μεγίστας ἀποστάσεις ἑῴους τε καὶ ἑσπερίας ἀμφοτέρων τῶν ἀστέρων ἐπιλογισάμενοι ἐτάξαμεν αὐτῶν κανόνιον ἐπὶ στίχους μὲν τοὺς ἰσαρίθμους ιβ , | ||
λόγων εὐδοκιμούντων ἀνδρῶν , μεθ ' ὧν καὶ τὸν Νικόστρατον ἐτάξαμεν , τοσαῦτα εἰρήσθω . ἑξῆς δ ' ἂν λέγοιμεν |
δευτέρου ὅρου καὶ τρίτου καὶ τετάρτου καὶ τὰ λοιπὰ τρία σελίδια ζʹ , ηʹ , θʹ , τῶν ἑξηκοστῶν , | ||
σεληνιακῆς διαμέτρου λδ ἑξηκοστοῖς . τὰ δὲ τῶν δακτύλων τρίτα σελίδια τὸν αὐτὸν τρόπον περιέξει τοῖς ἡλιακοῖς καὶ ὁμοίως τὰ |
. καὶ συνάγει ὁ ἀπὸ τῆς ἐποχῆς χρόνος ἔτη Αἰγυπτιακὰ σκδ καὶ ἡμέρας ρϘϚ καὶ ὥρας ἰσημερινὰς ἁπλῶς μὲν ι | ||
μέσως ἡ σελήνη μεθ ' ὅλους κύκλους μήκους μὲν μοίρας σκδ μϚ , ἀνωμαλίας δὲ μοίρας νβ ιδ . ἀλλ |
ὃν τρόπον δεῖ γενέσθαι , ὀλίγα δὲ αὐτῶν καὶ νῦν δηλώσομεν . Νυκτοφυλακεῖσθαι ἐν μὲν τοῖς κινδύνοις καὶ προσκαθημένων ἤδη | ||
τε τὸν Ἑλληνικὸν καὶ τὸν ἐπιχώριον τρόπον ἐν ἑτέρῳ λόγῳ δηλώσομεν , ἀπαιτεῖν δὲ ὁ παρὼν καιρὸς ἔοικε καὶ περὶ |
σχίζομεν , ὥστε τὴν κεφαλὴν διελθεῖν . τὰ δὲ πέρατα παρίεμεν , ὁ μὲν κατὰ νώτου , ὁ δὲ κατ | ||
Τρωϊκοῖς λαφύροις τῇ Ἀργείᾳ Ἥρᾳ Εὐφόρβου τοῦ Φρυγὸς τούτου ἀσπίδος παρίεμεν ὡς πάνυ δημώδη . πλὴν ὅ γε διὰ πάντων |
κεράμιον ἔχει ἐλαίου οἴνου μέλιτοϲ λι οβʹ λι πʹ λι ρηʹ [ ἀλ . ρκʹ ] ὁ χοῦϲ λι θʹ | ||
τοῖς ιβʹ ζῳδίοις μερίζοντες ἀνὰ ἔτη θʹ εὑρήσομεν τὴν συμπλήρωσιν ρηʹ ἐτῶν : εἰ δὲ τοῖς ζῳδίοις προμερίζοντες ἐκ δευτέρου |
ὑπὸ τοῦ ὀγδόου τοῖς σνϚ . εʹ [ ἡμιόλιος ] φοϚ ξδ : ἔστι δὲ καὶ ἡμιόλιος τοῦ πράτου ὁ | ||
ρμδ , μύστρα μεγάλα σπη , ὀξύβαφα τπδ , κυάθους φοϚ , χήμας μικρὰς ͵αρνβ : ὁ μὲν γὰρ χοῦς |
ἀρχαῖς τῶν δωδεκατημορίων ἐκτεθειμένων . Οἱ δὲ μετὰ τὰ εἰρημένα κανόνια συνημμένοι κανόνες περιέχουσι τὰς γινομένας τῆς σελήνης παραλλάξεις ἐν | ||
ἑξάγωνον , ἧς κατὰ τὰς πλευρὰς ἐν ἴσοις διαστήμασιν ἦν κανόνια γ προσπεπηγότα , ἐφ ' ὧν ἐφεστήκει ἡ στυλὶς |
