πρὸς ὀρθὰς γωνίας τέμνει , τέσσαρα μὲν ἔσται σημεῖα τοῦ λοξοῦ κύκλου , δύο μὲν τὰ ὑπὸ τοῦ ἰσημερινοῦ κατὰ | ||
τὸ κέντρον τῆς σελήνης ἐν ἀμφοτέραις ταῖς ἐκλείψεσιν ἐπὶ τοῦ λοξοῦ κύκλου , τουτέστιν ἡ μὲν ΑΕ μοιρῶν θ καὶ |
ἀπογείου τοῦ ἐκκέντρου ὄντος , τῆς δὲ σελήνης μεταξὺ τοῦ ἀπογείου καὶ περιγείου τοῦ ἐπικύκλου οὔσης , διαφοραὶ τῶν τοιούτων | ||
ἣν ἡ μέση κίνησίς ἐστιν , καὶ τεταρτημόριον ἀπὸ τοῦ ἀπογείου τοῦ φαινομένου . Καὶ πάλιν αἱ πρὸς τῷ Β |
ἄλλοτε δύνων . Ἐν γὰρ τούτοις τὴν πάροδον ἀφορίζει τοῦ ζῳδιακοῦ κύκλου , ἣν ποιεῖται κατὰ πλάτος ἐπὶ τῆς ἀνατολῆς | ||
' ἥλιον καὶ σελήνην * * τὴν δὲ λόξωσιν τοῦ ζῳδιακοῦ γενέσθαι τῷ κεκλίσθαι τὴν γῆν πρὸς μεσημβρίαν : τὰ |
ἐν τῇ ἑτέρᾳ ἐπιφανείᾳ τοῦ τυμπάνου περὶ τὸν κότραφον ὁμοίως γραφομένου τοῦ ΧΩ κύκλου , καὶ ἀπὸ τοῦ Σ τῇ | ||
, καίπερ ἐκ τοῦ εἴδω τοῦ διὰ τῆς ει διφθόγγου γραφομένου γεγονός : ἰθμός : ἱστίον : ἴσπω : ἴσχω |
τῆς σελήνης κε μθ κατὰ τὴν ἐφ ' ἑκάτερα τοῦ περιγείου μεγίστην πάροδον προστιθέασι τῇ μέσῃ μοίρας β κη . | ||
ιγ , καὶ διὰ τοῦτο τὴν μὲν ἀπὸ τοῦ φαινομένου περιγείου τοῦ ἐπικύκλου πάροδον μοιρῶν ια λθ , τὴν δ |
ἴσοι κύκλοι , ὧν ὁ μὲν τὸ κέντρον φέρων τοῦ ἐπικύκλου τοῦ τοῦ Ἄρεως ἔστω ὁ ΑΒΓ περὶ κέντρον τὸ | ||
μὴ ὄντος κατὰ τὸ ἀπόγειον τοῦ ἐκκέντρου τοῦ κέντρου τοῦ ἐπικύκλου ἐν τῷ χρόνῳ τῆς ἀκριβοῦς συνόδου ἢ πανσελήνου , |
ἀρκτικοῦ καὶ ζῳδιακοῦ , τὸ δὲ νότιον μεταξὺ ζῳδιακοῦ καὶ ἀνταρκτικοῦ . ἀπαγγέλλει δὲ ἕκαστον κατὰ μῆκος καὶ πλάτος , | ||
ζῳδιακοῦ , τὸν δὲ νότιον ἑξῆς ἀπὸ ζῳδιακοῦ μέχρι τοῦ ἀνταρκτικοῦ , συντάσσων τὰ μὲν ἑξῆς καθ ' ἕν , |
χρόνῳ τῆς γʹ ἀκρωνύκτου τὴν μὲν ἀπὸ τοῦ ἀπογείου τοῦ ἐκκέντρου μέσην πάροδον τοῦ ἐπικύκλου μοιρῶν ρλε λθ , ἐπειδήπερ | ||
εὐθεῖα τοιούτων ριθ ν ἔγγιστα , οἵων ἐστὶν ἡ τοῦ ἐκκέντρου διάμετρος ρκ . ἐπεὶ οὖν ἔλασσόν ἐστιν τὸ ΕΑΒΓ |
. Πάλιν δὲ ὁ Εὔδοξος διασαφεῖ καὶ τοὺς ἐπὶ τῶν κολούρων λεγομένων κύκλων κειμένους ἀστέρας καί φησιν ἐπὶ μὲν τοῦ | ||
δὲ τέμνοντες τὴν σφαῖραν διὰ τῶν πόλων ὥσπερ διὰ τῶν κολούρων τὰ μεταξὺ τῶν παραλλήλων διαστήματα κατὰ πλάτος οὐκ εἰς |
. καὶ διὰ τοῦ Θ καὶ τοῦ Ζ πόλου λοξοῦ κύκλου γεγράφθω μεγίστου κύκλου περιφέρεια ἡ ΖΘΗ . τὸ ἄρα | ||
κατὰ τὸν τοῦ ὁρίζοντος πόλον ὑποκειμένου , καὶ τοῦ ΑΒΓ κύκλου ζῳδιακοῦ πρὸς ὀρθὰς τῷ ΖΒΕ διαμένοντος . Ἐὰν δὲ |
δ ' ἐν τῷ αὐτῷ ἐπιπέδῳ φερόμενος ἐπ ' αὐτοῦ ἐπίκυκλος ὁ ΕΖΗ περὶ κέντρον τὸ Α , καὶ ὑποκείσθω | ||
τῷ ΑΒΓ ὁ ΗΘΚ , καὶ κέντρῳ τῷ Θ γεγράφθω ἐπίκυκλος ὁ ΛΜ , καὶ ἐπεζεύχθω ἡ ΛΘΜΔ . ὑποτιθέμεθα |
τοῦ ἰσημερινοῦ πρὸς βοῤῥᾶν μοιρῶν λξ : ἀπὸ δὲ τοῦ ἰσημερινοῦ πρὸς νότον μοιρῶν η ∠ ʹ ἢ θ γίνεται | ||
τὸ Πράσον ὑπὸ τὸν παράλληλον τὸν ἀπέχοντα πρὸς μεσημβρίαν τοῦ ἰσημερινοῦ μοίρας ιϚʹ γʹʹ ιβʹʹ , διέστηκε δὲ τοῦ ἰσημερινοῦ |
τοῦ αὐτοῦ σημείου τοῦ ἰσημερινοῦ ἀπό τινος τμήματος ἤτοι τοῦ ὁρίζοντος ἢ τοῦ μεσημβρινοῦ ἐπὶ τὸ αὐτὸ ἀποκατάστασις , νυχθήμερον | ||
αὐτὰ δειχθήσεται καὶ ὅταν ὁ πόλος τῶν παραλλήλων ἐπὶ τοῦ ὁρίζοντος ᾖ , καὶ γραφομένων διὰ τῶν Κ , Θ |
