καὶ αὑτῷ συμφωνεῖν ἠνάγκαζεν , οὐδὲν ἄτοπον , ὥσπερ τῶν διαγραμμάτων ἐνίοτε τοῦ πρώτου σμικροῦ καὶ ἀδήλου ψεύδους γενομένου , | ||
δὲ τὸ συνεχὲς οὐχ ὡς οἱ ἁρμονικοὶ ἐν ταῖς τῶν διαγραμμάτων καταπυκνώσεσιν ἀποδιδόναι πειρῶνται , τούτους ἀποφαίνοντες τῶν φθόγγων ἑξῆς |
κατὰ μῆκος καὶ κατὰ πλάτος πρὸς τοὺς τῶν ἐν αὐταῖς φαινομένων ἐπιλογισμοὺς τὴν μὲν τοιαύτην ἔκθεσιν ἐξαιρέτου καὶ γεωγραφικῆς ἐχομένην | ||
τοίνυν τὴν ἰατρικὴν κατὰ τὴν αὐτῶν δόξαν γνῶσιν εἶναι τῶν φαινομένων κοινοτήτων , τὸ δὲ φαινόμενον οὐχ ὡς δι ' |
καταλαβεῖν , μήτε τὸ ἀσυνύπαρκτον αὐτῶν διαβεβαιοῦσθαι πρὸ τῆς τῶν συλλογισμῶν διὰ τῶν τροπικῶν συνερωτήσεως . διόπερ οὐκ ἔχοντες , | ||
προειρημένα σχήματα : λοιπὸν γάρ ἐστι τοῦτο κεφάλαιον τῆς περὶ συλλογισμῶν πραγματείας . εἰ γὰρ τήν τε γένεσιν τῶν συλλογισμῶν |
, μάλιστα δὲ τῶν τῆς σελήνης , ἀπὸ τῶν αὐτῶν λαμβανομένων , τὰς κατὰ μῆκος αὐτῶν ἀκριβεῖς ἐποχὰς διακρινοῦμεν ἀπό | ||
δύο προτάσεων δείκνυταί τι , λέγειν καὶ διὰ πλειόνων προσεχῶν λαμβανομένων καὶ μηδὲν ἄλλο ἀλλ ' ἢ τὸ προκείμενον συμπέρασμα |
γὰρ τὰς τῆς ἀνδρείας πράξεις πρώτας παραλαμβάνειν ἐπὶ τῶν τοιούτων ὑποθέσεων εἰς ἐξέτασιν : γνωρίζει γὰρ βασιλέα πλέον ἡ ἀνδρεία | ||
γίνεται , ἐὰν ἀληθὴς ᾖ καὶ διὰ τῶν ἐξ ἀρχῆς ὑποθέσεων εἰλημμένη . ἐνταῦθα ἀπὸ τῆς ὕλης λαμβάνει τὴν διαφορὰν |
τὰ πράγματα , ἐξαγγέλλονται δὲ ὑπὸ τῶν φωνῶν καὶ τῶν γραφομένων . πάλιν αἱ φωναὶ κατὰ τὸν αὐτὸν τρόπον ἐξαγγέλλουσι | ||
ὀνομάτων ἔχοντα τὴν γένεσιν , τῶν διὰ τῆς ει διφθόγγου γραφομένων , διὰ τοῦ ι γράφονται : οἷον , μηνιῶ |
οὔσης τῆς διηγήσεως καὶ ψιλὴν τῶν πεπολιτευ - μένων ἐχούσης ἔκθεσιν : ἐν οὖν τῷ προκειμένῳ ζητήματι τρία κατὰ τὴν | ||
ἐν τριάσι καὶ ἑξῆς ἀκολούθως , καὶ παρ ' ἑκάστην ἔκθεσιν ἄλλους τρεῖς ὅρους πλαστέον διὰ τριῶν προσταγμάτων ἀεὶ τῶν |
αὐτὸς δηλονότι λόγος ἁρμόσει καὶ ἐπὶ τῆς ἑτέρας τῶν διαγωνίων ἀντιθέσεων , τῆς πᾶς καὶ οὐ πᾶς : καὶ γὰρ | ||
τὰ αὐτὰ εὑρήσομεν : καὶ γὰρ καὶ ἐνταῦθα δύο οὐσῶν ἀντιθέσεων , ἐμψύχου καὶ ἀψύχου , αἰσθητικοῦ καὶ ἀναισθήτου , |
πάροδος τῆς σελήνης περὶ τὸν καταβιβάζοντα σύνδεσμον ἐν ἑκατέρᾳ τῶν ἐκλείψεων : τὸ γὰρ τοιοῦτον καὶ ἐκ τῶν ὁλοσχερεστέρων ὑποθέσεων | ||
∠ ʹ γʹ . Ἐπεὶ οὖν ἡ μὲν τῶν δύο ἐκλείψεων ὑπεροχὴ τὸ τρίτον περιέχει τῆς σεληνιακῆς διαμέτρου , ἡ |
ἡμιόλιος , εἰ μὴ ὁ γ . ἐπὶ μέντοι τῶν μεγεθῶν , ἐπειδὴ εἰς ἄπειρα διαιρετά εἰσι , δυνατὸν λαμβάνειν | ||
οὐσίαν πρεσβεύοντας , πῶς ὄντων ἀριθμῶν παρ ' αὐτοῖς καὶ μεγεθῶν καὶ ψυχῆς καὶ σωμάτων οὐ γίγνεται τὰ δεύτερα ἀεὶ |
, ὅτι μηδ ' ἡ αὐτὴ ἐπὶ πάντων ὕλη τῶν προβλημάτων : ὅτι ἂν μὲν οὖν σαφὲς καὶ ῥᾴδιον ἐπιδεικνύειν | ||
τοὺς ἴσους παρεῖχον . ὁ τοίνυν Αἴσωπος τὰ πεμπόμενα τῶν προβλημάτων Λυκήρῳ συνὼν ἐπέλυε , καὶ εὐδοκιμεῖν ἐποίει τὸν βασιλέα |
' ἄπειρον ἐκτεινομένων εὐθειῶν ὁδῷ , καθάπερ δηλοῖ τὰ ὑποκείμενα διαγράμματα . ὥστε δύο κατὰ συμβεβηκὸς γράφουσιν ἕλικας , τὴν | ||
Ἔχει δὲ τὰ ηʹ βιβλία τῶν Ἀπολλωνίου κωνικῶν θεωρήματα ἤτοι διαγράμματα υπζʹ , λήμματα δὲ [ ἤτοι λαμβανόμενά ἐστιν εἰς |
