ἐν δὲ τῷ προβλήματι τούτῳ κάθετον ἐπίπεδον προτίθεται ἀγαγεῖν ὁ στοιχειωτής : πρός τε γὰρ εὐθεῖάν ἐστιν ἡ ἀγωγή ,
δεδομένον καὶ τὸ ζητούμενον , οἷον εἰ οὕτως ἔλεγεν ὁ στοιχειωτής : πᾶν τρίγωνον ἰσοσκελὲς ἴσας ἔχει τὰς πρὸς τῇ
7262263 γραμμων
ἵππων βοῶν κυνῶν καὶ ἁπλῶς ὧν ἔστιν ἀριθμός , οἷον γραμμῶν ἐπιπέδων σωμάτων ἁπλῶς μεγέθους . καὶ γὰρ καὶ τούτων
καὶ τοῦ Σκορπίου ἑκάτερον ἐν λεʹ , δεικνυμένου διὰ τῶν γραμμῶν , ὅτι ταῦτα μὲν ἐν πλείοσι τῶν λεʹ χρόνων
6850555 ἐπιπεδων
ἐπὶ τῆς γωνίας πρόβλημα τῇ φύσει στερεὸν ὑπάρχον διὰ τῶν ἐπιπέδων ζητοῦντες οὐχ οἷοί τ ' ἦσαν εὑρίσκειν : οὐδέπω
, ἃ δὲ στερεά , ἃ δὲ γραμμικά , τῶν ἐπιπέδων ἀποκληρώσαντες τὰ πρὸς πολλὰ χρησιμώτερα ἔδειξαν τὰ προβλήματα ταῦτα
6816378 κατηγορικως
αὐτοί . ἐντεῦθεν κατασκευάζει ὅτι ὁ ἄνθρωπος ἡ ψυχή ἐστι κατηγορικῶς . ἔχε οὖν . ἡ ἐλάττων πρότασις ἐνθένδε ,
τῶν οὖν εἶναί τι ἢ μὴ εἶναι δεικνύντων οἱ μὲν κατηγορικῶς δεικνύουσιν οἱ δὲ ὑποθετικῶς . περὶ μὲν οὖν τῶν
6806183 ἀνισους
ἴσας ἀπεδείκνυ τὰς βάσεις , τοῦτο δὲ ὁμοίως ταῖς γωνίαις ἀνίσους . προηγεῖται δὲ τοῦ ἐφεξῆς θεωρήματος . ἐκεῖνο μὲν
ἄνισα μέρη διαιρουμένου τοῦ ἡλιακοῦ κύκλου συμβαίνει καὶ τοὺς χρόνους ἀνίσους εἶναι τῶν ζῳδίων . Τῆς δὲ πρὸς ἄλληλα τάξεως
6768749 δοθεισων
καὶ ἡ ΑΕ τῇ Γ ἐστιν ἴση . Δύο ἄρα δοθεισῶν εὐθειῶν ἀνίσων τῶν ΑΒ , Γ ἀπὸ τῆς μείζονος
μείζων ἐστὶν τῆς ΕΒ ἡμισείας . ] Ἔστω δὲ νῦν δοθεισῶν τῶν ΖΒ ΒΓ τὴν μείζονα ἄκραν εὑρεῖν . Ἤχθω
6761494 εὐθειων
οἶδα , ἐὰν ἡ γωνία ἡ περιεχομένη ὑπὸ τῶν δύο εὐθειῶν ἐστιν ὀρθή , καὶ ποῦ τεθήσονται αἱ μετὰ τῶν
ὑπό τε τῆς ΒΑ εὐθείας καὶ τῆς ΓΘΑ περιφερείας ὑπὸ εὐθειῶν περιεχομένην , ἐλάττονα δὲ τῆς περιεχομένης ὑπό τε τῆς
6710962 συλλογισμων
καταλαβεῖν , μήτε τὸ ἀσυνύπαρκτον αὐτῶν διαβεβαιοῦσθαι πρὸ τῆς τῶν συλλογισμῶν διὰ τῶν τροπικῶν συνερωτήσεως . διόπερ οὐκ ἔχοντες ,
προειρημένα σχήματα : λοιπὸν γάρ ἐστι τοῦτο κεφάλαιον τῆς περὶ συλλογισμῶν πραγματείας . εἰ γὰρ τήν τε γένεσιν τῶν συλλογισμῶν
6710440 δειχθηναι
περὶ αὐτόν , ἐπαινῶ : βουλοίμην δ ' ἂν λαμπρότερον δειχθῆναι τὴν εὔνοιαν , ὅπως τι καὶ τῶν γραμμάτων ἔργον
αὐτὸ συμπέρασμα ἐπὶ τοῖς αὐτοῖς ὅροις διὰ τῶν τριῶν σχημάτων δειχθῆναι οὕτως . οἷον ἔστω προκείμενον δειχθῆναι , ὅτι τις
6626383 γωνιων
ὑπὸ τὴν κλίσιν διάστημα , οὐ σωθήσονται αἱ τοιαῦται τῶν γωνιῶν διαφοραί , παρόσον ὑπερέχουσί τε ἀλλήλας καὶ ὑπερέχονται ὑπ
' αὐτοῦ τὸν ἀπὸ τοῦ τετράδι ἐλάσσονος τοῦ πλήθους τῶν γωνιῶν , καὶ τὸν λοιπὸν μερίσαντες εἰς τὸν ηπλ .