δύο δοθεισῶν εὐθειῶν πρὸς ὀρθὰς ἀλλήλαις τῶν ΑΓ , ΓΛ γεγράφθωσαν ἀντικείμεναι αἱ ΖΑΗ , ΘΓΚ , ὧν διάμετρος μὲν | ||
διὰ τοῦ Α καὶ ἑκατέρου τῶν Μ Ν μέγιστοι κύκλοι γεγράφθωσαν : ἥξουσιν δὴ καὶ διὰ τοῦ ἑτέρου πόλου . |
γὰρ τῆς σφαίρας καὶ ἐπὶ τοῦ κατὰ τὸ ἡμικύκλιον ἑτέρου σημείου τὴν μοῖραν περιαγαγούσης , αἱ αὐταὶ ἔγγιστα καιρικαὶ ὧραι | ||
γίνεται δὲ τὰ ἀπ ' ἀρχῆς ἄχρι τέλους ἀπὸ τοῦ σημείου : καὶ αὔξεται ἀπὸ τῶν περιστατικῶν : πόθεν δὲ |
τὰ συσταθέντα τὰ ΑΖΓ ΓΗΕ ἅμα τῶν ἐξ ἀρχῆς ΑΒΓ ΓΔΕ : καὶ τοῦτο γὰρ δέδεικται πρὸ δύο . κοινοῦ | ||
τῇ ὑπὸ ΔΓΕ , τὴν δὲ ὑπὸ ΒΑΓ τῇ ὑπὸ ΓΔΕ καὶ ἔτι τὴν ὑπὸ ΑΓΒ τῇ ὑπὸ ΓΕΔ : |
πυλῶν εἰσέπτετ ' εἰς τὸν ἀέρα , λαθὼν κολοιοὺς φύλακας ἡμεροσκόπους . Ὦ δεινὸν ἔργον καὶ σχέτλιον εἰργασμένος . Τίς | ||
, οἳ σημανοῦσιν εἰς τὴν πόλιν . Εἶναι δὲ τοὺς ἡμεροσκόπους καὶ ποδώκεις , οἳ ὅσα μὴ οἷά τε διὰ |
, ἤγουν τῶν β , καὶ ἕκτον τὰ ιη ὁμοίως ἑξαπλάσια τοῦ τετάρτου , τουτέστι τῶν γ . καὶ μιγέντα | ||
τριπλάσια γὰρ ἀμφότερα ἀμφοτέρων . ἔστω καὶ πέμπτον τὰ ιβ ἑξαπλάσια τοῦ δευτέρου , ἤγουν τῶν β , καὶ ἕκτον |
. περὶ τῶν πρὸς τὸν αὐτὸν κύκλον τοῦ διὰ τῶν πόλων τοῦ ὁρίζοντος γινομένων γωνιῶν καὶ περιφερειῶν . ιγʹ . | ||
, ἐπειδὴ κατὰ τὰς τοιαύτας σχέσεις οἵ τε διὰ τῶν πόλων τοῦ ὁρίζοντος καὶ τοῦ κέντρου τῆς σελήνης γραφόμενοι μέγιστοι |
τοὺϲ ἀπὸ τῶν ἀναπνευϲτικῶν δὲ διὰ ῥῆξιν ἢ ἀναϲτόμωϲιν ἀνάγονταϲ φλεβοτομητέον , εἰ μὴ πλῆθοϲ αἵματοϲ φέροιτο . πάνταϲ δὲ | ||
εἴρηται , θεραπευτέον : τὰ δὲ μειράκια καὶ τοὺϲ ἀκμάζονταϲ φλεβοτομητέον ἀνυπερθέτωϲ ἐπαφαιροῦνταϲ , εἰ δὲ μή , ϲικυαϲτέον καθ |
ΘΚ , ΚΗ ἑξῆς ἐπὶ τὰ αὐτὰ τοῦ μεγίστου τῶν παραλλήλων τοῦ ΒΗΔ , διὰ δὲ τῶν Θ , Κ | ||
περιφέρειαι ἀποληφθῶσιν ἑξῆς ἐπὶ τὰ αὐτὰ μέρη τοῦ μεγίστου τῶν παραλλήλων , διὰ δὲ τῶν γενομένων σημείων παράλληλοι κύκλοι γραφῶσιν |
πρὸς τὸ μέγεθος τοῦ ἑαυτοῦ κύκλου , τὰς δὲ τῶν τροπικῶν μοίρας μείζους εἶναι τῶν μοιρῶν τοῦ ἀρκτικοῦ , ἐπειδήπερ | ||
τῶν σχημάτων , προσώπων τε ἀποστροφαῖς καὶ χρόνων ἐναλλαγαῖς καὶ τροπικῶν σημειώσεων μεταφοραῖς ἐξηλλαγμένα καὶ σολοικισμῶν λαμβάνοντα φαντασίας : ὁπόσα |
ἔχρῃζον : τὸ γὰρ ὅμως ἐναντιωτικὸν ὂν παρίστησι τὸν Ταλθύβιον πολοῦ τὴν ζωὴν τιμώμενον , ὅσα καὶ φίλαυτον γέροντα : | ||
ἐν ἱεροῖς βλασφημούντων . Ῥωπικὸν ὤνιον : ἐπὶ τῶν εὐτελῶν πολοῦ πιπρασκομένων . Σαλαμινία ναῦς : ἐπὶ τῶν ταχέων : |
ἐπιπέδῳ πρὸς ὀρθὰς οὖσαι διὰ τὸ Ϛʹ αἱ αὐταὶ καὶ συμπίπτουσαι : ὅπερ ἀδύνατον . Ἀντιστρόφιον : ἐὰν ᾖ παράλληλα | ||
' αὐτοῖς αἱ ἐν τῶι αὐτῶι ἐπιπέδωι οὖσαι καὶ μὴ συμπίπτουσαι ἐπὶ μηδέτερα μέρη . σαφηνείας δὲ ἕνεκα ἐκ τοῦ |
τῶν πρὸς τὴν θεωρίαν . Ἐγένοντο δὲ τρισσαὶ στάσεις περὶ συνανατολῶν καὶ συγκαταδύσεων : οἳ μὲν γὰρ ἔφασαν τὴν πραγματείαν | ||
παντὶ τόπῳ σχεδὸν τῆς οἰκουμένης δύνασθαι παρακολουθεῖν ταῖς διαφοραῖς τῶν συνανατολῶν καὶ συγκαταδύσεων . Πρῶτον μὲν οὖν ἐκθησόμεθα τὰς τῶν |
