πενταπλασίου τῆς πλευρᾶς τοῦ εἰκοσαέδρου . Ἐκκείσθω κύκλος ὁ ΑΒΓ |
| , ἐπεὶ τὸ δακτυλικὸν διάστημα συμπληροῦται [ καὶ ] κεγχριαίαις διαμέτροις τὸ μῆκος ἔγγιστα δέκα δυσίν [ ὑπερμετρούντων καὶ ἡμίσεια | ||
| παράλληλοι ἀχθῶσι ταῖς ἐφαπτομέναις συμπίπτουσαι ταῖς τε ἐφαπτομέναις καὶ ταῖς διαμέτροις , τὸ γινόμενον ὑπ ' αὐτῶν τετράπλευρον πρὸς τῇ |
| ἀστραγάλων ἤ τινων ἄλλων ἐξετάζειν τὸν συμπαίζοντα πότερον ἀρτίους ἢ περισσοὺς κατέχει , ὡς καὶ Ἀριστοφάνης Πλούτῳ στατῆρσι δ ' | ||
| ὑπάρχον καὶ ταὐτὸν ἀεί . γεννᾶται δὲ δυάδος τοὺς τάξει περισσοὺς μηκυνούσης , ἵν ' ἐπειδὴ δυάδι οἱ γνώμονες ἀλλήλων |
| προβληθέντων . τοσαῦτα προδιαστείλαντες ἤδη λέγομεν . Πρῶτον δὴ ληπτέον πόσων στοχάζονται οἱ ἐν τοῖς διαλόγοις ἀγωνιζόμενοι καὶ διαφιλονεικοῦντες . | ||
| τῆς τοῦ Ἑρμοῦ ἐποχῆς λαβὼν τὸ τῶν μοιρῶν διάστημα σκέπτου πόσων ζῳδίων ἐστὶν ὁ τῶν μοιρῶν ἀριθμός , καὶ εἰ |
| , καί εἰσι πάλιν ἀρτιάκις ἄρτιοι . γένεσις δὲ τοῦ ἀρτιάκις ἀρτίου . περὶ τῆς γενέσεως τοῦ ἀρτιάκις ἀρτίου λέγει | ||
| ἓξ ἀριθμὸν ἔλεγον κρίσιν , ὃς καὶ ἔστιν ἀρτιοπέριττος . ἀρτιάκις γὰρ ἄρτιός ἐστιν ἀριθμὸς ὁ ἀναλυόμενος μέχρι μονάδος αὐτῆς |
| καὶ ἐφεξῆς ὁμοίως . ἀπὸ δὲ δυάδος τῶν ἐφεξῆς πάντων ἀρτίων . εἰ δὲ θέλεις εὑρεῖν πάντας τοὺς διπλασιεφημιολίους , | ||
| δύναμιν ἀρχῆς . Ὥστε ἐν τῷ διαιρεῖσθαι δίχα πολλοὶ τῶν ἀρτίων εἰς περισσοὺς τὴν ἀνάλυσιν λαμβάνουσιν , ὡς ὁ τεσσαρεσκαίδεκα |
| λε # ʂ β . θέλομεν δὴ ταῦτα πλευρὰν εἶναι κυβικὴν τῶν γενομένων ΚΥ κζ , τουτέστι ʂ γ : | ||
| , εὑρίσκομεν Μο η . θέλομεν δὲ τοὺς ʂ η κυβικὴν εἶναι πλευρὰν τῶν η Μο : Μο ἄρα β |
| σφοδρὸν ὁδοιπορεῖ νόμον . Τούτους δὲ τοὺς διηνεκῶς οὐρανῷ τελουμένους φθόγγους ἀγνοοῦμεν ἢ διὰ τὴν ἀπὸ πρώτης γονῆς συνήθειαν ἐνδελεχῶς | ||
| “ οὐκ αἰσχύνῃ , ” ἔφη , “ τοὺς μὲν φθόγγους τῷ ξύλῳ προσαρμόττων , τὴν δὲ ψυχὴν εἰς τὸν |
| , ὁπλίτας ὑβριστάς , ἐν Σικελίᾳ ἡττωμένους , ἐν Ἑλλησπόντῳ λαμβανομένους . Τὰ δὲ Περσικὰ εἰ λέγοις , στρατιωτικόν μοι | ||
| δὲ ῥᾴδιον παρακολουθήσωμεν τοῖς ῥηθησομένοις , λέγομεν ὡς ἐπεὶ τοὺς λαμβανομένους ἐν ταῖς προτάσεσιν ὅρους καὶ φωνάς τινας εἶναι ἀναγκαῖον |
