χρόνῳ τῆς γʹ ἀκρωνύκτου τὴν μὲν ἀπὸ τοῦ ἀπογείου τοῦ ἐκκέντρου μέσην πάροδον τοῦ ἐπικύκλου μοιρῶν ρλε λθ , ἐπειδήπερ | ||
εὐθεῖα τοιούτων ριθ ν ἔγγιστα , οἵων ἐστὶν ἡ τοῦ ἐκκέντρου διάμετρος ρκ . ἐπεὶ οὖν ἔλασσόν ἐστιν τὸ ΕΑΒΓ |
ἴσοι κύκλοι , ὧν ὁ μὲν τὸ κέντρον φέρων τοῦ ἐπικύκλου τοῦ τοῦ Ἄρεως ἔστω ὁ ΑΒΓ περὶ κέντρον τὸ | ||
μὴ ὄντος κατὰ τὸ ἀπόγειον τοῦ ἐκκέντρου τοῦ κέντρου τοῦ ἐπικύκλου ἐν τῷ χρόνῳ τῆς ἀκριβοῦς συνόδου ἢ πανσελήνου , |
ἀπογείου τοῦ ἐκκέντρου ὄντος , τῆς δὲ σελήνης μεταξὺ τοῦ ἀπογείου καὶ περιγείου τοῦ ἐπικύκλου οὔσης , διαφοραὶ τῶν τοιούτων | ||
ἣν ἡ μέση κίνησίς ἐστιν , καὶ τεταρτημόριον ἀπὸ τοῦ ἀπογείου τοῦ φαινομένου . Καὶ πάλιν αἱ πρὸς τῷ Β |
τῆς σελήνης κε μθ κατὰ τὴν ἐφ ' ἑκάτερα τοῦ περιγείου μεγίστην πάροδον προστιθέασι τῇ μέσῃ μοίρας β κη . | ||
ιγ , καὶ διὰ τοῦτο τὴν μὲν ἀπὸ τοῦ φαινομένου περιγείου τοῦ ἐπικύκλου πάροδον μοιρῶν ια λθ , τὴν δ |
ὁ ΑΖΓΘ τοῦ μὲν ΑΘΓ ὄντος τοῦ μετὰ τὸν καρκίνον ἡμικυκλίου , τοῦ δὲ ΓΖΑ τοῦ μετὰ τὸν αἰγόκερω , | ||
ὅλη ἄρα ἡ ΓΒ ὅλῃ τῇ ΕΖ ἐστιν ἴση . ἡμικυκλίου δέ ἐστιν ἡ ΓΒ : ἡμικυκλίου ἄρα καὶ ἡ |
φαινόμενα . οἷον ἐνηνέχθω τὸ μὲν κέντρον τοῦ ἐπικύκλου τεταρτημοριαίαν περιφέρειαν περὶ ἔγκεντρον κύκλον τὴν μο , καὶ μετενηνοχέτω τὸν | ||
ἴσαι εὐθεῖαι ὑποτείνουσιν : ὅπερ ἔδει δεῖξαι . Τὴν δοθεῖσαν περιφέρειαν δίχα τεμεῖν . Ἔστω ἡ δοθεῖσα περιφέρεια ἡ ΑΔΒ |
δ ' ἐν τῷ αὐτῷ ἐπιπέδῳ φερόμενος ἐπ ' αὐτοῦ ἐπίκυκλος ὁ ΕΖΗ περὶ κέντρον τὸ Α , καὶ ὑποκείσθω | ||
τῷ ΑΒΓ ὁ ΗΘΚ , καὶ κέντρῳ τῷ Θ γεγράφθω ἐπίκυκλος ὁ ΛΜ , καὶ ἐπεζεύχθω ἡ ΛΘΜΔ . ὑποτιθέμεθα |
τοῦ κώνου . εἰ γὰρ μή ἐστιν ὁ κύλινδρος τοῦ κώνου τριπλάσιος , ἔσται ἄρα ἤτοι μείζων ἢ τριπλάσιος ἢ | ||
εἰ γάρ ἐστιν ἐκείνη γωνία , καὶ ἡ κορυφὴ τοῦ κώνου γωνία ἐστίν . ὥστε καὶ ὑπὸ δύο ἐπιφανειῶν καὶ |
δὲ δύο τῆς μιᾶς διπλασίους : ἡ ἄρα ἀπὸ τοῦ παραλληλογράμμου ἀνασταθεῖσα πυραμὶς ἰσουψὴς τῷ κώνῳ διπλασία τῆς ἀπὸ τοῦ | ||
τῆς περιφερομένης εὐθείας γραφόμενος . Κύλινδρός ἐστιν , ὅταν ὀρθογωνίου παραλληλογράμμου μενούσης μιᾶς πλευρᾶς τῶν περὶ τὴν ὀρθὴν γωνίαν περιενεχθὲν |
Ε σημεῖα . ἐπεὶ μεῖζον τὸ ΑΓΒ τμῆμα τοῦ ΒΓ τμήματος , μείζων ἡ Ζ γωνία τῆς Θ γωνίας . | ||
ὁ αὐτὸς δὲ γίνεται καὶ τοῦ περὶ τὴν γῆν ὁμοίου τμήματος πρὸς τὸν ἐν αὐτῇ μέγιστον κύκλον . Οἱ μὲν |
ἐγγεγράφθω τὸ ΑΒΓΔΕ . λέγω , ὅτι ἡ τοῦ ΑΒΓΔΕ πενταγώνου πλευρὰ δύναται τήν τε τοῦ ἑξαγώνου καὶ τὴν τοῦ | ||
καὶ ἐγγεγράφθω εἰς αὐτὸν τριγώνου μὲν πλευρὰ ἡ ΒΕ , πενταγώνου δὲ ἡ ΓΔ , καὶ ἔστωσαν παράλληλοι , καὶ |
μίαν καὶ τὴν αὐτὴν εὐθεῖαν γίνεσθαι τὴν ἀπό τε τοῦ κέντρου τῆς γῆς καὶ τῆς ὄψεως τοῦ θεωροῦντος ἐπὶ τὸ | ||
τῷ κέντρῳ τριγώνου ἴσον ἔσται τῷ ἀπὸ τῆς ἐκ τοῦ κέντρου τριγώνῳ ὁμοίῳ τῷ ἀποτεμνομένῳ . ἔστω ὑπερβολὴ ἢ ἔλλειψις |