χειρουργίας ἢ φαρμακείας προσπεσεῖν . γίνεται δὲ τὰ πολλὰ ἐξ ἀποστημάτων μὴ κατὰ τρόπον θεραπευθέντων . τὰς μὲν οὖν πλαγίας | ||
ἑξηκοστὰ μϚʹ . ἐντεῦθεν αὐτοῖς οἱ λόγοι διάφοροι καὶ τῶν ἀποστημάτων καὶ τῶν μεγεθῶν ἡλίου καὶ σελήνης ἐπιλελογισμένοι εἰσίν . |
. ὅτι πᾶς σύνθετος κατηγορικὸς ὑφ ' ἓν τῶν τριῶν σχημάτων ἀνάγεται : δύο γὰρ αὐτοῦ αἱ κύριαι προτάσεις : | ||
αὐτοῖς οὐκ ἀπὸ τιμημάτων ποιεῖσθαι τὴν ἐγγραφὴν οὐδ ' ἀπὸ σχημάτων ἢ μεγέθους ἢ κάλλους οὐδ ' ἀπὸ γένους τοῦ |
κύκλων λέγομεν περιέχεσθαι , ὅταν πόλῳ τῇ κοινῇ τομῇ τῶν κύκλων καὶ διαστήματι τυχόντι γραφέντος κύκλου ἡ ἀπολαμβανομένη αὐτοῦ περιφέρεια | ||
γδʹ αβδγʹ κύκλων : ὥστε καὶ ἑκάτερος τῶν αβʹ αβδγʹ κύκλων ὀρθός ἐστιν πρὸς τὸν ηζθʹ : καὶ ἡ κοινὴ |
, ὅταν ὁ μὲν ἑνός , ὁ δὲ δυεῖν μετέχῃ συστημάτων , τετάρτη ἡ κατὰ τὸν τῆς φωνῆς τόπον , | ||
, ἔτι δὲ ἁρμονίαι καὶ συμφωνίαι καὶ τῶν γενῶν καὶ συστημάτων αἱ μεταβολαὶ καὶ πάνθ ' ὅσα κατὰ μουσικὴν ἐπικρίνεται |
ἵππων βοῶν κυνῶν καὶ ἁπλῶς ὧν ἔστιν ἀριθμός , οἷον γραμμῶν ἐπιπέδων σωμάτων ἁπλῶς μεγέθους . καὶ γὰρ καὶ τούτων | ||
καὶ τοῦ Σκορπίου ἑκάτερον ἐν λεʹ , δεικνυμένου διὰ τῶν γραμμῶν , ὅτι ταῦτα μὲν ἐν πλείοσι τῶν λεʹ χρόνων |
ἐξ ἀρχῆς μετρούντων . Ἐλάχιστος γὰρ ἀριθμὸς ὁ Α ὑπὸ πρώτων ἀριθμῶν τῶν Β , Γ , Δ μετρείσθω : | ||
στρατιωτικῇ πέφυκε γίνεσθαι . ὅταν δὲ ὑπάρξηται ἡ ἐκ τῶν πρώτων κίνησις , ἐνταῦθα οἱ λοιποὶ ἕπονται . λέγουσι δὲ |
μᾶλλον καὶ σφαιρικοὶ λεγέσθωσαν , ἑνὶ πλείονι διαστήματι αὐξηθέντες ἀπὸ κυκλικῶν καὶ αὐτῶν ὁμοκαταλήκτων ὄντων , ὡς ὁ ρκεʹ ἀπὸ | ||
τὸ ζῴδιον λέγω , τυγχάνοντας καὶ ἐκ τῶν δυὸ τῶν κυκλικῶν συνδέσμων , ἐκλείπουσι κατὰ τομὴν πρὸς μοίρας τῶν δακτύλων |
Ἢ ὅτι μὴ οἷόν τί ἐστι δηλοῦσιν οὐδὲ ἐναλλαγὴν τῶν ὑποκειμένων οὐδὲ χαρακτῆρα , ἀλλ ' ὅσον μόνον τὴν λεγομένην | ||
τούτων διαλέγεται ὡς μερῶν προτάσεων καὶ ὡς περὶ κατηγορουμένων καὶ ὑποκειμένων , ἐν δὲ τοῖς Ἀναλυτικοῖς ὡς περὶ μερῶν συλλογισμοῦ |
τῆς ΓΘ μοιρῶν ρξ μθ λϚ . ταύταις δ ' ἀκολούθως καὶ ἡ μὲν ὑπὸ ΖΑΘ γωνία τοιούτων κδ κθ | ||
τῆς ΘΓ μοιρῶν ρμα κη ιδ . ταύταις δ ' ἀκολούθως καὶ ἡ μὲν ὑπὸ ΘΑΖ γωνία τοιούτων λε ιγ |
κατὰ συζυγίαν πολλαπλάσιός ἐστι κατὰ τὸν ἥμισυν τοῦ πλήθους τῶν ἐκκειμένων ὅρων . ἐπεὶ γὰρ ἡ τῶν αβ βγ ὑπεροχὴ | ||
γδ , τουτέστιν ὅσον ἐστὶ τὸ ἥμισυ τοῦ πλήθους τῶν ἐκκειμένων ὅρων : ὥστε ὁ αη δύο τῶν κατὰ συζυγίαν |
τειχῶν ἑστῶτες τὸ μὲν πρῶτον ὤκνουν τοῖς βέλεσι χρήσασθαι , προκειμένων αὐτοῖς σκοπῶν πολιτικῶν ἀνδρῶν , ὧν ἦσάν τινες καὶ | ||
τῶν κυβερνητῶν τῶν ἐχομένων ἄλλων ἀκρωτηρίων ἀλλ ' οὐ τῶν προκειμένων , δέον εὐθυπλοεῖν κατὰ λιμένα . τουτέστι , μὴ |
Νοιόμαγον εἰπὼν νοτιωτέραν μιλίοις νθʹ , βορειοτέραν αὐτὴν διὰ τῶν κλιμάτων ἀποφαίνει . Καὶ τὸν Ἄθω δὲ τάξας ἐπὶ τοῦ | ||
οὕτως πραγματευσόμεθα . πάντοτε δεῖ πρῶτον εἰσέρχεσθαι εἰς τὸ τῶν κλιμάτων κανόνιον , ἔχοντα δὲ διαβήτην κεχηνότα καὶ κατὰ τὴν |
ῥητὴν ἔχουσι τὴν πλευράν , καί ἐστιν ἐπὶ τῶν ἀρτίων ἀριθμῶν δεικνύμενον οὕτως : λαμβάνει τὸ ἥμισυ τοῦ προκειμένου αὐτῷ | ||
τοῦ δευτέρου . † . Ἐὰν ἄρα ἀπὸ τῶν τριῶν ἀριθμῶν τὴν ὑπεροχὴν τῶν μονάδων κ καὶ ἀπὸ τοῦ δὶς |
