| μεθίστησι , καὶ οὕτως ἀληθεύει ὁ λόγος . ἔστω δὲ ὑποδείγματα : ὅτι ἡμέρα ἐστί , φῶς ἐστιν . εἰ | ||
| ἐν Γλώσσαις ῥῖγος περὶ τοὺς πόδας καὶ χεῖρας , καὶ ὑποδείγματα τίθησιν : πνεύματος ἀργαλέοιο πόνοιό τε μαλκίοντες . Δημήτριος |
| ] ἰσχυρός . ἡμέτερον + ἀλλ ' ἐπεὶ δοκεῖς : ἔκθεσις τοῦ δράματος . οἱ δὲ στίχοι εἰσὶ τροχαϊκοὶ κεʹ | ||
| οὕτω φησί : διήγησίς ἐστι τῶν ἐν τῇ ὑποθέσει πραγμάτων ἔκθεσις εἰς τὸ ὑπὲρ τοῦ λέγοντος πρόσωπον ῥέουσα . Θεόδωρος |
| δάκτυλοι ιβ , ὥσπερ καὶ ἐπ ' αὐτῶν τῶν ἐκλειπτικῶν κανονίων ὡς τοῦ ἑνὸς δακτύλου περιέχοντος τὸ ιβʹ τῆς διαμέτρου | ||
| τῆς ἐμπτώσεως καὶ τῶν τῆς ἀνακαθάρσεως χωρὶς ἐξ ἑκατέρου τῶν κανονίων εἰσοίσομεν καὶ τὸν ἀπὸ τοῦ ἀπογείου κατὰ τὴν φαινομένην |
| βʹ τὰ δʹ διπλάσια , τῶν δὲ δʹ τὰ Ϛʹ ἡμιόλια . ἵνα δὲ ἀναλόγως μέσον ᾖ , δεῖ αὐτὸ | ||
| ἠέ καὶ τὸ ὀά ἰδίως τίθει ἐκτὸς τῶν κώλων ἰωνικὰ ἡμιόλια βʹ : τὸ δὲ γʹ χοριαμβικόν ἑφθημιμερῆ βʹ προσοδιακὸν |
| ἐπιτρίτου γίνεσθαι . πάλιν δὲ τὸ γεννηθὲν πρῶτον εἶδος τοῦ πολλαπλασίου , ὅ ἐστι τὸ διπλάσιον , μετὰ τοῦ ἡμιολίου | ||
| : ἐξ ἡμιολίου ἄρα καὶ διπλασίου πρώτων εἰδῶν ἐπιμορίου καὶ πολλαπλασίου συνίσταται μιγέντων τὸ δεύτερον εἶδος τοῦ πολλαπλασίου τὸ τριπλάσιον |
| Ἑλληνικῶν ἐάν τε βαρβαρικῶν , ἣν συνήθως γραμματιστικὴν καλοῦμεν , ἰδιαίτερον δὲ ἡ ἐντελὴς καὶ τοῖς περὶ Κράτητα τὸν Μαλλώτην | ||
| , τὰ μὲν γράμματα δημοσίᾳ ἀποδοῦναι , ἀξιῶσαι δὲ αὐτὸν ἰδιαίτερον ἀποστάντα ἐπακοῦσαι ἀπορρήτων ἐντολῶν , πεισθέντι δὲ δορυφόρων ἐρήμῳ |
| . εἰσὶν οὖν τὰ τοῦ παρόντος χοροῦ κῶλα ἀντισπαστικὰ τρίμετρα βραχυκατάληκτα δʹ , τὸ δὲ εʹ δίμετρον βραχυκατάληκτον ἤτοι ἡμιόλιον | ||
| καὶ βραχυκατάληκτα , τὰ δὲ τρίμετρα καταληκτικὰ καὶ ἀκατάληκτα καὶ βραχυκατάληκτα , ὧν τελευταῖον : ὤλετ ' ἄκλαυστος ἄιστος . |
| φαίνεται , ἂν ἐπινοήσωμεν αὐτὸν διπλασίονα γενόμενον , εἰς δύο διαιρουμένου ἑκάτερον αὐτοῦ τῶν μερῶν ποδιαῖον φανήσεται . Ὥστε εἰ | ||
| τοῦ βιβλίου διαίρεσιν . εἰς τέσσαρα τοίνυν ἐναργῶς αὐτοῦ τμήματα διαιρουμένου τὸ μὲν πρῶτόν ἐστι περὶ τῶν ἀρχῶν τοῦ ἀποφαντικοῦ |
| πρῶτον ἐπὶ τοῦ κυλίνδρου δεῖξαι , καὶ κείσθω ἡ αὐτὴ καταγραφὴ τῇ πρότερον , καὶ τῇ ΑΔ ἴση ἔστω ἡ | ||
| πʹ μοιρῶν μόνων , οὐδενὶ γὰρ ἀξιολόγῳ παρὰ τοῦτο ἡ καταγραφὴ διοίσει , κέντρῳ τῷ Λ καὶ διαστήμασι τοῖς Ζ |
| . εἰσὶ δὲ τὰ μὲν δίμετρα , τὰ δὲ τρίμετρα καταληκτικὰ καὶ βραχυκατάληκτα καὶ ἀκατάληκτα . νῦν δ ' ὤρθωσας | ||
| ] ἐπὶ δακτυλικοῦ Μῶς ' ἄγε Καλλιόπα θύγατερ Διός , καταληκτικὰ δέ , ὅσα μεμειωμένον ἔχει τὸν τελευταῖον πόδα , |
| , ἤτοι ἑφθημιμερῆ καὶ μονόμετρα . τὰ δὲ ἑξῆς ρκαʹ χοριαμβικὰ δίμετρα ἀκατάληκτα καὶ καταληκτικά , ἤτοι ἑφθημιμερῆ καὶ πενθημιμερῆ | ||
| εἴτε ἐπιτρίτου τετάρτου , καὶ διιάμβου : τὰ ἑξῆς δύο χοριαμβικὰ δίμετρα βραχυκατάληκτα : τὸ τρισκαιδέκατον ἐκ χοριάμβου καὶ σπονδείου |
| Ἐμπειρικοὺς ἡ τοῦ ὁμοίου μετάβασις . Κεφ . ιηʹ . Ἑξῆς δ ' ἀκόλουθόν ἐστιν ἐπιδεῖξαι , πῶς οἱ Λογικοὶ | ||