ἐπιπλεούσης δὲ τῆς ἀσφάλτου πελαγίας ὁ τόπος φαίνεται τοῖς ἐξ ἀποστήματος θεωροῦσιν οἱονεί τις νῆσος . τὴν δ ' ἔκπτωσιν | ||
ἡ γῆ σημείου καὶ κέντρου λόγον ἔχει , οὐδὲ τοῦ ἀποστήματος λόγος δίδοται . Ἐπὶ δὲ σελήνης παραλλάξεώς τινος ληφθείσης |
εὐλόγου γεννῶντες αὐτῶν τὰς διαφοράς , ἔπειτα προσάγοντες διὰ τοῦ κανόνος ταῖς ἀπὸ τῶν φαινομένων μαρτυρίαις , ἀλλὰ ἀνάπαλιν πρότερον | ||
ὅλου χρῆσίς τε καὶ ἀνάκρισις γίνοιτο τῶν λόγων διὰ πεντεκαιδεκαχόρδου κανόνος . Μέθοδοι πρὸς τὴν διὰ μόνων τῶν ὀκτὼ φθόγγων |
πρὸς ὀρθὰς γωνίας τέμνει , τέσσαρα μὲν ἔσται σημεῖα τοῦ λοξοῦ κύκλου , δύο μὲν τὰ ὑπὸ τοῦ ἰσημερινοῦ κατὰ | ||
τὸ κέντρον τῆς σελήνης ἐν ἀμφοτέραις ταῖς ἐκλείψεσιν ἐπὶ τοῦ λοξοῦ κύκλου , τουτέστιν ἡ μὲν ΑΕ μοιρῶν θ καὶ |
ἄλλοτε δύνων . Ἐν γὰρ τούτοις τὴν πάροδον ἀφορίζει τοῦ ζῳδιακοῦ κύκλου , ἣν ποιεῖται κατὰ πλάτος ἐπὶ τῆς ἀνατολῆς | ||
' ἥλιον καὶ σελήνην * * τὴν δὲ λόξωσιν τοῦ ζῳδιακοῦ γενέσθαι τῷ κεκλίσθαι τὴν γῆν πρὸς μεσημβρίαν : τὰ |
ΝΘ ἄρα πρὸς τὴν ΛΖ ἐλάττονα λόγον ἔχει ἤπερ ἡ ΘΞ πρὸς τὴν ΖΜ . ἐὰν ἄρα ποιῶμεν , ὡς | ||
ΞΔ μοιρῶν κγ μθ . μείζων ἄρα ἡ ΞΔ τῆς ΘΞ δευτέροις ἑξηκοστοῖς λ ἀνεπαισθήτοις . Πάλιν ὁ τῆς ὑπὸ |
τὸ φαινόμενον τῆς σελήνης ὥστε ἐφάπτεσθαι . . . τοῦ ἡλιακοῦ κατὰ τὸ Ζ σημεῖον , ἡ ΑΕ περιφέρεια ἣν | ||
ἐστὶν ὁ ΕΖΗΘ κύκλος τξ , τοιούτων ἐπὶ μὲν τοῦ ἡλιακοῦ ἀποστήματος ἔσται # α κε , ἐπὶ δὲ τῶν |
. Καὶ γὰρ ἐν τοῖς ὡρολογίοις τὸ ἄκρον τῆς τοῦ γνώμονος σκιᾶς τὰς αὐτὰς γράφει γραμμὰς ἐν τοῖς προειρημένοις ζῳδίοις | ||
ταύτης βέβηκε περιφέρεια ἡ ἀπ ' ἄκρου τῆς σκιᾶς τοῦ γνώμονος ἐπὶ τὴν βάσιν αὐτοῦ περιαχθεῖσα , ἐπὶ δὲ τῆς |
κ , οἵων ἡ ΔΖ ὑποτείνουσα ρκ , ἡ δὲ ΖΗ τῶν αὐτῶν ριγ μγ : ὥστε καί , οἵων | ||
ὡς μὲν ἡ ΖΔ πρὸς τὴν ΔΕ , οὕτως ἡ ΖΗ πρὸς τὴν ΗΕ , ὡς δὲ ἡ ΜΔ πρὸς |
ἔχρῃζον : τὸ γὰρ ὅμως ἐναντιωτικὸν ὂν παρίστησι τὸν Ταλθύβιον πολοῦ τὴν ζωὴν τιμώμενον , ὅσα καὶ φίλαυτον γέροντα : | ||
ἐν ἱεροῖς βλασφημούντων . Ῥωπικὸν ὤνιον : ἐπὶ τῶν εὐτελῶν πολοῦ πιπρασκομένων . Σαλαμινία ναῦς : ἐπὶ τῶν ταχέων : |
' ὡς ἀποδειχθέν , πάντως ἢ ἐξ ἀδήλου ἢ ἐκ φαινομένου ἀποδειχθὲν ἔσται ἀληθές . καὶ εἰ μὲν ἐξ ἀδήλου | ||
γενήσεται . πλείονι γὰρ τῷ σπόρῳ ἄμεινον χρῆσθαι , ὀψίμου φαινομένου τοῦ ἐνιαυτοῦ , διὰ τό τινα τῶν σπερμάτων ἐν |
. καὶ διὰ τοῦ Θ καὶ τοῦ Ζ πόλου λοξοῦ κύκλου γεγράφθω μεγίστου κύκλου περιφέρεια ἡ ΖΘΗ . τὸ ἄρα | ||
κατὰ τὸν τοῦ ὁρίζοντος πόλον ὑποκειμένου , καὶ τοῦ ΑΒΓ κύκλου ζῳδιακοῦ πρὸς ὀρθὰς τῷ ΖΒΕ διαμένοντος . Ἐὰν δὲ |
, οὕτως τὸ ἀπὸ τῆς ΖΗ πρὸς τὸ ἀπὸ τῆς ΗΘ , σύμμετρον ἄρα τὸ ἀπὸ τῆς ΖΗ τῷ ἀπὸ | ||
, οὕτως ἡ ΒΛ πρὸς ΛΗ . ἐπεὶ οὖν ἡ ΗΘ πρὸς ΘΒ μείζονα λόγον ἔχει ἤπερ ἡ ΗΜ πρὸς |
τοῦ αὐτοῦ σημείου τοῦ ἰσημερινοῦ ἀπό τινος τμήματος ἤτοι τοῦ ὁρίζοντος ἢ τοῦ μεσημβρινοῦ ἐπὶ τὸ αὐτὸ ἀποκατάστασις , νυχθήμερον | ||