φεῦ φεῦ : ἡ ἔκθεσις τοῦ δράματος ἐκ συστηματικῶν ἐστι περιόδων . τὰ δὲ κῶλά ἐστιν ἀναπαιστικὰ κϚʹ . τὸ | ||
τῶν περιόδων μιμοῖτο , ἐν ταῖς μεταποιήσεσι πλῆθος ἂν εὕροι περιόδων . καὶ γὰρ τὸ ἐκ παραβολῆς σχῆμα ἄριστον ὥσπερ |
νοητῆς ἐν ἀριθμοῖς . μετὰ δὲ τὸν περὶ πάντων τῶν μαθηματικῶν λόγον τελευταῖον ἐπάξομεν καὶ τὸν περὶ τῆς ἐν κόσμῳ | ||
ὡς μὲν αὐτόθεν ἀκοῦσαι τὴν συμβολικὴν καὶ ἀπεξενωμένην χρῆσιν τῶν μαθηματικῶν λέξεων : τῶν γὰρ ὄντων στοχαζόμενος καὶ τῶν ἀληθῶν |
στοιχείων . ] Ἔχει δὲ τὰ ηʹ βιβλία τῶν Ἀπολλωνίου κωνικῶν θεωρήματα ἤτοι διαγράμματα υπζʹ , λήμματα δὲ [ ἤτοι | ||
' οὖν Ἀπολλώνιος οἷα περιέχει τὰ ὑπ ' αὐτοῦ γραφέντα κωνικῶν ηʹ βιβλία λέγει κεφαλαιώδη θεὶς προδήλωσιν ἐν τῷ προοιμίῳ |
ἐπὶ τῆς γωνίας πρόβλημα τῇ φύσει στερεὸν ὑπάρχον διὰ τῶν ἐπιπέδων ζητοῦντες οὐχ οἷοί τ ' ἦσαν εὑρίσκειν : οὐδέπω | ||
, ἃ δὲ στερεά , ἃ δὲ γραμμικά , τῶν ἐπιπέδων ἀποκληρώσαντες τὰ πρὸς πολλὰ χρησιμώτερα ἔδειξαν τὰ προβλήματα ταῦτα |
. 〚 Καὶ 〛 Ἀναξίμανδρος ὑπὸ τῶν κύκλων καὶ τῶν σφαιρῶν , ἐφ ' ὧν ἕκαστος βέβηκε , φέρεσθαι . | ||
τῶν τοῦ εἰκοσαέδρου , καὶ ἤχθωσαν ἀπὸ τῶν κέντρων τῶν σφαιρῶν τῶν περιεχουσῶν τὰ στερεὰ σχήματα ἐπὶ τὰ ΔΕΖ ΑΒΓ |
εἴγε ἕκαστον αὐτῶν ὁμοίως κατὰ περιωρισμένους τόπους τὰς μεταβάσεις τῶν κινήσεων ποιεῖται . εἰ δὲ φήσουσιν , ὅτι μικρὸν μέν | ||
κινήσεως . ἀναμνησθῶμεν πρῶτον ἐπὶ τοῦ παντὸς σώματος δυοῖν τούτων κινήσεων ἀλλήλαις μὲν παρακειμένων , οὐχ ὁμοίως δὲ γινομένων : |
γλαφυρίας οὐκ ἀσκόπως παρηδολεσχείσθω . Ἐπανιτέον δὲ ἐπὶ τὴν τῶν πολυγώνων θεωρίαν καὶ προσεκτέον πῶς καὶ καθ ' ὅλων αὐτῶν | ||
τὰ δύο τρίγωνα ἢ τετράγωνα , ἢ ὡς ἐπὶ τῶν πολυγώνων τὸ τὰς γωνίας ἴσας ἔχειν καὶ τὰς πλευρὰς ἀνάλογον |
καὶ ἀδρανείας , διόπερ ἀφείσθωσαν . Περὶ δὲ τῶν ε πλανωμένων ἐκθησόμεθα . ὁ μὲν οὖν τοῦ Κρόνου ἀστὴρ μόνος | ||
οἱ τῶν οἰκείων κινήσεων λόγοι . Πῶς ἂν αἱ τῶν πλανωμένων συνοικειώσεις παραβάλλοιντο ταῖς τῶν φθόγγων . Αὐτάρκης μὲν οὖν |
ταῖς τοῦ τελευτήσαντος τύχαις . οἱ δὲ ὕστερον πρὸς ἅπαντας διαφόρως . οὕτω Δίδυμος ἐν τῷ περὶ Ποιητῶν . Ἐπιστάτης | ||
μάχην οὐ τοῦ λόγου καὶ τῆς αἰσθήσεως ὑποληπτέον ἀλλὰ τῶν διαφόρως ὑποτιθεμένων ἁμαρτίαν , ἤδη τῶν νεωτέρων παρ ' ἀμφότερα |
οὔτε ἐλάσσων ; κατασκευάζει τοῦτο διὰ τοῦ βʹ τρόπου τῶν ὑποθετικῶν , ὅτι , εἴ ἐστιν ἡ ΒΑΓ γωνία ἴση | ||
ἂν εἴη μόνον . Εἰπόντες δὲ περὶ τῶν ἐξ ὁμολογίας ὑποθετικῶν καὶ δείξαντες , ὅτι μὴ γίνεται τοῦ τιθεμένου , |
, τόδε ἀπαντήσεται . Καὶ παραδείγματος ἕνεκεν καὶ σαφηνείας τῶν θεωρημάτων καὶ ἐπὶ προβλήματος λέξομεν : ἔστω δὲ ὁ στρατηγὸς | ||
βουλομένοις καὶ ἐπὶ τὰ μείζω τῶν τακτικῶν ἐκείνων καὶ ἀρχαίων θεωρημάτων βαθμῷ τινι προϊόντας ἐλθεῖν . Φράσεως μὲν οὖν ἀκριβοῦς |
αὐτῶν ἐπίπεδα καλεῖσθαι , τὰ δὲ στερεά , τὰ δὲ γραμμικά . τὰ μὲν οὖν δι ' εὐθείας καὶ κύκλου | ||
ἐπ ' αὐτῶν τῶν ἑξηκοστῶν αἰσθητὴν διαφορὰν γίνεσθαι παρὰ τὰ γραμμικά , ὡς ἐξέσται πειρωμένῳ σκοπεῖν . Οἷον ὡς ἐπὶ |
οὐκ ἐλαχίστης . παρακολούθημα λέγει ὅτι οἱ μὲν διαγώνιοι τοῦ διαγράμματος μονάδες εἰσίν : ἐν μὲν γὰρ τῇ ἀρχῇ ἁπλῆ | ||
