| ἁρμόζει ταῖς κατασκευαῖς , τὰ δὲ ἀξιώματα ταῖς ἀποδείξεσιν . ἐφεξῆς οὖν ἡ ἀπόδειξις , καί φησι : τὰ τῷ | ||
| πόλον , ἀρκτικὴν δὲ αὐτὴν ὀνομάζουσιν : ἡ δ ' ἐφεξῆς εὔκρατός ἐστιν : εἶτα τὴν τρίτην διακεκαυμένην καλοῦσιν : |
| τῆς ΓΘ μοιρῶν ρξ μθ λϚ . ταύταις δ ' ἀκολούθως καὶ ἡ μὲν ὑπὸ ΖΑΘ γωνία τοιούτων κδ κθ | ||
| τῆς ΘΓ μοιρῶν ρμα κη ιδ . ταύταις δ ' ἀκολούθως καὶ ἡ μὲν ὑπὸ ΘΑΖ γωνία τοιούτων λε ιγ |
| σαφεστέραν δ ' ἕξει τὴν ἐπίσκεψιν τοῦτο , ἐπειδὰν τὴν ἑξῆς χώραν περιοδεύσωμεν τήν τε Πισᾶτιν καὶ τὴν Τριφυλίαν μέχρι | ||
| τῆς ἐννοίας ἀποσιωπῆσαι , Χείρωνα δὲ διὰ δικαιότητα καὶ τὰ ἑξῆς . Ἔστι δὲ τῆς ἰδιότητος τοῦ ἀνδρὸς καὶ πάντων |
| ῥητὴν ἔχουσι τὴν πλευράν , καί ἐστιν ἐπὶ τῶν ἀρτίων ἀριθμῶν δεικνύμενον οὕτως : λαμβάνει τὸ ἥμισυ τοῦ προκειμένου αὐτῷ | ||
| τοῦ δευτέρου . † . Ἐὰν ἄρα ἀπὸ τῶν τριῶν ἀριθμῶν τὴν ὑπεροχὴν τῶν μονάδων κ καὶ ἀπὸ τοῦ δὶς |
| οἳ ἐδόκουν λέγειν ἀριθμοὺς ἐκ τοῦ ἀνάλογον , οἷον δικαιοσύνην τετράδα καὶ ἄλλον ἄλλως : ἐκείνως δὲ μᾶλλον τῷ πλήθει | ||
| δὲ τριάδα παραλείποιεν , τετρὰς ἡ ὑπεροχή : καὶ εἰ τετράδα , πεντάς , καὶ ἐφεξῆς εὑρήσεις τοῦτο . μετέχει |
| τριάδος καὶ ἡ δυὰς τῷ ἑαυτῆς ἡμίσει ὑπερέχεται ὑπὸ τῆς τριάδος . καὶ τοὺς ἄκρους δὲ συντεθέντας ἀλλήλοις καὶ ὑπὸ | ||
| τοῦ γ πρῶτος διπλασιεπίτριτος ἦν , λάμβανε πάντας τοὺς ἀπὸ τριάδος τριάδι διαφέροντας καὶ τοὺς ἀπὸ ἑπτάδος ἑπτάδι , καὶ |
| ἥδε . Τῶν μερῶν τοῦ λόγου ἃ μὲν μετασχηματίζεται εἰς ἀριθμοὺς καὶ πτώσεις , ὡς τὸ ὄνομα καὶ τὰ ἄλλα | ||
| αὐτὰ ἄτοπα συμβαίνει καὶ εἴ τινες τῶν παρ ' ἡμῖν ἀριθμοὺς ὡς ἐπὶ τοῦ κροκοδείλου λαμβάνουσι τὴν ἑξηκοντάδα ὡς οἰκείαν |
| , ἀλλὰ μεταπίπτει ἐν τῷ πολλαπλασιασμῷ , οἷον δυὰς ἐπὶ τριάδα καὶ τριὰς ἐπὶ τετράδα καὶ τετρὰς ἐπὶ πεντάδα : | ||
| λέγοντες οὕτως , οἷον τὴν γραμμὴν δυάδα , τὴν ἐπιφάνειαν τριάδα , τὸ δὲ στερεὸν τετράδα : καὶ τῶν παραδειγμάτων |
| ] ⌈ κϘʹ . / [ εἰκοστὴ ἕκτη . ] τετρὰς ] ⌈ κζʹ . / [ εἰκοστὴ ζʹ . | ||
| , οὕτω καὶ ἡ τοῦ μεγίστου παρὰ τὸν μέσον διαφορὰ τετρὰς οὖσα πρὸς τὴν τοῦ μέσου παρὰ τὸν ἐλάχιστον δυάδα |
| ἀόριστος γίνεται , καθάπερ τὰ φυσικὰ ὁ φυσικός , ἀλλὰ ἀφελόντες τῆς ὕλης καὶ αὐτὸν σκοποῦντες καθ ' ἑαυτόν , | ||
| ὁμαλοῦ μήκους , ποιοῦσιν ἡμέραν καὶ ὡρῶν ε . ἣν ἀφελόντες ἀπὸ τῆς μέσης ἡμερῶν σϚ καὶ ὡρῶν ιζ ἰσημερινῶν |
| τῶν δέκα πληρώσει ἀριθμόν : ὥστε ὁ ἀριθμὸς κατὰ μὲν μονάδα ἐν τοῖς δέκα κατὰ δὲ δύναμιν ἐν τοῖς τέσσαρσι | ||
| εὑρίσκεται ἔχων ὁλοκλήρως τὰς δ μονάδας καὶ ἐπέκεινα τούτων μίαν μονάδα , ἥ ἐστιν τῶν δ δʹ , καὶ διὰ |
| Καὶ τάδε μὲν περὶ τῶν παρὰ τοῖς παλαιοῖς θρυλλουμένων τριῶν ἀναλογιῶν , ἃς καὶ ἐπιτηδὲς σαφέστερον καὶ πλατύτερον διηρθρώσαμεν , | ||
| ὁ Διόφαντος . τοῖς διὰ τῶν Εὐκλείδου στοιχείων ἡγουμένοις περὶ ἀναλογιῶν ἐντεῦθεν ἄρχεται . συνεκδρομικῶς νῦν ὁ φιλόσοφος λέγει καὶ |
| καὶ ἐφεξῆς ὁμοίως . ἀπὸ δὲ δυάδος τῶν ἐφεξῆς πάντων ἀρτίων . εἰ δὲ θέλεις εὑρεῖν πάντας τοὺς διπλασιεφημιολίους , | ||
| δύναμιν ἀρχῆς . Ὥστε ἐν τῷ διαιρεῖσθαι δίχα πολλοὶ τῶν ἀρτίων εἰς περισσοὺς τὴν ἀνάλυσιν λαμβάνουσιν , ὡς ὁ τεσσαρεσκαίδεκα |