| ἡ δεῖξις προβήσεται . Ἔστωσαν μείζονες αἱ ρ μο λείψει ἀριθμοῦ ἑνός , ἐλάσσονα δὲ τὸν κ καὶ τὸν Ϟόν | ||
| ἄπειρον αὐτὸν οὐ τῷ ἀδιεξιτήτῳ ἢ τοῦ μεγέθους ἢ τοῦ ἀριθμοῦ , ἀλλὰ τῷ ἀπεριλήπτῳ τῆς δυνάμεως . Ὅταν γὰρ |
| συνθέμενοι , διὰ τὴν ἐπιμιξίαν ταύτης ἔτυχον τῆς προσηγορίας . δυεῖν δ ' ἐθνῶν ἀλκίμων μιχθέντων καὶ χώρας ὑποκειμένης ἀγαθῆς | ||
| δ ' ἀπ ' ἀργυροῦ πίνακος ἄγοντος μνᾶν τάριχος ἐνίοτε δυεῖν ὀβολῶν ἔσθοντας ἢ τριωβόλου καὶ κάππαριν χαλκῶν τριῶν ἐν |
| ὕστερον δὲ γλαφυρώτατα δείξει ὅτι καὶ ἡ ἰσότης προτέρα τῆς ἀνισότητος . δείκνυσιν οὖν ὅτι τὸ πολλαπλάσιον πρῶτόν ἐστι τῶν | ||
| πόλοι ἐπὶ τοῦ ὁρίζοντος πίπτουσιν , ἀναιρουμένου τοῦ αἰτίου τῆς ἀνισότητος τῶν ἡμερῶν , τοῦτο δὲ ἦν τὸ ἔγκλιμα , |
| οὕτως , οἱ δὲ Πυθαγόρειοι τὸ μὲν σημεῖον ἀνάλογον ἐλάμβανον μονάδι , δυάδι δὲ τὴν γραμμὴν καὶ τριάδι τὸ ἐπίπεδον | ||
| πρὸ γὰρ τοῦ ζ ὁ Ϛ , ὃς ἄρτιος : μονάδι οὖν διαφέρει τοῦ ἀρτίου . ὡσαύτως καὶ ὁ ἄρτιος |
| τὸν ἐπίτριτον , καὶ ὁ ε πρὸς τὸν δ τὸν ἐπιτέταρτον , καὶ ἐφεξῆς ὡσαύτως . ἀπὸ δὲ τοῦ τρίτου | ||
| λόγου πρὸς ἡμιόλιον καὶ ἡμιολίου πρὸς ἐπίτριτον καὶ ἐπιτρίτου πρὸς ἐπιτέταρτον : ἐν μὲν γὰρ τοῖς βʹ δʹ Ϛʹ ὅροις |
| καὶ τῇ θέσει , ὥς ἐστι δῆλον ἐκ τοῦ Περὶ ταχῶν αὐτῷ γεγραμμένου συγγράμματος . Ἡ μὲν οὖν μεγίστη τῶν | ||
| ιζ . οἷς ἐπειδὴ κατὰ τοὺς ἐπὶ τοῦ ἀπογείου τῶν ταχῶν λόγους ἐπιβάλλουσι τοῦ διευκρινημένου μήκους μοῖραι β Ϛ Ϛ |
| ὑπὸ τῶν δύο εὐθειῶν ἴσον ἐστὶ τοῖς ὑπό τε τῆς ἀτμήτου καὶ ἑκάστου τῶν τμημάτων περιεχομένοις ὀρθογωνίοις : ὅπερ ἔδει | ||
| δὲ κατὰ τὸ α , γίνεται τὸ ὑπό τε τῆς ἀτμήτου τῆς βα καὶ ἑκάστου τῶν τμημάτων τῶν δα , |
| μέχρι τετάρτου συμφώνου : πρῶτον γὰρ ἐν αὐτῷ τὸ διὰ τεσσάρων , δεύτερον τὸ διὰ πέντε , τρίτον τὸ διὰ | ||
| πασῶν σύστημα ἠλέγχετο , ἤτοι τῆς διὰ πέντε καὶ διὰ τεσσάρων ἐν συναφῇ , ὡς ὁ διπλάσιος λόγος ἡμιολίου τε |
| ἡ τοιαύτη ἀρετὴ φιλίᾳ : πρότερον μὲν γὰρ ἐν τῇ διαγραφῇ κοινότερον αὐτὴν φιλίαν εἶπε , νῦν δὲ διαιρεῖ ὅτι | ||
| ἐφεπτακαιδέκατον : δι ' ἃ κἀν τῇ καθ ' ἡμιτόνιον διαγραφῇ διπλῆ γίνεται τῶν στοιχείων ἔκθεσις , ἵν ' ὅτε |