πρᾶγμα τὸν πολυπλασιασμὸν ὑπηγόρευσεν , ὥσπερ ἐν ἁρμονικῇ μεταβολῇ τοῦ διαγράμματος ὅλου συνεπιτεινομένου τῷ πρώτῳ τῶν ἀριθμῶν . Ὁ μὲν |
, τῶν μέντοι παρ ' αὐτὴν μόνην τὴν λόξωσιν τῶν ἐπικύκλων καὶ ἀπὸ τῆς μέσης ἐπιβολῆς , ὡς ἔφαμεν , | ||
ἀπὸ τούτου μέχρι τοῦ ἀπογείου , κατὰ δὲ τὴν τῶν ἐπικύκλων δυναμένου συμβαίνειν , ὅταν ἡ μεγίστη μέντοι πάροδος μὴ |
τριῶν , μήτε τῆς οὐσίας καὶ τοῦ συμβεβηκότος καὶ τῶν λοιπῶν κατηγοριῶν . ἐν οἷς γὰρ πρῶτόν τι καὶ δεύτερον | ||
τοὺς καρπούς ; ἔτι μὴν ἐνίοτε καὶ στρουθίον ἢ τῶν λοιπῶν πετεινῶν , καταπιὸν σπέρμα μηλέας ἢ συκῆς ἤ τινος |
οἱ καταλαμβάνοντες Ὠρεόν , οὗτοί εἰσιν οἱ κατασκάψαντες Πορθμόν . γενῶν δέ , ἂν ποτὲ μὲν ἀρσενικὸν ὄνομα προθῇς , | ||
ἐν γὰρ τῷ λέγειν αἱ διαι - ρέσεις γίνονται τῶν γενῶν εἰς τὰ εἴδη δηλοῖ τὰς διαιρετικάς , ἐν δὲ |
οἱ προστιθέντες ἐνταῦθα τὸ Ἐτεόκλεις ἀρχηγέτα ἀμαθεῖς εἰσι καὶ τῶν μέτρων καὶ τῆς ὀρθῆς τοῦ λόγου συντάξεως : τὸ γὰρ | ||
. Εἰ δὲ βούλοιο καὶ τὸν ϲταθμὸν τῶν ὑγρῶν εἰδέναι μέτρων , πάμπολλοι μὲν αἱ τῶν ὑγρῶν οὐϲιῶν εἰϲιν κατὰ |
ὑπὸ τὴν κλίσιν διάστημα , οὐ σωθήσονται αἱ τοιαῦται τῶν γωνιῶν διαφοραί , παρόσον ὑπερέχουσί τε ἀλλήλας καὶ ὑπερέχονται ὑπ | ||
' αὐτοῦ τὸν ἀπὸ τοῦ τετράδι ἐλάσσονος τοῦ πλήθους τῶν γωνιῶν , καὶ τὸν λοιπὸν μερίσαντες εἰς τὸν ηπλ . |
τὸν δέκα συνθῇς , μέσος εὑρεθήσεται ὁ εʹ κατὰ τὴν ἀριθμητικὴν ἀναλογίαν , οἷον θʹ καὶ αʹ , ηʹ καὶ | ||
εἰσὶν αἱ προηγούμεναι τῶν ἀναλογιῶν . πάλιν δὲ κατὰ τὴν ἀριθμητικὴν παράδοσιν λέγονται λόγοι τῶν ἀριθμῶν , ὡς καὶ ὁ |
ἀσιτίαις : εἰ δὲ μηδέτερον εἴη τούτων , ἐπὶ τῶν τοπικῶν ἴασιν εὐθὺς ἀφικνούμεθα , κατ ' ἀρχὰς μὲν ἀναστέλλοντες | ||
κωνικῶν γραμμῶν . λέγομεν , ὅτι καὶ τῶν πρὸς γραμμαῖς τοπικῶν τὰ μὲν ἐπίπεδον ἔχει τόπον , τὰ δὲ στερεόν |
ὑπετιθέμεθα τὸ τοιοῦτο . καὶ μηδένα κινείτω τὸ πλῆθος τῶν φθόγγων , ὅταν γε τῇ δυνάμει καὶ κατὰ τὸ κοινὸν | ||
ὑπαγωγέα παράγοντες , ἕως ἂν ταῖς ἀκοαῖς ὑπαντήσῃ τῶν ἐπιζητουμένων φθόγγων ἕκαστος , ἐκεῖ σημειοῦνται τὴν οἰκείαν τομὴν ἀφέμενοι τοῦ |
Γιγνομένων δὲ τούτων Λέπιδος ἐπὶ Ἴβηρσιν ἐθριάμβευε , καὶ προυτέθη διάγραμμα οὕτως ἔχον : “ ἀγαθῇ τύχῃ προειρήσθω πᾶσι καὶ | ||
μὲν οὖν ἀδύνατον καὶ οὐκ ἀδύνατον . ἀποβλέποντας εἰς τὸ διάγραμμα οὐκ ἔστι δυσχερὲς [ τ ] νοῆσαι τὰ ὑπ |
εὑρήσεται καταφυγήν , ἀποτροπὴν κακῶν , εἰ καὶ μὴ μετουσίαν προηγουμένων ἀγαθῶν . αἵδ ' εἰσὶν αἱ ἓξ πόλεις , | ||
μέχρι μὲν οὖν τινος ἐλάνθανε τοὺς ὑστέρους προσιόντας ὁ τῶν προηγουμένων ὄλεθρος : ἐπεὶ δὲ φῶς ἐγένετο σελήνης ἀνισχούσης οἱ |
ΘΚ , ΚΗ ἑξῆς ἐπὶ τὰ αὐτὰ τοῦ μεγίστου τῶν παραλλήλων τοῦ ΒΗΔ , διὰ δὲ τῶν Θ , Κ | ||
περιφέρειαι ἀποληφθῶσιν ἑξῆς ἐπὶ τὰ αὐτὰ μέρη τοῦ μεγίστου τῶν παραλλήλων , διὰ δὲ τῶν γενομένων σημείων παράλληλοι κύκλοι γραφῶσιν |
, ἴση ἐστὶν ἡ ὑπὸ ΗΓΘ τῇ ὑπὸ ΘΓΒ : ἡμικυκλίων γάρ . οὐκοῦν ἡ ὑπὸ ΗΓΔ ἐλάσσων τῆς ὑπὸ | ||
γωνίαι ἡμικυκλίων ἴσων εἰσὶν γωνίαι : πᾶσαι αἱ τῶν ἴσων ἡμικυκλίων γωνίαι ἴσαι : αἱ ΑΓ , ΒΔ ἄρα γωνίαι |
σχήματι συνάγοιτ ' ἄν , ποτὲ μὲν ἀμφοῖν τοῖν δυοῖν προτάσεων ψευδῶν λαμβανομένων , ποτὲ δὲ τῆς ἑτέρας . πῶς | ||
Ἀριστοτέλης . Τῶν ἐκ τῆς διαιρέσεως τοῦ ὑποκειμένου γινομένων ὀκτὼ προτάσεων τίνες μέν εἰσιν αἱ ἀντιφατικῶς ἀντικείμεναι πρὸς ἀλλήλας τίνες |