αὐτὰ δειχθήσεται καὶ ὅταν ὁ πόλος τῶν παραλλήλων ἐπὶ τοῦ ὁρίζοντος ᾖ , καὶ γραφομένων διὰ τῶν Κ , Θ |
σημεῖον . Κείσθω γὰρ τῇ ΖΗ περιφερείᾳ ἴση περιφέρεια ἡ ΘΚ . Ἐπεὶ οὖν ὁ ἥλιος ἀνατείλας κατὰ τὸ Ζ | ||
, ΗΛ ἐν ἴσῳ χρόνῳ δύνουσιν : ὁμοίως καὶ αἱ ΘΚ , ΛΜ . διὰ τὰ αὐτὰ δὴ καὶ αἱ |
ΚΜ κάθετός ἐστιν ἡ ΕΛ . ἐκβεβλήσθω τὸ διὰ τῶν ΚΜ ΕΛ ἐπίπεδον καὶ ποιείτω τομὴν ἐν τῇ σφαίρᾳ κύκλον | ||
τῶν ὑπὸ ΟΚΛ ΟΚΜ , ἴση ἄρα καὶ ἡ μὲν ΚΜ τῇ ΚΛ , μείζων δὲ ἡ ΚΞ πολλῷ τῆς |
: ἐλάσσων δὲ ἡμικυκλίου ἥ τε ἀπὸ τῆς ἀποχωρήσεως τοῦ ἀναβιβάζοντος μέχρι τῆς ἀποχωρήσεως τοῦ ἐναντίου συνδέσμου , καὶ ἡ | ||
ἐλάχιστον ἀπόστημα διάστασιν τῆς κατὰ τὸ μέγιστον διαστάσεως ἀπὸ τοῦ ἀναβιβάζοντος μοίρας α ιβ . Τὸ μὲν οὖν ὅσον ἐπ |
διατί καὶ ἐνταῦθα ἡ Ἀφροδίτη εὑρίσκεται συμπροπέμπουσα τὸν Ἀπόλλωνα καὶ ἐφαπτομένη τοῦ δίφρου . καὶ ἤτοι ὅτι μετέρχεται τὰ γαμήλια | ||
, καὶ ἤχθω διάμετρος τῶν τομῶν ἡ ΑΗ , καὶ ἐφαπτομένη τῆς τομῆς ἤχθω ἡ ΘΚ : ἡ ΘΚ ἄρα |
Δίδυμος ἔφη , καὶ παραλαμβάνει αὐτὸ παρὰ τὸ ἔτης μετὰ μορίου τοῦ ὦ κλητικοῦ . Πρὸς ὅν φησι Τρύφων , | ||
ἀπὸ μελαίνης χολῆς , αὖαι δὲ ἀπὸ λιγνύος καὶ μητρῴου μορίου , λευκαὶ δὲ ἀπὸ φλέγματος . Σημειώσεις τινὰς θέλει |
λε ιε τοῖς λείπουσι πάλιν εἰς τοὺς καὶ τούτου τοῦ τεταρτημορίου χρόνους ρη με . καὶ φανερόν , ὅτι τὸν | ||
μοίραις χρονικαῖς οεʹ : ὑπερέχει ἄρα ὁ τοῦ ηζ εδ τεταρτημορίου ἀναφορᾶς χρόνος τοῦ τῆς τοῦ δγ βα τεταρτημορίου ἀναφορᾶς |
κέντρου δύναται τὸ ὑπὸ ΟΓ ΚΑ ἢ τὸ ὑπὸ Θ ΚΑ ἐλάσσων ἐστὶν τῆς σφαιρικῆς τοῦ τμήματος ἐπιφανείας . ἀλλὰ | ||
, οἵων ἐστὶν ἡ ΑΖ διάμετρος ρκ , ἡ δὲ ΚΑ τῶν αὐτῶν ργ νε : ὥστε καί , οἵων |
γὰρ τῆς σφαίρας καὶ ἐπὶ τοῦ κατὰ τὸ ἡμικύκλιον ἑτέρου σημείου τὴν μοῖραν περιαγαγούσης , αἱ αὐταὶ ἔγγιστα καιρικαὶ ὧραι | ||
γίνεται δὲ τὰ ἀπ ' ἀρχῆς ἄχρι τέλους ἀπὸ τοῦ σημείου : καὶ αὔξεται ἀπὸ τῶν περιστατικῶν : πόθεν δὲ |
ἐστίν . μόνοι δὴ λοιπὸν δοκοῦσι καθικνεῖσθαι τῆς ἐννοίας τοῦ δεδομένου οἱ γνώριμον ἅμα καὶ πόριμον αὐτὸ εἶναι ἀποφηνάμενοι : | ||
ἐστὶ καὶ ἡ ὑπὸ τῶν ΑΕΓ γωνία . Ἐὰν κύκλου δεδομένου τῇ θέσει ἐπὶ τῆς περιφερείας δοθὲν σημεῖον ληφθῇ , |
παντὸς ἀφορίζεσθαι καὶ ὑπὸ τοῦ Δ κέντρου τοῦ πρώτου καὶ μένοντος ἐκκέντρου , καὶ γράφεσθαι μὲν τὸν κινούμενον ἔκκεντρον ἑκάστοτε | ||
ἑτέρως ἢ κατὰ τὴν νοῦ νόησιν . Εἴ τι οὖν μένοντος αὐτοῦ ἐν αὐτῷ γίνεται , ἀπ ' αὐτοῦ τοῦτο |
ὑποτείνει ἡ τοῦ τετραγώνου πλευρὰ τοῦ εἰς τὸν μέγιστον κύκλον ἐγγραφομένου . καὶ ἐπεὶ ἐν σφαίρᾳ δύο κύκλοι οἱ ΜΝΞ | ||
ὑποτείνει ἡ τοῦ τετραγώνου πλευρὰ τοῦ εἰς τὸν μέγιστον κύκλον ἐγγραφομένου , ἴση περιφέρεια ἀπειλήφθω ἡ ΒΘ , καὶ πόλῳ |
λοιπὰς ιη κ τοῦ Σκορπίου ἔσχον ἀρχὴν μὲν τοῦ μεσουρανοῦντος δωδεκατημορίου , τέλος δὲ τοῦ καλουμένου θεοῦ . ταῖς δὲ | ||