| καί μοι καί με ἐνεκλίναμεν , καθὸ οὐ συμπέπλεκται . Ἑξῆς ῥητέον καὶ περὶ τῶν κατὰ τὸ τρίτον πρόσωπον ὀρθοτονουμένων |
| ἑκάτερον δέ , καίτοι μηνυόμενον ἐκ πολλῶν , ἵνα μὴ μακρηγορῶμεν , δι ' ὀλίγων ἐπιδείξομεν . ἡνίκα ἡμᾶς διὰ | ||
| ὁ ἄρα ιβ τοῦ γ τετραπλάσιος , καὶ ἵνα μὴ μακρηγορῶμεν , καὶ ἐπὶ τῶν ἐφεξῆς . ὁ μὲν τετραπλάσιος |
| μο θ , ἤτοι τῶν φοϚ ξδων , καταλείπονται ιϚ ξδα ἅτινά εἰσι τετράγωνος . Αἱ δὲ κα μονάδες συνάγουσιν | ||
| ἀπὸ τῶν κα καὶ ποιῶν τοὺς λοιποὺς τετραγώνους , φξ ξδα , καὶ φανερὰ ἡ ἀπόδειξις . . Εἰς τὸ |
| πόρισμά τι ἐκ τῶν εἰρημένων συνάγει . ἔστι δὲ τοιοῦτον πόρισμα ὅτι φανερὸν γέγονεν ἐκ τῶν εἰρημένων ὡς μία κατάφασις | ||
| τῇ εἰς ἀδύνατον ἀπαγωγῇ συνανεφάνη . τὸ δὲ νῦν προκείμενον πόρισμα διδάσκει ἡμᾶς , ὅτι περὶ ἓν σημεῖον τόπος εἰς |
| πέμπτα πενθημιμερῆ . τὰ δεύτερα καὶ τέταρτα καὶ ἕκτα ἀναπαιστικὰ ἑφθημιμερῆ . τὰ δ ' ἕβδομα τροχαϊκὰ ἑφθημιμερῆ Εὐριπίδεια . | ||
| δὲ ζʹ ἑφθημιμερές . πάρεστι δ ' εἰπεῖν ] ὅμοια ἑφθημιμερῆ εʹ . ὁμόσποροι δῆτα ] ἀντισπαστικοὶ θʹ ἡμιόλιοι . |
| θεωρητικόν , ὁρμητικόν , πρακτικόν : τούτων δ ' ἑκάστου ὑποδιαίρεσις . Τοῦ γὰρ περὶ τὴν θεωρίαν τῆς καθ ' | ||
| σφαλλώμεθα . ἔστι δὲ καὶ τῶν πέντε μερῶν τῆς ἰατρικῆς ὑποδιαίρεσις ἑκάστου . φυσιολογικὸν μὲν οὖν ἐστιν αὐτῆς μέρος , |
| . εἰκονολογίαν . τὸ δι ' εἰκόνος καὶ δι ' ὑποδείγματός τι δηλοῦν : γνωμολογία δὲ ὡς τὸ “ δεινὸν | ||
| μερόπων ἀνθρώπων Ἀτρεῖδαι ; . ψιλῶς . τὸ μὴ ἐπὶ ὑποδείγματός φησι . προσπαίζων . τουτέστιν ὁ φιλόσοφος ὡς παιδιᾷ |
| ἀρχαῖς τῶν δωδεκατημορίων ἐκτεθειμένων . Οἱ δὲ μετὰ τὰ εἰρημένα κανόνια συνημμένοι κανόνες περιέχουσι τὰς γινομένας τῆς σελήνης παραλλάξεις ἐν | ||
| ἑξάγωνον , ἧς κατὰ τὰς πλευρὰς ἐν ἴσοις διαστήμασιν ἦν κανόνια γ προσπεπηγότα , ἐφ ' ὧν ἐφεστήκει ἡ στυλὶς |
| δὲ προστιθέμενος , κύβος ἀπὸ τοῦ η , τουτέστι ΚΥ φιβ # ʂ ε , καὶ προστεθεὶς ʂ ε , | ||
| ε : θέλομεν οὖν ταῦτα κυβικὴν εἶναι πλ . ΚΥ φιβ . ʂ ἄρα η ἴσοι εἰσὶ ΚΥ χλζ # |
| τκδ τξδ τπδ υλβ υπϚ φιβ φοϚ χμη ψκθ ψξη ωξδ Ϡοβ ͵ακδ ͵αρνβ ͵ασϘϚ # ⌉ # Φ Ϲ | ||
| . ζʹ ψκθ πα . ηʹ ψξη λθ . θʹ ωξδ ϘϚ . ιʹ Ϡοβ ρη . ιαʹ ͵ακδ νβ |
| καὶ συνεπιφέρεται μὲν ἐκείνῃ , οὐ συνεπιφέρει δὲ αὐτήν . Πάλιν δὲ ἐπὶ τῆς μουσικῆς : οὐ γὰρ μόνον ὅτι | ||
| γονεῖς τέκνων καὶ ἀδελφοὺς ἀδελφῶν , καὶ οἰκείους οἰκείων . Πάλιν ἐν τῇ Πολιτείᾳ παριστάντα πολίτας καὶ φίλους καὶ οἰκείους |
| εἰσὶ χοριαμβικὰ δίμετρα ἀκατάληκτα καὶ καταληκτικὰ , ἤτοι ἑφθημιμερῆ , πενθημιμερῆ καὶ ἡμιόλια , καὶ τρίμετρα βραχυκατάληκτα καὶ καταληκτικά . | ||
| , κώλων ἀναπαιστικῶν εʹ . ὧν τὰ αʹ , βʹ πενθημιμερῆ . τὰ γʹ , δʹ δίμετρα ἀκατάληκτα . τὸ |
| , ἐκ κώλων τροχαϊκῶν ἐπιμεμιγμένων χορείοις καὶ ἰάμβοις καὶ ἀναπαίστοις διμέτρων ὀκτωκαίδεκα : ὧν τὰ μὲν αʹ , βʹ , | ||
| τοῦ μακροῦ καὶ τῆς ἐκθέσεως τούτου παράγραφος . κώλων δέκα διμέτρων πλὴν τοῦ τελευταίου καταληκτικῶν . ἐπὶ πᾶσι παράγραφος . |
| ὑπὸ τοῦ ὀγδόου τοῖς σνϚ . εʹ [ ἡμιόλιος ] φοϚ ξδ : ἔστι δὲ καὶ ἡμιόλιος τοῦ πράτου ὁ | ||