6563979 ὁμαλων
δὲ ἀπὸ τῶν ὁμαλῶν τὰ φαινόμενα , ἀφελοῦμεν πάντοτε τῶν ὁμαλῶν . ἐὰν μὲν οὖν δοθέντος τινὸς χρόνου κατὰ τὸν
Τῶν τοίνυν κατὰ φύσιν παρυφισταμένων , λευκῶν μὲν ὄντων καὶ ὁμαλῶν καὶ προσέτι τῇ συστάσει συμμέτρων καὶ πρὸς τὸν πυθμένα
6553762 γεωμετρης
ἄξων . ἀποδέδωκεν γὰρ ἂν αὐτὸ σὺν τῷ ἄξονι ὁ γεωμέτρης : ἀλλ ' εἴ τις ἄξων , οὗτος καὶ
' ἀδυνάτου . οἷον ὡς ἐπὶ τοῦ παραδείγματος βουλόμενος ὁ γεωμέτρης δεῖξαι , ὅτι ἡ διάμετρος τῇ πλευρᾷ ἀσύμμετρός ἐστι
6539535 νοηθησεται
χειμερινὸν λέγεται , τὸ δὲ ἀπ ' ἄρκτων θερινόν . νοηθήσεται δὲ ἡ μὲν μία καὶ πρώτη φορὰ καὶ περιέχουσα
ἀριθμὸν μαχόμενον τῷ ἰδιώματι τῆς συνθέσεως , καθὸ διάφορα πρόσωπα νοηθήσεται , ἐκ συλλήψεως , γενόμενα δευτέρου καὶ τρίτου καὶ
6516888 ἀντιθεσεων
αὐτὸς δηλονότι λόγος ἁρμόσει καὶ ἐπὶ τῆς ἑτέρας τῶν διαγωνίων ἀντιθέσεων , τῆς πᾶς καὶ οὐ πᾶς : καὶ γὰρ
τὰ αὐτὰ εὑρήσομεν : καὶ γὰρ καὶ ἐνταῦθα δύο οὐσῶν ἀντιθέσεων , ἐμψύχου καὶ ἀψύχου , αἰσθητικοῦ καὶ ἀναισθήτου ,
6479838 παραλληλογραμμων
Ἐν τούτῳ τῷ λεʹ παραδόξῳ θεωρήματι δείκνυται τὸ ποσὸν τῶν παραλληλογράμμων . ὀρθογωνίων μὲν συναμφοτέρων ὄντων τῶν παραλληλογράμμων δείκνυται τὸ
: λέγω , ὅτι πάντων τῶν παρὰ τὴν ΑΒ παραβαλλομένων παραλληλογράμμων καὶ ἐλλειπόντων εἴδεσι [ παραλληλογράμμοις ] ὁμοίοις τε καὶ
6446498 διαγραμμα
Γιγνομένων δὲ τούτων Λέπιδος ἐπὶ Ἴβηρσιν ἐθριάμβευε , καὶ προυτέθη διάγραμμα οὕτως ἔχον : “ ἀγαθῇ τύχῃ προειρήσθω πᾶσι καὶ
μὲν οὖν ἀδύνατον καὶ οὐκ ἀδύνατον . ἀποβλέποντας εἰς τὸ διάγραμμα οὐκ ἔστι δυσχερὲς [ τ ] νοῆσαι τὰ ὑπ
6437229 Ἑρμαγορας
τῶν ἀρχαίων δέδοται τῶν στάσεων διαιρέσεως . καὶ ὁ μὲν Ἑρμαγόρας ἑπτὰ μόνας στάσεις , στοχασμὸν , πραγματικὴν , ποιότητα
πειθώ , τέλος δὲ τὸ τυχεῖν τῆς πειθοῦς . καὶ Ἑρμαγόρας τελείου ῥήτορος ἔργον εἶναι ἔλεγε τὸ τεθὲν πολιτικὸν ζήτημα
6399327 γεωμετριᾳ
εἰκότως οὖν οὐ βραχέσι χρήσεται προοιμίοις , ἀλλὰ γραμματικῇ , γεωμετρίᾳ , ἀστρονομία , ῥητορικῇ , μουσικῇ , τῇ |
ἄρα ἀιδίων εἶναι καὶ μενόντων , οἷα καὶ τὰ ἐν γεωμετρίᾳ . Εἰ δὲ ἀιδίων καὶ μενόντων , οὐ σωμάτων
6395640 ἰσοπλευρου
: ὅπερ ἔδει δεῖξαι . Λῆμμα Ὅτι δὲ ἡ τοῦ ἰσοπλεύρου καὶ ἰσογωνίου πενταγώνου γωνία ὀρθή ἐστι καὶ πέμπτου ,
τετραγώνων πύργων προοικοδομεῖν δεῖ τριγώνους ἄλλους συνεχεῖς καὶ στερεοὺς ἀπὸ ἰσοπλεύρου τριγώνου , ἵνα περὶ τὴν ἐκκειμένην γωνίαν στερεὰν καὶ
6394907 γεωμετρικως
τὰ ἄκρα τῆς Ἰνδικῆς . , πάντα δὲ ταῦτα λέγει γεωμετρικῶς , ἐλέγχων οὐ πιθανῶς . ταῦτα δὲ καὶ αὐτὸς
, οὕτω καὶ τούτων ἀκροᾶται : εἰ μὲν γὰρ ἤχθη γεωμετρικῶς , δῆλον ὅτι τραφεὶς κατὰ γεωμετρικὴν λεπτουργίαν ἀπαιτήσει τὸν
6386327 ἐδειξαμεν
πρὸς ἀλλήλους δὲ ὑπεροχὴ ἔλλειψις , συμμετρία ἰσότης , ὡς ἐδείξαμεν ἐν τῇ θεωρίᾳ , ὁμοίως δὲ καὶ στερεῷ σώματι
ὄγκος ἐστίν . ὅπερ ἦν ληρῶδες . πρῶτον μὲν γὰρ ἐδείξαμεν ὅτι οὐδὲ ἡ κοινὴ σύνοδος τῶν τινι συμβεβηκότων ἐκεῖνό
6380850 ἐπικυκλων
, τῶν μέντοι παρ ' αὐτὴν μόνην τὴν λόξωσιν τῶν ἐπικύκλων καὶ ἀπὸ τῆς μέσης ἐπιβολῆς , ὡς ἔφαμεν ,
ἀπὸ τούτου μέχρι τοῦ ἀπογείου , κατὰ δὲ τὴν τῶν ἐπικύκλων δυναμένου συμβαίνειν , ὅταν ἡ μεγίστη μέντοι πάροδος μὴ
6365186 προτασεων
σχήματι συνάγοιτ ' ἄν , ποτὲ μὲν ἀμφοῖν τοῖν δυοῖν προτάσεων ψευδῶν λαμβανομένων , ποτὲ δὲ τῆς ἑτέρας . πῶς
Ἀριστοτέλης . Τῶν ἐκ τῆς διαιρέσεως τοῦ ὑποκειμένου γινομένων ὀκτὼ προτάσεων τίνες μέν εἰσιν αἱ ἀντιφατικῶς ἀντικείμεναι πρὸς ἀλλήλας τίνες
6361652 τομων
τε ἀπὸ τῆς ἡμισείας καὶ τοῦ ἀπὸ τῆς μεταξὺ τῶν τομῶν τετραγώνου . Εὐθεῖα γάρ τις ἡ ΑΒ τετμήσθω εἰς
διὰ τοῦ κέντρου τῶν τομῶν , καὶ ἤχθω διάμετρος τῶν τομῶν ἡ ΑΗ , καὶ ἐφαπτομένη τῆς τομῆς ἤχθω ἡ
6341710 ἰσοπλευρον
ΖΑ παραλληλόγραμμον πρὸς τὸ ὑπὸ ΘΓ , ΖΑ παραλληλόγραμμον . ἰσόπλευρον ἄρα ἐστὶ . , ] ἐπεὶ γὰρ ἡ ΕΖ
ὀρθογώνιον , ἑτερόμηκες δέ , ὃ ὀρθογώνιον μέν , οὐκ ἰσόπλευρον δέ , ῥόμβος δέ , ὃ ἰσόπλευρον μέν ,
6340800 Δυνατον