καὶ μοίρας ὀνομάσαντες : καὶ τόπον μὲν ὑποτιθέμενοι τὸ τοῦ δωδεκατημορίου δωδεκατημόριον , τουτέστι μοίρας βʹ ἥμισυ καὶ διδόντες αὐτοῦ |
ιη με , ἡ δὲ λοιπὴ εἰς τὸ τεταρτημόριον ἡ ΘΑ τῶν αὐτῶν οα ιε . ἐπειδὴ οὖν κατὰ τὰ | ||
τετράγωνον Μβ ͵εωμε νε , τὸ δ ' ἀπὸ τῆς ΘΑ ὁμοίως ͵γφξη δ , ἃ συντεθέντα ποιεῖ τὸ ἀπὸ |
καὶ ἀπεναντίον περιφέρεια ἡ ΣΤ καὶ μεταξὺ τῶν ΞΗ , ΣΤ ὁ ἰση - μερινὸς ἔστω ὁ ΥΧΦ . καὶ | ||
ΠΗΡ , ΣΘ , ΤΥΚ : μείζων ἄρα ἐστὶν ἡ ΣΤ περιφέρεια τῆς ΣΠ περι - φερείας . ἀλλ ' |
τῆς διαστάσεως τοῦ ἀστέρος καὶ σελήνης . ὑποκειμένης τῆς τοῦ ἀστέρος μοίρας ἀπλανοῦς ἢ πλανωμένου , ἡ τῆς σελήνης μοῖρα | ||
φημὶ δὲ τοῦ δωδεκατημορίου , τὸ τελευταῖον πέρας ἐσημειοῦντο ἀπὸ ἀστέρος τινὸς ἐπιφανοῦς κατ ' αὐτὸ θεωρουμένου ἢ ἀπό τινος |
ἐπεὶ δύο αἱ ΑΒ , ΒΓ δυσὶ ταῖς ΚΘ , ΘΛ ἴσαι εἰσίν , καὶ γωνία ἡ πρὸς τῷ Β | ||
καὶ ὡς ἡ ΕΘ πρὸς τὴν ΓΗ , οὕτως ἡ ΘΛ πρὸς τὴν ΗΚ : ἴσων μὲν ἄρα οὐσῶν τῶν |
καὶ θεωρία ἐκεῖνο . Ἡ ἄρα πρᾶξις ἕνεκα θεωρίας καὶ θεωρήματος : ὥστε καὶ τοῖς πράττουσιν ἡ θεωρία τέλος , | ||
ἀνεκλείπτου περιφερείας δεδειγμέναις μοίραις ρνζ , ὡς ἐπὶ τοῦ προκειμένου θεωρήματος σελήνης , ἑκατέρα τῶν ΕΓΗ , ΖΑΘ περιφερειῶν [ |
γὰρ Ἀριστοτέλης περὶ τῆς μείζονος λέγει ἀναγκαίας , ὡς αὐτῇ ἑπομένου τοῦ συμπεράσματος , κἂν ᾖ ἡ ἐλάττων ὑπάρχουσα , | ||
, μεμνῆσθαι δεῖ , ὅτι τῶν δύο τῶν ὑπὸ τοῦ ἑπομένου τμήματος τοῦ διὰ μέσων τῶν ζῳδίων κύκλου περιεχομένων γωνιῶν |
ΒΛ πρὸς ΛΝ . ] ὡς δὲ ἡ ΓΛ πρὸς ΛΝ , οὕτως τὸ ἀπὸ τῆς ΓΛ τετράγωνον πρὸς τὸ | ||
ὁ μὲν ΓΜ κύλινδρος τῷ ΕΒ κυλίνδρῳ , ὁ δὲ ΛΝ ἄξων τῷ ΗΘ ἄξονι : ἔστιν ἄρα ὡς ὁ |
διὰ τοῦ ἄξονος ἐπίπεδον πρὸς ὀρθὰς ᾖ τῇ βάσει τοῦ κυλίνδρου . ἔστω κύλινδρος , οὗ βάσεις μὲν οἱ Α | ||
ἴσον . μεῖζον δὲ ἡ πυραμὶς τοῦ τρίτου μέρους τοῦ κυλίνδρου , ὡς ἐδείχθη : μεῖζον ἄρα καὶ τὸ πρίσμα |
ἐκβληθῇ , ἀπὸ δὲ τῆς κορυφῆς ἀναχθεῖσα εὐθεῖα παρὰ τεταγμένως κατηγμένην συμπίπτῃ τῇ διὰ τῆς ἁφῆς καὶ τοῦ κέντρου ἠγμένῃ | ||
τῇ ΑΓ . ἤχθω γὰρ ἀπὸ τοῦ Β παρὰ τεταγμένως κατηγμένην ἡ ΒΖ . ἔστιν ἄρα , ὡς τὸ ὑπὸ |
τῆς σφαίρας πρὸς τὸ ἀπὸ τῆς ΔΗ πλευρᾶς οὔσης τοῦ κύβου , οὕτως τὸ ἀπὸ τῆς τοῦ ΚΛΘ τριγώνου ἰσοπλεύρου | ||
ὧν αἱ πλευραὶ Μο ι . Τετάχθω ἡ τοῦ αου κύβου πλ . ʂ α Μο ε τουτέστι τοῦ ∠ |
ἔστω γὰρ ἡ ΓΖΘ . φανερόν , ὅτι τὸ ὑπὸ ΓΚΘ ἴσον τῷ ἀπὸ ΑΓ : τέτμηται γὰρ ἡ ΘΚ | ||
ΚΘ , ἴση ἐστὶν ἡ μὲν ὑπὸ ΑΓΒ τῇ ὑπὸ ΓΚΘ , ἡ δὲ ὑπὸ ΚΓΒ τῇ ὑπὸ ΓΑΔ , |
ἡ ΚΒΛ . λέγω , ὅτι ἐστίν , ὡς ἡ ΑΚ πρὸς ΚΘ , οὕτως ἡ ΑΗ πρὸς ΗΘ . | ||
ἴση ἡ ΚΛ τῇ ΚΗ . ἐπεὶ οὖν τὰ ἀπὸ ΑΚ , ΚΗ τοῖς ἀπὸ ΑΒ , ΒΗ ἴσα ἐστί |
δὴ οὖν βρόχου αἱ ἀρχαὶ ὀφείλουσιν ἀποδίδοσθαι τῷ τύλῳ τοῦ ἄξονος , ἢ αὐτόθεν ἢ κατὰ μετάληψιν , ἵνα τῇ | ||
τοῦ διὰ τοῦ ἄξονος ἰσοσκελοῦς : τὸ ἄρα διὰ τοῦ ἄξονος ἰσοσκελὲς οὐ πάντων μέγιστόν ἐστι τῶν εἰρημένων ἰσοσκελῶν . |
ἀδιάστατον ἀπολείψουσι τὸ σημεῖον , ὅ γε διχάζεται πρὸς τοῦ τέμνοντος . ὁ δὲ αὐτὸς λόγος καὶ ἐπειδὰν φῶσι τὸν | ||