| ρμδ , μύστρα μεγάλα σπη , ὀξύβαφα τπδ , κυάθους φοϚ , χήμας μικρὰς ͵αρνβ : ὁ μὲν γὰρ χοῦς |
| δὲ καὶ κατὰ τὸ ἑξῆς ἀριθμοὶ τέσσαρες , ρϘβ σιϚ σμγ σνϚ : ὧν δὴ καὶ ὁ θεῖος Πλάτων ἐν | ||
| καὶ πάλιν ἀπὸ τοῦ σιϚ ἐπιτείνουσι τόνον καὶ ποιοῦσι τὸν σμγ ἐπόγδοον ὄντα τοῦ σιϚ : περιέχει γὰρ αὐτὸν καὶ |
| τε ἀπὸ τῆς ἡμισείας καὶ τοῦ ἀπὸ τῆς μεταξὺ τῶν τομῶν τετραγώνου . Εὐθεῖα γάρ τις ἡ ΑΒ τετμήσθω εἰς | ||
| διὰ τοῦ κέντρου τῶν τομῶν , καὶ ἤχθω διάμετρος τῶν τομῶν ἡ ΑΗ , καὶ ἐφαπτομένη τῆς τομῆς ἤχθω ἡ |
| ὁ Γ πρὸς κύβον τὸν Δ . ἔστι δὲ ὁ σιϚ κύβος , πλευραὶ δὲ αὐτοῦ ὁ Ϛ καὶ ὁ | ||
| Γ Ϙ καὶ ἓξ καὶ τὸ ἀπ ' αὐτῆς ἐννακισχίλια σιϚ , ἡ δὲ Δ λβ καὶ τὸ ἀπ ' |
| μὲν γὰρ ἐπιστημονικῶς τὴν δοθεῖσαν εὐθεῖαν γραμμὴν εἰς ἴσα διαιρεῖν τμήματα , διαιροῦσι δὲ αὐτὴν εἰς ἄνισα . ὁ δὲ | ||
| ἐάσας παγῆναι , κατάτεμε τὸ αἷμα καλάμῳ ὀξεῖ εἰς πολλὰ τμήματα ἐν τῇ λοπάδι κείμενον καὶ σκεπάσας δικτύῳ πυκνῷ ἢ |
| τὴν λέξιν , πλουτῶν δὲ τοῖς ἐνθυμήμασιν . στʹ . Ὑπογραφή ἐστι λόγος τυπωδῶς εἰσάγων εἰς τὴν δηλουμένην τοῦ πράγματος | ||
| τὴν λέξιν , πλουτῶν δὲ τοῖς ἐνθυμήμασιν . στʹ . Ὑπογραφή ἐστι λόγος τυπωδῶς εἰσάγων εἰς τὴν δηλουμένην τοῦ πράγματος |
| παρὸν ποίημα ἱστορικόν τινες ἐκάλεσαν , συγκείμενον ἐκ τοπικοῦ καὶ πραγματικοῦ καὶ χρονικοῦ καὶ γενεαλογικοῦ , εἰς ἃ τὴν ἱστορίαν | ||
| ὅτι οὐδεὶς τῶν ἀρχαίων παρῆκε διήγησιν , καὶ ὅτι τοῦ πραγματικοῦ μέρους ἐστὶν ἡ διήγησις , ἀνάγκη τέ ἐστι διηγεῖσθαι |
| τρισκαιδεκακισμυριοστοτριακοσιοστοεικοστοπρώτων . Λείψει γοῦν τῶν ριβ τριακοσιοστοεξηκοστοπρώτων ἀναλυθέντων εἰς τετρακισμύρια υλβ τρισκαιδεκακισμυριοστοτριακοσιοστοεικοστόπρωτα , λοιπὰ πεντακισμύρια χίλια Ϡπδ , ἅτινά εἰσιν | ||
| τοῖς οὖν ἐν αὐτῷ γινομένοις μετρεῖται . τκδ τξδ τπδ υλβ υπϚ φιβ φοϚ χμη ψκθ ψξη ωξδ Ϡοβ ͵ακδ |
| ἀπ ' ἀρχῆς δὲ μέχρι ἡμίσους περὶ τῶν ἐν αὐτοῖς γραμμικῶν ἐμμελέστατα διεξελθὼν πολυγωνίων τε καὶ παντοίων τῶν ἐν ἀριθμοῖς | ||
| ὁμοίως συνδυαζόμενοι τρίγωνοι τετραγώνους ἀποτελοῦσιν , ὡς καὶ ἐπὶ τῶν γραμμικῶν τριγώνων σύνθεσις τετράγωνον σχῆμα ποιεῖ . ἔτι τῶν στερεῶν |
| δὲ ζʹ ἀκατάληκτον δίμετρον : τὰ ηʹ θʹ ιαʹ δακτυλικὰ τρίμετρα : τὸ ιʹ τροχαϊκὴ βάσις : τὰ ιβʹ ιγʹ | ||
| ἰαμβικά . εἰσὶν οὖν τὰ τοῦ παρόντος χοροῦ κῶλα ἀντισπαστικὰ τρίμετρα βραχυκατάληκτα δʹ , τὸ δὲ εʹ δίμετρον βραχυκατάληκτον ἤτοι |
| ἐπιπέδῳ πρὸς ὀρθὰς οὖσαι διὰ τὸ Ϛʹ αἱ αὐταὶ καὶ συμπίπτουσαι : ὅπερ ἀδύνατον . Ἀντιστρόφιον : ἐὰν ᾖ παράλληλα | ||
| ' αὐτοῖς αἱ ἐν τῶι αὐτῶι ἐπιπέδωι οὖσαι καὶ μὴ συμπίπτουσαι ἐπὶ μηδέτερα μέρη . σαφηνείας δὲ ἕνεκα ἐκ τοῦ |
| γένηται αὐτῷ μᾶλλον προτρέψασθαι , οὕτω τὴν ἀντίθεσιν μετεχειρίσατο . Πληρώσας δὲ τὸ συμφέρον τοῦτο ὃ ἀντεπήγαγεν εἰς λύσιν τῆς | ||
| : τὰ εἰς εις ὑπὲρ μίαν συλλαβὴν καὶ ἑξῆς . Πληρώσας τὰ εἰς ς μετὰ ἑνὸς φωνήεντος ἔρχεται ἐπὶ τὰ |
| , ἤτοι τοῖς τρισὶ μο , γίνονται σκε καὶ σπθ ξδʹ , ἅτινά εἰσι τετράγωνοι Ϟοί . . Λοιπὸς ὁ | ||
| - ταμοῦ οβʹ ∠ ʹʹ νϚʹ ἡ πηγὴ τοῦ ποταμοῦ ξδʹ νηʹ μεθ ' ἣν τὸ εἰρημένον πέρας ἐπὶ τὴν |