ὁ δὲ τετράγωνος τοὺς δυάδι μὲν διαφέροντας , ἕνα δὲ παραλείποντας , πεντάγωνος δὲ ἀκολούθως τοὺς τριάδι μὲν διαφέροντας , | ||
καὶ τὸ κατιέναι ἡμᾶς διὰ τῶν διὰ μέσου , μηδὲν παραλείποντας ἐν ταῖς διαιρέσεσιν , οὐ σμικρόν τι συντελεῖ πρὸς |
ἡ μνᾶ ἔχει οὐγγίας κ , ἡ οὐγγία ἔχει γράμματα κδ , ἡ δραχμὴ ἤτοι ὁλκὴ ἔχει γράμματα γ , | ||
ἐπιδέχεται , ἀλλὰ δύο ἢ καὶ πλείους , οἷον ὁ κδ : ἥμισυ γὰρ ιβ , καὶ τούτων Ϛ , |
ἀνορεξίαι τε καὶ πυρώσεις καὶ ἀναξηρασμὸς τῶν γυναικείων τόπων , ἐκθησόμεθα τὴν ἐπιμέλειαν . ὅταν οὖν ἀρχήν τινα οἱ πόνοι | ||
τετύχηκεν , ὧν τὰς πληκτικωτέρας διὰ τὸν τρόπον τῆς συγγραφῆς ἐκθησόμεθα μετὰ τῆς φαινομένης ἡμῖν ἐπικρίσεως . φασὶν οὖν τινες |
ἐν τῷ γʹ καὶ δʹ σελιδίῳ κατὰ τὸ τῶν προσνεύσεων κανόνιον . ἐὰν μὲν οὖν βορειότερον ᾖ τὸ κέντρον τῆς | ||
τῶν τῆς διαμέτρου δωδεκάτων εἰσενεχθέντων εἰς τὸ ἐπὶ πᾶσι βραχὺ κανόνιον καὶ τὰ ιβʹ τῶν ὅλων ἐμβαδῶν εὑρήσομεν ἐκ τῶν |
τὴν αʹ μοῖραν τῶν Χηλῶν . δύνοντος ἄρα αὐτοῦ δεῖ μεσουρανεῖν ὡς κατὰ παράλληλον κύκλον μέσην τὴν κδʹ μοῖραν τοῦ | ||
ἡμισφαιρίῳ , τὸ δὲ ἑξῆς ἀνατέλλεν , τὸ δὲ τελευταῖον μεσουρανεῖν ἐν τῷ ὑπὸ γῆς ἡμισφαιρίῳ , οἷον Αἰγόκερω δύνοντος |
δὲ προστιθέμενος , κύβος ἀπὸ τοῦ η , τουτέστι ΚΥ φιβ # ʂ ε , καὶ προστεθεὶς ʂ ε , | ||
ε : θέλομεν οὖν ταῦτα κυβικὴν εἶναι πλ . ΚΥ φιβ . ʂ ἄρα η ἴσοι εἰσὶ ΚΥ χλζ # |
αὐτοί . ἐντεῦθεν κατασκευάζει ὅτι ὁ ἄνθρωπος ἡ ψυχή ἐστι κατηγορικῶς . ἔχε οὖν . ἡ ἐλάττων πρότασις ἐνθένδε , | ||
τῶν οὖν εἶναί τι ἢ μὴ εἶναι δεικνύντων οἱ μὲν κατηγορικῶς δεικνύουσιν οἱ δὲ ὑποθετικῶς . περὶ μὲν οὖν τῶν |
ἀλλὰ καὶ τῆς Παρθένου , καὶ τόδε συνιστάμενον ἐκ μοιρῶν ἐνενήντα , ὅπερ καλεῖται καὶ τροπὴ τῆς θερειτάτης ὥρας . | ||
διπλὴν σαραντάδα , πρόσθησον ταῦτα καὶ τὸ ε καὶ τὰ ἐνενήντα τρία . Καὶ ὁ δεύτερος ἀποτελεῖ μεγάλους καὶ πλουσίους |