δηλαδὴ λευκὸν γίνεται δίκην ψιμυθίου τὸ ἀπὸ μολύβδου γινόμενον . Δυνατὸν γὰρ οὕτως γενέσθαι καὶ ἄσβεστος : τεθέντα δηλαδὴ τὸν
καὶ ὑμενοῦται τὸ δέρμα , καὶ γίνονται αἱ φλύκταιναι . Δυνατὸν δέ ἐστι πρὸς τούτοις καὶ ἄλλα σημεῖα ἐφευρεῖν ,
6316691 εὐπορησομεν
: ἀλλ ' ἐπὶ συνθήκαις ἄλλαις , ὥστε , εἰ εὐπορήσομεν χρημάτων , τὴν χώραν ἀπολαβεῖν : καὶ φανερὸν ὅτι
μὲν καὶ ἀπὸ τῶν προειρημένων ἐπιχειρεῖν , πλειόνων δὲ λόγων εὐπορήσομεν διὰ τὸ προσκείμενον τοῖς ἁπλοῖς : ὁ γὰρ προδότης
6312260 τετραπλευρων
, ἐκεῖνα τὰ τετράπλευρα παραλληλόγραμμά ἐστιν , καὶ ἔτι ὧν τετραπλεύρων αἱ ἐπιζευγνύμεναι διαγώνιοι ἀμφότεραι δίχα τέμνουσιν τὰ τετράπλευρα ,
αἱ ἀπεναντίον πλευραὶ ἴσαι ἀλλήλαις εἰσίν , ἢ πάλιν ὧν τετραπλεύρων αἱ ἀπεναντίον γωνίαι ἴσαι ἀλλήλαις εἰσίν , ἐκεῖνα τὰ
6309661 ὑποθεσεων
γὰρ τὰς τῆς ἀνδρείας πράξεις πρώτας παραλαμβάνειν ἐπὶ τῶν τοιούτων ὑποθέσεων εἰς ἐξέτασιν : γνωρίζει γὰρ βασιλέα πλέον ἡ ἀνδρεία
γίνεται , ἐὰν ἀληθὴς ᾖ καὶ διὰ τῶν ἐξ ἀρχῆς ὑποθέσεων εἰλημμένη . ἐνταῦθα ἀπὸ τῆς ὕλης λαμβάνει τὴν διαφορὰν
6299949 νοουμενων
τοῦ ἀπλατοῦς μήκους νόησιν ἰσχύσομεν . ὅθεν εἰ ἕκαστον τῶν νοουμένων κατὰ τοὺς ἐκκειμένους νοεῖται τρόπους , δεδίδακται δὲ κατὰ
τὸ θεοὺς εἶναι , καὶ προνοεῖν τούτους . τῶν γὰρ νοουμένων τὰ μὲν κατὰ περίπτωσιν ἐνοήθη , τὰ δὲ καθ
6282791 διαφερουσων
ἐξ ἀτόμων αὐτὴν συγκεῖσθαι λειοτάτων καὶ στρογγυλωτάτων , πολλῷ τινι διαφερουσῶν τῶν τοῦ πυρός : καὶ τὸ μέν τι ἄλογον
ὁπότε οὐσῶν , ὡς ἂν φαίη , δυοῖν καὶ τοσοῦτον διαφερουσῶν τοσαύτην φαίνεται σπουδὴν πεποιημένος τοῦ καθάπαξ κακῶς εἰπεῖν .
6282790 εὐθυγραμμον
τοῦ πέμπτου . ἐμπεριέχεται γὰρ . , ] ἐπειδὴ τὸ εὐθύγραμμόν ἐστι βάσις τῆς πυραμίδος , ὁ δὲ κύκλος βάσις
τούτου θεωρήματι . ἡ ΝΗΕΡ ἄρα τομὴ οὔτε κύκλος οὔτε εὐθύγραμμόν ἐστι : καὶ ἡ ΓΕΗΖ ἄρα τομὴ οὔτε εὐθύγραμμον
6279824 δεδομενων
ΑΒΓ ὅλῳ τῷ ΔΕΖ ἐστὶν ὅμοιον . ηʹ . Θέσει δεδομένων τῶν ΑΒ ΑΓ , ἀγαγεῖν παρὰ θέσει τὴν ΔΕ
Ἕρμαρχος ζῇ . “ Ἐκ δὲ τῶν γινομένων προσόδων τῶν δεδομένων ἀφ ' ἡμῶν Ἀμυνομάχῳ καὶ Τιμοκράτει κατὰ τὸ δυνατὸν
6274264 τετραπλευροις
τὸ ἐν τριπλεύροις ὀρθογώνιον τρίγωνον . ἐπεὶ οὖν ὀρθογώνια ἐν τετραπλεύροις τὰ καὶ τὰς δ ὀρθὰς ἕκαστον ἔχοντά φαμεν ,
δὲ ἰσογώνια τὰ ὀρθογώνια ; διότι ὁρίζεται οὗτος τὸ ἐν τετραπλεύροις ὀρθογώνιον λέγων τὸ τὰς γωνίας ἔχον ὀρθὰς δηλονότι καὶ
6267345 ἀναλυτικην
τε καὶ ἀποδεικτικήν , διὰ δὲ ταύτας διαιρετικήν τε καὶ ἀναλυτικήν . Καὶ ὅπου δὲ τὸ βιβλίον χρήσιμον , οὐδὲ
τῶν ἀποδείξεων ἀρχαὶ οἱ ὁρισμοί . ἀλλὰ καὶ εἰς τὴν ἀναλυτικήν , εἴ γε ἡ ἀναλυτικὴ ἀπόδειξίς ἐστι ἀντεστραμμένη .
6256881 ἀναλογιων
Καὶ τάδε μὲν περὶ τῶν παρὰ τοῖς παλαιοῖς θρυλλουμένων τριῶν ἀναλογιῶν , ἃς καὶ ἐπιτηδὲς σαφέστερον καὶ πλατύτερον διηρθρώσαμεν ,
ὁ Διόφαντος . τοῖς διὰ τῶν Εὐκλείδου στοιχείων ἡγουμένοις περὶ ἀναλογιῶν ἐντεῦθεν ἄρχεται . συνεκδρομικῶς νῦν ὁ φιλόσοφος λέγει καὶ
6250360 ἰσοσκελη
ταύτας , τὰ δὲ ἀνίσους , καὶ καλεῖται τὰ μὲν ἰσοσκελῆ τραπέζια , τὰ δὲ σκαληνὰ τραπέζια . τὸ ἄρα
ἐπὶ μόνων τῶν ὀρθογωνίων . ἐπεὶ δὲ τὰ ὀρθογώνια ἢ ἰσοσκελῆ εἰσιν ἢ σκαληνά , ἀδύνατον τοῦτο γίνεσθαι ἐπὶ τῶν
6247079 ἐπισκεπτεται
μουσικὴν καὶ ἀριθμητικήν . καὶ ἡ μὲν ἀριθμητικὴ τοὺς ἀριθμοὺς ἐπισκέπτεται , ἡ δὲ γεωμετρία τὰ μεγέθη καὶ τὰ σχήματα
διάνοια παρεῖται ἐξετάζεσθαι ἐν συλλογισμῷ , κατὰ δὲ τὸ λεληθὸς ἐπισκέπτεται καὶ αὐτή . Ζητοῦσι δέ τινες , τίνος χάριν
6242996 ἐπεδειξαμεν
προσθείη τὸ δεῖ , ὑφελόμενος ἀναγκαίως τὸ φησίν , καθὼς ἐπεδείξαμεν , πάλιν προσγενήσεται καὶ ἡ αἰτιατική , δεῖ ἀκούειν
ἐσχάτου γένους τῶν κρειττόνων , ὥσπερ τῆς ψυχῆς , ἀδύνατον ἐπεδείξαμεν τὴν μετουσίαν τοῦ πάσχειν , τί χρὴ δαίμοσι καὶ
6236033 θεωρημα
, καί ἐστιν ἡ ὑποτείνουσα ε . δείκνυται οὖν τὸ θεώρημα οὕτως ὡς ἐν τῷ διαγράμματι . Πυθαγόρας ἀπὸ τῶν
τέχνη : ὁ γὰρ μηδὲν ὅλως εἰδώς , εἰ ἓν θεώρημα διδαχθείη τέχνης , τεχνίτης ἂν οὕτω λέγοιτο εἶναι .