ὅτι ἐν πλείστῳ μὲν χρόνῳ δύνουσιν αἱ ΑΗ , ΜΓ περιφέρειαι , ἐν ἐλάσσονι δὲ αἱ ΗΘ , ΛΜ , | ||
τὰ ΑΗΓ , ΔΘΖ , καὶ ἀπ ' αὐτῶν ἴσαι περιφέρειαι ἀπειλήφθωσαν πρὸς τοῖς πέρασι τοῖς Α , Δ σημείοις |
ὅτι Οἰνοπίδης [ . , ] εὗρε πρῶτος τὴν τοῦ ζωιδιακοῦ λόξωσιν καὶ τὴν τοῦ μεγάλου ἐνιαυτοῦ περίστασιν , Θ | ||
: Λαγωός , Προκύων . ἐν δὲ τῶι βορείωι τοῦ ζωιδιακοῦ κύκλου . βόρεια : Καρκίνος , Λέων , Παρθένος |
κατὰ τὰς διχοτομίας γινόμενον τοῦ εζπη ἐπικύκλου καὶ τοῦ μλνξ ἐγκέντρου , οἷον τὰς ζ η , αἵτινες διὰ τὴν | ||
κύκλου φαίνεσθαι φερόμενον , καὶ τὸν ἐπίκυκλον αὐτοῦ κατὰ τοῦ ἐγκέντρου , καθάπερ ἔφαμεν , τῆς δὲ σελήνης τὸν ἐπίκυκλον |
. Τέμνει δὲ τοῦτον Ἥλιος ἀφ ' ἑπτακαιδεκάτης Τυβὶ μηνὸς χειμερινοῦ , τοῦ τῶν Καλάνδων λέγω , ἕως Μεχὶρ τῶν | ||
ἐν τῇ ἡμετέρᾳ εὐκράτῳ . Ὁπόταν δ ' ἐφαψάμενος τοῦ χειμερινοῦ πρὸς ἡμᾶς πάλιν ὑποστρέφῃ , ἐπὶ τὰ ὑψηλότερα τοῦ |
παραλλάξεων , ὅταν μὲν τὸ κατὰ κορυφὴν σημεῖον ἐπὶ τοῦ μεσημβρινοῦ βορειότερον ᾖ τοῦ τότε μεσουρανοῦντος τοῦ διὰ μέσων τῶν | ||
εὐλογωτέρας τε καὶ ἐμφατικωτέρας παρειλήφαμεν τὰς ἀφοριζομένας ὑπό τε τοῦ μεσημβρινοῦ καὶ τῶν τοῦ διὰ μέσων ἀνατολῶν τε καὶ δύσεων |
τὸ μὲν ἀπὸ τῆς Συήνης , ἥπερ ἐστὶν ὅριον τοῦ θερινοῦ τροπικοῦ , εἰς Μερόην εἰσὶ πεντακισχίλιοι , τὸ δ | ||
[ τὰς ] ἄρκτους αὐτοῦ κείμενος μικρῷ βορειότερός ἐστι τοῦ θερινοῦ τροπικοῦ : καὶ τῶν ἐν τοῖς μηροῖς καὶ σκέλεσι |
ὁ ΑΖΓΘ τοῦ μὲν ΑΘΓ ὄντος τοῦ μετὰ τὸν καρκίνον ἡμικυκλίου , τοῦ δὲ ΓΖΑ τοῦ μετὰ τὸν αἰγόκερω , | ||
ὅλη ἄρα ἡ ΓΒ ὅλῃ τῇ ΕΖ ἐστιν ἴση . ἡμικυκλίου δέ ἐστιν ἡ ΓΒ : ἡμικυκλίου ἄρα καὶ ἡ |
τῇ διαλέκτῳ ϲυνδιώκονται ὀχλούμενοι τῷ πνεύματι . ῥαγέντοϲ δὲ τοῦ ἀποϲτήματοϲ πῦον ἀνάγεται ποτὲ μὲν καθαρόν , ποτὲ δὲ τρυγῶδεϲ | ||
ἀθρόαν κένωϲίν τινα λειποθυμοῦνταϲ . εἰ δὲ δι ' ἀθρόαν ἀποϲτήματοϲ ῥῆξιν ἢ τομὴν ἢ κένωϲιν , ὡϲ ἐν ὑδέροιϲ |
ἀδιάστατον ἀπολείψουσι τὸ σημεῖον , ὅ γε διχάζεται πρὸς τοῦ τέμνοντος . ὁ δὲ αὐτὸς λόγος καὶ ἐπειδὰν φῶσι τὸν | ||
ἐπιφανείᾳ τοῦ κώνου τὴν ΔΖΕ : κοινὴ δὴ τομὴ τοῦ τέμνοντος ἐπιπέδου καὶ τοῦ ΑΒΓ τριγώνου ἡ ΖΗ . καὶ |
τὸ ΑΒΓ , καὶ ἀπὸ τοῦ Δ κέντρου πρὸς ὀρθὰς ἀνήχθω ἡ ΔΒ , καὶ κινείσθω κανόνιόν τι περὶ τὸ | ||
καὶ ἤχθωσαν αὐτοῦ διαγώνιοι αἱ ΔΒ , ΓΑ , καὶ ἀνήχθω πρὸς ὀρθὰς ἀπὸ τοῦ Ε τῷ ἐπιπέδῳ μετέωρος εὐθεῖα |
διὰ τὸ ψῦχός εἰσιν , ἀφορίζονται δ ' ὑπὸ τῶν ἀρκτικῶν πρὸς τοὺς πόλους . Αἱ δὲ τούτων ἑξῆς , | ||
δ ' αὐτὸν τρόπον καὶ περὶ τῶν τροπικῶν καὶ τῶν ἀρκτικῶν , παρ ' οἷς εἰσιν ἀρκτικοί , διορίζουσιν ὁμωνύμως |
με . Τὰς μὲν οὖν τοῦ μήκους καὶ τῆς ἀνωμαλίας περιοδικὰς κινήσεις καὶ ἔτι τὰς ἐποχὰς αὐτῶν διὰ τῶν τοιούτων | ||
κατὰ τὸ μέσον ἀπόστημα τὴν θέσιν ἔχων , ὥστε τὰς περιοδικὰς κινήσεις μήκους τε καὶ ἀνωμαλίας τὰς αὐτὰς ἔγγιστα γίνεσθαι |
ΑΗΘ . Ἐὰν μιᾶς τῶν κατὰ συζυγίαν ἀντικειμένων εὐθεῖαι ἐπιψαύουσαι συμπίπτωσι , καὶ διὰ τῶν ἁφῶν διάμετροι ἀχθῶσι , ληφθῇ | ||
ἐπὶ ταὐτὰ τῷ κέντρῳ . Ἐὰν ἑκατέρᾳ τῶν ἀντικειμένων εὐθεῖαι συμπίπτωσι καθ ' ἓν ἐφαπτόμεναι ἢ κατὰ δύο τέμνουσαι , |