| γραμμάς . εἰ δὲ κατὰ ῥῖνας , εὐθυτενῆ τὴν τομὴν τάξομεν κατὰ τὸ μῆκος τῆς ῥινός . εἰ δὲ κατὰ | ||
| - νων ἁπάντων ἐντέχνως καὶ τὰς κατηγορίας καὶ τὰς ἀπολογίας τάξομεν . Τὸ δ ' ἐξεταστικὸν εἶδος αὐτὸ μὲν καθ |
| , καί εἰσι πάλιν ἀρτιάκις ἄρτιοι . γένεσις δὲ τοῦ ἀρτιάκις ἀρτίου . περὶ τῆς γενέσεως τοῦ ἀρτιάκις ἀρτίου λέγει | ||
| ἓξ ἀριθμὸν ἔλεγον κρίσιν , ὃς καὶ ἔστιν ἀρτιοπέριττος . ἀρτιάκις γὰρ ἄρτιός ἐστιν ἀριθμὸς ὁ ἀναλυόμενος μέχρι μονάδος αὐτῆς |
| προσδιορισμὸν ἡγούμεθα κοινοτάτην ποιεῖσθαι τὴν ἀπόφανσιν καὶ μὴ μάτην αὐτὸν προστίθεμεν , μόνον ἄρα τὸ ἄρθρον ῥηθὲν οὐκ εὐθὺς ἅπαντα | ||
| ἐπιβολὴν τοῦ ἀνδρὸς καὶ ἐν τούτοις θαυμάσαντες , τοσοῦτον μόνον προστίθεμεν ὅτι οὐχ ἁπλῶς δεῖ ἀκούειν τὸν Δία τὸν ἕνα |
| τἆλλα κατὰ τὸ ἑξῆς εἴδη . ὑπόδειγμα δὲ πάντων εὐτάκτων πολυπλασίων σαφὲς ἕξομεν ἐὰν ἐκθέμενοι τὸν ἀπὸ μονάδος συνεχῆ ἀριθμὸν | ||
| ἀρτιοπερίττων δὲ πέντε , πάσας δὲ λόγων τῶν ἐν ἀριθμοῖς πολυπλασίων καὶ ἐπιμερῶν καὶ ὑποεπιμερῶν περιέχει , πάσας δ ' |
| καὶ οἱ ἕνα διαλείποντες πάντες οὕτως ἐστίν : ὅτι ἀριθμῶν ἐκτεθέντων ἀπὸ μονάδος κατὰ ἀναλογίαν οἷον διπλάσιος ὡς ἡ μονὰς | ||
| τὸ πλῆθος αὐτῶν ποιοῦσιν ἀριθμὸν διπλάσιον τοῦ συγκειμένου ἐκ τῶν ἐκτεθέντων . Ἔστωσαν γὰρ ἀριθμοὶ ὁποσοιοῦν , οἱ Α , |
| καὶ ἦθος καὶ γένος , οὕτω δὴ κἀπὶ τῶν ἵππων εὑρήσομεν , ἀλλ ' ἐγὼ , καίτοι χαλεπὸν ὂν καὶ | ||
| . ἡ δὲ γῆρυς ὅτι ἐπὶ τῆς φωνῆς εἴρηται , εὑρήσομεν καὶ παρ ' Ὁμήρῳ : οὐ γὰρ πάντων ἦεν |
| ἑπτὰ πάλιν ἡμέραις , εἶτ ' ἀπὸ ταύτης ἐπὶ τὴν μηνοειδῆ ταῖς ἴσαις : ἐξ ὧν ὁ λεχθεὶς ἀριθμὸς συμπεπλήρωται | ||
| χρηϲτέον τρόπῳ κατὰ τὴν ἀντίϲτροφον τάξιν , πρῶτον διδοῦντα τὴν μηνοειδῆ τομὴν διὰ τὸν ἐκ τοῦ αἵματοϲ παραποδιϲμόν , εἶτα |
| δυνάμει πεφυκυῖα , δύο μεσότητας ἔχει , ἀριθμητικήν τε καὶ ἁρμονικήν , φαίνεταί τε τὰ μέρη αὐτῆς καὶ τὰ μεγέθη | ||
| δεύτερος πρὸς τὸν τρίτον , οἷον δʹ Ϛʹ θʹ , ἁρμονικήν δὲ ὅταν τριῶν ἀριθμῶν ἀνίσων , εἰ ὡς ὁ |
| καὶ ἐν τῷ Περὶ ἑρμηνείας σύνθεσιν ἐκάλεσεν τὴν κατάφασιν , διαίρεσιν δὲ τὴν ἀπόφασιν λέγων “ περὶ γὰρ σύνθεσιν καὶ | ||
| ' ἑαυτά . Καὶ διαιροῦνται μὲν κατὰ τὴν πρώτην αὐτῶν διαίρεσιν εἰς τρία , εἰς μακρά , εἰς βραχέα καὶ |
| κατὰ συζυγίαν πολλαπλάσιός ἐστι κατὰ τὸν ἥμισυν τοῦ πλήθους τῶν ἐκκειμένων ὅρων . ἐπεὶ γὰρ ἡ τῶν αβ βγ ὑπεροχὴ | ||
| γδ , τουτέστιν ὅσον ἐστὶ τὸ ἥμισυ τοῦ πλήθους τῶν ἐκκειμένων ὅρων : ὥστε ὁ αη δύο τῶν κατὰ συζυγίαν |
| στίχων , καὶ τρίτον τὸ ὑπὸ τῶν τρίτων , καὶ τέταρτον τὸ ὑπὸ τῶν τετάρτων : ἀλλὰ τὸ μὲν α | ||
| . . . . . . ρμζ γʹ ιη τὸ τέταρτον , ὃ καλεῖται Ψευδόστομον ρμζ γοʹ ιη ∠ ʹ |
| οἰκεῖον τῇ τετράδι . ἡ γὰρ πρώτη πυραμὶς ἐν τῇ τετράδι θεωρεῖται , τριγώνου μὲν βάσεως ὑποτεθείσης τοῦ τρία , | ||
| τὸ ὑπὸ τῶν ἄκρων ἔλαττόν ἐστι τοῦ ἀπὸ τοῦ μέσου τετράδι . διὰ τί τετράδι ; ἐπειδὴ καὶ ἡ ὑπεροχὴ |
| λέγῃ ἡ ἡδονὴ σπουδαία ἐστιν , εἰ μὲν πρὸς τὴν γεωμετρικὴν ἡδονὴν ἀποβλέψας φησίν , οὐ τὸ προκείμενον συνάγεται : | ||
| . διὰ τοῦτο τὸν Βρύσωνος τετραγωνισμὸν οὐκ ἄν τις εἴποι γεωμετρικὴν ἀπόδειξιν : χρῆται γὰρ ἀξιώματι ἀληθεῖ μὲν κοινῷ δέ |