6228679 κυκλων
κύκλων λέγομεν περιέχεσθαι , ὅταν πόλῳ τῇ κοινῇ τομῇ τῶν κύκλων καὶ διαστήματι τυχόντι γραφέντος κύκλου ἡ ἀπολαμβανομένη αὐτοῦ περιφέρεια
γδʹ αβδγʹ κύκλων : ὥστε καὶ ἑκάτερος τῶν αβʹ αβδγʹ κύκλων ὀρθός ἐστιν πρὸς τὸν ηζθʹ : καὶ ἡ κοινὴ
6219095 γωνιας
βάσεως τῆς ΣΤ μείζων , γωνία ἄρα ἡ ὑπὸ ΔΕΖ γωνίας τῆς ὑπὸ ΣΞΤ μείζων ἐστίν . ἴση δὲ ἡ
Εὔδημος . Τὸν τὰ τρίγωνα κατὰ τὰς πλευρὰς καὶ τὰς γωνίας καὶ τὰ ἐμβαδὰ συγκρίνειν βουλόμενον ἀναγκαῖον ἢ μόνας τὰς
6218485 ὑπεσχομεθα
δὲ ταῦτα τὰ πάθη , περὶ ὧν ἐν ἰδίῳ προηγουμένως ὑπεσχόμεθα γράψειν ὑπομνήματι , † ὃ τήν τε τοῦ ἄλλου
Ἀλλὰ παρέντες τὸ περὶ τῶν τοιούτων λεπτολογεῖν σκοπῶμεν , ὡς ὑπεσχόμεθα , εἰ δύναται τέλος , ὅσον ἐπὶ τῇ τοιαύτῃ
6207957 τοπικων
ἀσιτίαις : εἰ δὲ μηδέτερον εἴη τούτων , ἐπὶ τῶν τοπικῶν ἴασιν εὐθὺς ἀφικνούμεθα , κατ ' ἀρχὰς μὲν ἀναστέλλοντες
κωνικῶν γραμμῶν . λέγομεν , ὅτι καὶ τῶν πρὸς γραμμαῖς τοπικῶν τὰ μὲν ἐπίπεδον ἔχει τόπον , τὰ δὲ στερεόν
6182268 εὐθυγραμμων
τῶι δὲ τετράγωνον , τῶι δὲ ἄλλο καὶ ἄλλο τῶν εὐθυγράμμων [ τῶν ] σχημάτων , ὣς δὲ καὶ μικτῶν
κατασκευὴν τοῦ μζʹ . ἰστέον δέ , ὅτι τῶν ἀρίστων εὐθυγράμμων δύο τοῦ ἰσοπλεύρου τριγώνου καὶ ἰσοπλεύρου τετραγώνου γενέσεις παραδέδωκεν
6178386 καταγραφη
πρῶτον ἐπὶ τοῦ κυλίνδρου δεῖξαι , καὶ κείσθω ἡ αὐτὴ καταγραφὴ τῇ πρότερον , καὶ τῇ ΑΔ ἴση ἔστω ἡ
πʹ μοιρῶν μόνων , οὐδενὶ γὰρ ἀξιολόγῳ παρὰ τοῦτο ἡ καταγραφὴ διοίσει , κέντρῳ τῷ Λ καὶ διαστήμασι τοῖς Ζ
6176528 ἀποφατικων
ἐκ δύο καταφατικῶν ἀποφατικὸν ἂν γένοιτο συμπέρασμα οὔτε ἐκ δύο ἀποφατικῶν : οὐδὲ γὰρ ὅλως συλλογισμὸς ἐκ δύο ἀποφατικῶν γένοιτ
δέονται ἀντιστροφῶν . πάλιν εἰδέναι χρή , ὅτι μεταλαμβανομένων τῶν ἀποφατικῶν εἰς τὰς καταφατικὰς οἱ γινόμενοι συλλογισμοὶ οὐκέτι φυλάττουσι τὸ
6172981 συμπιπτουσαι
ἐπιπέδῳ πρὸς ὀρθὰς οὖσαι διὰ τὸ Ϛʹ αἱ αὐταὶ καὶ συμπίπτουσαι : ὅπερ ἀδύνατον . Ἀντιστρόφιον : ἐὰν ᾖ παράλληλα
' αὐτοῖς αἱ ἐν τῶι αὐτῶι ἐπιπέδωι οὖσαι καὶ μὴ συμπίπτουσαι ἐπὶ μηδέτερα μέρη . σαφηνείας δὲ ἕνεκα ἐκ τοῦ
6171112 ἁπλουστατα
] οὕτως ἐστὲ ἀριθμός . πρόβατ ' ] τρελοί , ἁπλούστατα καὶ εὐηθέστατα , κοῦφοι . , ἀνόητοι , μάταιοι
λέγων ὁ Πλάτων πάντα τὰ εὐθύγραμμα σχήματα ὡς εἰς στοιχεῖα ἁπλούστατα ἀναλύων τὰ τρίγωνα , ἀληθὲς ἂν ἦν τὸ λεγόμενον
6167758 ἐμφανισαι
ὁ λόγος ἔοικεν εἰσαναγκάζειν χαλεπὸν καὶ ἀμυδρὸν εἶδος ἐπιχειρεῖν λόγοις ἐμφανίσαι . τίν ' οὖν ἔχον δύναμιν καὶ φύσιν αὐτὸ
ὀρθῶς ἐρεῖ , δυνήσονται ἐμφανίσαι τοῦτο ὃ ὁ λέγων ὀρθῶς ἐμφανίσαι οὐχ οἷός τ ' ἦν . ἀπορῶ δ '
6154148 ἐφαπτομενην
τὴν ἁφὴν ἐπιζεύγνυται ἡ ΧΑ , ἡ δὲ παρὰ τὴν ἐφαπτομένην ἦκται ἡ ΓΧ , αἱ ΧΑ , ΓΧ ἄρα
παραβολή , ἧς ἄξων ὁ ΑΒ : δεῖ δὴ ἀγαγεῖν ἐφαπτομένην τῆς τομῆς , ἥτις πρὸς τῷ ΑΒ ἄξονι γωνίαν
6141837 ἀσυμπτωτων
, διὰ δὲ τῆς συμπτώσεως ἀχθῇ εὐθεῖα παρά τινα τῶν ἀσυμπτώτων τέμνουσα τήν τε τομὴν καὶ τὴν τὰς ἁφὰς ἐπιζευγνύουσαν
ἀσύμπτωτόν ἐστι τῷ ΛΔΤΥ ἡμικυκλίῳ : αἱ ἄρα μεταξὺ τῶν ἀσυμπτώτων ἡμικυκλίων τῶν μεγίστων κύκλων οὖσαι τῶν παραλλήλων κύκλων περιφέρειαι
6134593 σκαληνον
ὡς τὰ πολλαχῶς καὶ ἀορίστως γινόμενα : δύναται γὰρ καὶ σκαληνὸν τρίγωνον μετρεῖσθαι ὑπὸ τοῦ προτεθέντος καὶ ὁρισθέντος ῥητοῦ μέτρου