ἐπιφανείᾳ τοῦ κώνου τὴν ΔΖΕ : κοινὴ δὴ τομὴ τοῦ τέμνοντος ἐπιπέδου καὶ τοῦ ΑΒΓ τριγώνου ἡ ΖΗ . καὶ |
ΕΓ ἡ ΞΛΟ , καὶ τῇ ἴσαι κείσθωσαν ἥ τε ΞΠ καὶ ἡ ΡΜ , καὶ ἐπεζεύχθωσαν ἡ ΕΚ καὶ | ||
ΑΒ ἴση ἡ ΞΟ , τῇ δὲ ΒΓ ἴση ἡ ΞΠ , καὶ ἐπεζεύχθω ἡ ΟΠ . καὶ ἐπεὶ ἴση |
ΧΕ πρὸς τὴν ΕΔ , οὕτως ἡ ΚΘ πρὸς τὴν ΘΗ . ἔστι δὲ καί , ὡς ἡ ΧΕ πρὸς | ||
καὶ τοῦ ἐπικύκλου καταγραφῆς ἀποληφθείσης ἀπὸ τοῦ Θ περιγείου τῆς ΘΗ περιφερείας τῶν αὐτῶν μοιρῶν λ ἐπεζεύχθωσαν μὲν ἥ τε |
ὁτὲ δὲ μοῖραν μίαν καὶ λεπτὰ β , εἰς τὸ περιγειότατον δηλαδή , ἔσθ ' ὅτε δὲ καὶ λεπτὰ νθ | ||
δὲ τρίτον , τοῦ ἐπικύκλου τὸ κέντρον ἔχοντος κατὰ τὸ περιγειότατον τοῦ ἐκκέντρου κύκλου σημεῖον μέγιστον ἀπόστημα , ὅπερ ἀποδέδεικται |
τρίγωνα ἰσόπλευρα εἶναι . ἔσται δὴ ἡ ΑΒΓΔΕ πυραμὶς μέρος εἰκοσαέδρου σχήματος . τετμήσθω μία πλευρὰ ἑνὸς τριγώνου ἡ ΖΓ | ||
, οὕτως τὸ στερεὸν τοῦ δωδεκαέδρου πρὸς τὸ στερεὸν τοῦ εἰκοσαέδρου . Ἐπεὶ γὰρ ἴσοι κύκλοι περιλαμβάνουσι τό τε τοῦ |
. ἀπὸ τῆς δυνούσης μοίρας λαβὼν κατὰ τὰς ἀναφορὰς τοῦ κλίματος ἕως τοῦ διαμέτρου τούτων τὴν ἡμίσειαν ἀπόλυε ἀπὸ τῆς | ||
τὸν ζωτικὸν ἀπολήψεται χρόνον καὶ τὴν ποσότητα κατὰ τὴν τοῦ κλίματος ἁρμονίαν : ὅτε δέ τις κατὰ μόνας αὐτοὺς ἀνακυκλήσῃ |
ἐλάττονές εἰσιν , ἴση δὲ ἡ ὑπὸ ΑΓΒ τῇ ὑπὸ ΔΕΓ , αἱ ἄρα ὑπὸ ΑΒΓ , ΔΕΓ δύο ὀρθῶν | ||
ὑπὸ ΑΕΒ πρὸς τὸ ἀπὸ ΕΒ , οὕτως τὸ ὑπὸ ΔΕΓ πρὸς τὸ ἀπὸ ΕΓ . ἀλλὰ καὶ ὡς τὸ |
τῷ Ε , διαστήματι δὲ τῷ ΕΑ κύκλος γραφόμενος μὴ ἐρχέσθω διὰ τοῦ Γ , ἀλλ ' ὑπερπιπτέτω αὐτό : | ||
ἤτοι διὰ τοῦ ἑτέρου αὐτῶν ἢ δι ' οὐδετέρου . ἐρχέσθω πρότερον διὰ τοῦ Κ καὶ τεμνέτω τὴν ΖΗ κατὰ |
καὶ ὡς ἡ ΤΒ πρὸς τὴν ΒΛ , οὕτως ἡ ΟΖ πρὸς τὴν ΖΝ . δι ' ἴσου ἄρα ὡς | ||
τὸ ὑπὸ ΓΞΑ μετὰ τοῦ ἀπὸ ΑΕ καὶ τοῦ ἀπὸ ΟΖ , τουτέστι τοῦ ἀπὸ ΕΘ , πρὸς τὸ ὑπὸ |
παρὰ τὰ α ι εὕρομεν τὴν κατ ' αὐτὸ τὸ ἀπόγειον παρὰ τὸ μέσον ἀπόστημα ὑπεροχὴν α ιζ : ὥστε | ||
δὲ ΕΑ ἡ ἀπὸ τοῦ κέντρου τῆς γῆς ἐπὶ τὸ ἀπόγειον τοῦ ἐκκέντρου ξ , ἡ δὲ ΕΓ ἡ ἀπὸ |
. ἴσον ἄρα τὸ ἀπὸ τῆς ΝΜ τῷ ἀπὸ τῆς ΞΖ , τουτέστι τὸ ὑπὸ ΑΛ , ΛΜ μετὰ τοῦ | ||
τὴν τῶν ΞΖ , ΖΜ ἀποστημάτων ὑπεροχὴν πρὸς τὴν τῶν ΞΖ , ΖΘ ὑπεροχήν , οὕτως τὴν τῶν κατὰ τοὺς |
παραλλάξεων , ὅταν μὲν τὸ κατὰ κορυφὴν σημεῖον ἐπὶ τοῦ μεσημβρινοῦ βορειότερον ᾖ τοῦ τότε μεσουρανοῦντος τοῦ διὰ μέσων τῶν | ||
εὐλογωτέρας τε καὶ ἐμφατικωτέρας παρειλήφαμεν τὰς ἀφοριζομένας ὑπό τε τοῦ μεσημβρινοῦ καὶ τῶν τοῦ διὰ μέσων ἀνατολῶν τε καὶ δύσεων |
ἀνατολῇ ὁ ἥλιος μείζονά τινα τῆς ΛΜ περιφερείας διελεύσεται . Διερχέσθω τὴν ΛΝ : τοῦ Μ ἄρα πρὸς ἀνατολαῖς ὄντος | ||
δύσει ὁ ἥλιος μείζονά τινα τῆς ΛΜ περιφερείας διελεύσεται . Διερχέσθω τὴν ΛΝ . Τοῦ Μ ἄρα πρὸς δυσμαῖς ὄντος |
κατὰ τὰς διχοτομίας γινόμενον τοῦ εζπη ἐπικύκλου καὶ τοῦ μλνξ ἐγκέντρου , οἷον τὰς ζ η , αἵτινες διὰ τὴν | ||