σημαίνει συγχύσεως καὶ παχυτῆτος , ὅπερ ἐστὶ σωματικῶν καὶ αἰσθητῶν ἀποδείξεων , ἐκλανθάνεσθαι φιλοσοφεῖν ἐπιβαλλόμενον , νοηταῖς δὲ χρῆσθαι μᾶλλον | ||
θεῶν παισὶν ἀπιστεῖν , καίπερ ἄνευ τε εἰκότων καὶ ἀναγκαίων ἀποδείξεων λέγουσιν , ἀλλ ' ὡς οἰκεῖα φασκόντων ἀπαγγέλλειν ἑπομένους |
παρ ' Εὐκλείδῃ λέγεται στοιχεῖα , τὰ μὲν περὶ τὰ ἐπίπεδα , τὰ δὲ περὶ τὰ στερεὰ τὴν πραγματείαν ἔχοντα | ||
γὰρ ἔχει πλευράς , ηʹ δὲ γωνίας , Ϛʹ δὲ ἐπίπεδα : τούτων δ ' ἐφεξῆς τιθεμένων ιβʹ ηʹ Ϛʹ |
, τούτων δὲ μίαν μὲν τὴν ὁμοίως κινουμένην τῇ τῶν ἀπλανῶν , ἑτέραν δὲ ἐναντίως μὲν ταύτῃ , περὶ ἄξονα | ||
, ζʹ μὲν τῶν πλανωμένων , ἐκτὸς δὲ μίαν τῶν ἀπλανῶν ἐντὸς αὑτῆς περιέχουσαν τὰς ἄλλας : δηλοῖ δὲ τὴν |
Ο μέγιστος κύκλος γεγράφθω ὁ ΠΟ , καὶ τριῶν οὐσῶν περιφερειῶν ὁμοιογενῶν ἀνίσων τῶν ΚΘ , ΘΠ , ΗΘ εἰλήφθω | ||
τεσσάρων δὴ ὄντων μεγεθῶν δύο μὲν τῶν ΒΓ , ΕΖ περιφερειῶν , δύο δὲ τῶν ΗΒΓ , ΕΘΖ τομέων εἴληπται |
λαμβάνεται δὲ καὶ ἀπὸ τοῦ ἐκβησομένου καὶ μόνων τῶν εὐλόγων αἰτιῶν : εἰδέναι δὲ χρὴ , ὡς καὶ τὸ ἐκβησόμενον | ||
. ἀρξώμεθα οὖν λέγειν τὰς θεραπείας ἀπὸ τῶν διὰ προκαταρκτικῶν αἰτιῶν συνισταμένων κεφαλαλγιῶν τὴν ἀρχὴν ποιούμενοι . Τὰ σημεῖα πᾶσι |
Καὶ τάδε μὲν περὶ τῶν παρὰ τοῖς παλαιοῖς θρυλλουμένων τριῶν ἀναλογιῶν , ἃς καὶ ἐπιτηδὲς σαφέστερον καὶ πλατύτερον διηρθρώσαμεν , | ||
ὁ Διόφαντος . τοῖς διὰ τῶν Εὐκλείδου στοιχείων ἡγουμένοις περὶ ἀναλογιῶν ἐντεῦθεν ἄρχεται . συνεκδρομικῶς νῦν ὁ φιλόσοφος λέγει καὶ |
τίς ἐστι παρὰ μουσικοῖς : περιγράφεται δέ τινα πρὸς τούτων διαστήματα , καθ ' ἃ καὶ ἡ φωνὴ κινεῖται ἤτοι | ||
κατὰ μέλος ὃ ἡ φωνὴ μελῳδοῦσα μὴ δύναται διαιρεῖν εἰς διαστήματα . ὑποκείσθω δὲ καὶ τῶν συμφώνων ἕκαστον μὴ διαιρεῖσθαι |
ἴσας ἀπεδείκνυ τὰς βάσεις , τοῦτο δὲ ὁμοίως ταῖς γωνίαις ἀνίσους . προηγεῖται δὲ τοῦ ἐφεξῆς θεωρήματος . ἐκεῖνο μὲν | ||
ἄνισα μέρη διαιρουμένου τοῦ ἡλιακοῦ κύκλου συμβαίνει καὶ τοὺς χρόνους ἀνίσους εἶναι τῶν ζῳδίων . Τῆς δὲ πρὸς ἄλληλα τάξεως |
ἑπτακαιεικοσαπλασίας : ἐν γὰρ ταύταις ταῖς ποσότησιν ἡ τῶν δύο μεσοτήτων ἐνορᾶται φύσις πρώταις ἐλαχίσταις ἥ τε τοῦ ἀνὰ μέσον | ||
τῇ ἀριθμητικῇ μεσότης οὐκ ἀλόγως προηγήσεται τῶν ἐν ἐκείναις ὁμωνύμων μεσοτήτων , γεωμετρικῆς τε καὶ ἁρμονικῆς : τῶν γὰρ ὑπεναντίων |
μεθίστησι , καὶ οὕτως ἀληθεύει ὁ λόγος . ἔστω δὲ ὑποδείγματα : ὅτι ἡμέρα ἐστί , φῶς ἐστιν . εἰ | ||
ἐν Γλώσσαις ῥῖγος περὶ τοὺς πόδας καὶ χεῖρας , καὶ ὑποδείγματα τίθησιν : πνεύματος ἀργαλέοιο πόνοιό τε μαλκίοντες . Δημήτριος |
πρὸς τὸ μέγεθος τοῦ ἑαυτοῦ κύκλου , τὰς δὲ τῶν τροπικῶν μοίρας μείζους εἶναι τῶν μοιρῶν τοῦ ἀρκτικοῦ , ἐπειδήπερ | ||
τῶν σχημάτων , προσώπων τε ἀποστροφαῖς καὶ χρόνων ἐναλλαγαῖς καὶ τροπικῶν σημειώσεων μεταφοραῖς ἐξηλλαγμένα καὶ σολοικισμῶν λαμβάνοντα φαντασίας : ὁπόσα |
ἀλλὰ καὶ χρονία τις διάθεσις φαίνοιτο καὶ δυσχερῶς ἀκούοιεν τῶν λεγομένων , ἐπὶ τῶν τοιούτων οὐδέν ἐστιν ἄτοπον καὶ τοῖς | ||
φαῦλόν τινα φαινόμενον , ἔπειτα , ὅπου ἂν τύχῃ τῶν λεγομένων , ἐνέβαλεν ῥῆμα ἄξιον λόγου βραχὺ καὶ συνεστραμμένον ὥσπερ |