Καὶ τάδε μὲν περὶ τῶν παρὰ τοῖς παλαιοῖς θρυλλουμένων τριῶν ἀναλογιῶν , ἃς καὶ ἐπιτηδὲς σαφέστερον καὶ πλατύτερον διηρθρώσαμεν , | ||
ὁ Διόφαντος . τοῖς διὰ τῶν Εὐκλείδου στοιχείων ἡγουμένοις περὶ ἀναλογιῶν ἐντεῦθεν ἄρχεται . συνεκδρομικῶς νῦν ὁ φιλόσοφος λέγει καὶ |
καταντήσει τὸ ἔτος εἰς τὸν ἕκτον τόπον εἴτε εἰς τὸν δωδέκατον εἴτε εἰς τὸν δʹ εἴτε εἰς τὸν ζʹ εἴτε | ||
τοῦτο ἔρρευσε χρόνῳ : ἐν τοσούτῳ γὰρ ἔλεγον καὶ τὸ δωδέκατον μέρος ἀνεληλυθέναι τοῦ κύκλου , καὶ τοῦτον ἔχειν τὸν |
συντετάχθωσαν οὕτως . λόχους μὲν καὶ ἐν τοῖς ψιλοῖς τάξομεν ͵ακδ , τοὺς ἴσους τοῖς ἐν τῇ φάλαγγι , ὥστε | ||
ἱππέων φιβ : αἱ δὲ δύο ἱππαρχίαι ἐφιππαρχία , ἱππέων ͵ακδ : αἱ δὲ δύο ἐφιππαρχίαι τέλος , ἱππέων ͵βμη |
δὲ ταῦτα τὰ πάθη , περὶ ὧν ἐν ἰδίῳ προηγουμένως ὑπεσχόμεθα γράψειν ὑπομνήματι , † ὃ τήν τε τοῦ ἄλλου | ||
Ἀλλὰ παρέντες τὸ περὶ τῶν τοιούτων λεπτολογεῖν σκοπῶμεν , ὡς ὑπεσχόμεθα , εἰ δύναται τέλος , ὅσον ἐπὶ τῇ τοιαύτῃ |
τῶν τετραπλασίων α δ ιϚ σνϚ : μετρεῖται γὰρ ὁ σνϚ καὶ ὑπὸ ἑτέρων ἀριθμῶν , οὐ μὴν ὑπὸ πρώτων | ||
٣ ١٠ ٤١ ἡ Θ ١٦ τὸ ἀπὸ τῆς Θ σνϚ ἡ ΚΛ ٨ ٢٦ ٥٤ ἡ ΖΒ ١٠ ١٨ |
θ καὶ θ ↑ ἐννάτων , καὶ γίνεται τὰ θ ἔννατα τῆς λείψεως τοῦ Ϟοῦ Ϟὸς εἷς , ↑ τῶν | ||
τὸ ἔτος , εἰς ἐκεῖνον τὸν τόπον ἔνθα ἐπερατώθη τὰ ἔννατα . περὶ δὲ τῶν κατὰ μῆνα καὶ τῶν καθ |
Γίνεται δὲ καὶ σχήματα τοῦ αὐτοῦ μεγέθους ἐκ τῶν αὐτῶν ἀσυνθέτων συγκείμενα καὶ ἀριθμοῦ , εἰ ἡ τάξις αὐτῶν ἀλλοίωσιν | ||
καὶ διὰ τί οὐχ ἁπλῶς δείκνυται , ὅτι ἐκ τοσούτων ἀσυνθέτων ἕκαστον τῶν γενῶν συνέστηκεν ὅσα ἐστὶν ἐν τῷ διὰ |
, ἐπὶ μὲν τῶν περιττῶν ἐκθέσεων ὁ μέσος τῶν ἄκρων ὑποδιπλάσιος ἦν , ἐπὶ δὲ τῶν ἀρτίων ἴσοι οἱ μέσοι | ||
σνϚʹ πρὸς σμγʹ , καὶ οἱ τούτοις ὑπεναντίοι ὅ τε ὑποδιπλάσιος καὶ ὁ ὑποτριπλάσιος καὶ ὁ ὑποτετραπλάσιος καὶ ὁ ὑφημιόλιος |