τοῦ τρίγωνον εἶναι καθ ' αὑτὸ μᾶλλον ἢ ἐκ τοῦ σκαληνὸν ἀποδείκνυται . καὶ ὄντος τοῦ καθόλου γίνεται ἡ ἀπόδειξις
6129013 ΑΝΘΡΩΠΟΙΣΙΝ
σαφῆ καὶ ἀπεραντολογίας οὐ δεῖται . . ΤΟΝ ΔΕ ΓΑΡ ΑΝΘΡΩΠΟΙΣΙΝ . Ἐπαγγειλάμενος οὐκ εἶπε ποῖον νόμον . Λέγει δὲ
ταύτην , ἐνίοτε δὲ ταύτην . . ΝΟΥΣΟΙ Δ ' ΑΝΘΡΩΠΟΙΣΙΝ . Τὰς νόσους αὐτομάτως φοιτᾷν σιγώσας εἶπεν , ὡς
6092483 Ἀναλυτικων
παραδεδομένην τοῦ δυνατοῦ διαίρεσιν σαφῶς εὑρίσκομεν κατ ' ἀρχὰς τῶν Ἀναλυτικῶν ἐν τῷ περὶ τῶν ἀντιστροφῶν λόγῳ καὶ ἐπὶ τοῦ
ἐκ προϋπαρχούσης γίνεται γνώσεως , ὡς καὶ αὐτὸς τῶν Ὑστέρων Ἀναλυτικῶν ἀρχόμενος εἶπεν . εἰσὶ δὲ ἀρχαὶ οἱ ὅροι καὶ
6088210 μεγεθων
ἡμιόλιος , εἰ μὴ ὁ γ . ἐπὶ μέντοι τῶν μεγεθῶν , ἐπειδὴ εἰς ἄπειρα διαιρετά εἰσι , δυνατὸν λαμβάνειν
οὐσίαν πρεσβεύοντας , πῶς ὄντων ἀριθμῶν παρ ' αὐτοῖς καὶ μεγεθῶν καὶ ψυχῆς καὶ σωμάτων οὐ γίγνεται τὰ δεύτερα ἀεὶ
6077983 Εὐδημος
καὶ ὅτι μὲν οὐχ ὡς τὰ πολλὰ ἀναιροῦντος τοῦ Ζήνωνος Εὔδημος μέμνηται νῦν , δῆλον ἐκ τῆς αὐτοῦ λέξεως :
πρὸς τοὺς δύο συνταχθῆναι τοὺς ἄκρους . Θεόφραστος δὲ καὶ Εὔδημος καί τινας ἑτέρας συζυγίας παρὰ τὰς ἐκτεθείσας τῷ Ἀριστοτέλει
6067328 ἐπιπεδον
τῶν ΔʹΚΑ , ΒΜΖ ἡμικυκλίων ὀρθόν ἐστι πρὸς τὸ ὑποκείμενον ἐπίπεδον , καὶ ἡ κοινὴ ἄρα αὐτῶν τομὴ ἡ ΜΘ
ἀσωμάτου καὶ σωματικῆς οὐσίας , τῆς μὲν ἀσωμάτου κατὰ τὴν ἐπίπεδον ἣν ἀποτελοῦσι τετράγωνοι , τῆς δὲ σωματικῆς κατὰ τὴν
6065632 ἐκτιθεμεθα
ἐκ τῶν καθολικῶν . ἐφεξῆς δὲ τὰ παρὰ τοῖς ἄλλοις ἐκτιθέμεθα περὶ τῶν αὐτῶν καὶ ἃ ἡμεῖς σκεπτόμενοι τῇ πείρᾳ
σαφές . Ἐπεὶ δὲ καὶ τὴν ὅμορον τῷ Πόντῳ Παφλαγονίαν ἐκτιθέμεθα , τοῖς δὲ Παφλαγόσιν ὁμοροῦσιν οἱ Βιθυνοὶ πρὸς δύσιν
6061345 γεωμετρικων
δὲ δυὰς μήκους ἐστὶν ἀπεργαστική . καθάπερ γὰρ ἐπὶ τῶν γεωμετρικῶν ἀρχῶν ὑπεδείξαμεν πρῶτον , τίς ἐστιν ἡ στιγμή ,
' εὐθείας ἔσονται ἀλλήλαις αἱ εὐθεῖαι . Ἕν τι τῶν γεωμετρικῶν ἐστιν ὀνομάτων τὸ πόρισμα . καλοῦσι δὲ πορίσματα καὶ
6053137 ἀσυμπτωτοι
Α , Β , ὧν κέντρον μὲν τὸ Γ , ἀσύμπτωτοι δὲ αἱ ΔΓΗ , ΕΓΖ , καὶ διήχθω τις
ἡ τομὴ ἡ ΑΒ , καὶ αἱ ΕΘ , ΘΖ ἀσύμπτωτοι , καὶ τὸ δοθὲν σημεῖον ἐπὶ μιᾶς τῶν ἀσυμπτώτων
6049252 πεπερασμενην
ἡ κύκλῳ προτέρα , δεικτέον . ἢ γὰρ ἄπειρον ἢ πεπερασμένην εὐθεῖαν κινεῖται πᾶν τὸ κινούμενον . ἄπειρος μὲν τοίνυν
καὶ παντὶ τῷ γένει ἐξαλλαττομένοις ἁπλῆν τινα κα - τάστασιν πεπερασμένην ἐν ἑαυτῇ τὴν ἰδιότητα ὑπολαμβάνεις , ἔχει μὲν λόγον
6049023 καμπυλων
διὰ τῶν ἡμικυλίνδρων εὑρηκέναι , Εὔδοξος δὲ διὰ τῶν καλουμένων καμπύλων γραμμῶν . συμβέβηκε δὲ πᾶσιν αὐτοῖς ἀποδεικτικῶς γεγραφέναι ,
ὅσα τε ἑλικοειδῆ καὶ ὅσα κατὰ τὰς τομὰς ὑφίσταται εἴδη καμπύλων γραμμῶν . καὶ ἔοικεν τὸ μὲν σημεῖον εἰκόνα φέρειν
6036126 φαινομενων
κατὰ μῆκος καὶ κατὰ πλάτος πρὸς τοὺς τῶν ἐν αὐταῖς φαινομένων ἐπιλογισμοὺς τὴν μὲν τοιαύτην ἔκθεσιν ἐξαιρέτου καὶ γεωγραφικῆς ἐχομένην
τοίνυν τὴν ἰατρικὴν κατὰ τὴν αὐτῶν δόξαν γνῶσιν εἶναι τῶν φαινομένων κοινοτήτων , τὸ δὲ φαινόμενον οὐχ ὡς δι '
6032571 ἡμικυκλιων
, ἴση ἐστὶν ἡ ὑπὸ ΗΓΘ τῇ ὑπὸ ΘΓΒ : ἡμικυκλίων γάρ . οὐκοῦν ἡ ὑπὸ ΗΓΔ ἐλάσσων τῆς ὑπὸ
γωνίαι ἡμικυκλίων ἴσων εἰσὶν γωνίαι : πᾶσαι αἱ τῶν ἴσων ἡμικυκλίων γωνίαι ἴσαι : αἱ ΑΓ , ΒΔ ἄρα γωνίαι
6029493 συμψευδεσθαι