| φύσιν , οἷον δὲ ὁρισμὸν αὐτοῦ ποιούντων , τὰς διαφορὰς ἐκθώμεθα . συγκεφαλαιούμενοι δὲ καὶ τούτων οἱ τρόποι εὐαρίθμητοι γίνονται | ||
| τὴν τοῦ ὅρου ἐξήγησιν ἡμῖν ἰτέον . καὶ πρῶτον αὐτὸν ἐκθώμεθα , εἶτα δείξομεν ὅτι οὐδὲν οὔτε περισσὸν ἔχει οὔτε |
| ὑπὸ ΖΗΑ ὀρθή : καὶ λοιπὴ ἄρα ἡ ὑπὸ ΑΖΗ ἡμίσους ὀρθῆς : ἴση ἄρα ἡ ΑΗ τῇ ΖΗ : | ||
| τέλειός ἐστι τοῖς ἑαυτοῦ μέρεσι , συμπληρούμενος ἐκτῶν αὐτῶν , ἡμίσους μὲν τριάδος , τρίτου δὲ δυάδος , ἕκτου δὲ |
| τεσσάρων ἄλλων ἀριθμῶν ἐκτεθέντων κατὰ τὴν αὐτὴν τάξιν τοῖς προτέροις ὁμοταγεῖς κατὰ συνδυασμὸν τὸν προειρημένον τῶν ὁμοιοτάτων , ἀντὶ μὲν | ||
| τομεύς , πρὸς τοὺς περιγραφομένους περὶ τὸ ΑΒΓ τμῆμα τοὺς ὁμοταγεῖς τῷ ΓΒΗ . τῷ δ ' αὐτῷ τρόπῳ δειχθήσεται |
| δ ' ἄνω πρὸς ἀγκῶνι , τὸ τῆς κερκίδος : ἀντιθέτως γὰρ ἔχει τὰ τοῦ πήχεως ὀστᾶ . εἰ δ | ||
| ἐπιπέδων ἐπιπέδοις , καὶ τετραγώνων τετραγώνοις , καὶ κύβων κύβοις ἀντιθέτως συζυγούντων , τῇ τε μὴ κατὰ τάξιν αὐτῶν λήψει |
| ὑπεροχαὶ γὰρ αἱ αὐταί . εἰ δὲ τὸν κ ἡ γεωμετρική : ἡ αὐτὴ γὰρ ἀναλογία , διπλασία γάρ . | ||
| ἐλαττόνων , οἷον βʹ γʹ Ϛʹ . ►βʹ ἀριθμητική ) γεωμετρική ) ἁρμονική τριπλάσιος◄ ) ἐπὶ κόρρης . ἐπὶ κεφαλῆς |
| πάντως ἀρχὴ μονὰς κατὰ τοὺς διπλασίους ἢ τριπλασίους ἢ συνόλως ἀναλογοῦντας ἀριθμούς , ὡς ἔχει ὁ ἑξηκοντατέσσαρα | καὶ ὁ | ||
| ἡ ἐντὸς περιεχομένη σφαῖρα , ἣν ἑξαχῆ σχίσας ἑπτὰ κύκλους ἀναλογοῦντας ἑαυτοῖς εἰργάζετο τῶν πλανήτων ἕκαστον εἰς αὐτοὺς ἁρμοσάμενος : |
| ὑπετιθέμεθα τὸ τοιοῦτο . καὶ μηδένα κινείτω τὸ πλῆθος τῶν φθόγγων , ὅταν γε τῇ δυνάμει καὶ κατὰ τὸ κοινὸν | ||
| ὑπαγωγέα παράγοντες , ἕως ἂν ταῖς ἀκοαῖς ὑπαντήσῃ τῶν ἐπιζητουμένων φθόγγων ἕκαστος , ἐκεῖ σημειοῦνται τὴν οἰκείαν τομὴν ἀφέμενοι τοῦ |
| ἀιδίοις ἀπολείπουσιν οἱ ἄνδρες , οἷον τὸ τῆς ὁμοιότητος ἢ ἰσότητος ἢ ταυτότητος εἶδος , οὗ μετέχει μὲν καὶ ὁ | ||
| Τῷ δὴ ἑνὶ μὴ ὄντι , ὡς ἔοικε , καὶ ἰσότητος ἂν μετείη καὶ μεγέθους καὶ σμικρότητος . Ἔοικεν . |
| τετράκις δʹ ιϚʹ . οἱ μὲν οὖν τετράγωνοι πάντες τοὺς ἑτερομήκεις περιλαμβάνουσι κατὰ τὴν γεωμετρικὴν ἀναλογίαν καὶ μέσους αὐτοὺς ποιοῦσι | ||