ΨΧ πρὸς τὴν ΧΠ , οὕτως ἡ ΠΧ πρὸς τὴν ΧΩ . καὶ διὰ τοῦτο πάλιν ἐὰν ἐπιζεύξωμεν τὴν ΠΨ | ||
καὶ ἀπὸ περισπωμένων : ἰαχήσω , στεναχήσω . Τὰ εἰς ΧΩ ὑπερδισύλλαβα φύσει βραχείᾳ παραληγόμενα , ἢ παρ ' ὄνομα |
εὐλόγου γεννῶντες αὐτῶν τὰς διαφοράς , ἔπειτα προσάγοντες διὰ τοῦ κανόνος ταῖς ἀπὸ τῶν φαινομένων μαρτυρίαις , ἀλλὰ ἀνάπαλιν πρότερον | ||
ὅλου χρῆσίς τε καὶ ἀνάκρισις γίνοιτο τῶν λόγων διὰ πεντεκαιδεκαχόρδου κανόνος . Μέθοδοι πρὸς τὴν διὰ μόνων τῶν ὀκτὼ φθόγγων |
κλίσις διακεκρίσθω : κατὰ τὰ ἀπόγεια καὶ τὰ περίγεια τῶν ἐκκέντρων , τὸ δὲ ἐναντίον ἐκείνας μὲν ἐν τῷ ἐπιπέδῳ | ||
ἡμῖν συνεστάθησαν αἱ καθόλου πηλικότητες τῶν μεγίστων ἐγκλίσεων τῶν τε ἐκκέντρων καὶ τῶν ἐπικύκλων : ἵνα δὲ καὶ τὰς τῶν |
τέχνης τε καὶ κανόνων καὶ τοῦ καλουμένου ὑπὸ τῶν σοφῶν διαβήτου ἀποδείκνυνται αἱ μέλιτται . ὅταν δὲ ἐπιγονὴ ᾖ καὶ | ||
εἴτε γαστρὸς εἴθ ' αἵματος ἢ καὶ οὔρου ὥσπερ ἐπὶ διαβήτου , λευκὰ μέν ἐστιν ἰδεῖν καὶ λεπτὰ δὲ τῷ |
ἔσται ὀρθὸς πρὸς αὐτόν : καὶ ἐπεὶ ἑκατέρα τῶν ζδηʹ αδεʹ τὸν αζηʹ κύκλον διὰ τῶν πόλων τέμνει , ἴση | ||
καὶ διὰ τῶν ηʹ θʹ μέγιστοι κύκλοι γεγράφθωσαν ἐφαπτόμενοι τοῦ αδεʹ κύκλου οἱ ληκεʹ μθκδʹ , ὥστε τὸ μὲν εηλʹ |
καὶ ὡς ἡ ΤΒ πρὸς τὴν ΒΛ , οὕτως ἡ ΟΖ πρὸς τὴν ΖΝ . δι ' ἴσου ἄρα ὡς | ||
τὸ ὑπὸ ΓΞΑ μετὰ τοῦ ἀπὸ ΑΕ καὶ τοῦ ἀπὸ ΟΖ , τουτέστι τοῦ ἀπὸ ΕΘ , πρὸς τὸ ὑπὸ |
ἴσας ἀπεδείκνυ τὰς βάσεις , τοῦτο δὲ ὁμοίως ταῖς γωνίαις ἀνίσους . προηγεῖται δὲ τοῦ ἐφεξῆς θεωρήματος . ἐκεῖνο μὲν | ||
ἄνισα μέρη διαιρουμένου τοῦ ἡλιακοῦ κύκλου συμβαίνει καὶ τοὺς χρόνους ἀνίσους εἶναι τῶν ζῳδίων . Τῆς δὲ πρὸς ἄλληλα τάξεως |
τῶν ἄλλων μενόντων τῶν αὐτῶν τὴν μὲν διπλῆν τῆς ΖΗ περιφερείας γίνεσθαι μοιρῶν ρλη νθ μβ καὶ τὴν ὑπ ' | ||
κύκλῳ εὐθειῶν . ιβʹ . περὶ τῆς μεταξὺ τῶν τροπικῶν περιφερείας . ιγʹ . προλαμβανόμενα εἰς τὰς σφαιρικὰς δείξεις . |
ἥλιος τὴν ΔΘ περιφέρειαν διέρχεται ἤπερ ἡ ΔΘ δύνει . Γεγράφθω γὰρ διὰ τοῦ Θ μέγιστος κύκλος ἐφαπτόμενος τοῦ ἀρκτικοῦ | ||
τῆς ΨΦ : ἴση ἄρα ἡ ΨΦ τῇ ΦϘ . Γεγράφθω διὰ τῶν Ϙ , Ϛ μέγιστος κύκλος ὁ ϘϚ |
ἢ ὥστε ἄλλον παρ ' ἄλλον τετάχθαι μηδενὸς σημείου μεταξὺ πίπτοντος : πᾶν γὰρ σημεῖον τὸ μεταξὺ κατ ' ἐπίνοιαν | ||
, μάλιστα καὶ τοῦ περὶ ἀποδημίας κλήρου εἰς τὰ ὑπόγεια πίπτοντος . κἂν οἱ κλῆροι πάλιν ὅ τε τῆς τύχης |
διὰ τῆς εὐθείας διδάσκουσι τήν τ ' εὐθεῖαν διὰ τοῦ ἐπιπέδου : εὐθεῖαν γὰρ εἶναί φασιν ἥτις εἰς πάντα τὰ | ||
τοῖς στερεοῖς ἡ σφαιρική : τοῦ δὲ αἰθέρος μὴ ὄντος ἐπιπέδου , ἀλλὰ στερεοῦ , καταλείπεται αὐτὸν εἶναι σφαιροειδῆ . |
τε αὐτὴν διαιροῦσι τροχοί , ἵνα μήτε συστρέφηται μήτε κατευθὺ τείνοντος ὑπὸ ὀδύνης ἀπορραγείη τοῦ κήτους , ἀλλὰ πλανωμένου κύκλῳ | ||
νοητὸν διάκοσμον : τὸ δὲ νῦν ἔχον , ἐς ἄλλο τείνοντος τοῦ σκοποῦ , ἐκείνῳ καὶ τὸν λόγον ἀποδοτέον . |
, τοῦ δὲ ζῳδιακοῦ κύκλου Ϛ ζῴδια ὑπὲρ τὸν ὁρίζοντα ἀπολαμβάνεται , Ϛ δὲ ὑπὸ τὸν ὁρίζοντα ἀποτέμνεται : ἡ | ||
καὶ ἀπὸ ἑῴας ἀνατολῆς ἐπὶ ἑῴαν δύσιν πρότερον . Ὅσα ἀπολαμβάνεται ὑπὸ τοῦ ζῳδιακοῦ κατὰ τὰς ἀνατολὰς ἐπὶ τὰ πρὸς |