καί φησιν ὅτι ἀδύνατόν ἐστι τὴν ἀντίφασίν ποτε συναληθεύειν ἢ συμψεύδεσθαι : ὡς γὰρ πολλάκις εἴρηται , ἐπὶ πάντων τῶν
καὶ κατηγορουμένου προτάσεων τὰς καθόλου ὡς καθόλου ἐναντίας προσηγόρευσε καὶ συμψεύδεσθαι ἀλλήλαις ἀπεφήνατο τὰς δὲ ἀντιφασκούσας πρὸς αὐτὰς συναληθεύειν ἀλλήλαις
6026991 μαθηματικως
πάντων τῶν ἐν τῇ φύσει καὶ τῶν ἐν τῇ γενέσει μαθηματικῶς ἐπιχειροῦμεν . ἀφ ' ἧς δὴ αἰτίας πολλὰ τῶν
ἂν συνομολογήσειαν : οὐδὲ γὰρ οἷόν τέ τι θεώρημα γνῶναι μαθηματικῶς , εἰ μή τις αὐτὸ κατασκευάσειεν ὁρισάμενός τι σχῆμα
6025506 δωδεκαεδρον
δώδεκα πενταγώνων ἰσοπλεύρων τε καὶ ἰσογωνίων περιεχόμενον , ὃ καλεῖται δωδεκάεδρον . Δεῖ δὴ αὐτὸ καὶ σφαίρᾳ περιλαβεῖν τῇ δοθείσῃ
ἡ ΥΩ ἀπὸ τοῦ κέντρου τῆς σφαίρας τῆς περιλαμβανούσης τὸ δωδεκάεδρον ἐπὶ τὸ ΦϘΤ πεντάγωνον ἠγμένη , καὶ ἐπεζεύχθωσαν αἱ
6014564 γραμμας
τῶ προγεγονότος , ἀρχὰ δὲ τῶ μέλλοντος , ὥσπερ καὶ γραμμᾶς εὐθείας κλασθείσας τὸ σαμεῖον , περὶ ὃ ἁ κλάσις
διαφέρει γε μὰν τῶν ἄλλων συνεχέων , ὅτι τᾶς μὲν γραμμᾶς καὶ τῶ χωρίω καὶ τῶ τόπω τὰ μέρεα ὑφέστακεν
6013930 δωδεκαεδρου
ἐν τῷ ιγʹ βιβλίῳ τῶν στοιχείων ἤτοι τῆς συστάσεως τοῦ δωδεκαέδρου , ὅτι ἡ ἀπὸ τοῦ Κ κάθετος ἀγομένη ἐπὶ
ποτε ζητοῦντες τὸ ὑπὸ Ἀπολλωνίου συγγραφὲν περὶ τῆς συγκρίσεως τοῦ δωδεκαέδρου καὶ τοῦ εἰκοσαέδρου τῶν εἰς τὴν αὐτὴν σφαῖραν ἐγγραφομένων
6013799 τριγωνων
ὀκτώ . εἰκάζεται δὲ ὀκταέδρῳ , ὃ περιέχεται ὑπὸ ὀκτὼ τριγώνων ἰσοπλεύρων , ὧν ἕκαστον εἰς ἓξ ὀρθογώνια διαιρεῖται ,
: ἐλάχιστον ἄρα τὸ ΕΑΖ πάντων τῶν διὰ τοῦ ἄξονος τριγώνων . πάλιν ἐπεὶ τῶν ΑΗΘ , ΑΓΔ τριγώνων αἵ
6006009 ἐπιστημονικος
περιλήψει τινὶ καὶ οὐ διεξόδῳ , τὰ δὲ δεύτερα ὁ ἐπιστημονικὸς λόγος οὐκ ἄνευ νοήσεως : τὰ δὲ πρῶτα αἰσθητὰ
καὶ φαμὲν εἰδέναι καὶ ἐπίστασθαι διὰ τῆς τοιαύτης ἀποδείξεως : ἐπιστημονικὸς γὰρ συλλογισμός ἐστιν ἡ ἀπόδειξις , καθ ' ὃν
5995679 διαιρεσεων
σημαίνει , ὁμώνυμον εἶναι οὐ δύναται . ταῦτα δὲ περὶ διαιρέσεων καὶ συστάσεων τῶν ὁμωνύμων . ἐν οἷς καὶ ἡ
τὰς ἀναγραφὰς ἢ κατὰ χρόνους εὐπαρακολουθήτους ἐκεῖνος οὐδετέραν τούτων τῶν διαιρέσεων ἐδοκίμασεν . οὔτε γὰρ τοῖς τόποις , ἐν αἷς
5990227 παραλληλων
ΘΚ , ΚΗ ἑξῆς ἐπὶ τὰ αὐτὰ τοῦ μεγίστου τῶν παραλλήλων τοῦ ΒΗΔ , διὰ δὲ τῶν Θ , Κ
περιφέρειαι ἀποληφθῶσιν ἑξῆς ἐπὶ τὰ αὐτὰ μέρη τοῦ μεγίστου τῶν παραλλήλων , διὰ δὲ τῶν γενομένων σημείων παράλληλοι κύκλοι γραφῶσιν
5985798 ἐντελως
ἀποκαθαίρω , ἀφαγνίζω Αἰσχίνης κατὰ Κτησιφῶντος . τὸ δὲ μὴ ἐντελῶς τι ποιῆσαι , ἀλλ ' ὥσπερ ὁσίας ἕνεκεν ,
ἦν τότε Ῥωμαίοις Ἰλλυρίς . ὁ δὲ Σεβαστὸς πάντα ἐχειρώσατο ἐντελῶς καὶ ἐν παραβολῇ τῆς ἀπραξίας Ἀντωνίου κατελογίσατο τῇ βουλῇ
5980721 ἀχθωσι
ληφθέντος δέ , οὗ ἔτυχεν , ἐπὶ τῆς τομῆς σημείου ἀχθῶσι δύο εὐθεῖαι ἐπὶ τὴν δευτέραν διάμετρον , ὧν ἡ
δύο εὐθεῖαι ἐφαπτόμεναι συμπίπτωσι , διὰ δὲ τῶν ἁφῶν παράλληλοι ἀχθῶσι ταῖς ἐφαπτομέναις , καὶ ἀπὸ τῶν ἁφῶν πρὸς τὸ
5976871 δεικνυμενον
συλλογισμῷ τεθέντων τινῶν ἐξ ἀνάγκης ἕπεται τὸ δι ' ἐκείνων δεικνύμενον : ἐπὶ δὲ τῆς διαιρέσεως οὐδαμοῦ τοῖς τεθεῖσί τε
καὶ ζῶον παντὶ ἀνθρώπῳ ἐξ ἀνάγκης . ἔστι δὲ τὸ δεικνύμενον καὶ ποιοῦν ἀσυλλόγιστον τὴν συζυγίαν οὐ διὰ τὸ παντὶ
5968161 ἀρχαϊκως