| ἐν τῷ γʹ καὶ δʹ σελιδίῳ κατὰ τὸ τῶν προσνεύσεων κανόνιον . ἐὰν μὲν οὖν βορειότερον ᾖ τὸ κέντρον τῆς | ||
| τῶν τῆς διαμέτρου δωδεκάτων εἰσενεχθέντων εἰς τὸ ἐπὶ πᾶσι βραχὺ κανόνιον καὶ τὰ ιβʹ τῶν ὅλων ἐμβαδῶν εὑρήσομεν ἐκ τῶν |
| οὐ γεννᾶι οὔτε γεννᾶται ὑπ ' ἄλλου ἀριθμοῦ πλὴν ὑπὸ μονάδος : διὸ καὶ καλεῖται ὑπὸ τῶν Πυθαγορείων παρθένος ἀμήτωρ | ||
| ιη , καὶ α καὶ ιθ . ἐπὶ μέντοι τῆς μονάδος οὐκέτι τοῦτο , ἀλλὰ τοῦ μὲν μετ ' αὐτὴν |
| τὸν δέκα συνθῇς , μέσος εὑρεθήσεται ὁ εʹ κατὰ τὴν ἀριθμητικὴν ἀναλογίαν , οἷον θʹ καὶ αʹ , ηʹ καὶ | ||
| εἰσὶν αἱ προηγούμεναι τῶν ἀναλογιῶν . πάλιν δὲ κατὰ τὴν ἀριθμητικὴν παράδοσιν λέγονται λόγοι τῶν ἀριθμῶν , ὡς καὶ ὁ |
| γλαφυρίας οὐκ ἀσκόπως παρηδολεσχείσθω . Ἐπανιτέον δὲ ἐπὶ τὴν τῶν πολυγώνων θεωρίαν καὶ προσεκτέον πῶς καὶ καθ ' ὅλων αὐτῶν | ||
| τὰ δύο τρίγωνα ἢ τετράγωνα , ἢ ὡς ἐπὶ τῶν πολυγώνων τὸ τὰς γωνίας ἴσας ἔχειν καὶ τὰς πλευρὰς ἀνάλογον |
| τοῦ μεσημβρινοῦ δὲ καύματος ἀκμάζει τῇ ψυχρότητι : πάλιν δὲ ἀνάλογον ἀπολήγει πρὸς τὴν ἑσπέραν καὶ τῆς νυκτὸς ἐπιλαβούσης ἀναθερμαίνεται | ||
| αὐτὸν πρὸς αὐτήν . μαθηματικὰ δὲ εὗρεν τὴν μέσην καλουμένην ἀνάλογον , περὶ ἧς ἐν τῇ Ἀποδεικτικῇ λόγον ἐποιησάμεθα . |
| ζητουμένην εἰκάδα τοῦ μηνός , γίνονται ἡμέραι λθ . ταύτας μερίζομεν παρὰ τὸν ζʹ , πεντάκις ζ λε . λοιπαὶ | ||
| κύκλων λαμβάνομεν τὸ ἐμβαδὸν τοῦ τετραγώνου καὶ ποιοῦμεν ἑνδεκάκις καὶ μερίζομεν παρὰ ιδ , καὶ ἔσται τὸ στερεὸν τοῦ κυλίνδρου |
| Γιγνομένων δὲ τούτων Λέπιδος ἐπὶ Ἴβηρσιν ἐθριάμβευε , καὶ προυτέθη διάγραμμα οὕτως ἔχον : “ ἀγαθῇ τύχῃ προειρήσθω πᾶσι καὶ | ||
| μὲν οὖν ἀδύνατον καὶ οὐκ ἀδύνατον . ἀποβλέποντας εἰς τὸ διάγραμμα οὐκ ἔστι δυσχερὲς [ τ ] νοῆσαι τὰ ὑπ |
| τριῶν , μήτε τῆς οὐσίας καὶ τοῦ συμβεβηκότος καὶ τῶν λοιπῶν κατηγοριῶν . ἐν οἷς γὰρ πρῶτόν τι καὶ δεύτερον | ||
| τοὺς καρπούς ; ἔτι μὴν ἐνίοτε καὶ στρουθίον ἢ τῶν λοιπῶν πετεινῶν , καταπιὸν σπέρμα μηλέας ἢ συκῆς ἤ τινος |
| τοιούτῳ ἀναπλασσομένῳ Ἑρμῇ . ἐπεὶ δὲ μονάδος ἀνὰ μέσον καὶ ἑβδομάδος κυβικῶν χωρίων κυβικὸς ὁ δʹ , εἰκότως , κρισίμου | ||
| λοιπάζονται πρὸς τὸ ἕβδομον ἀριθμόν εἰσιν ἀπὸ τῶν ἡμερῶν τῆς ἑβδομάδος . ἔπειτα ἵνα ἐπιδώσεις ἑνὶ ἑκάστῳ ἀστέρι μίαν περίοδον |
| ταῖς τοῦ τελευτήσαντος τύχαις . οἱ δὲ ὕστερον πρὸς ἅπαντας διαφόρως . οὕτω Δίδυμος ἐν τῷ περὶ Ποιητῶν . Ἐπιστάτης | ||
| μάχην οὐ τοῦ λόγου καὶ τῆς αἰσθήσεως ὑποληπτέον ἀλλὰ τῶν διαφόρως ὑποτιθεμένων ἁμαρτίαν , ἤδη τῶν νεωτέρων παρ ' ἀμφότερα |
| : δευτέρας πληγῆς τῆς ἀκοῆς ὁ πόνος : καὶ οὕτως καθεξῆς πᾶσαι αἱ πληγαὶ παρακολουθήσουσίν σοι . Ταῦτα δὲ λέγων | ||
| , οὗτος καὶ πρὸς τὴν πρώτιστον ὥραν διέπει ταύτης καὶ καθεξῆς διέπουσιν Ἄρης καὶ Σελασφόρος , ἡ Ἀφροδίτη , ὁ |
| ὁ πολλαπλάσιός ἐστιν , εἶτα ὁ ἐπιμόριος , καὶ τοῦ ἐπιμορίου πρότερος ὁ ἡμιόλιος , εἶτα καὶ ὁ ἐπίτριτος , | ||
| δὲ καὶ τῶν ἀριθμῶν ἐπὶ πέντε τούτων εἰδῶν θεωροῦνται : ἐπιμορίου , ἐπιμεροῦς , πολλαπλασίου , πολλαπλασιεπιμορίου , πολλαπλασιοεπιμεροῦς , |
| οὔσης τῆς διηγήσεως καὶ ψιλὴν τῶν πεπολιτευ - μένων ἐχούσης ἔκθεσιν : ἐν οὖν τῷ προκειμένῳ ζητήματι τρία κατὰ τὴν | ||