| 〚 ὡς ἡδὺ πράττειν , ὦ ' νδρες : Εἴσθεσις συστηματικῆς περιόδου , ἐκ στίχων ὁμοίων κβʹ , ὧν τελευταῖος | ||
| τοῦ Τρικλινίου . ἡ εἴσθεσις τοῦ παρόντος δράματος ἄρχεται ἐκ συστηματικῆς περιόδου καὶ ἑξῆς ἐκ προσώπων ἀμοιβαίων . οἱ δὲ |
| . καὶ ἐν ἐνίοις δὲ τῶν ἀντιγράφων ἕτερός τις φέρεται πρόλογος , πεζὸς πάνυ καὶ οὐ πρέπων Εὐριπίδῃ : καὶ | ||
| παρέχων , ὥσπερ καὶ πρὸς τὸν δʹ τοῦ αὐτοῦ λόγου πρόλογος ἦν : τῇ δὲ κατὰ τὴν διαφορὰν ποσότητι διοίσει |
| τοῦ διπλασίονος τοῦ τρίτου ὑπερέχουσι μο κ . Ὁ ἄρα διπλασίων τοῦ τρίτου ἔσται Ϟ β ↑ μο κ : | ||
| διπλασίου καὶ τοῦ τριπλασίου τῶν κατὰ τὸ ἑξῆς συντιθεμένων , διπλασίων μὲν αʹ βʹ δʹ ηʹ : δ ' ἐστὶ |
| φέρε εἰπεῖν ὑπὸ δ τριγώνων καὶ θ τετραγώνων καὶ τριῶν πενταγώνων , ἔτι δὲ καὶ ἕτερον στερεὸν σχῆμα ὁμοίως περιέχεται | ||
| καὶ πάλιν τὰς πυραμίδας τὰς ἐχούσας πεντάγωνον βάσιν ἀπὸ τῶν πενταγώνων ποιεῖ , καὶ τὰς ἑξάγωνον ἐχούσας βάσιν ἀπὸ τῶν |
| ἐπιστήμη καὶ γνῶσις . Διατεινομένης οὖν ὅλης τῆς ἐκκειμένης τοῦ κριτηρίου πρὸς τὸ δικαστήριον παραβολῆς ἔοικε τὰ μὲν ὑποκείμενα τῶν | ||
| . Τὸ δὲ τοῦ Ζυγοῦ δωδεκατημόριον σημαίνει περὶ προσόδου ἢ κριτηρίου ἢ δόσεως ἢ λήψεως , τὸ βʹ περὶ κλέμματος |
| ξηρότητεϲ αὐτοῦ . ἐπεὶ δὲ πλείϲταϲ ἐν τῷ οἴνῳ εὑρίϲκομεν διαφοράϲ , διοριϲτέον περὶ αὐτῶν ὡϲ οἷόν τε διὰ βραχέων | ||
| τῇ μαλακῇ καὶ τῇ ϲυμμέτρῳ κατὰ ϲκληρότητα , ποιεῖ τρεῖϲ διαφοράϲ , ἡ δὲ ὀλίγη πάλιν ταῖϲ αὐταῖϲ τριϲὶν ἑτέραϲ |
| χρονικαῖς γ κʹ . λέγω δὴ ὅτι τῶν ἐν τοῖς αβ βγ δωδεκατημορίοις τριακοστημορίων τῶν ἑξῆς ἀλλήλοις κειμένων [ ἀρχομένων | ||
| γβ ἑαυτὸν πολλαπλασιάσας ποιείτω τὸν ζη . καὶ ἐπεὶ ὁ αβ τὸν γβ πολλαπλασιάσας ἐποίησε τὸν δ , ὁ ἄρα |
| ὅπερ ἔδει δεῖξαι . Ἐὰν ἀριθμὸς μήτε τῶν ἀπὸ δυάδος διπλασιαζομένων ᾖ μήτε τὸν ἥμισυν ἔχῃ περισσόν , ἀρτιάκις τε | ||
| τέτταρες ἔσονται ἢ ἄλλο τι πλῆθος τῶν ἀφ ' ἑνὸς διπλασιαζομένων : τοσαῦτα δὲ καὶ τὰ εἴδη . ἔστι δ |
| “ . σὸν ἔργον , ὦ πρεσβύτα : διπλῆ καὶ εἴσθεσις εἰς ἐπῳδικὴν τριάδα ἢ τετράδα , ἧς αἱ μὲν | ||
| . εἰ γάρ μοι γένοιτ ' ἰδεῖν : κορωνὶς καὶ εἴσθεσις χοροῦ μονοστροφικὴ στίχων καὶ κώλων ιεʹ , ὧν ὁ |
| μηνὶ Φευρουαρίῳ κϚ χελιδόνεϲ φαίνονται . Περὶ ὑδάτων ἐκ τῶν Ῥούφου . Τῶν πινομένων ὑδάτων πέντε εἰϲὶν αἱ καθόλου διαφοραί | ||
| Ἀρχιγένουϲ καὶ Ποϲειδωνίου θ Περὶ μελαγχολίαϲ ἐκ τῶν Γαληνοῦ καὶ Ῥούφου καὶ Ποϲειδωνίου ι Θεραπεία μελαγχολικῶν ια Περὶ λυκανθρωπίαϲ ιβ |
| μερῶν τι σημαντικόν ἐστιν ὡς φάσις , πρὸς διάκρισιν τῶν συντεθέντων μερῶν καὶ κατὰ ἀπόφανσιν ἤδη λεγομένων , ὡς ἂν | ||
| ὅτι , ἐὰν ἀπὸ τοῦ συγκειμένου λόγου εἷς ὁποιοσοῦν τῶν συντεθέντων ἀφαιρεθῇ , ἑνὸς τῶν ἄκρων ἀφανισθέντος ὁ λοιπὸς τῶν |
| τὰ φύσει συνεστῶτα τὰ μὲν πολυσύνθετα αὐτῶν καὶ συγκρίματα καλούμενα ἀναλύσεις εἰς τὸ ἐπὶ πᾶσι τοῖς συγκριθεῖσιν εἶδος : οἷον | ||
| ὀξύτερον , ἀνάλυσις δὲ τοὐναντίον . τὰς ἀγωγὰς καὶ τὰς ἀναλύσεις δεῖ μελῳδεῖν ἐκτείνοντας μᾶλλον καὶ μὴ βραχύνοντας τοὺς φθόγγους |