αὐτοῦ τελάρχης . αἱ δὲ δύο μεραρχίαι φαλαγγαρχία , ἀνδρῶν ͵δϘϚ , λόχων σνϚ , καὶ ὁ τούτων ἀφηγούμενος φαλαγγάρχης | ||
τεταγμένοι λοχαγοί , δῆλον , ὅτι τεταγμένοι μὲν καθέξουσι πήχεις ͵δϘϚ τοῦ μήκους , τοῦτ ' ἔστι στάδια δέκα καὶ |
δάκτυλοι ιβ , ὥσπερ καὶ ἐπ ' αὐτῶν τῶν ἐκλειπτικῶν κανονίων ὡς τοῦ ἑνὸς δακτύλου περιέχοντος τὸ ιβʹ τῆς διαμέτρου | ||
τῆς ἐμπτώσεως καὶ τῶν τῆς ἀνακαθάρσεως χωρὶς ἐξ ἑκατέρου τῶν κανονίων εἰσοίσομεν καὶ τὸν ἀπὸ τοῦ ἀπογείου κατὰ τὴν φαινομένην |
λόγον εἶναί φησιν : αὕτη δὲ ἐν Συρακούσαις κρήνη , ὑποτέτακται δὲ ἡ Καμάρινα ταῖς Συρακούσαις . Ἔχει δὲ ἡ | ||
ἐστιν : ἐκθοῦ σύστημα μονάδων ἢ ἄρτιον ἢ περιττὸν ὡς ὑποτέτακται : α , β , δ , η , |
γραμμάς . εἰ δὲ κατὰ ῥῖνας , εὐθυτενῆ τὴν τομὴν τάξομεν κατὰ τὸ μῆκος τῆς ῥινός . εἰ δὲ κατὰ | ||
- νων ἁπάντων ἐντέχνως καὶ τὰς κατηγορίας καὶ τὰς ἀπολογίας τάξομεν . Τὸ δ ' ἐξεταστικὸν εἶδος αὐτὸ μὲν καθ |
φησὶν , κ . τ . λ . . ΑΛΛΑ ΖΕΥΣ ΕΚΡΥΨΕ . Τὸ μὲν κρύψαι τὸν βίον , ἐστὶ | ||
ἤτοι τῆς Εἱμαρμένης , τετράκις ἐνταῦθα κεῖται ἀδολεσχούμενον : ΕΥΡΥΟΠΑ ΖΕΥΣ , ΚΡΟΝΙΩΝ , ΖΗΝΟΣ ΦΡΑΔΜΟΣΥΝΗιΣΙΝ : καὶ τὸ ΚΡΟΝΙΩΝ |
καὶ ἡ πρὸς τὴν μέσην αὐτοῦ ὑπεροχὴ δ ιη , πολυπλασιάσαντες πάλιν τὰ δ κϚ ἐπὶ τὰ # λδ καὶ | ||
μγ κ μ η νθ λ . πάλιν τὰ ἡμερήσια πολυπλασιάσαντες ἐπὶ τὰς τοῦ Αἰγυπτιακοῦ ἐνιαυτοῦ ἡμέρας τξε καὶ ἀφελόντες |
ἀκατάληκτον . τὸ δʹ δακτυλικὸν ἑφθημιμερές . τὸ εʹ ἴαμβος δίμετρος ὑπερκατάληκτος . τὸ Ϛʹ πενθημιμερὲς δακτυλικόν . τὸ ζʹ | ||
τρίτῳ : ὁ ἕκτος τρίμετρος ἀκατάληκτος : ὁ δὲ ἕβδομος δίμετρος καταληκτικός : ὡς ἐκεῖνα τοῦ Ἀνακρέοντος ὁ μὲν θέλων |
, ἐλάσσους τῶν ιδ μη . πρὸς ἃς τὰ β ἑξηκοστὰ διάφορα δέδεικται , τοῦ ἡλίου μὴ μένοντος ἀκινήτου ἐν | ||
κατὰ τὸ αὐτὸ μέγιστον ἀπόστημα τῆς σελήνης ὑποτείνει μιᾶς μοίρας ἑξηκοστὰ μ καὶ # . ἡ γὰρ ΔΗ περιφέρεια τῆς |