| ἐν τριάσι καὶ ἑξῆς ἀκολούθως , καὶ παρ ' ἑκάστην ἔκθεσιν ἄλλους τρεῖς ὅρους πλαστέον διὰ τριῶν προσταγμάτων ἀεὶ τῶν |
| δὲ πάτρα μὲν εἰς τὴν δευτέραν μετάβασιν ἐλθόντων ἡ κατὰ μόνας ἑκάστῳ πρότερον οὖσα συγγένεια , ἀπὸ τοῦ πρεσβυτάτου τε | ||
| φρέατος ἔνδον ψυχρότερον Ἀραρότος . ἢ μετὰ Πλάτωνος ἀδολεσχεῖν κατὰ μόνας μᾶλλον μᾶλλον ὁ συκοφάντης οὐ δικαίως τοὔνομα ἐν τοῖσι |
| ἐστὶ κατόρθωμα τῆς γραμματικῆς τέχνης : τάξιν δέ , ὅτι εὐτάκτως ἐστὶ συγκειμένη πᾶσα ἡ διδασκαλία τῆς γραμματικῆς : πρῶτον | ||
| ἀναιδῶς ἐσθίων καὶ στεφανῶν τὴν κεφαλήν : ὑπερβῆναι : οὐκ εὐτάκτως : ᾤετο γὰρ ὁ θεράπων ἐγνωκέναι αὐτὸν τὸν θάνατον |
| τὴν λυπέουσαν ἀπὸ τοῦ σώματος ἢ ἐν ἄλλῃ τινὶ τῶν περισσῶν ἡμερέων κατὰ τὸν πρότερον εἰρημένον λόγον : οὐ γὰρ | ||
| πάλιν αἱ διαλύσεις . Ἔτι δὲ τῇ μονάδι τῶν ἐφεξῆς περισσῶν γνωμόνων περιτιθεμένων , ὁ γινόμενος ἀεὶ τετράγωνός ἐστι τῶν |
| τὸν ἐπίτριτον , καὶ ὁ ε πρὸς τὸν δ τὸν ἐπιτέταρτον , καὶ ἐφεξῆς ὡσαύτως . ἀπὸ δὲ τοῦ τρίτου | ||
| λόγου πρὸς ἡμιόλιον καὶ ἡμιολίου πρὸς ἐπίτριτον καὶ ἐπιτρίτου πρὸς ἐπιτέταρτον : ἐν μὲν γὰρ τοῖς βʹ δʹ Ϛʹ ὅροις |
| αὐξανομένη . πάλιν γὰρ μεταξὺ τοῦ Ϛ καὶ τοῦ ιβ ἑτερομηκῶν ὄντων ἀπόθου τὸν θ τετράγωνον : καὶ ἡ ὑπεροχὴ | ||
| ἡ διαγώνιος ἔσται μόνων τετραγώνων , ἑκάστου παρασπιζομένου ὑπὸ δύο ἑτερομηκῶν κατά τε μῆκος καὶ πλάτος , ὡς κἀνταῦθα σῴζεσθαι |
| εἰσιν , ἀμφότεροι γραμματικοὶ ὀνομάζονται , καθὸ ὑπέκειτο μέν τις δυὰς ἡ διὰ τοῦ ἀμφότεροι , τὸ δ ' ἐπιγεγενημένον | ||
| δὲ τὰ ἀναρίθμητα . Μονὰς ἀπὸ τοῦ μένω μονὰς , δυὰς ἀπὸ τοῦ δύω τὸ ὑπεισέρχομαι , τριὰς ἀπὸ τοῦ |
| ἔχει τὸ ὑγιής : ὑγίεια τετρασύλλαβον , οὕτω ζητεῖ ἡ ἀναλογία : ὑγρός : ὑγρασία : καὶ εἴτι ὅμοιον . | ||
| ὀρθογραφίας . Εἰσὶ δὲ καὶ κανόνες τῆς ὀρθογραφίας τέσσαρες : ἀναλογία , διάλεκτος , ἐτυμολογία καὶ ἱστορία . Καὶ τὴν |
| ὡς τῆς ὕλης ὑποστατική , εἴπερ ἀνάλογον ἕστηκε τῇ ἀορίστῳ δυάδι . ἔπειτα τίς ἀνάγκη τῆς αὐτῆς ὕλης οὔσης τὰ | ||
| σνϚψκθ / . καὶ ἐὰν δυάδα μερίσωμεν εἰς τὸν τοῦδε δυάδι ἐλάσσονα , εὑρήσομεν τὸν ʂ μονάδος σιζφιβ / , |
| τῇ αʹ . εἶτα ἀπ ' ἄλλης ἀρχῆς ἡ τρίτη ἑβδομὰς τὰς αὐτὰς διαθέσεις ποιεῖ τῇ ὑδατικῇ σφαίρᾳ , ἃς | ||
| ἑβδομάς . . . § : καλεῖται δ ' ἡ ἑβδομὰς ὑπὸ τῶν κυρίως τοῖς ὀνόμασιν εἰωθότων χρῆσθαι καὶ τελεσφόρος |
| ταυτὶ μόνον θεωρεῖται σύμφωνα πρὸ τοῦ τελείου συστήματος : τὸ ἐπίτριτον τὸ ἡμιόλιον τὸ διπλάσιον . ἐπεὶ τοίνυν τὸ σύστημα | ||
| δὲ ΘΜ ἡμιολίαν καὶ πάλιν τῆς ΔΖ τὴν μὲν ΘΜ ἐπίτριτον , τὴν δὲ ΗΚ ἡμιολίαν καὶ ἔτι τὴν ΗΚ |
| συντελῆ ᾖ τὰ ηʹ . καὶ ἄλλως ὁ δʹ μεθόριον ἁρμονικῶν σχέσεων ἡμῖν ἀνεφάνη , συμφώνων μὲν ἐντὸς ἑαυτοῦ , | ||
| μηχανικῶν τε ὢν τὰ πρῶτα καὶ γεωμετρικῶν , ἔτι δὲ ἁρμονικῶν καὶ μουσικῶν φαίνεται , καὶ ὅμως ἕκαστον τούτων οὕτως |
| τῷ μέλει παρακαλῶν , οὐ καρτερῶν αὐτὸς μένειν ἐν τῇ τάξει τῶν λόγων , ὡσπερεὶ Σαρδανάπαλλος τῇ κερκίδι τὴν κρόκην | ||
| καὶ πρεσβυτέρων γιγνόμενα θήσει μὲν ἁμαρτήματα καὶ ὡς ἁμαρτάνουσιν νόμους τάξει , πρᾳοτάτους γε μὴν πάντων καὶ συγγνώμης πλείστης ἐχομένους |
| λόγους ὅλα μέρεσι τοῖς αὐτῶν συγκρίνουσα , τὸ δὲ διαστηματικὸν ἀριθμητικὴ γνωματεύουσα , μερίζουσα τὸ ὅλον , τὰς τῶν μερῶν | ||