καὶ τῶν τροπικῶν ἀφοριζόμενα σημεῖα , τουτέστι τά τε δύο ἰσημερινὰ καὶ τὰ δύο τροπικά . ἐνταῦθα μέντοι τις ἀπορήσειεν | ||
ἕν τι καὶ μὴ ποτὲ μὲν πρὸς τὰ τροπικὰ καὶ ἰσημερινὰ σημεῖα , ποτὲ δὲ πρὸς τοὺς ἀπλανεῖς ἀστέρας θεωρῆται |
τῷ συναμφοῖν ἀριθμῷ χρῆσθαι ἐπὶ τῶν ἐτῶν . οἷον ἔστω ὡροσκοπικὴν μοῖραν ἐκπεπτωκέναι Καρκίνου μοίρᾳ ηʹ , ἥτις σημαίνει τόπον | ||
Ἡλίου μοίρας : καὶ αὕτη μὲν οἴσει τὸ ἀπογώνιον ἤτοι ὡροσκοπικὴν μοῖραν : ἢ καὶ ταύτην ἐπιπροσθέντα ἢ καὶ ἀφαιρεθέντα |
κύκλων λέγομεν περιέχεσθαι , ὅταν πόλῳ τῇ κοινῇ τομῇ τῶν κύκλων καὶ διαστήματι τυχόντι γραφέντος κύκλου ἡ ἀπολαμβανομένη αὐτοῦ περιφέρεια | ||
γδʹ αβδγʹ κύκλων : ὥστε καὶ ἑκάτερος τῶν αβʹ αβδγʹ κύκλων ὀρθός ἐστιν πρὸς τὸν ηζθʹ : καὶ ἡ κοινὴ |
. . . . . . . . . . ροθ ∠ ʹγ νότ . β Σάρατα . . . | ||
ροϚ Περὶ καράβου ροζ Κάϲτοροϲ ὄρχιϲ ροη Κυνὸϲ ποταμίου ὄρχιϲ ροθ Κυνὸϲ χερσαίου ϲκύλαξ ρπ Κύκνου νεοττόϲ ρπα Κηρύκων ὄϲτρακα |
ἐπειδήπερ ἐὰν κέντρῳ τῷ Β καὶ διαστήματι τῷ ΑΒ κύκλον γράψωμεν , αἱ διάμετροι ἀνίσους ἀπολήψονται τοῦ κύκλου περιφερείας . | ||
ἐὰν διὰ τοῦ Κ πόλου τοῦ ὁρίζοντος καὶ τοῦ Ε γράψωμεν τὸ ΚΘ τεταρτημόριον , γίνεται ἡ ὑπὸ ΚΕΘ γωνία |
τὴν μεγίστην ἡμέραν γίνεσθαι καὶ τοὺς γνώμονας τὸν ἴσον χρόνον περισκίους . λθʹ . ὅπου δὲ τὰς ὅλου τοῦ τεταρτημορίου | ||
μῆνας ἔγγιστα δύο τήν τε μεγίστην ἡμέραν καὶ τοὺς γνώμονας περισκίους γίνεσθαι . λϚʹ . ὅπου δὲ τὸ ἔξαρμα τοῦ |
δὲ τὸ Γ , ἐφαπτομένη δὲ ἡ ΔΕ , καὶ ἐπιζευχθεῖσα - ἡ ΓΕ ἐκβεβλήσθω ἐφ ' ἑκάτερα , καὶ | ||
ἐπὶ τὸ τοῦ τριγώνου ἐπίπεδον κάθετος ἡ ΔΕ , καὶ ἐπιζευχθεῖσα ἡ ΑΕ ἐκβεβλήσθω : ὅτι ἡ ΑΕ τῆς ΕΖ |
ἐστὶ τοιαύτη , ὥστε ἔχειν μεσουρανοῦντα Καρκίνον ἐπὶ τοῦ θερινοῦ τροπικοῦ , ἀνατολικὰς Χηλὰς ἐπὶ τοῦ ἰσημερινοῦ , δυτικὸν Κριόν | ||
' αἵρεσιν ἐκπτώσεων ἢ μετοικισμῶν αἴτιος ἢ φυγῶν , πλὴν τροπικοῦ ὄντος τοῦ ζῳδίου ἢ δισώμου ἐπανέρχεται εἰς τὴν προτέραν |
πάνυ τι ἀπολειπόμενα . ἴαϲιϲ δέ ἐϲτι διὰ φλεβοτομίαϲ ἄχρι λειποθυμίαϲ : μὴ φλεβοτομηθέντεϲ δὲ οἱ τοιοῦτοι πυρέττοντεϲ εἰϲ ἔϲχατον | ||
διαϲτήματοϲ ἱκανοῦ γενομένου πάλιν ἐπαφαιρεῖν ϲύμμετρον . εἰ δὲ φοβηθείη λειποθυμίαϲ , τῇ ἑξῆϲ ἐπαφαιρεῖν , ἔπειτα κλύζειν τὴν κοιλίαν |
Ο μέγιστος κύκλος γεγράφθω ὁ ΠΟ , καὶ τριῶν οὐσῶν περιφερειῶν ὁμοιογενῶν ἀνίσων τῶν ΚΘ , ΘΠ , ΗΘ εἰλήφθω | ||
τεσσάρων δὴ ὄντων μεγεθῶν δύο μὲν τῶν ΒΓ , ΕΖ περιφερειῶν , δύο δὲ τῶν ΗΒΓ , ΕΘΖ τομέων εἴληπται |
ἀνασκιρτώσας αὐτὰς ἰδοῦσα καί τινα τοῦ μέλλοντος πολέμου δι ' ἀκροβολισμῶν προάγωνα ποιουμένας , ἱκετεύει τὸν θεόν , τί τέ | ||
γυμνάσιά τε καὶ εὐρυχώρια , τοξικῆς τε καὶ τῶν ἄλλων ἀκροβολισμῶν ἕνεκα διακεκοσμημένα , μαθήσεώς τε ἅμα καὶ μελέτης τῶν |
. εἰκονολογίαν . τὸ δι ' εἰκόνος καὶ δι ' ὑποδείγματός τι δηλοῦν : γνωμολογία δὲ ὡς τὸ “ δεινὸν | ||
μερόπων ἀνθρώπων Ἀτρεῖδαι ; . ψιλῶς . τὸ μὴ ἐπὶ ὑποδείγματός φησι . προσπαίζων . τουτέστιν ὁ φιλόσοφος ὡς παιδιᾷ |