κύκλου φαίνεσθαι φερόμενον , καὶ τὸν ἐπίκυκλον αὐτοῦ κατὰ τοῦ ἐγκέντρου , καθάπερ ἔφαμεν , τῆς δὲ σελήνης τὸν ἐπίκυκλον |
ΑΒΓ , ὁ δὲ τῶν ζῳδίων κύκλος θέσιν ἐχέτω τὴν ΑΕΓΔ , καὶ ἔστω ὑπὸ γῆν τὸ ΑΔΓ ἡμικύκλιον , | ||
ἐμβαδὸν τοῦ ΑΖΓΗ κύκλου : δηλονότι καὶ τὸ μὲν τοῦ ΑΕΓΔ τομέως ἐμβαδὸν ἕξομεν τοιούτων κϚ ιϚ οἵων ἐδείχθη τὸ |
Δ ἐπὶ τὴν ΒΖ αἱ ΓΛ καὶ ΔΜ , καὶ ὑποτεθέντος τοῦ ἀστέρος κατὰ τὸ Κ σημεῖον ἐπεζεύχθωσαν μὲν αἱ | ||
πειρᾶται ζητεῖν τὸ ἀδύνατον , ἀλλὰ καὶ ἡμᾶς ἀξιοῖ . ὑποτεθέντος μέντοι τοῦ λόγου τοῦ ὃν ἔχει ἡ ΚΘ πρὸς |
καὶ ἐργῶδες ἐν τοῖς ἐπιλογισμοῖς , κινουμένων καὶ τοῦ ἀναβιβάζοντος συνδέσμου καὶ τοῦ καταβιβάζοντος εἰς τὰ προηγούμενα τῶν ζῳδίων . | ||
. ἔοικα δὲ τὰ μεταξὺ παρατρέχειν : ὑπὸ γὰρ τοῦ συνδέσμου τὰς συμβολὰς ὄχναι καὶ ῥοιαὶ καὶ μηλέαι ἀγλαόκαρποι , |
τμημάτων ὁ μηνίσκος . ἔσται οὖν ἐλάττων ὁ μηνίσκος τοῦ τριγώνου τοῖς ὑπὸ τοῦ ἑξαγώνου ἀφαιρουμένοις τμήμασιν . ὁ ἄρα | ||
καταγίνεται , ὡς γεωμετρία ἀποδεικνύουσα ἀεὶ τὰς τρεῖς γωνίας τοῦ τριγώνου δυσὶν ὀρθαῖς ἴσας εἶναι , ἢ ὡς ἐπὶ τὸ |
καὶ ὥρας ἰσημερινὰς κγ ιβʹ συνάγει κατὰ τὴν ἀποδεδειγμένην τοῦ πλάτους μέσην κίνησιν ἐπουσίαν μοίρας ρξ καὶ ἑξηκοστὰ δ . | ||
κθ ιδ ὡς ἀπὸ τῶν συνδέσμων εἰσαγαγόντες εἰς τὸ τοῦ πλάτους κανόνιον σελήνης , καὶ τὴν παρακειμένην πρὸς ἀνάλογον μοῖραν |
τῆς μεγάλης , ὅσοι ἔσονται λαὸς ἅγιος : τότε αὐτοῖς δοθήσεται πᾶσα εὐφροσύνη τοῦ παραδείσου , καὶ ἔσται ὁ θεὸς | ||
ἡ ΕΞ καὶ ἡ ΞΟ , καὶ ἡ ΕΟ ὑποτείνουσα δοθήσεται καὶ ἡ ὑπὸ ΟΕΞ γωνία : ὥστε καὶ ἡ |
ΔΓ , καὶ ἀπὸ τοῦ Δ ἐπὶ τὴν ΑΓ κάθετος ἤχθω ἡ ΔΖ . λέγω , ὅτι ἡ ΖΓ ἡμίσειά | ||
δὲ τοῦ Θ ὁποτέρᾳ τῶν ΑΒ , ΕΖ παράλληλος πάλιν ἤχθω ἡ ΚΜ , καὶ πάλιν διὰ τοῦ Α ὁποτέρᾳ |
ἡ ΠΜ πρὸς τὴν ΒΛ , οὕτως ἡ ΜΑ πρὸς ΛΑ . μείζων δὲ ἡ ΜΑ τῆς ΛΑ : μείζων | ||
ὡς ἄρα ἡ ΖΓ πρὸς ΓΑ , ἡ ΖΛ πρὸς ΛΑ . Τῶν αὐτῶν ὄντων ἐὰν ἡ ἀπὸ τοῦ σημείου |
, διὰ δὲ τοῦ Κ τῇ ΑΒ παράλληλος ἤχθω ἡ ΚΝ , καὶ ἐκβεβλήσθω ἡ ΔΘ ἐπὶ τὸ Ν . | ||
τὸ Α ὄμμα ἐπὶ τὸ Ν , καὶ περὶ τὴν ΚΝ κύκλος γεγράφθω , καὶ ἐπεζεύχθωσαν αἱ ΝΡ , ΡΚ |
νόσους εἰκὸς εἶναι πολλάς . Τοῦ δὲ Ἅληκος ποταμοῦ τοῦ διορίζοντος τὴν Ῥηγίνην ἀπὸ τῆς Λοκρίδος βαθεῖαν φάραγγα διεξιόντος ἴδιόν | ||
ΓΔ . ἡ ΓΔ ἄρα διάμετρός ἐστι τοῦ κύκλου τοῦ διορίζοντος ἐν τῇ σελήνῃ τὸ σκιερὸν καὶ τὸ λαμπρόν . |
ΑΡ ἄρα ἐπὶ τὴν ΡΞ κάθετός ἐστιν , καὶ ἡ ΑΟ ἐπὶ τὴν ΟΜ , καὶ ἡ ΑΠ ἐπὶ τὴν | ||
, ΨΣ . καὶ ἐπεὶ ἴσον ἐστὶ τὸ ἀπὸ τῆς ΑΟ τῷ ἀπὸ τῆς ΑΣ , ἴσον δέ ἐστι τὸ |
ΑΒ παραλληλόγραμμον . ἔστω δ ' ἐν αὐτῷ διὰ τῆς ΠΟ εὐθείας κατὰ μέσον σωλήν , ὥστε πελεκυνάριον ἐν αὐτῷ | ||
ἤχθωσαν διὰ τῶν Κ , Λ παράλληλοι αἱ ΞΟ , ΠΟ . ἐπεὶ οὖν διπλῆ ἐστιν ἡ μὲν ΠΟ τῆς |
ἡ ΛΜ μείζων ἐστίν : πολλῷ ἄρα ἡ ΜΛ τῆς ΝΟ μείζων ἐστίν . ἀλλὰ καὶ ἴση : ὅπερ ἐστὶν | ||