ἰστέον γὰρ ὅτι δύο τούτων ἐξ ἀνάγκης περὶ πάντα λόγον θεωρουμένων , λέξεώς τε καὶ σημασίας , περὶ μὲν τὴν | ||
γενικωτάτων ὑπαλλήλων εἰδικωτάτων καὶ ἀτόμων καὶ δύο ἄκρων ἐν τούτοις θεωρουμένων , γενικωτάτων καὶ ἀτόμων , δύο ἔξεστί σοι ὁδοὺς |
ἡ διάκρισις τῶν ἀορίστων ὀνομάτων τε καὶ ῥημάτων ἀπὸ τῶν ἀποφάσεων , πρὸ ἐκείνου δὲ ἡ διδασκαλία τοῦ πῶς τῶν | ||
καὶ ἐξ ἀμφοτέρων ψευδῶν συνάγεται . Ὅτι εἰπὼν ἐκ δύο ἀποφάσεων ἢ μερικῶν μὴ γίνεσθαι συλλογισμὸν μόνον τὸ δεύτερον ἐπεξεργάζεται |
κατὰ τὴν τῶν ἐπικύκλων δέ , ὅταν αἱ ἀπὸ τῶν ἀπογείων αὐτῶν μεταβάσεις εἰς τὰ προηγούμενα γίνωνται , τὸν ἀπὸ | ||
' αὐτῶν ἐξ ἑτοίμου τῶν περιοδικῶν κινήσεων ἀπὸ τῶν οἰκείων ἀπογείων διδομένων καὶ τὰς φαινομένας ἑκάστοτε παρόδους ἐπιλογιζώμεθα . τέτακται |
κοινῇ ἐφωδεύσατε ; ποῦ ποτε ; εἶτα λέγετε ἄχρηστα τὰ θεωρήματα . τίσιν ; τοῖς οὐχ ὡς δεῖ χρωμένοις . | ||
, ἵνα κατ ' ἀναφορὰν τὴν ὡς ἐπὶ τὰ τοιαῦτα θεωρήματα λέγωμεν τεχνικόν τι μέρος ὑπάρχειν παρ ' αὐτοῖς τὸ |
͵δ καὶ τλγʹ . Τῶν δὲ τῆς οἰκουμένης θαλασσῶν τὰ μήκη καὶ πλάτη τόνδε τὸν τρόπον ἔχει . Τῆς μὲν | ||
ἀμβλεῖαν γωνίαν ἔχον πρὸς Σούσοις , τὰ δὲ τῶν πλευρῶν μήκη τὰ ἐκκείμενα : εἶτ ' ἐπιλογίζεται , διότι συμβήσεται |
πράγματι , οὗ ἐστιν ἰδέα : ὥστε οὐκ ἔσται ἔτι ἀτόμων ὁρισμός . Ταῦτα εἰρηκὼς ζητεῖ ἐφεξῆς καὶ ἐπιλύεται τὴν | ||
, σῴζουσα τὴν ἐπὶ τοῦ στερεμνίου θέσιν καὶ τάξιν τῶν ἀτόμων ἐπὶ πολὺν χρόνον , εἰ καὶ ἐνίοτε συγχεομένη ὑπάρχει |
Ἔννατον ἐπὶ τοῖς εἰρημένοις δεῖ ζητῆσαι κεφάλαιον , ἐκ πόσων κανόνων δεῖ θηρᾶν τὸν ἑκάστου διαλόγου σκοπόν . χρεία γάρ | ||
βάσεων , σκελῶν , διαπηγμάτων , ἀγκώνων , ἀξόνων , κανόνων , χελωνῶν , κοχλιῶν , τυμπάνων , τύλων , |
Φρυγῶν γὰρ οὐδέν ' ἂν τρέσαιμ ' ἐγώ . οἵους ἐνόπτρων καὶ μύρων ἐπιστάτας . τρυφὰς γὰρ ἥκει δεῦρ ' | ||
αὐτά . Τὰ ὕψη καὶ τὰ βάθη ἀπὸ τῶν κοίλων ἐνόπτρων , ὅσα μέν ἐστιν ἐντὸς τῆς συμπτώσεως τῶν ὄψεων |
τὴν στροφήν . ἐπεὶ οὖν οὐκ ἔνι ἔξω τόπων καὶ θέσεων ταῦτα κατανοῆσαι , ἀγνοεῖται ἡ φύσις αὐτῶν . Ὄγδοος | ||
, οὐ θέσις ἔσται ἀλλ ' ὑπόθεσις . Τῶν δὲ θέσεων αἳ μὲν πολιτικαί , αἳ δὲ οὔ : καὶ |
δυνάμει πεφυκυῖα , δύο μεσότητας ἔχει , ἀριθμητικήν τε καὶ ἁρμονικήν , φαίνεταί τε τὰ μέρη αὐτῆς καὶ τὰ μεγέθη | ||
δεύτερος πρὸς τὸν τρίτον , οἷον δʹ Ϛʹ θʹ , ἁρμονικήν δὲ ὅταν τριῶν ἀριθμῶν ἀνίσων , εἰ ὡς ὁ |
Ἐπιφανίου . Τῶν μὲν ἄλλων διαφέρουσιν οἱ συνεζευγμένοι , τῶν ἁπλῶν λέγω καὶ διπλῶν , ὅτι ἐν ἐκείνοις μὲν ἓν | ||
Τέττιξ ρϘδ Ὕαινα ρϘε Χελιδόνεϲ ρϘϚ Περὶ ἐκλογῆϲ τῶν καλλιϲτευόντων ἁπλῶν φαρμάκων ρϘζ Ἐκ τῶν Ὀριβαϲίου . Ὅϲα μέϲα ἐϲτὶ |
Ἔστω ὁ δοθεὶς Μο ιγ . Τετάχθω πάλιν εἷς τῶν ζητουμένων ⃞ων Μο κε : ζητητέον οὖν ἑτέρους δύο , | ||
ἐπιμονὴν ζητήσεως . διόπερ ἴσως καὶ ἐπὶ τῶν κατὰ φιλοσοφίαν ζητουμένων οἱ μὲν εὑρηκέναι τὸ ἀληθὲς ἔφασαν , οἱ δ |
στάσεώς ἐστιν . . τάξις τῆς περιηγήσεως , ἢ περὶ ὁρισμῶν , περὶ ὠκεανοῦ , περὶ Εὐρώπης , περὶ κόλπων | ||
ἐστι καλὸν ὃ τούτων ἀπολειφθὲν τῶν εἰρημένων , ἀληθείας καὶ ὁρισμῶν καὶ διαιρέσεως , δύναται τέχνῃ λαμβάνεσθαι ; Ἤγουν ἐν |