πολλοὶ δὲ καὶ τῶν ἄλλων Ἀκραγαντίνων ἐποίουν τὸ παραπλήσιον , ἀρχαϊκῶς καὶ φιλανθρώπως ὁμιλοῦντες : διόπερ καὶ Ἐμπεδοκλῆς λέγει περὶ
εἶναι . ῥᾴδιον δ ' ἐστὶ συνιδεῖν , ἐάν τις ἀρχαϊκῶς τινος αὐλοῦντος ἀκούσῃ : ἀσύνθετον γὰρ βούλεται εἶναι καὶ
5966306 ἐπαφων
δείξει τὸ ΚΛ μῆκος , ἡ δὲ μεταξὺ τῶν ἀληθινῶν ἐπαφῶν καὶ ἀποψαλμάτων ποιήσει τὸ ΗΘ . καὶ ἔστιν ἰσογώνιον
ἄξων μὲν κοινὸς ὁ ΔΘΝΞ , αἱ δὲ διὰ τῶν ἐπαφῶν εὐθεῖαι παράλληλοι δηλονότι γιγνόμεναι καὶ ταῖς διαμέτροις ἴσαι πρὸς
5960093 πορισμα
πόρισμά τι ἐκ τῶν εἰρημένων συνάγει . ἔστι δὲ τοιοῦτον πόρισμα ὅτι φανερὸν γέγονεν ἐκ τῶν εἰρημένων ὡς μία κατάφασις
τῇ εἰς ἀδύνατον ἀπαγωγῇ συνανεφάνη . τὸ δὲ νῦν προκείμενον πόρισμα διδάσκει ἡμᾶς , ὅτι περὶ ἓν σημεῖον τόπος εἰς
5956325 κατηγορηματων
τὸ αἴτιον φάσκοντες , οἷον τῆς χύσεως , οἱ δὲ κατηγορημάτων , οἷον τοῦ χεῖσθαι . διό , καθάπερ εἶπον
συμβαινούσας διαθέσεις παρ ' αὐτοῖς συμβαμάτων προσαγορευομένων ἢ καὶ ἔτι κατηγορημάτων : καὶ τὸ μὲν ἀπαρτίζον τὴν διάνοιαν παρασύμβαμα ,
5954242 λαμβανομενων
, μάλιστα δὲ τῶν τῆς σελήνης , ἀπὸ τῶν αὐτῶν λαμβανομένων , τὰς κατὰ μῆκος αὐτῶν ἀκριβεῖς ἐποχὰς διακρινοῦμεν ἀπό
δύο προτάσεων δείκνυταί τι , λέγειν καὶ διὰ πλειόνων προσεχῶν λαμβανομένων καὶ μηδὲν ἄλλο ἀλλ ' ἢ τὸ προκείμενον συμπέρασμα
5953317 ἀποδεικνυσιν
δι ' ἑτέρων πρὸς ἀπόδειξιν : οὐχ ἡ φάσις οὖν ἀποδείκνυσιν , ἀλλ ' αὐτὴ κατασκευάζεται . περιττὸν οὖν πλείονας
δείκνυσιν ὅτι μόνων τῶν οὐσιῶν ὑπάρχουσιν ὁρισμοί , καὶ ὕστερον ἀποδείκνυσιν ἀληθῶς ὅτι καὶ συμβεβηκότων ὑπάρχουσιν ὁρισμοί . ἢ λογικῶς
5949131 κατακολουθει
τοῦ στόματος πλεῦσαι τοὺς Ἀργοναύτας καὶ ἐλθεῖν εἰς Τυρρηνίαν . κατακολουθεῖ δὲ αὐτῷ καὶ Ἀπολλώνιος . Ἡσίοδος δὲ καὶ Πίνδαρος
στόματος πλεῦσαι τοὺς Ἀργοναύτας : καὶ ἐλθεῖν εἰς Τυρρηνίαν . κατακολουθεῖ δὲ αὐτῶι καὶ Ἀπολλώνιος . Ἡσίοδος δὲ καὶ Πίνδαρος
5948300 εὐθυγραμμῳ
κγʹ πρόβλημά ἐστι σύστασιν ἀπαιτοῦν γωνίας ἴσης ἄλλῃ δοθείσῃ γωνίᾳ εὐθυγράμμῳ πρὸς τῇ δοθείσῃ εὐθείᾳ καὶ τῷ πρὸς αὐτῇ δοθέντι
τῷ δοθέντι τριγώνῳ ἴσον παραλληλόγραμμον παραβαλεῖν ἐν τῇ δοθείσῃ γωνίᾳ εὐθυγράμμῳ . Ἔστω ἡ μὲν δοθεῖσα εὐθεῖα ἡ ΑΒ ,
5943447 πολυγωνων
γλαφυρίας οὐκ ἀσκόπως παρηδολεσχείσθω . Ἐπανιτέον δὲ ἐπὶ τὴν τῶν πολυγώνων θεωρίαν καὶ προσεκτέον πῶς καὶ καθ ' ὅλων αὐτῶν
τὰ δύο τρίγωνα ἢ τετράγωνα , ἢ ὡς ἐπὶ τῶν πολυγώνων τὸ τὰς γωνίας ἴσας ἔχειν καὶ τὰς πλευρὰς ἀνάλογον
5941747 Ἐκθεμενος
ἐκεῖνο πρῶτον : καὶ τοῦτο ἐπ ' ἄπειρον . ] Ἐκθέμενος τὰς τῶν παλαιοτέρων δόξας , ἐντεῦθεν πειρᾶται διελέγχειν τὰ
ἅμα τῷ ἐκ τῆς ἐπινοίας προαχθῆναι ἔχει τὴν ἐπιστήμην . Ἐκθέμενος τὸ τῷ χρόνῳ πρότερον ἐπὶ τοῦ ἐπιστητοῦ καὶ εἰρηκὼς
5939950 ἐπιτεμνειν
τοῦ Πλάτωνος διάλογος . λέγει οὖν ὅτι δεῖ σε ἀφιστάμενον ἐπιτέμνειν τὰ λοιπὰ ἐπιχειρήματα , δι ' ὧν μέλλει ἐλέγχεσθαι
σε ἀφίστασθαι τοῦ λόγου τοῦ δεικνύντος ψευδῆ τὴν πρότασιν καὶ ἐπιτέμνειν τὰ πολλὰ τῶν ἐπιχειρημάτων ἃ ἐρωτᾷ λέγοντα ἵνα τί
5936597 δεικνυμενου
συμπέρασμα δείκνυται : οὐ γὰρ οὐδὲν κωλύει τὰς προσεχεῖς τοῦ δεικνυμένου προτάσεις ἄλλου τινὸς συμπεράσματα δείκνυσθαι , ὡς ἐπὶ τῶν
καὶ τὸ εʹ καὶ τὸ Ϛʹ καὶ τὸ ζʹ τοῦ δεικνυμένου νυνὶ θεωρήματος . περὶ δὲ τὰ τρίγωνα ἔστι καὶ