| πρὸς ἑαυτοὺς διαφορὰς τοὺς περισσοὺς μόνον ἔχουσιν , οἱ δὲ ἑτερομήκεις τοὺς ἀρτίους : ἂν δὲ καὶ τὸν πρῶτον ἑτερομήκη |
| ἴσων καθέτων . καὶ οὐδὲν διαφέρει , ἂν ἡ ἐσχάτη ἐφαρμόζῃ τῇ ΕΒ . [ ἑξῆς τὸ σχῆμα . ] | ||
| ἐστι τῶν ὄντων ἕκαστον , καὶ μὴ εἰκῇ τὰς προλήψεις ἐφαρμόζῃ ταῖς ἐπὶ μέρους οὐσίαις . τοῦτο γάρ ἐστι τὸ |
| ταῖς ἑξῆς περιφερείαις ἀναφορικῆς ὑπεροχῆς , ὅ ἐστιν ο οʹ ιγʹʹ κʹʹʹ , καὶ αἱ λοιπαὶ γνωσθήσονται , ἐν ὅσῳ | ||
| ἡ αγ τῆς δβ κθʹ ὑπεροχαῖς ταῖς ἀνὰ ο οʹ ιγʹʹ κʹʹʹ . αἱ δὲ τοσαῦται ὑπεροχαὶ αἱ ἀνὰ ο |
| πάντα κατὰ συμφωνίαν . πῶς ; ἔστιν αὑτοῖς ἃ διὰ τεττάρων ἔχει κοινωνίαν , διὰ πέντε , διὰ πασῶν πάλιν | ||
| τετρακοσίων , τῶν δὲ μαγείρων οἱ διαφέροντες ὀψαρτυτικαῖς φιλοτεχνίαις ταλάντων τεττάρων , οἱ δὲ ταῖς εὐμορφίαις ἐκπρεπεῖς παράκοιτοι πολλῶν ταλάντων |
| , καὶ ἄλλο τὸ συναμφότερον τοῦτο ὃ οὐκ ἔστιν ἐξ ὁμοταγῶν , οὐδὲ ἐκ στοιχείων , οὐδὲ ἐκ μερῶν , | ||
| ὑπερέχει τοῦ παραδείγματος ἡ ὁμοιότης . Ἡ μὲν δὴ τῶν ὁμοταγῶν ἐπίσης ἔχει πρὸς τὴν ἀντιστροφήν , ἡ δὲ τοῦ |
| μείζονες ἡγεμονίαι πρὸς αὑτάς . Νῦν δὲ καὶ περὶ τῶν διαστημάτων , ὧν ἀπ ' ἀλλήλων ἀφεστᾶσιν οἱ ὁπλῖται κατά | ||
| ' ἀμφοτέρας τὰς διαιρέσεις φαίνεται , τὰ δὲ μεγέθη τῶν διαστημάτων δῆλον ὅτι οὐ ταὐτὰ ἐν ἑκατέρᾳ τῶν διαιρέσεων . |
| . τὼς δ ' ἄρα καὶ διάμετροι . ἀτὰρ χαίρουσι τρίγωνοι , σχήμασι δ ' ἐν τούτοισιν ἀεὶ φιλομάντιας ἄνδρας | ||
| ἐλευθερωθῆναι . κυνοῦχος : θυλάκιον , μαρσίππιον . κύρβεις : τρίγωνοι πίνακες , ἐν οἷς οἱ περὶ τῶν ἱερῶν νόμοι |
| κατ ' ὀλίγον πατουμένη τὴν ἔνδοσιν λαμβάνει , καὶ τοὺς ἐπιβάλλοντας ὥσπερ προνοίᾳ τινὶ πονηρᾷ παρακρούεται , μέχρι ἂν ὅτου | ||
| ἔργον ἐργαζομένους , οὐ κτήνεσι κτήνη δίχα βίας ἑκόντα ἑκοῦσιν ἐπιβάλλοντας οὐδὲν αἰσχυνομένοις , ἀλλὰ ἀνθρώποις αἰσχυνομένοις καὶ ἄκουσιν οἰστρῶντας |
| γὰρ ἰσημερίας ἐαρινῆς ἐπὶ τροπὴν θερινὴν ἐν ἡμέραις παραγίνεται Ϟδʹ ςʹ , ἀπὸ δὲ θερινῆς τροπῆς ἐπὶ ἰσημερίαν μετοπωρινὴν ἡμέραις | ||
| ἀνήλισκον δὲ ἡμιτάλαντον : οἱ δὲ τὸ ζευγίσιον τελοῦντες ἀπὸ ςʹ μέτρων διελέγοντο , ἀνήλισκον δὲ μνᾶς ιʹ : οἱ |
| μὲν οὖν ἐπὶ μονάδα αἱ ἀφαιρέσεις περαιωθῶσι , πρώτους καὶ ἀσυνθέτους αὐτοὺς ἀποφαίνουσι πρὸς ἀλλήλους , ὅταν δὲ ἐπὶ ἕτερόν | ||