| , Ϛʹ ηʹ ιβʹ , τουτέστι τῷ τρίτῳ : καὶ ἀριθμητικὴ δὲ μεσότης ληφθέντος τοῦ Ϛʹ ἡμιολίου μὲν λόγου τῶν |
| ἀποδείκνυσι λόγον . ἐπεὶ οὖν κατὰ Πυθαγόραν τὸν Σάμιον ἡ τριὰς εἰς γάμον συνελθοῦσα τῇ τετράδι ἀπεγέννησε τὴν ἑβδομάδα καὶ | ||
| τῷ τέλει τῆς στροφῆς καὶ ἀντιστροφῆς παράγραφος . ἔστι δὲ τριὰς ἐπῳδική . ἥκω σεβίζων ] αἱ ἑξῆς αὗται συστημάτων |
| δάκτυλοι ιβ , ὥσπερ καὶ ἐπ ' αὐτῶν τῶν ἐκλειπτικῶν κανονίων ὡς τοῦ ἑνὸς δακτύλου περιέχοντος τὸ ιβʹ τῆς διαμέτρου | ||
| τῆς ἐμπτώσεως καὶ τῶν τῆς ἀνακαθάρσεως χωρὶς ἐξ ἑκατέρου τῶν κανονίων εἰσοίσομεν καὶ τὸν ἀπὸ τοῦ ἀπογείου κατὰ τὴν φαινομένην |
| μεγίστας ἀποστάσεις ἑῴους τε καὶ ἑσπερίας ἀμφοτέρων τῶν ἀστέρων ἐπιλογισάμενοι ἐτάξαμεν αὐτῶν κανόνιον ἐπὶ στίχους μὲν τοὺς ἰσαρίθμους ιβ , | ||
| λόγων εὐδοκιμούντων ἀνδρῶν , μεθ ' ὧν καὶ τὸν Νικόστρατον ἐτάξαμεν , τοσαῦτα εἰρήσθω . ἑξῆς δ ' ἂν λέγοιμεν |
| ὑποκειμένοις ἐπιβάλλουσα . Ἀλλὰ γὰρ καὶ τὴν τῶν πρώτων στοιχείων πεντάδα τούτοις ἀναλογοῦσαν εὑρήσομεν , τῷ μὲν ὑπάτων γῆν ὡς | ||
| καὶ ὀκτασήμου . μερίζω τὴν ὀκτάδα πάλιν εἰς τριάδα καὶ πεντάδα : οὐδ ' οὕτως ἔσται ῥυθμικὸς λόγος . τὸν |
| καὶ αὑτῷ συμφωνεῖν ἠνάγκαζεν , οὐδὲν ἄτοπον , ὥσπερ τῶν διαγραμμάτων ἐνίοτε τοῦ πρώτου σμικροῦ καὶ ἀδήλου ψεύδους γενομένου , | ||
| δὲ τὸ συνεχὲς οὐχ ὡς οἱ ἁρμονικοὶ ἐν ταῖς τῶν διαγραμμάτων καταπυκνώσεσιν ἀποδιδόναι πειρῶνται , τούτους ἀποφαίνοντες τῶν φθόγγων ἑξῆς |
| καὶ ὀλυμπιάδων ὡς ἔχει τὴν τάξιν , ἐν τοῖς ἐπάνω δεδηλώκαμεν . Τῆς μὲν οὖν ἀρχαιότητος τῶν παρ ' ἡμῖν | ||
| ἡμῶν : τὰ δὲ πάθη τὰ γεννῶντα τὰς προφανεῖς συμφορὰς δεδηλώκαμεν , μαθόντες παρὰ τῶν εἰδότων . Εὑρίσκειν δὲ πιθανώτερα |
| . ὅταν οὖν μάλιστα ἡ ☾ τῷ φωτὶ καὶ τοῖς ἀριθμοῖς ἀφαιρεῖ , ἔσονται διπλαῖ σημασίαι . καὶ οἱ πυρετοὶ | ||
| ☾ οὔσης ♑ κατακλιθῇ τις ἀφαιρούσης τῆς ☾ καὶ τοῖς ἀριθμοῖς καὶ τῷ φωτὶ ♄ συνόντος αὐτῇ , ἢ ☍ |
| δ ' ἐν τῇ δευτέρᾳ δέλτῳ μετὰ ταῦτα καιροῦ διδόντος ἐπισκεψόμεθα . Ἦν ποτε χρόνος , ὅτε φιλοσοφίᾳ σχολάζων καὶ | ||
| μεσημβρινοῦ τῇ προηγουμένῃ , ταύτας δέ , ἃς εἰλήφαμεν , ἐπισκεψόμεθα , πόσους τε κατὰ τὴν ἐξ ἀρχῆς θέσιν ἀπεῖχεν |
| οὕτως , οἱ δὲ Πυθαγόρειοι τὸ μὲν σημεῖον ἀνάλογον ἐλάμβανον μονάδι , δυάδι δὲ τὴν γραμμὴν καὶ τριάδι τὸ ἐπίπεδον | ||
| πρὸ γὰρ τοῦ ζ ὁ Ϛ , ὃς ἄρτιος : μονάδι οὖν διαφέρει τοῦ ἀρτίου . ὡσαύτως καὶ ὁ ἄρτιος |
| ' ἕνα ἕκαστον τῶν πλανωμένων ποιητικῆς ἰδιοτροπίας , ἐκεῖνο κοινῶς προεκθέμενοι , ὅτι τῆς κεφαλαιώδους ὑπομνήσεως ἕνεκεν , ὅταν καθόλου | ||
| πολλοῖς . τοσαῦτα ὡς πρὸς τὴν διδασκαλίαν χρησιμεύσοντα τῶν κατηγοριῶν προεκθέμενοι , ἤδη ἐπ ' αὐτὰς χωρῶμεν . πρότερον δὲ |
| τίς ἐστι παρὰ μουσικοῖς : περιγράφεται δέ τινα πρὸς τούτων διαστήματα , καθ ' ἃ καὶ ἡ φωνὴ κινεῖται ἤτοι | ||
| κατὰ μέλος ὃ ἡ φωνὴ μελῳδοῦσα μὴ δύναται διαιρεῖν εἰς διαστήματα . ὑποκείσθω δὲ καὶ τῶν συμφώνων ἕκαστον μὴ διαιρεῖσθαι |
| κατὰ τὸν πόρον τοῦ ποταμοῦ τεταλαιπωρήκεσαν . Τῇ δὲ ὑστεραίᾳ διχῇ διελὼν τὸν στρατὸν τοῦ μὲν ἑτέρου αὐτὸς ἡγούμενος προσέβαλλε | ||