| γένωνται , πάθεσιν ἀκαθάρτοις καὶ παρὰ φύσιν ἡδοναῖς χρήσονται . ἑξάγωνοι δὲ πρὸς ἀλλήλους τὴν αὐτὴν ἀποτελεσματογραφίαν τοῖς τριγώνοις ἔχουσιν | ||
| πεντάγωνοι , ἐκ δὲ τῶν πενταγώνων καὶ τῶν τριγώνων οἱ ἑξάγωνοι , ἐκ δὲ τῶν ἑξαγώνων καὶ τῶν τριγώνων οἱ |
| εἰ δὲ βούλει προσοδιακὸν δίμετρον καταληκτικὸν ἐκ χοριάμβου καὶ Ἰωνικοῦ καταληκτικοῦ . Τὸ θʹ προσοδιακὸν τρίμετρον ἀκατάληκτον : ὁ αʹ | ||
| τοῦ βʹ χοριάμβου , τοῦ γʹ Ἰωνικοῦ ἀπ ' ἐλάσσονος καταληκτικοῦ . τοῦτο καὶ ἀναπαιστικόν ἐστι δίμετρον ἀκατάληκτον , σπονδείου |
| ρϘϚ Περὶ ἐκλογῆϲ τῶν καλλιϲτευόντων ἁπλῶν φαρμάκων ρϘζ Ἐκ τῶν Ὀριβαϲίου . Ὅϲα μέϲα ἐϲτὶ τῶν θερμαινόντων καὶ ψυχόντων ρϘη | ||
| ἄνθρακαϲ διαπύρουϲ ἐπιτεθεῖϲα ἰώδη τὴν χρόαν ἐμφαίνουϲα . Ἐκ τῶν Ὀριβαϲίου περὶ δυνάμεωϲ τῶν ἁπλῶν φαρμάκων . Ὅϲα μέϲα ἐϲτὶ |
| β μο α . ↑ οὖν τοῦ δευτέρου , ἤτοι Ϟῶν β μο α , γίνεται δυ μία , τουτέστι | ||
| β : ἔσται Ϛ δʹ . Ὁ δὲ ἕτερος ταχθεὶς Ϟῶν ι ἔσται λ δʹ . Καὶ ποιοῦσι τὰ τῆς |
| τὰ συσταθέντα τὰ ΑΖΓ ΓΗΕ ἅμα τῶν ἐξ ἀρχῆς ΑΒΓ ΓΔΕ : καὶ τοῦτο γὰρ δέδεικται πρὸ δύο . κοινοῦ | ||
| τῇ ὑπὸ ΔΓΕ , τὴν δὲ ὑπὸ ΒΑΓ τῇ ὑπὸ ΓΔΕ καὶ ἔτι τὴν ὑπὸ ΑΓΒ τῇ ὑπὸ ΓΕΔ : |
| . Παράληψις Κύπρου τε πάσης καὶ τῆς Πτολεμαίου δυνάμεως . κδʹ . Ὡς μετὰ τὴν νίκην ταύτην Ἀντιγόνου καὶ Δημητρίου | ||
| Καρκίνου μοίρᾳ κδʹ , τὸ δὲ δῦνον ὡσαύτως Αἰγοκέρωτος μοίρᾳ κδʹ , καὶ τὸ μὲν ὑπέργειον μεσουράνημα Κριοῦ μοίρᾳ ιʹ |
| κζ πολλαπλασιαζέτω τὸν κζ : εἰκοσιεπτάκις κζ : καὶ γίνονται ψκθ . καὶ ἐπεὶ ὁ ιη οὐ μετρεῖ τὸν ψκθ | ||
| μετρεῖται . τκδ τξδ τπδ υλβ υπϚ φιβ φοϚ χμη ψκθ ψξη ωξδ Ϡοβ ͵ακδ ͵αρνβ ͵ασϘϚ # ⌉ # |
| ἑκάστους ἕκαστον μηκύνῃ ἢ ὑπὸ ἑκάστου μηκύνοιτο , ὁμοίως γενήσονται εὔτακτοι κύβοι . ἔτι οἱ περισσοὶ ἐπειδὴ ἔτι ὁμοποιοί εἰσι | ||
| τῶν ἀπὸ μονάδος ἑαυτὸν πολλαπλασιάσαντος καὶ τὸν ἐξ αὐτοῦ γίνονται εὔτακτοι κύβοι . καὶ εἰ τάξει οἱ ἀπὸ τετράδος τετράγωνοι |
| μὲν γὰρ ἀπεδείχθη ρμδ εἶναι τὰς προτάσεις , ἐνταῦθα δὲ σπη ἔσονται δι ' αἰτίαν τοιαύτην . ἀνάγκη γὰρ ἀμφοτέρους | ||
| γὰρ αὐτοῦ ἀπαρτίζοντα οὐχ εὑρίσκομεν , κατὰ ἄνεσιν ποιοῦμεν τοῦ σπη ὑπεπόγδοον τόνον . ἔστι δὲ ὑπεπόγδοος τοῦ σπη ὁ |
| . [ Περὶ χειρουργίας εἰδῶν . ] Χειρουργία ἐστὶν ἄρσις ἐμμέθοδος τοῦ ἰδίως λεγομένου ἀλλοτρίου , διὰ τομῶν καὶ καταρτισμῶν | ||
| , κολλητικὴ πρός τε αἱμοπτυϊκοὺς καὶ ἄρθρα ξηραντική . Νευροτρώτων ἐμμέθοδος θεραπεία ἐκ τῶν Γαληνοῦ ἡ καὶ τοῖς νευροθλάστοις ἁρμόζουσα |
| αὐτὸν καὶ τὸν πα ἀριθμὸν , ὅς ἐστιν ὄγδοον τοῦ χμη . εἰς δὲ συμπλήρωσιν τοῦ ἡμιολίου ἀριθμοῦ τοῦ ψξη | ||
| γινομένοις μετρεῖται . τκδ τξδ τπδ υλβ υπϚ φιβ φοϚ χμη ψκθ ψξη ωξδ Ϡοβ ͵ακδ ͵αρνβ ͵ασϘϚ # ⌉ |
| τὸν ρκʹ , τὸν ρκβʹ κώλου τμήματα δʹ , ἃ μονόμετρά ἐστι βραχυκατάληκτα . μετὰ δὲ τὸν ρκδʹ ἕτερα βʹ | ||
| ἰώ , ἢ τὸ φεῦ φεῦ ἰώ : ταῦτα γὰρ μονόμετρά ἐστιν ἀκατάληκτα διὰ τὸ ἀπηρτισμένους ἔχειν τοὺς πόδας καὶ |
| μὲν κατ ' ἀριθμὸν ὑπερέχουσαν , ἴσῳ δὲ ὑπερεχομένην : ἡμιολίων δὲ καὶ ἐπιτρίτων διαστάσεων διὰ πασῶν τῷ τοῦ ἐπογδόου | ||