| ψεύστας , διαβόλους , ἐπιόρκους , βαθυπονήρους , ἐπιβουλευτικούς , ἀσυνθέτους , ἀδεξιάστους , νοθευτάς , γυναικῶν διαφθορέας καὶ παίδων |
| ἐστὶ κατόρθωμα τῆς γραμματικῆς τέχνης : τάξιν δέ , ὅτι εὐτάκτως ἐστὶ συγκειμένη πᾶσα ἡ διδασκαλία τῆς γραμματικῆς : πρῶτον | ||
| ἀναιδῶς ἐσθίων καὶ στεφανῶν τὴν κεφαλήν : ὑπερβῆναι : οὐκ εὐτάκτως : ᾤετο γὰρ ὁ θεράπων ἐγνωκέναι αὐτὸν τὸν θάνατον |
| . καθόλου τε οἶμαι τοὺς μαθηματικοὺς ἅπαντας τοὺς εἰρημένους κύκλους ἀπλατεῖς ὑποτίθεσθαι , τοὺς τροπικοὺς καὶ τὸν ἰσημερινὸν καὶ τὸν | ||
| οἴκησιν οἱ ἀρκτικοί . Τούτους δὴ τοὺς κύκλους δεῖ νοεῖν ἀπλατεῖς , λόγῳ θεωρητούς , ἐκ τῆς τῶν ἀστέρων θέσεως |
| γαμικὴν χλαμίδα δότω τις δεῦρό μοι . μετὰ δὲ τὸν Ϟδʹ στίχον κῶλά ἐστιν ἀντισπαστικὰ Ϛʹ , ἐπιμεμιγμένα διιάμβοις , | ||
| μὴ ὄπισθεν , ἀλλ ' ἔμπροσθεν τάξῃ . Κεφ . Ϟδʹ . Ἁρμόζει μὲν ἐφ ' ὧν καὶ ἡ πρὸ |
| δ ' ἐστὶ περὶ τὴν διχομηνίαν . Ἔστι δὲ ὁ μηνιαῖος χρόνος ἡμερῶν κθ ∠ ʹ λγʹ . Ἐν δὲ | ||
| κατὰ τὰς ἡμέρας καὶ κατὰ τοὺς ἐμβολίμους . Ὁ γὰρ μηνιαῖος χρόνος οὐκ ἀκριβῶς εἴληπται . Ἔστι γὰρ ὁ μηνιαῖος |
| καὶ εἰς ἄνισα θ καὶ γ . τὸ ἀπὸ τῶν ἀνίσων τῆς ὅλης τετράγωνον , τουτέστι θ ἐπὶ θ , | ||
| τετράγωνος , ἀλλὰ καὶ ἑτερομήκης λέγεται , ὡς ἂν ἐξ ἀνίσων πλευρῶν συντεθεὶς ἔκ τε τοῦ η καὶ τοῦ β |
| καὶ οἱ ἰσάκις ἶσοι ἰσάκις ἅπαντες , τουτέστι κύβοι τριχῆ διαστατοὶ ὄντες καὶ ταυτότητος ἐπὶ πλεῖον δοκοῦντες μετέχειν ἔργον εἰσὶ | ||
| λϚ , μθ , ξδ καὶ οἱ ἑξῆς διχῆ ὄντες διαστατοὶ καὶ ἐν τῇ ἐπιπέδῳ σχηματογραφίᾳ μῆκος καὶ πλάτος μόνον |
| Κρόνος διακείμενος συνοδεύσει ἀστέρι ἢ ἀκτῖνι ἀστέρος ἢ κλήρῳ ἢ δωδεκατημορίῳ ἢ ἐναντίῳ σχή - ματι ἐπιβλέψει τούτους κατὰ πῆξιν | ||
| καὶ ἐπεὶ ὅροι ὁσοιδηποτοῦν εἰσιν αἱ τῶν ἐν τῷ αβ δωδεκατημορίῳ τριακοστημορίων τῶν ἑξῆς ἀλλήλοις κειμένων ἀναφοραὶ ἐν ἴσῃ ὑπεροχῇ |
| ἀνεγερθείη τρόπον κίονος ἑνός , μυρίοις τῆς αἰθερίου σφαίρας ἀπολειφθήσεται διαστήμασι , καὶ μάλιστα κατὰ τοὺς ζητητικοὺς τῶν φιλοσόφων , | ||
| τοῦ μονοχόρδου κανόνος . Ὅτι οὐ δεόντως οἱ Ἀριστοξένειοι τοῖς διαστήμασι καὶ οὐ τοῖς φθόγγοις παραμετροῦσι τὰς συμφωνίας . Ὅτι |