| χρυσοῦ δὲ ἢ ἀργύρου τὸ βάμμα τοῦ ἐληλασμένου καὶ ζέοντος διχῇ ] διχῶς ἤλασε ] ἐχώρισεν λιγνὺς δέ ἐστι κυρίως |
| , καὶ ἄλλο τὸ συναμφότερον τοῦτο ὃ οὐκ ἔστιν ἐξ ὁμοταγῶν , οὐδὲ ἐκ στοιχείων , οὐδὲ ἐκ μερῶν , | ||
| ὑπερέχει τοῦ παραδείγματος ἡ ὁμοιότης . Ἡ μὲν δὴ τῶν ὁμοταγῶν ἐπίσης ἔχει πρὸς τὴν ἀντιστροφήν , ἡ δὲ τοῦ |
| ἡ τῶν πλανήτων κίνησις ἡ ἀπὸ δύσεως εἰς ἀνατολάς : ἐπῳδῷ δέ , ὅτι ἵσταντο ἐν ἑνὶ τόπῳ καὶ ἔλεγον | ||
| [ ὁ ποιητής ] , ἤγουν στροφῇ , ἀντιστρόφῳ καὶ ἐπῳδῷ , ἢ στροφῇ μόνῃ καὶ ἀντιστρόφῳ : οἱ δ |
| ἀνορεξίαι τε καὶ πυρώσεις καὶ ἀναξηρασμὸς τῶν γυναικείων τόπων , ἐκθησόμεθα τὴν ἐπιμέλειαν . ὅταν οὖν ἀρχήν τινα οἱ πόνοι | ||
| τετύχηκεν , ὧν τὰς πληκτικωτέρας διὰ τὸν τρόπον τῆς συγγραφῆς ἐκθησόμεθα μετὰ τῆς φαινομένης ἡμῖν ἐπικρίσεως . φασὶν οὖν τινες |
| φύσιν , οἷον δὲ ὁρισμὸν αὐτοῦ ποιούντων , τὰς διαφορὰς ἐκθώμεθα . συγκεφαλαιούμενοι δὲ καὶ τούτων οἱ τρόποι εὐαρίθμητοι γίνονται | ||
| τὴν τοῦ ὅρου ἐξήγησιν ἡμῖν ἰτέον . καὶ πρῶτον αὐτὸν ἐκθώμεθα , εἶτα δείξομεν ὅτι οὐδὲν οὔτε περισσὸν ἔχει οὔτε |
| πόλις σώζουσα τὰ τολμήματα τῶν προγόνων ἐν τῇ φύσει . σκοπῶμεν τοίνυν , εἰ καὶ τὰς ἄλλας ἀρετὰς Ἀθηναίων ἐφύλαξεν | ||
| ἀλλ ' εἰ προσῆκον ἐξάγειν καὶ μάχεσθαι παρεώρα , τοῦτο σκοπῶμεν , ἐπεὶ καὶ Λακεδαιμονίους ἀκούομεν δή που προσκειμένων αὐτοῖς |
| χρόνων ἁπάντων γένεσις , οὕτως ἔχει καὶ ἐπὶ τῶν ἄλλων συζυγιῶν . Ἡ πέμπτη συζυγία τῶν βαρυτόνων ἐκφέρεται μὲν διὰ | ||
| τῶν παρεπομένων τῷ ῥήματι , ἐγκλίσεων λέγω καὶ διαθέσεων καὶ συζυγιῶν καὶ χρόνων ἀρκούντως εἴπομεν , φέρε καὶ ἑκάστην τῶν |
| Σὺν δὴ τοιαύτῃ ἐλπίδι καὶ ἡμεῖς , διχῇ τὴν δύναμιν διελόντες τὸ πρῶτον , καὶ ἐν τῷ ποταμῷ τὰ πολλὰ | ||
| λέγω καὶ νοτίῳ καὶ ἑσπερίῳ καὶ ἑώῳ . Εἶτα γραμμῇ διελόντες τὴν ὅλην οἰκουμένην ἀπὸ δύσεως μέχρι ἀνατολῶν , ἀφορίσωμεν |
| καὶ τὸν τρίτον ἀριθμὸν συνάμφω ἐπιτρίτους χρὴ εἶναι δευτέρου καὶ τετάρτου , ἔστι δὲ πρόλογος ἐν ἐπιτρίτῳ πυθμέσιν ὁ δʹ | ||
| τέσσαρα : καὶ ταῦτα ἑψείσθω μέχρι τοῦ τρίτου μέρους ἢ τετάρτου , τὸν ἀφρὸν ἀφαιρούντων ἡμῶν . εἰ δ ' |
| ἀλλήλοις καὶ αἱ συνθῆκαι ἦσαν κείμεναι παρὰ τῷ Ἀνδροκλείδῃ , διεῖλον ἐγὼ δύο μερίδας , ὦ ἄνδρες δικασταί . καὶ | ||
| : οὐδὲ γὰρ τὸ λευκὸν τὸ καθ ' ἑαυτὸ θεωρούμενον διεῖλον , ἀλλὰ τὸ σῶμα τὸ λευκόν , ὅπερ ἐστὶν |
| οὐκ ἐλαχίστης . παρακολούθημα λέγει ὅτι οἱ μὲν διαγώνιοι τοῦ διαγράμματος μονάδες εἰσίν : ἐν μὲν γὰρ τῇ ἀρχῇ ἁπλῆ | ||
| πρᾶγμα τὸν πολυπλασιασμὸν ὑπηγόρευσεν , ὥσπερ ἐν ἁρμονικῇ μεταβολῇ τοῦ διαγράμματος ὅλου συνεπιτεινομένου τῷ πρώτῳ τῶν ἀριθμῶν . Ὁ μὲν |
| προβληθέντων . τοσαῦτα προδιαστείλαντες ἤδη λέγομεν . Πρῶτον δὴ ληπτέον πόσων στοχάζονται οἱ ἐν τοῖς διαλόγοις ἀγωνιζόμενοι καὶ διαφιλονεικοῦντες . | ||
| τῆς τοῦ Ἑρμοῦ ἐποχῆς λαβὼν τὸ τῶν μοιρῶν διάστημα σκέπτου πόσων ζῳδίων ἐστὶν ὁ τῶν μοιρῶν ἀριθμός , καὶ εἰ |
| θεωρήσομεν . Τοῦ μὲν οὖν πρώτου καὶ τοπικοῦ τὴν διάληψιν ποιησόμεθα τοιαύτην . κατὰ γὰρ τὰς γινομένας ἐκλειπτικὰς συζυγίας ἡλίου | ||
| ἐστιν αὐτόθι : πρὸς γὰρ αὐτὸν τὸν εἰπόντα τὸν λόγον ποιησόμεθα : σύ , ὦ Πιττακὲ Μιτυληναῖε , ἐρωτηθείς , |