| μαλακὸν χρῶμα : τὸ δὲ τρίτον χαρακτηρίζεται μὲν ἐκ διέσεων ἡμιολίων τῆς ἐναρμονίου διέσεως , καλεῖται δὲ ἡμιολίου χρώματος : |
| οὐδετέρῳ δὲ ὅ τε ἐπόγδοος καὶ ὁ τῶν σνϚʹ πρὸς σμγʹ , καὶ οἱ τούτοις ὑπεναντίοι ὅ τε ὑποδιπλάσιος καὶ | ||
| ὅμοιον τὸν ἐν τῷ διατονικῷ τὸν τῶν σνϚʹ πρὸς τὰ σμγʹ . συνίσταται δὴ τὰ τοιαῦτα τετράχορδα κατὰ τοὺς ἐκκειμένους |
| καὶ ἕτερος τοῦ δαίμονος , ἐπὶ δὲ τῶν συνοδικῶν καὶ πανσεληνιακῶν γενέσεων ὁ αὐτός : ἄλλως τε ἐπὶ ἀρρενικῶν γενέσεων | ||
| μὲν τῶν συνοδικῶν συζυγιῶν τῶν φαινομένων , ἐπὶ δὲ τῶν πανσεληνιακῶν τῶν ἀκριβῶν , διὰ τῶν κατὰ πλάτος ἐποχῶν τῆς |
| ἐκτιθέσθω , περὶ δὲ φήμης καὶ ἀγγελίας ὁμοίως σκέπτου . Ἀκολούθως τοῖς προτέροις ἔστω ὁ μὲν δανείζων ὁ ὡροσκόπος , | ||
| οὐ πλεῖον σταδίων ͵θπεʹ , οὐχ ἧττον σταδίων ͵Ϛωμεʹ . Ἀκολούθως τοίνυν καὶ τῆς Ἀλβίωνος νήσου τὸν περίπλουν ἐκθήσομεν . |
| ιβʹ . τὸ αʹ τὸ βτερον καὶ τὸ γʹ ἰαμβικὰ δίμετρα ἀκατάληκτα , ἃ καλεῖται Ἀνακρεόντεια ὡς κατακόρως τούτοις τοῦ | ||
| τροχαϊκὴ βάσις : τὰ ιβʹ ιγʹ χοριαμβικὰ εἰς βακχεῖον περαιούμενα δίμετρα : τὸ ιεʹ ἀναπαιστικὸν δίμετρον βραχυκατάληκτον : τὰ ιζʹ |
| Περὶ χαλαζίων . ιζʹ . Περὶ ἀκροχορδόνων καὶ ἐγκανθίδων . ιηʹ . Περὶ πτερυγίων . ιθʹ . Περὶ ϲταφυλωμάτων . | ||
| ιβʹ ὦμοι , ἀπὸ ιγʹ ἕως ιζʹ κοιλία , ἀπὸ ιηʹ ἕως κʹ μηροί , ἀπὸ καʹ ἕως κγʹ μέσαι |
| οὔτε ἐλάσσων ; κατασκευάζει τοῦτο διὰ τοῦ βʹ τρόπου τῶν ὑποθετικῶν , ὅτι , εἴ ἐστιν ἡ ΒΑΓ γωνία ἴση | ||
| ἂν εἴη μόνον . Εἰπόντες δὲ περὶ τῶν ἐξ ὁμολογίας ὑποθετικῶν καὶ δείξαντες , ὅτι μὴ γίνεται τοῦ τιθεμένου , |
| κατασκευάζουσι τὸ προκείμενον οὕτω . λαμβάνουσιν ἡμιόλιον ἀριθμόν τινα τὸν ψξη πρὸς τὸν φιβ . καὶ ἀπὸ τούτου τοῦ φιβ | ||
| ͵γοβ καὶ τοῦ δʹ διαστάματος : ὑπερέχει γὰρ καὶ ὑπερέχεται ψξη . ὁ δ ' αὐτὸς μέσος τοῦ τε θʹ |
| . . . . . . . . . . ροθ ∠ ʹγ νότ . β Σάρατα . . . | ||
| ροϚ Περὶ καράβου ροζ Κάϲτοροϲ ὄρχιϲ ροη Κυνὸϲ ποταμίου ὄρχιϲ ροθ Κυνὸϲ χερσαίου ϲκύλαξ ρπ Κύκνου νεοττόϲ ρπα Κηρύκων ὄϲτρακα |
| . νενευκυῖαι . ὦ καλλιπύργου : ἑτέρα . . . χοριαμβικῶν ἐπιμεμιγμένων , ὡς τὰ τῆς στροφῆς καθ ' ἕκαστον | ||
| τὸ τέλος . νῦν δείξετον : εἴσθεσις . . . χοριαμβικῶν διαφόρως κεκολλημένων δέκα , ὧν τὸ πρῶτον δίμετρον ἀκατάληκτον |
| , ἧς ὑπερέχει ὁ ΖΘΜΝ κύκλος τοῦ Α στερεοῦ . λελήφθω καὶ ἔστω τὰ ἐπὶ τῶν ΕΞΖ , ΘΗΠ , | ||
| ὅλου κυλίνδρου , ἃ ἔσται ἐλάττονα τοῦ Ρ στερεοῦ . λελήφθω καὶ ἔστω τὰ ἐπὶ τῶν ΑΕΒ , ΒΖΓ , |
| φοϚα . Πάλιν τὰ α̈ ͵εωοϚ τοιαῦτα μόρια προσλαβόντα τὰ τκδ φοϚʹ ἀναλυθέντα καὶ ταῦτα εἰς τοιαῦτα μόρια καὶ γεγονότα | ||
| δύναται μετρῆσαι , τοῖς οὖν ἐν αὐτῷ γινομένοις μετρεῖται . τκδ τξδ τπδ υλβ υπϚ φιβ φοϚ χμη ψκθ ψξη |
| κατὰ συζυγίαν πολλαπλάσιός ἐστι κατὰ τὸν ἥμισυν τοῦ πλήθους τῶν ἐκκειμένων ὅρων . ἐπεὶ γὰρ ἡ τῶν αβ βγ ὑπεροχὴ | ||
| γδ , τουτέστιν ὅσον ἐστὶ τὸ ἥμισυ τοῦ πλήθους τῶν ἐκκειμένων ὅρων : ὥστε ὁ αη δύο τῶν κατὰ συζυγίαν |
| διὰ ταύτην λέγοντες αὑτοὺς ἀποδίδοσθαι τὴν πρόφασιν ἀληθεύοιεν ἄν . Λοιπὸν δὴ καὶ ἀληθέστατον μέν , ἥκιστα δὲ πρὸς αὐτῶν | ||