ἐκέλευσε , σατράπην δὲ Τυρίεσπιν κατέστησε τῆς τε χώρας τῆς Παραπαμισαδῶν καὶ τῆς ἄλλης ἔστε ἐπὶ τὸν Κωφῆνα ποταμόν . | ||
τήν τε αὑτοῦ ἔχων ἱππαρχίαν καὶ τοὺς ἐξ Ἀραχωτῶν καὶ Παραπαμισαδῶν ἱππέας καὶ τῆς φάλαγγος τῶν Μακεδόνων τήν τε Ἀλκέτου |
. Παράληψις Κύπρου τε πάσης καὶ τῆς Πτολεμαίου δυνάμεως . κδʹ . Ὡς μετὰ τὴν νίκην ταύτην Ἀντιγόνου καὶ Δημητρίου | ||
Καρκίνου μοίρᾳ κδʹ , τὸ δὲ δῦνον ὡσαύτως Αἰγοκέρωτος μοίρᾳ κδʹ , καὶ τὸ μὲν ὑπέργειον μεσουράνημα Κριοῦ μοίρᾳ ιʹ |
τρισκαιδεκακισμυριοστοτριακοσιοστοεικοστοπρώτων . Λείψει γοῦν τῶν ριβ τριακοσιοστοεξηκοστοπρώτων ἀναλυθέντων εἰς τετρακισμύρια υλβ τρισκαιδεκακισμυριοστοτριακοσιοστοεικοστόπρωτα , λοιπὰ πεντακισμύρια χίλια Ϡπδ , ἅτινά εἰσιν | ||
τοῖς οὖν ἐν αὐτῷ γινομένοις μετρεῖται . τκδ τξδ τπδ υλβ υπϚ φιβ φοϚ χμη ψκθ ψξη ωξδ Ϡοβ ͵ακδ |
τῷ κανόνι καταμετρήσεως ἐπιλογιζόμενοι τὸ τοιοῦτον , ἀλλὰ διά τινων σεληνιακῶν ἐκλείψεων . τὸ μὲν γὰρ πότε ἴσην ὑποτείνει γωνίαν | ||
οὐδὲν διημάρτηται ἐν τῷ τὰς ἀποδείξεις τὰς διὰ τῶν Ϛ σεληνιακῶν ἐκλείψεων , τουτέστιν περί τε τὸν λόγον τῶν ξ |
καὶ τοῦ χειμερινοῦ τροπικοῦ ἓξ ὡριαίων διαστημάτων τὸ μὲν πρῶτον ὡριαῖον διάστημα ἐπὶ τοῦ περὶ μέσας τὰς Χηλὰς κύκλου ἀφορίζει | ||
ἑπόμενος τῶν ἐπ ' εὐθείας τριῶν . Τὸ δὲ τρίτον ὡριαῖον διάστημα ἀφορίζει περὶ μέσον τὸν Ταῦρον τῶν ἐν τῇ |
τοῦ κ καὶ τοῦ ζ περιεχόμενος ἴσος τῷ ὑπὸ τῶν ιγ καὶ ζ καὶ ἔτι τῷ ἀπὸ τοῦ ζ τετραγώνῳ | ||
δ πρῶτος , ὁ δὲ δ καὶ θ γεννᾷ τὸν ιγ , ὅς ἐστι πρῶτος πρὸς τὸν Ϛ . Ὁ |
μὲν γὰρ ἀπεδείχθη ρμδ εἶναι τὰς προτάσεις , ἐνταῦθα δὲ σπη ἔσονται δι ' αἰτίαν τοιαύτην . ἀνάγκη γὰρ ἀμφοτέρους | ||
γὰρ αὐτοῦ ἀπαρτίζοντα οὐχ εὑρίσκομεν , κατὰ ἄνεσιν ποιοῦμεν τοῦ σπη ὑπεπόγδοον τόνον . ἔστι δὲ ὑπεπόγδοος τοῦ σπη ὁ |
πρὸ δὲ τῆς διδασκαλίας αὐτῶν ἤγουν ὑπογραφῆς καὶ ἐνταῦθα πάλιν προτάττει τὴν διαφορὰν τοῦ εἴδους ὡς καθολικωτέραν . ἐπειδὴ δὲ | ||