| ἐξ ἀρχῆς μετρούντων . Ἐλάχιστος γὰρ ἀριθμὸς ὁ Α ὑπὸ πρώτων ἀριθμῶν τῶν Β , Γ , Δ μετρείσθω : | ||
| στρατιωτικῇ πέφυκε γίνεσθαι . ὅταν δὲ ὑπάρξηται ἡ ἐκ τῶν πρώτων κίνησις , ἐνταῦθα οἱ λοιποὶ ἕπονται . λέγουσι δὲ |
| ἐναρμονίου ἢ χρωματικῆς ἢ διατόνου ἐπὶ παρανήτην διεζευγμένων ἐναρμόνιον ἢ χρωματικὴν ἢ διάτο - νον , τέταρτον δέ , οὗ | ||
| ἐναρμονίου ἢ χρωματικῆς ἢ διατόνου ἐπὶ παρανήτην ὑπερβολαίων ἐναρμόνιον ἢ χρωματικὴν ἢ διάτονον , ἕβδομον δέ , οὗ ἕβδομος ὁ |
| εἶναι δὲ τὸν Ὄλυμπον τοῦτόν φασιν ἕνα τῶν ἀπὸ τοῦ πρώτου Ὀλύμπου τοῦ Μαρσύου μαθητοῦ , πεποιηκότος εἰς τοὺς θεοὺς | ||
| συγκαταθέσεις . χαρίζομαί σοι ταῦτα πάντα . στῶμεν ἐπὶ τοῦ πρώτου καὶ σχεδὸν αἰσθητὴν παρέχοντος τὴν ἀπόδειξιν τοῦ μὴ ἐφαρμόζειν |
| . ἔστι τοίνυν ἡ μέθοδος γλαφυρά τις οὖσα τοιαύτη : ἐκθοῦ ἀπὸ μονάδος τοὺς ἀρτιάκις ἀρτίους ἕως οὗ βούλει καὶ | ||
| πλευρὰν τὴν κ : εἰκοσάκι γὰρ κ , υ : ἐκθοῦ τοίνυν μ , κ , ι , καὶ ἔστι |
| τὸ συναχθὲν ἀπὸ τοῦ πολλαπλασιασμοῦ τῶν ὡρῶν καὶ τῶν προκειμένων ὡριαίων τῇ ἡλιακῇ μοίρᾳ μερίσῃς περὶ τὸν ιεʹ . ἐὰν | ||
| καιρικῶν ὡρῶν τοῦ μεταξὺ διαστήματος τοσαῦτα δωδέκατα ἀφαιροῦσιν ἀπὸ τῶν ὡριαίων : οὕτω γὰρ καὶ ποιῶμεν ἕως τῆς δωδεκάτης ὥρας |
| , ταύτην προτάττει , ἐπείπερ ἀπὸ μονάδος συντιθέντες μέχρι τῆς τετράδος πρώτως τὸν δέκα ἀριθμὸν ποιοῦμεν , οἷον ἓν δύο | ||
| ἄλλων θεῶν ἁψόμεθα συνουσιῶν ἐν τούτῳ δὴ τῷ μηνὶ τῆς τετράδος τὰ πρῶτα δεχομένης . Ἦλθον αὖθις ἡμῖν ἐπιστολαὶ παρ |
| νυκτερινή , τίς δὲ ἑσπερία , καὶ ποῖα τῶν δ τεταρτημορίων ἀρσενικά , ποῖα δὲ θηλυκά , καὶ τίνα μὲν | ||
| ἐπιγράφονται οἱ ἀριθμοὶ διὰ ε ἕως Ϙ ἐπὶ τῶν δ τεταρτημορίων , τουτέστιν ἀπὸ τῶν ἐσομένων κοινῶν τομῶν τουτέστιν τοῦ |
| . τὼς δ ' ἄρα καὶ διάμετροι . ἀτὰρ χαίρουσι τρίγωνοι , σχήμασι δ ' ἐν τούτοισιν ἀεὶ φιλομάντιας ἄνδρας | ||
| ἐλευθερωθῆναι . κυνοῦχος : θυλάκιον , μαρσίππιον . κύρβεις : τρίγωνοι πίνακες , ἐν οἷς οἱ περὶ τῶν ἱερῶν νόμοι |
| κοινὴ πάντων , ὀγδοάδα δὲ Ἀφροδίτη , ἐννεάδα δὲ καὶ δεκάδα ἥλιος Ἄρης Ἑρμῆς ὡροσκόπος , καὶ Ζεὺς δὲ τὴν | ||
| δέκα λέγομεν , ὅταν δὲ ἐκ πολλῶν γίνηται ἕν , δεκάδα , ὡς κἀκεῖ οὕτως . Ἀλλ ' εἰ οὕτως |
| ἡ δεῖξις προβήσεται . Ἔστωσαν μείζονες αἱ ρ μο λείψει ἀριθμοῦ ἑνός , ἐλάσσονα δὲ τὸν κ καὶ τὸν Ϟόν | ||
| ἄπειρον αὐτὸν οὐ τῷ ἀδιεξιτήτῳ ἢ τοῦ μεγέθους ἢ τοῦ ἀριθμοῦ , ἀλλὰ τῷ ἀπεριλήπτῳ τῆς δυνάμεως . Ὅταν γὰρ |
| ὑπεπίτριτος , τοῦ δὲ δώδεκα ὑποδιπλάσιος , μείζων δὲ ὁ ὑπεπίτριτος λόγος τοῦ ἡμίσεως . τὸ ΑΒ ἄρα πρὸς τὸ | ||
| Τ τὰ η : ὅ τε γὰρ ιη τοῦ κδ ὑπεπίτριτος καὶ ὁ Ϛ τοῦ η . Τὸ τοιοῦτον πολύγωνον |
| καὶ τῇ ὑστεραίῃ ἱδρὼς ἐγένετο , καὶ τὰς ἄλλας τὰς ἀρτίους ἐγένετο αἰεί . Ἔτι δὲ ὁ πυρετὸς εἶχεν : | ||
| ἐκθέσθαι δεῖ πάντας ἑξῆς ἀπὸ τριάδος , τοὺς δὲ ἀρτιάκις ἀρτίους αὐτοὺς ἐπὶ ἑαυτῶν καὶ γνώμονες ἀπὸ τετράδος τάξει , |
| πάροδος τῆς σελήνης περὶ τὸν καταβιβάζοντα σύνδεσμον ἐν ἑκατέρᾳ τῶν ἐκλείψεων : τὸ γὰρ τοιοῦτον καὶ ἐκ τῶν ὁλοσχερεστέρων ὑποθέσεων | ||
| ∠ ʹ γʹ . Ἐπεὶ οὖν ἡ μὲν τῶν δύο ἐκλείψεων ὑπεροχὴ τὸ τρίτον περιέχει τῆς σεληνιακῆς διαμέτρου , ἡ |