ἐκ πλειόνων συλλογισμῶν καὶ συμπερασμάτων συγκειμένοις συλλογισμοῖς οὐχ ἅπαντα τὰ συμπεράσματα κατὰ τοὺς συλλογισμοὺς ἀναγκαῖόν ἐστιν ἐν τῷ αὐτῷ γεγονέναι | ||
μέντοι τῶν Ἀποδεικτικῶν εἰπὼν ὡς ἐπὶ τῶν τὰ καθόλου καταφατικὰ συμπεράσματα συναγόντων συλλογισμῶν τό τε μεῖζον ἄκρον κατὰ τοῦ μέσου |
τῶι δὲ τετράγωνον , τῶι δὲ ἄλλο καὶ ἄλλο τῶν εὐθυγράμμων [ τῶν ] σχημάτων , ὣς δὲ καὶ μικτῶν | ||
κατασκευὴν τοῦ μζʹ . ἰστέον δέ , ὅτι τῶν ἀρίστων εὐθυγράμμων δύο τοῦ ἰσοπλεύρου τριγώνου καὶ ἰσοπλεύρου τετραγώνου γενέσεις παραδέδωκεν |
ἀκοὴν πρὸς τὰ ἐξαρτήματα καὶ βεβαιώσας πρὸς αὐτὰ τὸν τῶν σχέσεων λόγον , μετέθηκεν εὐμηχάνως τὴν μὲν τῶν χορδῶν κοινὴν | ||
ιεʹ , καὶ ἀεὶ ὁμοίως . Ἐπιδειχθείσης ἡμῖν τῆς τῶν σχέσεων πλάσεως ἀπλατῶν καὶ μικτῶν ἀπὸ ἰσότητος τὴν ἀρχὴν ἐσχηκυίας |
ἐπεὶ ἐξ ἀξιωμάτων συνέστηκε λεκτῶν ἡ ἀπόδειξις , ἐκ τῶν λεκτῶν δὲ συνεστῶσα οὐ δυνήσεται πρὸς πίστιν τοῦ λεκτὸν εἶναι | ||
τὴν ἐν ταῖς λεκτικαῖς ὑφισταμένην κινήσεσιν , ἥτις δέδεικται τῶν λεκτῶν πάντων περὶ μόνον τὸν ἀποφαντικὸν λόγον ὑφίστασθαι δυναμένη . |
ἁρμόζει ταῖς κατασκευαῖς , τὰ δὲ ἀξιώματα ταῖς ἀποδείξεσιν . ἐφεξῆς οὖν ἡ ἀπόδειξις , καί φησι : τὰ τῷ | ||
πόλον , ἀρκτικὴν δὲ αὐτὴν ὀνομάζουσιν : ἡ δ ' ἐφεξῆς εὔκρατός ἐστιν : εἶτα τὴν τρίτην διακεκαυμένην καλοῦσιν : |
, οὔτε φαίνεται ὢν αἴτιος : τὰ γὰρ θεωρήματα τῶν ἀριθμητικῶν πάντα καὶ κατὰ τῶν αἰσθητῶν ὑπάρξει , καθάπερ ἐλέχθη | ||
δὲ ἐπὶ τέλει τοῦ βʹ θεωρήματος τοῦ ζʹ βιβλίου τῶν ἀριθμητικῶν ἐστιν . ἕπονται δὲ τὰ πορίσματα καὶ θεωρήμασιν , |
συντελῆ ᾖ τὰ ηʹ . καὶ ἄλλως ὁ δʹ μεθόριον ἁρμονικῶν σχέσεων ἡμῖν ἀνεφάνη , συμφώνων μὲν ἐντὸς ἑαυτοῦ , | ||
μηχανικῶν τε ὢν τὰ πρῶτα καὶ γεωμετρικῶν , ἔτι δὲ ἁρμονικῶν καὶ μουσικῶν φαίνεται , καὶ ὅμως ἕκαστον τούτων οὕτως |
Ἐμπειρικοὺς ἡ τοῦ ὁμοίου μετάβασις . Κεφ . ιηʹ . Ἑξῆς δ ' ἀκόλουθόν ἐστιν ἐπιδεῖξαι , πῶς οἱ Λογικοὶ | ||
καί μοι καί με ἐνεκλίναμεν , καθὸ οὐ συμπέπλεκται . Ἑξῆς ῥητέον καὶ περὶ τῶν κατὰ τὸ τρίτον πρόσωπον ὀρθοτονουμένων |
σημαίνει , ὁμώνυμον εἶναι οὐ δύναται . ταῦτα δὲ περὶ διαιρέσεων καὶ συστάσεων τῶν ὁμωνύμων . ἐν οἷς καὶ ἡ | ||
τὰς ἀναγραφὰς ἢ κατὰ χρόνους εὐπαρακολουθήτους ἐκεῖνος οὐδετέραν τούτων τῶν διαιρέσεων ἐδοκίμασεν . οὔτε γὰρ τοῖς τόποις , ἐν αἷς |
' ἀποροίημεν , μεθόδοις ἀνιχνεύσομεν τὰ ἀναγκαῖα . τῶν δὲ μεθόδων αὗται χρησιμώταται : ἐπίθετα , μεταλήψεις , μεταφοραί , | ||
τὴν ἀνθρώπου φύσιν καὶ ἀτελεστέραν τῶν ὑπ ' αὐτῆς εὑρισκομένων μεθόδων καὶ τεχνῶν , ὡς δεῖσθαι ἐκείνων πρὸς τὴν οἰκείαν |
ὑπὸ ΔΑΜ γωνίας καὶ πασῶν δηλονότι τῶν τὸν αὐτὸν τρόπον συνισταμένων . φανερὸν δ ' αὐτόθεν , ὅτι καὶ τῶν | ||
. λέγω , ὅτι τὸ διὰ τοῦ ἄξονος ἰσοσκελὲς τῶν συνισταμένων ἰσοσκελῶν τὰς βάσεις ἐχόντων μεταξὺ τῶν Γ , Β |
περιττοῖς κζʹ . ἐν τούτοις τοῖς ἀριθμοῖς οἱ τελειότεροι τῶν συμφωνιῶν εὑρίσκονται λόγοι : συμπεριείληπται δὲ αὐτοῖς καὶ ὁ τόνος | ||
διὰ πασῶν συγκεῖσθαι συμβέβηκεν ἐκ δύο τῶν ἐφεξῆς καὶ πρώτων συμφωνιῶν , τῆς τε διὰ πέντε καὶ τῆς διὰ τεσσάρων |
ἐξεπήδηϲεν . Ἀκόλουθον ἂν εἴη μετὰ τὴν τῶν κατὰ ϲάκρα χειρουργουμένων διδαϲκαλίαν καὶ περὶ τῶν ἐν τοῖϲ ὀϲτοῖϲ , καταγμάτων | ||