5935718 παραλελειμμενων
Μήτηρ Πριάμου , ὥς φησι Πορφύριος ἐν τῷ περὶ τῶν παραλελειμμένων τῷ ποιήτῃ ὀνομάτων , κατὰ μὲν Ἀλκμᾶνα τὸν μελοποιὸν
παρ ' ἐκείνων τοὺς λογισμοὺς τῶν τε εἰρημένων καὶ τῶν παραλελειμμένων ἀπαιτεῖν . ἐγὼ δὲ ὑπὲρ μὲν ὧν ἰδίᾳ ἠπιστάμηνλέγω
5935529 θεωρηματος
καὶ θεωρία ἐκεῖνο . Ἡ ἄρα πρᾶξις ἕνεκα θεωρίας καὶ θεωρήματος : ὥστε καὶ τοῖς πράττουσιν ἡ θεωρία τέλος ,
ἀνεκλείπτου περιφερείας δεδειγμέναις μοίραις ρνζ , ὡς ἐπὶ τοῦ προκειμένου θεωρήματος σελήνης , ἑκατέρα τῶν ΕΓΗ , ΖΑΘ περιφερειῶν [
5919703 διηγησεων
ρῶν : καὶ γὰρ καὶ προοιμίων τύπους ἡμᾶς διδάσκει καὶ διηγήσεων , ἤδη δὲ καὶ αὐτῶν τῶν ἀγώνων : προοιμίων
τοῦ λόγου μερῶν ἐστι δεκτική , προοιμίων τε λέγω καὶ διηγήσεων τῶν ἐν τῇ ἐξετάσει [ τε ] λέγω τῶν
5917664 δεικνυμεν
φέρε ἡμεῖς καὶ τὴν αἰτίαν προσθῶμεν διὰ τί δέκα . δείκνυμεν δὲ τοῦτο ἐκ διαιρέσεως τοιαύτης : τὸ ὂν ἢ
ὅταν ᾖ προσῆκον ἐκ τοῦ νόμου , καὶ νῦν δὲ δείκνυμεν οὐκ ἐῶντα γράφειν σε , οὐδ ' ἃ τοῖς
5914733 ἀναποδεικτον
τρεῖς γωνίας δυσὶν ὀρθαῖς ἴσας εἶναι ἄμεσόν τε πρότασιν καὶ ἀναπόδεικτον εἶναι καὶ αἰτιῷτο τοὺς οὕτω δεικνύειν αὐτὸ πειρωμένους ,
ἀναπόδεικτον , καὶ αὖθις τὸν αὐτὸν λόγον τοῦ τί ἐστιν ἀναπόδεικτον : ἡ γὰρ ἀρχὴ τῆς ἀποδείξεως ἀναπόδεικτος , ὑφ
5901556 δογματικως
σόφισμα ἀπὸ τοῦ δεόντως δοκοῦντος ἐρωτᾶσθαι λόγου , εἴγε χρὴ δογματικῶς αὐτοὺς ἐπικρῖναι , καὶ ὅτι συνακτικόν ἐστι τὸ σχῆμα
λόγῳ λόγον ἴσον ἀντικεῖσθαι , ἀξιοῦντες παραγγελματικῶς τοῦτο παντὶ λόγῳ δογματικῶς τι κατασκευάζοντι λόγον δογματικῶς ζητοῦντα , ἴσον κατὰ πίστιν
5898270 ἀμεσους
διὰ τῶν δεικνυμένων καὶ ὑποδεικνυμένων ἄνοδος ἐπὶ τὰς ἀναποδείκτους καὶ ἀμέσους προτάσεις , ἡ δὲ ἐξ ὑποθέσεως ἀνιοῦσα ἐπὶ τὰς
πρὶν ἢ εἰς τὰ ἄτομα ἐλθεῖν , τουτέστιν εἰς τὰς ἀμέσους προτάσεις . ἐκ γὰρ τῶν ἀμέσων προτάσεων τὸ εἶναι
5890790 εἰσαγομεν
προτέρων καὶ τῶν νῦν , ἢ τὸ πρῶτον κεφάλαιον καταστατικῶς εἰσάγομεν τουτέστιν ἀφηγηματικῶς καὶ ἀνηπλωμένως , ἢ μέρος κεφαλαίου ἀπολαβόντες
τὰς αὐτὰς δυνάμεις δι ' ἑτέρων ὀνομάτων εἰς τὰς ἀρχὰς εἰσάγομεν , τοῦ μὲν ἑνὸς οὐδ ' ὑπαλλάξαντες τοὔνομα ,
5885565 μετεληλυθεν
Πληρώσας τὸν περὶ τῶν ἁπλῶν ἀντιλήψεων λόγον ἐπὶ τὰς διπλᾶς μετελήλυθεν : δύο δὲ εἴδη τούτων προηγουμένως ἀποφαίνεται : τό
' ἐν τῷ δευτέρῳ , πάλιν οὐ μετέρχεται , ἀλλὰ μετελήλυθεν ἤδη : τῶν γὰρ ἀμηχάνων ἐστὶ καὶ τῶν ἀνεπινοήτων
5883837 ἀμεσων
εἰδῶν τῶν ἐναντίων διακρίνει ἕξιν καὶ στέρησιν : τῶν γὰρ ἀμέσων ἐναντίων ἀνάγκη θατέρου μετέχειν τὸ ὑποκείμενον ζῷον , ἕξις
λέγει τὰ ἀμέσως ὑπάρχοντα : ἐκ γὰρ τῶν προσεχῶν καὶ ἀμέσων ὑπαρχόντων αἱ ἐπιστῆμαι , ὡς εἴρηται ἐν τῇ Ἀποδεικτικῇ
5883109 περιφερειων
Ο μέγιστος κύκλος γεγράφθω ὁ ΠΟ , καὶ τριῶν οὐσῶν περιφερειῶν ὁμοιογενῶν ἀνίσων τῶν ΚΘ , ΘΠ , ΗΘ εἰλήφθω
τεσσάρων δὴ ὄντων μεγεθῶν δύο μὲν τῶν ΒΓ , ΕΖ περιφερειῶν , δύο δὲ τῶν ΗΒΓ , ΕΘΖ τομέων εἴληπται
5881268 ἐφαρμοζειν
προάγειν τὴν διαίρεσιν ὡς τελευτᾶν εἰς ἄτομον εἶδος ἢ ὅλως ἐφαρμόζειν καὶ ἐξισάζειν τῷ ὁριστῷ , κἄπειτα οὕτω θαρροῦντα κατασκευάζειν
τέκνον , ἔχον νόον , Ἀμφίλοχ ' ἥρως , τοῖσιν ἐφαρμόζειν , τῶν κεν κατὰ δῆμον ἵκηαι , ἄλλοτε δ

Back