| , τὸν δὲ ἐξ ἀρχῆς προεισενηνεγμένον τοῦ ὁμαλοῦ μήκους ὁμοίως εἰσενεγκόντες εἰς τοὺς αὐτοὺς ἀριθμούς , ἐὰν μὲν ἐν τοῖς | ||
| φαινομένης , ἐπὶ τὴν φαινομένην διάστασιν τῶν τῆς ἐπουσίας μοιρῶν εἰσενεγκόντες εἰς τὰς ἐπ ' ὀρθῆς τῆς σφαίρας ἀναφορὰς ἐπισκεψόμεθα |
| ἀρχαῖς τῶν δωδεκατημορίων ἐκτεθειμένων . Οἱ δὲ μετὰ τὰ εἰρημένα κανόνια συνημμένοι κανόνες περιέχουσι τὰς γινομένας τῆς σελήνης παραλλάξεις ἐν | ||
| ἑξάγωνον , ἧς κατὰ τὰς πλευρὰς ἐν ἴσοις διαστήμασιν ἦν κανόνια γ προσπεπηγότα , ἐφ ' ὧν ἐφεστήκει ἡ στυλὶς |
| φέρεται . τῇ δὲ αὐτῇ θεωρίᾳ ὑπ ' ἀμφοτέρων τῶν ἑξαγώνων τοῦ Ἡλίου ἡ Σελήνη παρατυχοῦσα ὑπὸ σύνδεσμον φέρεται . | ||
| μὲν γὰρ πρῶτον ὀκτάεδρόν ἐστιν περιεχόμενον ὑπὸ τριγώνων δʹ καὶ ἑξαγώνων δʹ . τρία δὲ μετὰ τοῦτο τεσσαρεσκαιδεκάεδρα , ὧν |
| ἓν κείμενα . Ἐπεὶ δὲ συνέβη ζυγεῖν μέν , οὐ στοιχεῖν δέ , τοῦτο ἡμῶν φροντιζόντων , στοιχεῖν λέγεται εἴ | ||
| αὐτὸς νόμους θέμενος , ὥστε φανερῶς συγγίνεσθαι αὐταῖς καὶ μιᾷ στοιχεῖν , καὶ σχεδὸν εὑρὼν τὰς δύο φύσεις , τοῦ |
| φιάλας , οἱ δὲ θηρικλείους μεγάλας , πάντα χρυσᾶ . Ἐχομένως ἤγετο κρατὴρ , ἀργυροῦς ἑξακοσίους χωρῶν μετρητὰς , ἐπὶ | ||
| . Καὶ τοσαῦτα μὲν περὶ τῆς ἐπισταλτικῆς συντάξεως . . Ἐχομένως ῥητέον καὶ περὶ τῆς ὑπολοίπου συντάξεως τῶν ἀπαρεμφάτων . |
| ε λε . Παράκειται δὲ τοῖς εἰρημένοις σελιδίοις καὶ ζʹ σελίδιον , ἐπιγραφὴν ἔχον πλάτους . δύναται γὰρ διασημαίνειν τὰ | ||
| τε Ϙ μοίρας καὶ τὰς σο . τὸ δὲ τρίτον σελίδιον περιέξει τὰ μεγέθη τῶν ἐπισκοτήσεων ἐπὶ μὲν τῶν ἄκρων |
| ἀκόλουθον ἂν εἴη συνάψαι καὶ τὰς αὐτῶν τῶν τοῦ ζῳδιακοῦ δωδεκατημορίων παραδεδομένας φυσικὰς ἰδιοτροπίας . αἱ μὲν γὰρ ὁλοσχερέστεραι καθ | ||
| , ἄμφω δ ' αὖτε τὸν αὐτὸν ἅμα θρώσκωσι τυχόντες δωδεκατημορίων ἑλικὸν δρόμον αἰθροδόνητον , τηνίκα τοὺς τεχθέντας ἀναγγέλλουσιν ἔσεσθαι |
| ἴσον καὶ μεμετρημένον ὀργυιᾷ . * περιβάλλεται : εἰκάζεται , μετρεῖται ἔχει εἰκάζεται * ὅσσον : πλάτος αἰγανέη δὲ τὸ | ||
| ἀπὸ τῆς πυγμῆς : ἐπεὶ μὴ ὥσπερ ὁ πῆχυς προτεταμένους μετρεῖται δακτύλους , οὕτω καὶ ὁ πυγὼν , ἀλλὰ συνεστρωμμένη |
| δὲ τῶν τριπλασίων οἱ ἐπίτριτοι , ἐκ δὲ τῶν τετραπλασίων ἐπιτέταρτοι , καὶ ἀεὶ ἑξῆς οὕτως . οἷον ἔστω ἀναλογία | ||
| χρεία , ἵνα πρῶτος καὶ τέταρτος συνάμφω τῶν δύο μέσων ἐπιτέταρτοι ὦσιν , ἔστι δὲ πρόλογος ἐν ἐπιτετάρτῳ πυθμέσι ὁ |
| κλητικὸν διὰ τῶν ζῴων ἀποδέδοται τοὺς ἐπιβεβηκότας τῶν ζῴων καὶ προσεχῶς αὐτοῖς συνηρτημένους : οὐδὲ κατὰ τοῦτο οὖν συμβαίνει τις | ||
| ἐὰν οὖν πρᾶξίς σου μὴ ἔχῃ τὴν ἀναφοράν , εἴτε προσεχῶς εἴτε πόρρωθεν , ἐπὶ τὸ κοινωνικὸν τέλος , αὕτη |
| πεφύκασιν ἀριθμέεσθαι ἀτρεκέως . ” τὸν γὰρ ἐνιαυτὸν τξεʹ ἡμέραις ἀριθ - μούντων ἡμῶν πλείονας ἔχει : ἔχει γὰρ καὶ | ||
| καὶ εἰς τὰς τῶν παλαιῶν συναναγνώσεις , τέλος ἐπιθεῖναι τῇ ἀριθ - μητικῇ εἰσαγωγῇ τὸ ἁρμόζον ἅμα καὶ συμμετρότατον . |
| ἥττονα ποιησόμεθα λόγον , τοῦ δ ' ἀσφαλοῦς προνοούμενοι δύο διαιρέσεις ἐμβαλοῦμεν συμμέτρους ὡς πρὸς τὸ ἀπόστημα , τὴν μὲν | ||
| Ἐνταῦθα δηλοῖ τὸ πρῶτον διαιρετικὸν παράγγελμα τὸ λέγον δεῖν τὰς διαιρέσεις ἀπὸ τῶν γενικωτάτων μέχρι τῶν εἰδικωτάτων προάγειν καὶ μὴ |