τούτῳ τῷ βιβλίῳ ἕκτῳ τῆϲ ὅληϲ πραγματείαϲ ὑπάρχοντι περὶ τῶν χειρουργουμένων λέγεται τῶν τε κατὰ ϲάρκα καὶ τῶν ἐν ὀϲτοῖϲ |
[ τοῦτο ] δυνατόν ἐστιν : δειχθήσεται γὰρ ἐπί τινων ὁριζόντων παρθένος μὲν λέοντος ὀρθοτέρα ἀναφερομένη , ἀνάπαλιν δὲ ὁ | ||
αὐτοῦ ὑπὲρ γῆς ὁρᾶται , τῶν μὲν ἐκ τῶν χθαμαλῶν ὁριζόντων ἐπιπέδων ὄντων , τῶν δὲ ἐξ ὕψους ὁρωμένων κωνοειδῶν |
ἢ μαθηματικῆς πρόκειται ζητῆσαι οὔτε τῆς τελείου ἐξ ἀριθμητικῆς καὶ γεωμετρίας συνεστώσης οὔτε τῆς παρὰ τοῖς περὶ Εὔδοξον καὶ Ἵππαρχον | ||
περὶ τούτων λόγος ἀστρονομίᾳ ἂν προσήκοι . Ἔκ γε μὴν γεωμετρίας γεωμέτρης , γεωμετρική γεωμετρεῖν , γεωμετρικός γεωμετρικῶς , γεωμετρικώτατα |
, ἢ διάμετρος τῇ πλευρᾷ ἢ σύμμετρος ἢ ἀσύμμετρος , ἐμμέσων δὲ ὡρισμένων ὡς ὅταν λαβόντες δύο μεγέθη λέγομεν , | ||
μέν ἐστιν ἔμμεσα τὰ δὲ ἄμεσα , εἰ μὲν τῶν ἐμμέσων ἐναντίων εἴη τὰ κατηγορούμενα , οὐκ ἂν ἀκολουθήσαι τῇ |
στερητικά . Τὸ προκείμενον ἡμῖν ἐστι διακρῖναι τὰ εἴδη τῶν ἀντικειμένων ἀπ ' ἀλλήλων , καὶ τέως τὰ πρός τι | ||
ἐπεὶ συνεθέμεθα καὶ ὡμολογήσαμεν ὡς ἂν ἐφ ' ἑνὸς τῶν ἀντικειμένων δειχθῇ , οὕτως ἐπὶ πάντων ἕξειν . οὐκ ἐδεήθημεν |
ἐν δὲ τῷ προβλήματι τούτῳ κάθετον ἐπίπεδον προτίθεται ἀγαγεῖν ὁ στοιχειωτής : πρός τε γὰρ εὐθεῖάν ἐστιν ἡ ἀγωγή , | ||
δεδομένον καὶ τὸ ζητούμενον , οἷον εἰ οὕτως ἔλεγεν ὁ στοιχειωτής : πᾶν τρίγωνον ἰσοσκελὲς ἴσας ἔχει τὰς πρὸς τῇ |
τὴν λυπέουσαν ἀπὸ τοῦ σώματος ἢ ἐν ἄλλῃ τινὶ τῶν περισσῶν ἡμερέων κατὰ τὸν πρότερον εἰρημένον λόγον : οὐ γὰρ | ||
πάλιν αἱ διαλύσεις . Ἔτι δὲ τῇ μονάδι τῶν ἐφεξῆς περισσῶν γνωμόνων περιτιθεμένων , ὁ γινόμενος ἀεὶ τετράγωνός ἐστι τῶν |
ψυχῆς ὁ Ἔρως , ἀναπτεροποιεῖ αὐτόν . αὐτῶν δὲ τῶν φυσικῶν οἱ μὲν ἐξηγητικοί , οἱ δὲ ἐν βραχεῖ προαγόμενοι | ||
ὡς στεφάνους καὶ ἀνδριάντων ἀναθέσεις . . Ἐν αἷς τῶν φυσικῶν ἐπιθυμιῶν , μὴ ἐπ ' ἀλγοῦν δὲ ἐπαναγουσῶν ἐὰν |
χρόνων ἁπάντων γένεσις , οὕτως ἔχει καὶ ἐπὶ τῶν ἄλλων συζυγιῶν . Ἡ πέμπτη συζυγία τῶν βαρυτόνων ἐκφέρεται μὲν διὰ | ||
τῶν παρεπομένων τῷ ῥήματι , ἐγκλίσεων λέγω καὶ διαθέσεων καὶ συζυγιῶν καὶ χρόνων ἀρκούντως εἴπομεν , φέρε καὶ ἑκάστην τῶν |
γοῦν ἐπὶ τῶν τεχνητῶν , οὕτω καὶ ἐπὶ τῶν φύσει συνεστώτων ἔχει . ἡ μὲν γὰρ ἔφεσις ἁπλῶς τοῦ θείου | ||
ὀργανικοῦ σώματος . τῶν γὰρ πραγμάτων ἐξ ὕλης καὶ εἴδους συνεστώτων ἢ ἀνάλογόν γε εἴδει καὶ ὕλῃ τὴν σύστασιν ἐχόντων |
πονηρὸς ἔδοξεν , ὥστε μηδ ' ἐκεῖ ⌈ ⌉ τῶν ἴσων ἀξιοῦσθαι τοῖς ἄλλοις , ἀλλὰ κλέπτην ὥς φασι ληφθέντα | ||
δυσὶ πλευραῖς ἴσας ἔχοντα ἑκατέραν ἑκατέρᾳ καὶ τὰς ὑπὸ τῶν ἴσων εὐθειῶν περιεχομένας γωνίας ἴσας : καὶ τὴν βάσιν ἄρα |
οἷς οὐ ἴσα ἀποδεικνύναι πειρασώμεθα ἢ μείζω , καὶ εἰς ἐπιλόγων πάθη , ἐν οἷς καταπαυόμεθα τὰς ὑποθέσεις . εἰ | ||
, ἐν δὲ τῷ τετάρτῳ περί τινων σχημάτων : περὶ ἐπιλόγων δὲ οὐδὲν διδάσκει , εἰ καὶ τῷ ἐξηγητῇ τοῦτο |
ἐπίρρημα μὲν λέξις ἄκλιτος , κατηγοροῦσα τῶν ἐν τοῖς ῥήμασιν ἐγκλίσεων καθόλου ἢ μερικῶς , ὧν ἄνευ οὐ κατακλείσει διάνοιαν | ||
μὲν οὖν τούτων ἡμῖν συνεστάθησαν αἱ καθόλου πηλικότητες τῶν μεγίστων ἐγκλίσεων τῶν τε ἐκκέντρων καὶ τῶν ἐπικύκλων : ἵνα δὲ |