| τίθεσθαι ἀλλὰ τί , καὶ οὐ τέλειοι οἱ τοιοῦτοι . Λοιπὸν δὲ λεκτέον τί εἶπεν ἕτερόν τι τῶν κειμένων , |
| καὶ ἀπὸ τούτου ἐπιτεί - νουσι τόνον καὶ ποιοῦσι τὸν Ϡοβ τῷ ρη ὑπερέχοντα τοῦ ωξδ . ἐπεὶ δὲ οὐκέτι | ||
| ρη ὑπερέχοντα τοῦ ωξδ . ἐπεὶ δὲ οὐκέτι ἀπὸ τοῦ Ϡοβ δυνάμεθα ἐπιτεῖναι τόνον , κατ ' ἄνεσιν αὐτὸν εὑρίσκομεν |
| ἐννέα , καὶ ἡ ἐπῳδὸς κώλων ἐννέα . τὸ αʹ ἐγκωμιολογικὸν δίμετρον καταληκτικόν . τὸ βʹ προσοδιακὸν δίμετρον ἀκατάληκτον ἐκ | ||
| ἡ στροφὴ καὶ ἀντίστροφος κώλων ὀκτώ . τὸ αʹ Πινδαρικὸν ἐγκωμιολογικὸν , τὴν τελευταίαν συλλαβὴν μεταθὲν εἰς τὴν πρώτην . |
| φοϚ χμη ψκθ ψξη ℧ Ζ Ε ℧ # ⋏ Μʹ Ιʹ Ζ # ∐ Ζ # # # ʹ | ||
| Μ Ι Θ Γ ℧ Ζ Ε ℧ # ⋏ Μʹ Ιʹ ⊢ Γ ⌙ Ϝ Ϲ # # # |
| ἀπὸ μὲν τοῦ σιϚ ἐπιτείνουσιν τόνον καὶ ποιοῦσι τὸν σμγ ἐπόγδοον ὄντα τοῦ σιϚ καὶ τῷ κζ ὑπερέχοντα . ἐπεὶ | ||
| ἐπιτείνουσι τόνον καὶ ποιοῦσι τὸ ἐπόγδοον αὐτοῦ τὸν ψκθ , ἐπόγδοον ὄντα τοῦ χμη , ἐπειδὴ περιέχει αὐτὸν καὶ τὸν |
| ρῶν : καὶ γὰρ καὶ προοιμίων τύπους ἡμᾶς διδάσκει καὶ διηγήσεων , ἤδη δὲ καὶ αὐτῶν τῶν ἀγώνων : προοιμίων | ||
| τοῦ λόγου μερῶν ἐστι δεκτική , προοιμίων τε λέγω καὶ διηγήσεων τῶν ἐν τῇ ἐξετάσει [ τε ] λέγω τῶν |
| θ μο , μο θ ↑ δυ μιᾶς , ἤτοι φξ ξδʹ καταλειφθήσονται , ἀπὸ δὲ τῶν κα μο , | ||
| δὲ τῶν κα μο , ἤτοι ͵ατμδ ξδʹ , τῶν φξ ξδʹ . καταλειφθήσονται ψπδ ξδʹ , ὅλος τετράγωνος . |
| ὁμοίου ἐφίεσθαι . τὸ μὲν οὖν ἀνάγειν τὸν λόγον εἰς καθολικούς τινας καὶ φυσικοὺς λόγους καὶ ζητεῖν ἁπλῶς , πῶς | ||
| ἡ ῥητορική : πᾶσα γὰρ τέχνη τοὺς μὲν κανόνας ἔχει καθολικούς , τὰ δὲ ἀποτελέσματα μερικά : ὡσαύτως οὖν καὶ |
| ἐπὶ ταῖς ἀποθέσεσι παράγραφος , ἐπὶ δὲ τῶι τέλει τῆς ἐπωιδοῦ κορωνὶς καὶ παράγραφος . καὶ νὺξ ] τὴν νύκτα | ||
| στροφῆς καὶ ἀντιστροφῆς παράγραφος , ἐπὶ δὲ τῶι τέλει τῆς ἐπωιδοῦ κορωνὶς καὶ παράγραφος . Διὸς ] ἤγουν ἐκ Διὸς |
| εἰς τὸ περὶ εὐπορίας προτάσεων , καὶ εἰς τὸ περὶ ἀναλύσεως συλλογισμοῦ , ἐπιγέγραπται Ἀναλυτικὰ ἐκ τοῦ τιμιωτέρου μέρους : | ||
| τε ἀναποδείκτου καὶ τρίτου , καθὼς πάρεστι μαθεῖν ἐκ τῆς ἀναλύσεως , ἥτις σαφεστέρα μᾶλλον γενήσεται ἐπὶ τοῦ τρόπου ποιησαμένων |
| ὡς τὰ τούτου βραχύτερα τέτμηται καὶ καθόλου τὰ κομματικὰ καὶ ἀσύνδετα . [ , ] ἀλλὰ τὸ τοῦ Κεφάλου καλὸν | ||
| , οὗ τὸ ἀκόλουθον ἦν οὐκ ἠμέλει . Καὶ τὰ ἀσύνδετα τοῦ ἀφελοῦς ἐστι : λύει γὰρ τὸν ῥυθμόν . |
| μείζων ἐστὶν τῆς ὑπὸ ΗΖΚ . ἔστω δὴ ἡ ὑπὸ ΗΖΝ . ἐπεὶ οὖν , ἐν ὅσῳ χρόνῳ τὴν ΚΗ | ||
| πάλιν ἀποκατασταθῇ ὅθεν ἤρξατο φέρεσθαι , τὰ μὲν ΞΓΔ , ΗΖΝ ἡμικύκλια ἐνεχθήσεται κατὰ τῶν σφαιρῶν , τὸ δὲ ΚΓΛ |
| Ο μέγιστος κύκλος γεγράφθω ὁ ΠΟ , καὶ τριῶν οὐσῶν περιφερειῶν ὁμοιογενῶν ἀνίσων τῶν ΚΘ , ΘΠ , ΗΘ εἰλήφθω | ||
| τεσσάρων δὴ ὄντων μεγεθῶν δύο μὲν τῶν ΒΓ , ΕΖ περιφερειῶν , δύο δὲ τῶν ΗΒΓ , ΕΘΖ τομέων εἴληπται |
| χοριαμβικὰ ὅμοια ιβʹ . ἆρα φρονοῦσι ] τὰ κῶλα ταῦτα ἀναπαιστικά ἐστι δίμετρα καὶ μονόμετρα ηʹ . χαίρετ ' ἐν | ||
| τοῦ χοροῦ κῶλα χοριαμβικὰ , τὰ δὲ τοῦ ἑτέρου προσώπου ἀναπαιστικά . εἰσὶ δὲ τὰ τῆς πρώτης ταύτης στροφῆς κῶλα |