πνεύσαντος , τὸ ἱστίον ὑποχαλᾶν , ἵνα μή , ὄντος τεταμένου , ὑπὸ τοῦ ἀνέμου εἰς τοὔμπαλιν ἀνατραπείη τὸ σκάφος | ||
, εὐθέως ἐπιχειροῦσι λύειν φαρμακείῃ , τοῦ μὲν ξυν - τεταμένου καὶ φλεγμαίνοντος οὐδὲν ὠφελέουσιν , οὐδὲ γὰρ διαδίδωσιν ὠμὸν |
τὸ Σαβαλάεσσα στόμα . . . . ριγ κα γʹ ἐκτροπὴ ἀπὸ τοῦ Χαρίφου ποταμοῦ εἰς τὸ Λωνίβαρε στόμα . | ||
ἐν κοπρῶνι λέγῃ τὰς σχολάς . μὴ γένοιτο . πᾶσα ἐκτροπὴ ἀπό τινος ἀνθρωπικοῦ γίνεται , αὕτη ἐγγύς ἐστι τῷ |
γδʹ κμʹ λνʹ : ἐπεὶ ὁ ηζθʹ κύκλος τοὺς αβʹ γδʹ αβδγʹ κύκλους διὰ τῶν πόλων τέμνει , καὶ πρὸς | ||
τῶν λνθʹ γωνία ἐστὶν ἡ κλίσις ἐν ᾗ κέκλιται ὁ γδʹ κύκλος πρὸς τὸν αβγδʹ κύκλον . Καὶ ἐπεὶ δύο |
καὶ ἀπὸ τούτου ἐπιτεί - νουσι τόνον καὶ ποιοῦσι τὸν Ϡοβ τῷ ρη ὑπερέχοντα τοῦ ωξδ . ἐπεὶ δὲ οὐκέτι | ||
ρη ὑπερέχοντα τοῦ ωξδ . ἐπεὶ δὲ οὐκέτι ἀπὸ τοῦ Ϡοβ δυνάμεθα ἐπιτεῖναι τόνον , κατ ' ἄνεσιν αὐτὸν εὑρίσκομεν |
' ἑκάτερα τῆς ΖΚ μεσημβρινῆς εὐθείας ὀκτωκαίδεκα θέσθαι μεσημβρινοὺς διὰ τριτημορίου μιᾶς ὥρας ἰσημερινῆς εἰς συμπλήρωσιν τῶν ὑφ ' ὅλου | ||
τμήματα καθ ' ἕκαστον τῶν ἐκκειμένων τριῶν παραλλήλων ταῖς τοῦ τριτημορίου τῆς μιᾶς ὥρας εʹ μοίραις , ἀπὸ μὲν τοῦ |
φλεγμαινούσης πάντα συνεδρεύει καὶ συμπάθεια σφοδρὰ καὶ πλείων κατ ' ἐπιγαστρίου διόγκωσις . ἣν διακρινοῦμεν τῆς γινομένης τοῦ ἐπιγαστρίου φλεγμονῆς | ||
ἄλλαις ταὐτὸ σχῆμα ἐχούσαις τῇ προτέρᾳ , οἷον ἐπὶ μὲν ἐπιγαστρίου πλαγίας δύο θήσεις , καὶ αἱ λοιπαὶ πλάγιαι διαιρεθήσονται |
ἀπὸ ΑΔ ] . Ἐὰν μιᾶς τῶν ἀντικειμένων δύο εὐθεῖαι ἐφαπτόμεναι συμπίπτωσι , διὰ δὲ τῶν ἁφῶν παράλληλοι ἀχθῶσι ταῖς | ||
τῶν Α , Β , Γ , Δ σημείων ἤχθωσαν ἐφαπτόμεναι τοῦ ΑΒΓΔ κύκλου αἱ ΖΗ , ΗΘ , ΘΚ |
τριῶν ἡμερῶν ἢ μετὰ τρεῖς παρόδοις τῶν τε συνόδων ἢ πανσελήνων ἢ διχοτόμων . λεπτὴ μὲν γὰρ καὶ καθαρὰ φαινομένη | ||
τῶν φώτων , ἐπί τε τῶν διχοτόμων μάλιστα καὶ τῶν πανσελήνων καὶ ἀμφικύρτων καὶ μηνοειδῶν , τῆς σελήνης περὶ τὴν |
τῷ ΑΔΕ τριγώνῳ , τὸ ἄρα ΑΒΓ τρίγωνον πρὸς τὸ ΑΔΕ τρίγωνον διπλασίονα λόγον ἔχει ἤπερ ἡ ΒΑ πρὸς ΑΔ | ||
τὸ ἀπὸ ΑΔ , οὕτως τὸ ΑΒΓ τρίγωνον πρὸς τὸ ΑΔΕ τρίγωνον . Ἐπεὶ γὰρ ὅμοιόν ἐστιν τὸ ΑΒΓ τρίγωνον |
ἐπιδῆσαι θέλομεν γένυν ἤτοι τραύματος χάριν ἢ ἐξαρθρήματος ἢ τοῦ κυνικοῦ καλουμένου σπασμοῦ ἤ τινος ἄλλου . ἀρχὴ κατ ' | ||
ἔπειτα δὲ καὶ δι ' ἑαυτῶν . ἐπὶ δὲ τοῦ κυνικοῦ σπασμοῦ ἰδιαίτερον βοηθοῦνται ὑπό τε πταρμικῶν καὶ ἀποφλεγματισμῶν τῶν |
δυνάμεωϲ ὠφελεῖ τοὺϲ νεφριτικούϲ . ἡ δὲ ῥίζα ταῖϲ ἐκ θώρακοϲ ἀναπτύϲεϲιν ἰϲχυρῶϲ ϲυνεργεῖ , δριμεῖα μὲν ἧττον οὖϲα τοῦ | ||
φλεγματώδουϲ ῥυέντοϲ ἐκ τοῦ ὅλου ϲώματοϲ εἰϲ τὰ κενὰ τοῦ θώρακοϲ καὶ αὐτόθι ϲαπέντοϲ . ἐφ ' ὧν μὲν οὖν |
ΔΓ , καὶ ἀπὸ τοῦ Δ ἐπὶ τὴν ΑΓ κάθετος ἤχθω ἡ ΔΖ . λέγω , ὅτι ἡ ΖΓ ἡμίσειά | ||
δὲ τοῦ Θ ὁποτέρᾳ τῶν ΑΒ , ΕΖ παράλληλος πάλιν ἤχθω ἡ ΚΜ , καὶ πάλιν διὰ τοῦ Α ὁποτέρᾳ |
, ΗΠ , ΠΘ , ΘΡ , ΡΕ τριγώνων πυραμὶς ἰσοϋψὴς τῷ κώνῳ . ἑκάστη ἄρα τῶν ἀνεσταμένων πυραμίδων μείζων | ||
τὸ ΕΖΗΘ , καὶ ἀνεστάτω ἀπὸ τοῦ ΕΖΗΘ τετραγώνου πυραμὶς ἰσοϋψὴς τῷ κώνῳ . ἡ ἄρα ἀνεσταμένη πυραμὶς μεῖζόν ἐστιν |