ἐστὶν ὡς ἡ ΒΚ πρὸς ΝΞ , ἡ ΚΜ πρὸς ΝΟ . καὶ τὰ τετράγωνα . καὶ ὡς ἓν πρὸς |
μὴ ἦι ὁτὲ μὲν ῥικνά , ὁτὲ δὲ πολύσαρκα : ἀνωμάλου γὰρ βίου ὤιοντο εἶναι δεῖγμα . ἀλλὰ ὡσαύτως καὶ | ||
δυνάμενα ἕδρας ἐνδῦναι , συνωθοῦντα ἡμῶν τὸ νοτερόν , ἐξ ἀνωμάλου κεκινημένου τε ἀκίνητον δι ' ὁμαλότητα καὶ τὴν σύνωσιν |
ἐν τῷ ιγʹ βιβλίῳ τῶν στοιχείων ἤτοι τῆς συστάσεως τοῦ δωδεκαέδρου , ὅτι ἡ ἀπὸ τοῦ Κ κάθετος ἀγομένη ἐπὶ | ||
ποτε ζητοῦντες τὸ ὑπὸ Ἀπολλωνίου συγγραφὲν περὶ τῆς συγκρίσεως τοῦ δωδεκαέδρου καὶ τοῦ εἰκοσαέδρου τῶν εἰς τὴν αὐτὴν σφαῖραν ἐγγραφομένων |
ἔσται . ἐν δύσει δὲ ὄντος ἑσπερίᾳ καὶ ὑπὸ κακοποιοῦ θεωρουμένου πραγμάτων ἐκκοπὰς καὶ θορύβους ποιεῖ καὶ ἐπιβουλὰς καὶ ζημίας | ||
μονάδα , ἡ δὲ λογιστικὴ περὶ τοῦ ἐν τοῖς πράγμασι θεωρουμένου ἀριθμοῦ διαλαμβάνει : ἀντὶ γὰρ τῆς μονάδος λαμβάνει ἢ |
ΛΗ μοιρῶν κγ να ἔγγιστα . ἔστιν δὲ καὶ ἡ ΞΔ μοιρῶν κγ μθ . ἀλλὰ καὶ ἡ ΜΞ τῇ | ||
. ἔσται τοίνυν διὰ τοῦ τῆς λοξώσεως κανονίου δοθεῖσα ἡ ΞΔ περιφέρεια μοιρῶν οὖσα κγ μθ : τοσαῦται γὰρ ἐπιβάλλουσιν |
ἂν ἐκλείψῃ αὕτη ποτέ , μέχρις αὐτὸ τῇδε πᾶν συνεστηκὸς περίγειον ἐκλείψῃ . ὃς νοῦς νικήσας τὸν χρόνον πάντα καλῶς | ||
δοξάζει ποδιαῖον τὸν ἥλιον ἢ εἴ τις τὴν σελήνην τὸ περίγειον καταλάμπουσαν ἀφ ' ἑαυτῆς ἔχειν οἴεται πᾶσαν τὴν λαμπρότητα |
οὐκ ἐνδέχεται ἀεὶ ὄντος οὕτως ἢ οὕτως ἀεὶ γινομένου τινὸς συμπεράσματος , τὸν τούτου μέσον ὡς ἐπὶ τὸ πολὺ οὕτως | ||
εἰ καὶ τοῦ πράγματός ἐστιν αἴτιος , οὐ μόνον τοῦ συμπεράσματος , καὶ ἀναγκαίως ἔχων καὶ τὰ κατηγορούμενα κατηγορούμενα καὶ |
ἐν τῇ ἑτέρᾳ ἐπιφανείᾳ τοῦ τυμπάνου περὶ τὸν κότραφον ὁμοίως γραφομένου τοῦ ΧΩ κύκλου , καὶ ἀπὸ τοῦ Σ τῇ | ||
, καίπερ ἐκ τοῦ εἴδω τοῦ διὰ τῆς ει διφθόγγου γραφομένου γεγονός : ἰθμός : ἱστίον : ἴσπω : ἴσχω |
, ἡ ΟΕ ἄρα δεκαγώνου ἐστὶ πλευρά . καὶ ἐπεὶ ἑξαγώνου . , ] ἴση γὰρ ὑπόκειται τῇ ἐκ τοῦ | ||
ἐπὶ τὰ ἕτερα μέρη ὡς ἡ ΦΨ , καὶ ἀφῃρήσθω ἑξαγώνου μὲν ἡ ΦΧ , δεκαγώνου δὲ ἑκατέρα τῶν ΦΨ |
ὄπιϲθεν προϲπεφυκὼϲ αὐτῷ , ἐκ τοῦ περιτοναίου τὴν γένεϲιν ἔχων χιτῶνοϲ . τὸ δὲ μέροϲ τοῦτο , καθ ' ὃ | ||
χρηϲόμεθα βοηθήμαϲιν . Τὸ μὲν ϲταφύλωμα κύρτωϲίϲ ἐϲτι τοῦ κερατοειδοῦϲ χιτῶνοϲ ἀτονήϲαντοϲ ϲὺν τῷ ῥαγοειδεῖ , ποτὲ μὲν διὰ ῥευματιϲμόν |
. Ποιείσθω οὖν κατὰ τὸ Λ , καὶ κείσθω τῇ ΛΖ περιφερείᾳ ἴση περιφέρεια ἡ ΜΗ . Ἐπεὶ οὖν ὁ | ||
καὶ ἡμέρας χρόνος ἐστίν , ἐν ᾧ ὁ ἥλιος τὴν ΛΖ περιφέρειαν διαπορεύεται , καὶ ἔστιν ἴση ἡ ΛΖ τῇ |
διὰ τῆς εὐθείας διδάσκουσι τήν τ ' εὐθεῖαν διὰ τοῦ ἐπιπέδου : εὐθεῖαν γὰρ εἶναί φασιν ἥτις εἰς πάντα τὰ | ||
τοῖς στερεοῖς ἡ σφαιρική : τοῦ δὲ αἰθέρος μὴ ὄντος ἐπιπέδου , ἀλλὰ στερεοῦ , καταλείπεται αὐτὸν εἶναι σφαιροειδῆ . |
τὸ πτηνὸν ζῷον ρπγ Κοχλίοϲ χερϲαῖοϲ ρπδ Περὶ μαινίδοϲ ταριχηρᾶϲ ρπε Νάρκα ζῶϲα ρπϚ Ὀνίϲκοϲ θαλάττιοϲ ρπζ Ὀϲτρέων ὄϲτρακα ρπη | ||