| ἀπὸ τῶν ρκ μονάδων καὶ τὰς ρ μονάδας . Ἐναπελείφθησαν Ϟοὶ ε ἴσοι μονάσιν κ . . Ἐπεὶ ἡ λεῖψις | ||
| ιβ . Κοινὴ προσκείσθω ἡ λεῖψις . δυ ἄρα γ Ϟοὶ λ μο θ ἴσα δυνάμεσι δ μονάσιν θ . |
| : ὥρα τοίνυν ἐπὶ τὴν διόρθωϲιν τῶν τοῦ ὅλου ϲώματοϲ δυϲκραϲιῶν τρέψαι τὸν λόγον . Ἐπειδὴ ταῖϲ θερμαῖϲ δυϲκραϲίαιϲ πλεονάζει | ||
| , καὶ μᾶλλον ὀρέγονται τῶν ϲιτίων . τούτων δὲ τῶν δυϲκραϲιῶν ὁποία ἂν εἴη , τῆϲ μὲν ξηρᾶϲ αὐτῇ ϲυμπλεκομένηϲ |
| . . . . . . . . Τὰ εἰς ΤΙΣ πρὸ αὐτοῦ ψιλὸν ἔχοντα . . . . βαρύνεται | ||
| . τὰ δὲ ὀξύνεται : νοκτίς πηκτίς . Τὰ εἰς ΤΙΣ πρὸ τοῦ ΤΙΣ Υ ἔχοντα σπάνια ὄντα τὰ μὲν |
| . τὼ μηρῶ λαβών ] διπλῆ καὶ ἔκθεσις εἰς ἰάμβους τριμέτρους ἀκαταλήκτους κδʹ . ταυτὶ δέδραται : κορωνὶς εἰσιόντων ἑτέρων | ||
| ' ἄνδρα τῶν αὐτοῦ : διπλῆ καὶ ἔκθεσις εἰς ἰάμβους τριμέτρους ἀκαταλήκτους μϚʹ ἕως τοῦ ὅτι ἐκάλεσας εὐηθικῶς τὴν κάρδοπον |
| πρὸς ὀρθὰς γωνίας τέμνει , τέσσαρα μὲν ἔσται σημεῖα τοῦ λοξοῦ κύκλου , δύο μὲν τὰ ὑπὸ τοῦ ἰσημερινοῦ κατὰ | ||
| τὸ κέντρον τῆς σελήνης ἐν ἀμφοτέραις ταῖς ἐκλείψεσιν ἐπὶ τοῦ λοξοῦ κύκλου , τουτέστιν ἡ μὲν ΑΕ μοιρῶν θ καὶ |
| λέγῃς λέγῃ , ἐὰν βοῶ βοᾷς βοᾷ . Τὰ εἰς ΜΙ λήγοντα ὁριστικὰ ἀποστρέφονται τὴν ὀξεῖαν τάσιν , καὶ τὰ | ||
| εἰρημένους . Τὸ ἑκκαιδέκατον περιέχει τὰ εἰς Ω καὶ εἰς ΜΙ ῥήματα κατὰ πᾶν πρόσωπον . Τὸ δέκατον ἕβδομον περιέχει |
| ] ὥσπερ ἐν στροφῇ καὶ ἀντιστρόφῳ στροφὴ καὶ ἀντίστροφος καὶ ἐπῳδὸς συστήματα μέτρων ἐστὶν ἐν κωμικοῖς καὶ τραγικοῖς καὶ λυρικοῖς | ||
| μονοστροφικῷ : ἐκ γʹ γὰρ περιόδων ἐστὶ τῶν αὐτῶν , ἐπῳδὸς δὲ οὐκ ἔστιν . Αὕτη ἡ ᾠδὴ ἐν μὲν |
| τῆς σφαίρας πρὸς τὸ ἀπὸ τῆς ΔΗ πλευρᾶς οὔσης τοῦ κύβου , οὕτως τὸ ἀπὸ τῆς τοῦ ΚΛΘ τριγώνου ἰσοπλεύρου | ||
| ὧν αἱ πλευραὶ Μο ι . Τετάχθω ἡ τοῦ αου κύβου πλ . ʂ α Μο ε τουτέστι τοῦ ∠ |
| βοῶν καὶ ζευγνύντος αὐτούς , ἐμπέπηγε δὲ σφηνωθὲν διά τινων σφηνισκῶν . εἰ μὲν οὖν ἓν ᾖ ξύλον τὸ ὅλον | ||
| βοῶν καὶ ζευγνύντος αὐτούς , ἐμπέπηγε δὲ σφηνωθὲν διά τινων σφηνισκῶν . εἰ μὲν οὖν ἓν ᾖ ξύλον τὸ ὅλον |
| ὁ ἐπίτριτός ἐστιν . Ὁ δὲ διὰ πέντε , ὁ ἡμιόλιος . Ὁ δὲ διὰ πασῶν , ὁ διπλάσιος . | ||
| τὰ λοιπά . καὶ ἐγίνετο ἐκ μὲν τοῦ διπλασίου ὁ ἡμιόλιος , ἐκ δὲ τοῦ ἡμιολίου ὁ ἐπιμερής , καὶ |
| παραβάσει ὁ μὲν βασιλεὺς τύραννος , ὁ δ ' ἄρχων ἀνακόλουθος , ὁ δ ' ἀρχόμενος δοῦλος , ὁ δ | ||
| . τυφογέρων : ἐσχατόγηρως : ἢ ὑπερήφανος . ἀνάρμοστος : ἀνακόλουθος , . μηδενὶ ἁρμοζόμενος , . κακός , . |
| αὐτὸ εὗρε δοκιμώτερον πάντων , ὥϲτε μὴ καταφρονήϲῃϲ . ] Ἐπιμέλεια τῶν ὑπερκαθαιρομένων Ὀριβαϲίου . Ἐπὶ τῶν ὑπερκαθαιρομένων ϲυϲτέλλειν χρὴ | ||
| Περὶ ϲκληροφθαλμίαϲ Δημοϲθένουϲ οζ Περὶ ξηροφθαλμίαϲ οη Περὶ ψωροφθαλμίαϲ οθ Ἐπιμέλεια ξηροφθαλμίαϲ καὶ ϲκληροφθαλμίαϲ καὶ ψωροφθαλμίαϲ π Πρὸϲ μαδάρωϲιν βλεφάρων |
| ἐπικύκλου ε ιγ ἔγγιστα . ἤχθω δὴ ἐπὶ τῆς ὁμοίας καταγραφῆς ἀπὸ τοῦ Κ κέντρου κάθετος ἐπὶ τὴν ΒΕ ἡ | ||
| ὕστερόν ἐστι βραχυτέρα . Ἔστω γὰρ ὡς ἐπὶ τῆς δευτέρας καταγραφῆς , καὶ τῶν αὐτῶν ὑποκειμένων ὁ ἥλιος ἔν τινι |