δι ' αἰγείρων καὶ αἱ λοιπαὶ ἐπιϲπαϲτικαί . Τοῦ μὲν ὀϲχέου τὴν φλεγμονὴν διαγνωϲτέον ἐκ τοῦ κατὰ τὴν πρώτην τῆϲ | ||
τῇ δεξιᾷ χειρὶ τὸ πέραϲ ἐνδιπλοῦντεϲ ἐπὶ τὰ ἔνδον τοῦ ὀϲχέου ὁμοῦ τε τῇ ἀριϲτερᾷ τὸν περιτόναιον ἀνέλκοντεϲ πρὸϲ τὴν |
τὸ . [ Ἀσσίων πόλισμα ] ? Ἤδη δὲ ὑπὸ παραλύσεως καὶ τὸ σῶμα διέφθαρτο , καὶ πρὸς Ξενοκράτην διεπέμπετο | ||
Γυμνάζειν δὲ καὶ ἀνατρίβειν τὰ μέρη ὥσπερ ἐν τῷ Περὶ παραλύσεως χωρίῳ προείρηταις , οὐρητικά τε μὴ προσφέρειν . Ἡ |
ὁ μέσος γὰρ ὁ ἐν αὐτῇ στέφανος τῇ ἀράχνῃ ὁ ζῳδιακὸς προσκέκληται κύκλος ὁ ἐν τῷ πόλῳ , μεμέρισται εἰς | ||
ΜΓ . ὅταν μὲν δὴ ἡ ΜΓ ἀνατέλλῃ , ὁ ζῳδιακὸς ἕξει θέσιν τινά : ἐχέτω τὴν ΠΝΞ . ὅταν |
μέχρι τοῦ Ῥήνου παντὸς ἀπὸ τοῦ Λίγηρος ποταμοῦ καὶ τοῦ Ῥοδανοῦ , καθ ' ὃ συνάπτει πρὸς τὸ Λούγδουνον ἀπὸ | ||
κβʹ μδʹ ∠ ʹʹ Εἶτ ' ἀπ ' ἀνατολῶν τοῦ Ῥοδανοῦ ἀρκτικώτατοι μὲν Ἀλλόβριγες ὑπὸ Μεδούλ - λους , ὧν |
μυδίῳ τὸ περιττὸν ἐκπιάϲαντεϲ καὶ πρὸϲ τὸ κάτω μέροϲ ἕλξαντεϲ ἀποκόψομεν ϲταφυλοτόμῳ ἢ ἀναρραφικῷ ϲμιλίῳ . τὰ δὲ μετὰ τὴν | ||
ἄνωθεν μερῶν , ὥστε ὑπερβίαιον γενέσθαι τὴν ἐξολκήν , οὕτως ἀποκόψομεν τὸν κιρσόν : αἴτιος δ ' ἡ βίαιος ἐξολκὴ |
. ἔστι δὲ τὸ Ϛʹ λεπτὰ ι . λέγωμεν τὴν μεσουρανοῦσαν μοῖραν ἐπὶ τοῦ Ταύρου μοίρᾳ δʹ λεπτῷ ιʹ . | ||
ζητούμενον εὑρίσκεσθαι δύναται . λαβὼν γάρ , φησίν , τὴν μεσουρανοῦσαν μοῖραν καὶ τὴν τοῦ ἀφέτου ἣν προηγουμένην καλεῖ σκόπει |
κύκλου γίνεται περίμετρος τμημάτων λζ μβ , ἡ δὲ τοῦ σεληνιακοῦ τῶν αὐτῶν λη μϚ , οἵων ἡ μὲν ΒΔ | ||
ἐξ οὐρανοῦ πυρὸς ῥυέντος , τότε δ ' ἐξ ὕδατος σεληνιακοῦ περιστροφῇ τοῦ ἀέρος ἀποχυθέντος : καὶ τούτων εἶναι τὰς |
τὰ ὀϲτᾶ διαφθαρῆναι ἢ ὑπὸ προκαταρκτικῆϲ αἰτίαϲ ἢ καταγέντα ἢ προηγουμένωϲ διαϲαπέντα , καὶ τὴν ἔκπριϲιν αὐτῶν τὸν λόγον ἀπαιτεῖν | ||
ἀτμῶν ἐπὶ τὴν κεφαλὴν ἀναφέρεται ἤδη διάπυρον αὐτὴν οὖϲαν . προηγουμένωϲ δὲ ἐμβροχαῖϲ δαψιλεϲτέραιϲ χρηϲτέον , ἐλαίῳ ὀμφακίνῳ ἢ ῥοδίνῳ |
παλαιότητος ἕνεκεν ποιησώμεθα τῆς ὑφ ' ἡμῶν ὡς ἔνι μάλιστα ἀδιστάκτως ἐπιλελογισμένης , τὸ αὐτὸ τοῦτο εὑρήσομεν . ἐκείνη μὲν | ||
ἐπίστρεψον ἐπὶ τὸν κύριον , καὶ αἰτοῦ παρ ' αὐτοῦ ἀδιστάκτως , καὶ γνώσῃ τὴν πολυσπλαγχνίαν αὐτοῦ , ὅτι οὐ |
λοιπὰς ιη κ τοῦ Σκορπίου ἔσχον ἀρχὴν μὲν τοῦ μεσουρανοῦντος δωδεκατημορίου , τέλος δὲ τοῦ καλουμένου θεοῦ . ταῖς δὲ | ||
καὶ μοίρας ὀνομάσαντες : καὶ τόπον μὲν ὑποτιθέμενοι τὸ τοῦ δωδεκατημορίου δωδεκατημόριον , τουτέστι μοίρας βʹ ἥμισυ καὶ διδόντες αὐτοῦ |
τῶν εὐθειῶν ἐφ ' αἷς ΕΖ ΖΗ ἀφαιρούμενα ἐντὸς τοῦ μηνίσκου ἀπὸ τοῦ εὐθυγράμμου τμήματα ἴσα ἐστὶ τοῖς ἐκτὸς τοῦ | ||
οὐκ ἐπὶ τετραγωνικῆς πλευρᾶς δεῖξαί φησι τὸν Ἱπποκράτην τὸν τοῦ μηνίσκου τετραγωνισμόν , ἀλλὰ καθόλου , ὡς ἄν τις εἴποι |
ὁ ὑπὸ γου καὶ αου # Μο ι γίνεται ΔΥ σξϚ # Μο ι : ταῦτα ἴσα ⃞ῳ . καὶ | ||
σξγ Λωτὸϲ ὁ ἥμεροϲ σξδ Λωτὸϲ τὸ δένδρον σξε Μάκερ σξϚ Μαλαβάθρου φύλλα σξζ Μαλάχη σξη Μανδραγόραϲ σξθ Μάραθρον σο |