καὶ τοῦτο εὑρίσκομεν , ἐν τῷ δευτέρῳ τῶν Φιλιππικῶν : προτάττει γὰρ ἐκεῖ τὸ δυνατόν . Οὐχὶ τῶν κρινομένων μόνον |
, οὗ αἱ διέσεις ἐφ ' ἑκάτερα τοῦ διατόνου ἀπὸ παρυπάτης μέσων ἐπὶ τρίτην συνημμένων , τρίτον δέ , οὗ | ||
μὲν ὑπάτης καὶ παρυπάτης διάστημα ἡμιτονιαῖόν ἐστι , τὸ δὲ παρυπάτης καὶ λιχανοῦ ἐννέα δωδεκατημορίων ἀσύνθετον λαμβανομένων . δεύτερον δὲ |
μετ ' αὐτοὺς πεντάγωνοι , εἶτα ἐπὶ τούτοις ἑξάγωνοι καὶ ἑπτάγωνοι καὶ ἐπ ' ἄπειρον : προσαγορεύονται δέ , ὡς | ||
, μέχρις ἄν τις θέλῃ . οἱ δὲ τούτοις ἀκόλουθοι ἑπτάγωνοι τοὺς μὲν γνώμονας ἔχουσι πεντάδι μὲν διαφέροντας , τετράδι |
' ἄν τις ἑαυτὸν ἀνεπαχθῶς ἐπαινέσειεν , ἐν τοῖς ἑξῆς δηλωθήσεται . ὕμνον δέ φασιν ἔπαινον εἶναι θεοῦ . ἀναγκαῖον | ||
ἤτοι τῷ κλήρῳ ἢ τῷ δαίμονι , ἐκεῖθεν τὸ πρακτικὸν δηλωθήσεται . συνεπικρίνειν οὖν δεῖ τὰς πράξεις καὶ τὴν καθολικὴν |
ἐπεμβάσεων ἐναλλαγάς . Ἀκολούθως δὲ καὶ τὰς παραδόσεις τῶν ἀστέρων ὑποτάξομεν . Ἥλιος μὲν οὖν Κρόνῳ παραδιδοὺς πονηρὸν τὸ ἔτος | ||
διάκρισις μετὰ πολλοῦ πόνου οὕτως ἡμῖν ἐζητημένη , ἣν καὶ ὑποτάξομεν δι ' ὑποδειγμάτων . Ἄλλη . Ἀδριανοῦ ἔτος θʹ |
, τὸν δὲ ἐξ ἀρχῆς προεισενηνεγμένον τοῦ ὁμαλοῦ μήκους ὁμοίως εἰσενεγκόντες εἰς τοὺς αὐτοὺς ἀριθμούς , ἐὰν μὲν ἐν τοῖς | ||
φαινομένης , ἐπὶ τὴν φαινομένην διάστασιν τῶν τῆς ἐπουσίας μοιρῶν εἰσενεγκόντες εἰς τὰς ἐπ ' ὀρθῆς τῆς σφαίρας ἀναφορὰς ἐπισκεψόμεθα |
, τοῖς αὐτοῖς χρόνοις παράκεινται πη μγ ζ κθ καὶ σλε ι ι νγ , καὶ ια μγ μγ κθ | ||
αὐτοὺς ἡμερῶν τξε καὶ ε ἐννεακαιδεκάτων . Ἐν δὲ τοῖς σλε μησὶ κοίλους ἔταξαν ρι , πλήρεις δὲ ρκε , |
ἀκατάληκτος , τὰ ἑξῆς ιβʹ δίμετρα ἀκατάληκτα Ἀνακρεόντεια , τὸ πεντεκαιδέκατον μονόμετρον ἀκατάληκτον , ὃ καὶ παρατέλευτον ὀνομάζεται , τὸ | ||