| τοσούτους γε ἂν ἀποτέμοι ὥστε μή τινας ἀπολείπεσθαι ὑψηλοτέρους τῶν ἀτμήτων ἀεὶ μενόντων . τοῦτο γὰρ δὴ τὸ σχετλιώτατον τῆς | ||
| ταῖς χρείαις διαφέροντας : ὁ μὲν γὰρ ἐκ λίθων λογάδων ἀτμήτων συνῳκοδόμηται καὶ ἐν ὑπαίθρῳ παρὰ ταῖς τοῦ νεὼ προσβάσεσιν |
| ἀπὸ μονάδος πρῶτος τέλειός ἐστιν ἰσούμενος τοῖς ἑαυτοῦ μέρεσι καὶ συμπληρούμενος ἐξ αὐτῶν , ἡμίσους μὲν τριάδος , τρίτου δὲ | ||
| οὕτως ἐκ τούτου κἀκείνων ὁ τοῦ προκειμένου γένους ὁρισμὸς εὑρεθήσεται συμπληρούμενος . οἷον εἰ γραμμὴ εἴη τὸ γένος τὸ εἰς |
| ἢ ἀφελόντας τῶν ἰσημερινῶν χρόνων πρότερον : ἀμφοτέρους γὰρ τοὺς γνώμονας ἐπισυνθέντες καὶ τὴν ἡμίσειαν λαβόντες εὑρήσετε τὸ συνεχὲς ζητούμενον | ||
| ἐπ ' ἄκρας τῆς Ἰνδικῆς ἰδεῖν ἔστιν ἀσκίους ὄντας τοὺς γνώμονας , νυκτὸς δὲ τὰς ἄρκτους ἀθεωρήτους : ἐν δὲ |
| δὲ εἶδος οὐ παρέργως ἐπισκεπτέον . τὸ μὲν δὴ δεύτερον ἐμφανεστάτην ἔχει προνομίαν : αἰεὶ γὰρ ὁ ἀπὸ μονάδος συντιθέμενος | ||
| : ἀλλ ' ὅσα μὲν ἥμερα καὶ ἄγρια λέγεται ταύτην ἐμφανεστάτην καὶ μεγίστην ἔχει διαφοράν , οἷον συκῆ ἐρινεός , |
| ἁρμόζει ταῖς κατασκευαῖς , τὰ δὲ ἀξιώματα ταῖς ἀποδείξεσιν . ἐφεξῆς οὖν ἡ ἀπόδειξις , καί φησι : τὰ τῷ | ||
| πόλον , ἀρκτικὴν δὲ αὐτὴν ὀνομάζουσιν : ἡ δ ' ἐφεξῆς εὔκρατός ἐστιν : εἶτα τὴν τρίτην διακεκαυμένην καλοῦσιν : |
| τῶν ρπ μοιρῶν τῆς ἀναφορᾶς συμπληρουμένης ἢ καὶ ἕως ἑτέρας τετραγώνου ἢ συμπληρουμένου παντὸς τοῦ κύκλου , ἢν δὲ καὶ | ||
| πλευρὰ μονὰς ἔσται πανταχόθι , ὅσηπερ καὶ ἡ τῆς δυνάμει τετραγώνου μονάδος . καθόλου δὲ ἕκαστος τετράγωνος ἓν μὲν ἐπίπεδόν |
| δὲ ἡ μονὰς κατὰ τὸν ἕνα θεόν : πᾶς γὰρ ἀριθμὸς νεώτερος κόσμου , ὡς καὶ χρόνος , ὁ δὲ | ||
| γὰρ ἄλλα πάντα τὸν ἀριθμὸν φαίνεται μιμούμενα , ὁ δὲ ἀριθμὸς παρ ' ἑαυτοῦ ἀρχὰς μονάδα καὶ δυάδα . ὡς |
| ἐμφέρειαν , τάχα δὲ οὐδὲ κατ ' αὐτὴν ἀλλ ' εὐσήμου χάριν διδασκαλίας . τί γὰρ ἔχουσιν ὅμοιον ἄρκτῳ οἱ | ||
| ' ἐπεὶ ταύτας τινὰς βεβαίως Ἱπποκράτους λέγομεν εἶναι , διδασκαλίας εὐσήμου ἕνεκεν ἀρκτέον οὖν ἂν εἴη ἀπὸ τῶν σημειωτικῶν , |
| καὶ ὥρας ἰσημερινὰς κγ ιβʹ συνάγει κατὰ τὴν ἀποδεδειγμένην τοῦ πλάτους μέσην κίνησιν ἐπουσίαν μοίρας ρξ καὶ ἑξηκοστὰ δ . | ||