νότια : καὶ τὰ μὲν ἀφανῆ , τὰ δ ' ἀειφανῆ γένοιτ ' ἂν αὐτῷ τῶν περὶ τοὺς πόλους ἄστρων | ||
λόγον καὶ ἕτερα μέρη πρὸς τῶι Καρκίνωι γίνοιτ ' ἂν ἀειφανῆ τοῦ ζωιδιακοῦ . καὶ οὕτως , ἐφ ' ὅσον |
δὲ δύο τῆς μιᾶς διπλασίους : ἡ ἄρα ἀπὸ τοῦ παραλληλογράμμου ἀνασταθεῖσα πυραμὶς ἰσουψὴς τῷ κώνῳ διπλασία τῆς ἀπὸ τοῦ | ||
τῆς περιφερομένης εὐθείας γραφόμενος . Κύλινδρός ἐστιν , ὅταν ὀρθογωνίου παραλληλογράμμου μενούσης μιᾶς πλευρᾶς τῶν περὶ τὴν ὀρθὴν γωνίαν περιενεχθὲν |
' ὡς ἀποδειχθέν , πάντως ἢ ἐξ ἀδήλου ἢ ἐκ φαινομένου ἀποδειχθὲν ἔσται ἀληθές . καὶ εἰ μὲν ἐξ ἀδήλου | ||
γενήσεται . πλείονι γὰρ τῷ σπόρῳ ἄμεινον χρῆσθαι , ὀψίμου φαινομένου τοῦ ἐνιαυτοῦ , διὰ τό τινα τῶν σπερμάτων ἐν |
καὶ ὃς ἡγεῖτο , παραγγείλας διαβαίνειν ᾗ ἕκαστος ἐτύγχανε τοῦ νάπους ὤν : θᾶττον γὰρ ἁθρόον ἐδόκει ἂν οὕτω πέραν | ||
ἄλλῃ καὶ ἄλλῃ προσέπιπτον , τότε δὴ ἐτράπησαν διὰ τοῦ νάπους εἰς τὸν ποταμόν . καὶ ἀποθνήσκουσι μὲν τρισχίλιοι ἐν |
σημεῖον ἐκτός , καὶ ἀπ ' αὐτοῦ πρὸς τὴν τομὴν διαχθῶσι δύο εὐθεῖαι , ὧν ἡ μὲν ἐφάπτεται , ἡ | ||
, ΖΚΛΕ , ἃ καί εἰσιν ἴσα . ἐὰν οὖν διαχθῶσι διάμετροι ἐπὶ τῶν τετραγώνων ὡς γενέσθαι τὴν τοῦ ἑνὸς |
ἴσας γωνίας τέμνουσιν ἥ τε ΟΞ τὴν ΦΨ καὶ ἡ ΝΤ τὴν ΣΩ , δῆλον : τὰς γὰρ ΨΦ , | ||
μὴ τόπου ἢ ὄρους ὄνομα ὑπάρχοι , ἢ διὰ τοῦ ΝΤ κλίνοιτο , καὶ φυλάττει τὸ Ω τῆς εὐθείας , |
ἡ ἀπὸ τοῦ Θ κάθετος ἐπὶ τὸ ΔΕΖ ἐπίπεδον δίχα τμηθήσεται ὑπὸ τοῦ ΣΤΥ ἐπιπέδου . καί εἰσιν ἴσαι αἱ | ||
παραλληλογράμμου καὶ προσεκβαλλομένη μέχρι τοῦ ἑτέρου μέρους τῆς ἐπιφανείας δίχα τμηθήσεται ὑπὸ τοῦ παραλληλογράμμου . ἤχθω διὰ τοῦ Ε σημείου |
ἀπὸ γῆς ἀναπηδᾷ , ὡς δι ' ἀέρος εἰς αἰθέρα ἀνέρχεσθαι καὶ μόλις περὶ τὴν ἐσχάτην τῶν ἀπλανῶν ἁψῖδα ἵστασθαι | ||
ἐξερχομένους ἐκ τῆς θαλάσσης περὶ τὴν ῥίζαν τῆς ἐλαίας ἀναστρεφομένους ἀνέρχεσθαι καὶ περιπτύσσεσθαι αὐτῇ ἐνειλουμένους , ὡς κισσὸς ἐλάτῃ : |
ἤτοι ἐντὸς αὐτοῦ πεσεῖται ἢ ἐκτὸς ἢ παραλλάξει ὡς τὸ ΓΗΔ , καὶ κύκλος κύκλον τέμνει κατὰ πλείονα σημεῖα ἢ | ||
καὶ ἀνεστάτω ἀφ ' ἑκάστου τῶν ΑΕΒ , ΒΖΓ , ΓΗΔ , ΔΘΑ τριγώνων πυραμὶς ἰσοϋψὴς τῷ κώνῳ . ἑκάστη |
ἐποχῆς τμθ ιϚ λϚ ιϚ , τῆς δὲ σεληνιακῆς ἀνωμαλίας τθ μη α μβ , τοῦ δὲ πλάτους η β | ||
λδ λα καὶ δ μζ μζ λγ : γίνονται μοῖραι τθ μη α μβ . πλάτους δὲ τοῖς αὐτοῖς χρόνοις |
τόπων ἐπίσκεψιν ἢ τῆς τοῦ ἡλίου κινήσεως τῆς ἀπὸ τῶν ἰσημεριῶν ἐπὶ τοὺς μέσους τῶν ἐκλείψεων χρόνους ἢ μὴ ἀληθῶς | ||
' ἡμῶν κατὰ τὸ υξγʹ ἔτος ἀπὸ τῆς Ἀλεξάνδρου τελευτῆς ἰσημεριῶν τε καὶ θερινῆς τροπῆς σύμφωνον τὸ τῶν διαστάσεων πλῆθος |
ἄτμητον φυλαχθῆναι , τὴν δ ' ἐντὸς ἑξαχῆ τμηθεῖσαν ἑπτὰ κύκλους τῶν λεγομένων πλανήτων ἀποτελέσαι : ὃ γάρ , οἶμαι | ||
λόγων κεκαθαρμένων καὶ πρὸς εὐθύτητα ἀπεξεσμένων , ἐμβεβλημένων δὲ ξύλοις κύκλους ἀποτελοῦσιν : οἱ δὲ κύκλοι ἐκ τοῦ ἐδάφους ἀρχόμενοι |
τῆς σκιᾶς καὶ οἱ τῆς σελήνης κύκλοι μέγιστοι . καὶ ἐκβεβλήσθω ἡ ΕΓ ἐπὶ τὴν περιφέρειαν τοῦ τῆς σκιᾶς κύκλου | ||
παράλληλος ἤχθω ἡ ΒΗ , καὶ ἐπεζεύχθω ἡ ΗΓ καὶ ἐκβεβλήσθω ἐπὶ τὸ Θ : ἴση ἄρα ἐστὶν ἡ ὑπὸ |