ρπ Κάππαριϲ ρπα Κάρδαμον ρπβ Καρδάμωμον ρπγ Καρῶον ρπδ Καϲϲία ρπε Καρύα ρπϚ Κάρυα ποντικὰ καὶ λεπτοκάρυα ρπζ Καϲτάνια ρπη |
πλαγία πρὸς τὴν ὀρθίαν , ὡς δὲ ἡ Κ πρὸς ΗΖ , ἡ ΘΗ πρὸς ΗΑ διὰ τὸ ἴσον εἶναι | ||
τῇ ΚΖ : ὅπερ ἀδύνατον : ἡ γὰρ ΕΗ τῇ ΗΖ ἐστιν ἴση . οὐκ ἄρα διάμετρός ἐστιν ἡ ΑΘ |
τῶν ἄλλων μενόντων τῶν αὐτῶν τὴν μὲν διπλῆν τῆς ΖΗ περιφερείας γίνεσθαι μοιρῶν ρλη νθ μβ καὶ τὴν ὑπ ' | ||
κύκλῳ εὐθειῶν . ιβʹ . περὶ τῆς μεταξὺ τῶν τροπικῶν περιφερείας . ιγʹ . προλαμβανόμενα εἰς τὰς σφαιρικὰς δείξεις . |
δέ . ἄσπετον : πολύ , ἄφθονον . ἀρωγέ : βοηθέ , λυτρωτά . ἀνθοποιόν : ἄνθη ἐκφέρουσαν . ἀμφ | ||
θ πρόμαχε ] βοηθέ . πρόμαχ ' ] ὑπέρμαχε , βοηθέ . Ξ δόμων ] οἴκων . τοῖσι ] τοῖς |
δὲ ὑπὸ τὰς ἐκ μεταθέσεως καταφάσεις τοῦ δυνατοῦ καὶ τοῦ ἐνδεχομένου τάξας τὴν ἐκ μεταθέσεως τοῦ ἀδυνάτου ἀπόφασιν , ὑπὸ | ||
ποτε γινόμεναι . τοῦ δὲ συναληθεύειν ἐπὶ τοῦ δυνατοῦ καὶ ἐνδεχομένου τὰς κατὰ τὸ εἶναι καὶ μὴ εἶναι διαφερούσας προτάσεις |
Κενωτικὰ λεπτῶν ἐντέρων ρμϚ Κενωτικὰ τῶν ϲιμῶν τοῦ ἥπατοϲ ρμζ Κενωτικὰ τῶν κυρτῶν τοῦ ἥπατοϲ ρμη Ϲπληνὸϲ κενωτικά ρμθ Νεφρῶν | ||
καὶ πλευριτικὰϲ διαθέϲειϲ ἰᾶϲθαι , ὥϲπερ καὶ τὰ προειρημένα . Κενωτικὰ λεπτῶν ἐντέρων . Καθαίρει δὲ τὰ λεπτὰ ἔντερα καρπὸϲ |
καταπλαϲμάτων καὶ ϲικυῶν Γαληνοῦ ροϚ Ἐκ τῶν Λύκου περὶ καταπλαϲμάτων ροζ Περὶ τοῦ ἐξ ἄρτου καταπλάϲματοϲ ροη Περὶ τοῦ ἐκ | ||
. . . . . . . . . . ροζ η ∠ ʹ Σαίνου ποταμοῦ ἐκβολαί . . . |
. καὶ ἐπεί ἐστιν , ὡς ἡ ΑΚ πρὸς τὴν ΚΒ , ἡ ΑΔ πρὸς τὴν ΒΝ , ἴση δὲ | ||
ἔτυχεν , εὐθεῖα ἡ ΚΒ , καὶ συνεστάτω πρὸς τῇ ΚΒ εὐθείᾳ καὶ τῷ πρὸς αὐτῇ σημείῳ τῷ Κ τῇ |
. Ταύρου θ νο α Ϛʹ τοῦ ἐν τῷ αὐχένι τετραπλεύρου τῆς προηγουμένης πλευρᾶς ὁ νοτιώτερος . . . . | ||
τῶν ἐν τῇ κεφαλῇ , καὶ τοῦ ἐν τᾷ Κήτει τετραπλεύρου ὁ νοτιώτερος τῶν ἑπομένων . Δύνει δὲ ὁ Ἰχθὺς |
τῇ ἐπιφανείᾳ ἐν τοῖς βλεφάροις γίνεται : δεῖ οὖν τοῦ βλεφάρου διατεινομένου ταινίδιον περιχαράσσειν κατὰ πλάτος ἀνάλογον τῷ τοῦ ὄγκου | ||
ξηραίνει . Τὸ μὲν τράχωμα τραχύτηϲ ἐϲτὶ τῶν ἔνδον τοῦ βλεφάρου , ἡ δὲ τούτων ἐπίταϲιϲ , ὥϲτε καὶ οἷον |
εἰώθαμεν . προξυρητέον οὖν τὸ ὄπιϲθεν τῆϲ κεφαλῆϲ μέροϲ καὶ ϲημειωτέον τοῖϲ δακτύλοιϲ : ἐκ γὰρ τοῦ κατὰ τὸν τόπον | ||
ἀλλ ' εἰ μὲν ϲὺν ἕλκει γέγονε τὸ κάταγμα , ϲημειωτέον μήλῃ , μήποτε καὶ ἀπόθραυϲιϲ ὀϲτέου γέγονεν : καὶ |
πρὸς τῷ θʹ τὸ εʹ ἄστρον οὐ φαίνεται ἀνατέλλον : προανατέλλει γὰρ αὐτοῦ τὸ θʹ [ τουτέστιν ὁ ἥλιος ] | ||
εἰς τὰ ἑπόμενα μετέβη , ὁ δ ' ἀστὴρ τοσοῦτον προανατέλλει τοῦ ἡλίου , ὅσον ὁ ἥλιος ἐν ταῖς δυσὶν |
ἐπιδέχεται τὸ ἕβδομον : διὰ τοῦτο πολυπλασιάζω αὐτὸν τῇ τοῦ ἐσχάτου προσληφθέντος εἰς τὴν σωρείαν ποσότητι καὶ ἀποβαίνει μοι ὁ | ||
μυθικῶν τῆς ἱστορίας , κάτεισι δὲ μέχρι τῆς τελευτῆς τοῦ ἐσχάτου Νικομήδους , ὃς τελευτῶν τὴν βασιλείαν Ῥωμαίοις κατὰ διαθήκας |