| κθ ιδ ὡς ἀπὸ τῶν συνδέσμων εἰσαγαγόντες εἰς τὸ τοῦ πλάτους κανόνιον σελήνης , καὶ τὴν παρακειμένην πρὸς ἀνάλογον μοῖραν |
| διαλαβεῖν : κοινὸν γὰρ τοῦτο τὸ βιβλίον γεωμετρίας τε καὶ ἀριθμητικῆς καὶ μουσικῆς καὶ πάσης ἁπλῶς τῆς μαθηματικῆς ἐπιστήμης . | ||
| Ϛʹ τοῦ εʹ : κοινὸν τὸ θεώρημα γεωμετρικῆς ἀναλογίας καὶ ἀριθμητικῆς . Ἐν τῷ λόγῳ ἄρα εἰσὶ τῆς ἀριθμητικῆς ἀναλογίας |
| προτέροις τοῦ δ γεννᾶται τῇ αὐτῇ ἐφόδῳ : τὸ γὰρ συγκεφαλαίωμα τῶν τριῶν , τοῦ τε α καὶ β καὶ | ||
| ἥττονος : ἑκατὸν γὰρ ιϚ ἐν ἑκατέροις τὸ τοῦ ἀριθμοῦ συγκεφαλαίωμα . Ἔστω ἡ ΑΒ μονάδων ιβ . ἐτμήθη εἰς |
| ἀλλήλων διαφέροντες , διπλάσιοι ἄρτιοι περισσῶν , ἐπίπλαστος περισσάρτιοι εὔτακτοι εὐτάκτων . εἶτ ' ἀπ ' ἄλλης ἀρχῆς οἱ αὐτῶν | ||
| δὲ ἐπὶ τούτοις γενήσονται καθεξῆς προσσωρευομένων τῶν κατὰ τριάδος ὑπεροχὴν εὐτάκτων μετὰ τὴν ἑβδομάδα ὄντων , οἷον τοῦ ι , |
| ἵππων βοῶν κυνῶν καὶ ἁπλῶς ὧν ἔστιν ἀριθμός , οἷον γραμμῶν ἐπιπέδων σωμάτων ἁπλῶς μεγέθους . καὶ γὰρ καὶ τούτων | ||
| καὶ τοῦ Σκορπίου ἑκάτερον ἐν λεʹ , δεικνυμένου διὰ τῶν γραμμῶν , ὅτι ταῦτα μὲν ἐν πλείοσι τῶν λεʹ χρόνων |
| τὸν δέκα συνθῇς , μέσος εὑρεθήσεται ὁ εʹ κατὰ τὴν ἀριθμητικὴν ἀναλογίαν , οἷον θʹ καὶ αʹ , ηʹ καὶ | ||
| εἰσὶν αἱ προηγούμεναι τῶν ἀναλογιῶν . πάλιν δὲ κατὰ τὴν ἀριθμητικὴν παράδοσιν λέγονται λόγοι τῶν ἀριθμῶν , ὡς καὶ ὁ |
| , τὸ πρός τι πῶς ἔχον , ᾧ δὴ πρότερον ἐφαρμόσαντες ταῖς θέσεσι τὰς κατὰ τὸ καλούμενον ἀμετάβολον σύστημα δυνάμεις | ||
| τὰς ΕΖΒ καὶ ΗΘΓ καθέτους γίνεσθαι καὶ πρὸς αὐτήν . ἐφαρμόσαντες δὴ τῇ χορδῇ κανόνιον καὶ μεταλαβόντες ἐπ ' αὐτοῦ |
| ἐφεξῆς ἀριθμοί , ἀπογεννῶντες τριγώνους ἢ τετραγώνους ἢ πολυγώνους , γνώμονες καλοῦνται . τοσούτων δὲ μονάδων ἕκαστον τρίγωνον ἔχει πλευρὰς | ||
| Ἐν Ἀλεξανδρείᾳ δὲ τῇ αὐτῇ ὥρᾳ ἀποβάλλουσιν οἱ τῶν ὡρολογίων γνώμονες σκιάν , ἅτε πρὸς ἄρκτῳ μᾶλλον τῆς Συήνης ταύτης |
| εἰσὶ γάρ πως καὶ ὁμόγλωττοι παρὰ μικρόν . Ἡ δὲ τάξις τῶν ἐθνῶν τοιαύτη : παρὰ μὲν τὸν Ἰνδὸν οἱ | ||
| ἔσται ἡ ἐν τοῖς ιϚʹ λϚʹ παʹ . καὶ ἡ τάξις οὕτω πρόεισιν ἐπ ' ἄπειρον . καὶ ἀπὸ τούτων |
| ἐξ ἀρχῆς μετρούντων . Ἐλάχιστος γὰρ ἀριθμὸς ὁ Α ὑπὸ πρώτων ἀριθμῶν τῶν Β , Γ , Δ μετρείσθω : | ||
| στρατιωτικῇ πέφυκε γίνεσθαι . ὅταν δὲ ὑπάρξηται ἡ ἐκ τῶν πρώτων κίνησις , ἐνταῦθα οἱ λοιποὶ ἕπονται . λέγουσι δὲ |
| : ἡ μὲν ἄρα αγ ἀνενεχθήσεται ἐν ο μϚʹ λγʹʹ κʹʹʹ , ἡ δὲ δβ ἐν ο μʹ Ϛʹʹ μʹʹʹ | ||
| . αἱ δὲ τοσαῦται ὑπεροχαὶ αἱ ἀνὰ ο οʹ ιγʹʹ κʹʹʹ συντεθεῖσαι γίγνονται ο Ϛʹ κϚʹʹ μʹʹʹ : ὥστε καὶ |
| τὰ τρία εἴδη ἄρτια καλοῦνται , καὶ γὰρ ὁ ἀρτιάκις ἄρτιος , ὁ ἀρτιοπέριττος καὶ ὁ περισσάρτιος . συμβέβηκε δὲ | ||
| εἶναι ἀριθμόν ; διότι πᾶς ἀριθμὸς ἢ περιττός ἐστιν ἢ ἄρτιος . καὶ πᾶς ἄρτιος δύναται εἶναι , ἡ δὲ |
| τοῦ μεσημβρινοῦ δὲ καύματος ἀκμάζει τῇ ψυχρότητι : πάλιν δὲ ἀνάλογον ἀπολήγει πρὸς τὴν ἑσπέραν καὶ τῆς νυκτὸς ἐπιλαβούσης ἀναθερμαίνεται | ||
| αὐτὸν πρὸς αὐτήν . μαθηματικὰ δὲ εὗρεν τὴν μέσην καλουμένην ἀνάλογον , περὶ ἧς ἐν τῇ Ἀποδεικτικῇ λόγον ἐποιησάμεθα . |
| . σφῶν : τῶν Λακεδαιμονίων . εἰρημένον : ἀντὶ τοῦ ὁρισθέντος . κύριον : κεκυρωμένον , βέβαιον Κορίνθιοι : τὸ | ||
| ὅσον κατὰ τὴν τοῦ ὁρισμοῦ ἀπόδοσιν ἔστιν ἐρωτᾶν περὶ τοῦ ὁρισθέντος , διὰ τί ἐστι , καὶ διὰ τί τοῦτ |
| , ἀφ ' ὧν λαμβάνεται πᾶσα μεσότης , ἀριθμητική , ἁρμονική , γεωμετρική . τούτων ἡ μὲν ἴσῳ ἀριθμῷ ὑπερέχει | ||
| τὸ ποιὸν ἀντὶ τοῦ περὶ τοὺς ὅρους . ἡ μέντοι ἁρμονική , ὡς περὶ ἑκάτερον ἔχουσα , διὰ τοῦτο τῶν |
| μʹʹ . πάλιν ἐπεὶ αἱ τῶν ἐν τῷ αβ δωδεκατημορίῳ τριακοστημορίων περιφερειῶν ἀναφοραὶ ἐν ἴσῃ εἰσὶν ὑπεροχῇ , ἀρχόμεναι ἀπὸ | ||
| δωδεκατημορίων τοῦ ζῳδιακοῦ ἀναφοραί , καὶ τῶν ἐν τοῖς δωδεκατημορίοις τριακοστημορίων τῶν ἑξῆς ἀλλήλοις κειμένων γνωσθήσονται αἱ ἀναφοραί , ἐν |
| , ἀλλὰ μεταπίπτει ἐν τῷ πολλαπλασιασμῷ , οἷον δυὰς ἐπὶ τριάδα καὶ τριὰς ἐπὶ τετράδα καὶ τετρὰς ἐπὶ πεντάδα : | ||
| λέγοντες οὕτως , οἷον τὴν γραμμὴν δυάδα , τὴν ἐπιφάνειαν τριάδα , τὸ δὲ στερεὸν τετράδα : καὶ τῶν παραδειγμάτων |
| τῶι δὲ τετράγωνον , τῶι δὲ ἄλλο καὶ ἄλλο τῶν εὐθυγράμμων [ τῶν ] σχημάτων , ὣς δὲ καὶ μικτῶν | ||
| κατασκευὴν τοῦ μζʹ . ἰστέον δέ , ὅτι τῶν ἀρίστων εὐθυγράμμων δύο τοῦ ἰσοπλεύρου τριγώνου καὶ ἰσοπλεύρου τετραγώνου γενέσεις παραδέδωκεν |