σεληνῶν εἶναι δύο . Ϛʹ . Τὴν σελήνην ὑποτείνειν ὑπὸ πεντεκαιδέκατον μέρος ζῳδίου . Ἐπιλογίζεται οὖν τὸ τοῦ ἡλίου ἀπόστημα |
φ χ εὐθείας ἐν τοῖς οἰκείοις τῶν τριῶν παραλλήλων λόγοις γράψομεν διὰ τῶν ὁμολόγων τριῶν σημείων τμήματα τῶν ὑποκειμένων μεσημβρινῶν | ||
τί τὸ ὑγρὸν τοῦ χαλινοῦ καὶ τί τὸ σκληρόν , γράψομεν καὶ τοῦτο . ὑγρὸν μὲν γάρ ἐστιν ὅταν οἱ |
κατὰ συζυγίαν πολλαπλάσιός ἐστι κατὰ τὸν ἥμισυν τοῦ πλήθους τῶν ἐκκειμένων ὅρων . ἐπεὶ γὰρ ἡ τῶν αβ βγ ὑπεροχὴ | ||
γδ , τουτέστιν ὅσον ἐστὶ τὸ ἥμισυ τοῦ πλήθους τῶν ἐκκειμένων ὅρων : ὥστε ὁ αη δύο τῶν κατὰ συζυγίαν |
ποιῆσαι πρίν με τὰς πληγὰς λαβεῖν . ὁ ξʹ μέντοι ἰαμβικὸς ἑφθημιμερής . εἶτα κῶλον ἀντισπαστικὸν ἐξ ἐπιτρίτου πρώτου ἡμιόλιον | ||
τοῦ τέλους τῆς ἐπῳδοῦ τὰ σημεῖα , ὡς εἴρηται . ἰαμβικὸς τρίμετρος . τάδ ' αὐτόδηλα : αὐτὰ δὲ ταῦτα |
θερινῆς τροπῆς τὰς πβ ∠ ʹ μοίρας : ἐν τοῖς ιβ ἔτεσιν ἄρα τοῖς μεταξὺ τῶν δύο τηρήσεων Ϛʹ ἔγγιστα | ||
ΑΘ ἔσται νθ μδ , ἡ δὲ ΕΘ ὁμοίως ν ιβ . τῶν δ ' αὐτῶν ἐδέδεικτο καὶ ἡ ΕΒ |
ρπη Πορφυρῶν ὄϲτρακα ρπθ Ῥίνη θαλαττία ρϘ Ϲηπία ρϘα Ϲκίγκοϲ ρϘβ Τελλίναι ρϘγ Τέττιξ ρϘδ Ὕαινα ρϘε Χελιδόνεϲ ρϘϚ Περὶ | ||
δʹ διαστήματος : ὑπερέχει γὰρ αὐτοῦ τπδ . ιϚʹ ͵αψκη ρϘβ : ἁμιόλιος τοῦ ͵αρνβ , ὃς ἦν μέσος κατ |
τρίτης συζυγίας ἐστὶ τὰ τνʹ , ἀφέλω σκθʹ , λείπω ρκαʹ καὶ ἴσχω τὸν τέταρτον . ὁμοῦ οὖν τῶν τεσσάρων | ||
παρὰ τὰ ͵βφμα , γίνονται Ϙη δʹ ιαʹ λγʹ μδʹ ρκαʹ τξγʹ . Ἔτεμον σφαῖραν εἰς μέρη τέσσαρα καὶ εὑρέθη |
κάθετον , ἐπὶ τὰ θ , γίνονται ͵αψα : ταῦτα ἑνδεκάκις , γίνονται α˙ . ͵ηψια : τούτων τὸ καʹ | ||
γίνονται ριζ : ταῦτα τετράκις , γίνονται υξη : ταῦτα ἑνδεκάκις , γίνονται ͵ερμη : τούτων τὸ ιδʹ , τξζ |
ἐκ τῶν καθολικῶν . ἐφεξῆς δὲ τὰ παρὰ τοῖς ἄλλοις ἐκτιθέμεθα περὶ τῶν αὐτῶν καὶ ἃ ἡμεῖς σκεπτόμενοι τῇ πείρᾳ | ||
σαφές . Ἐπεὶ δὲ καὶ τὴν ὅμορον τῷ Πόντῳ Παφλαγονίαν ἐκτιθέμεθα , τοῖς δὲ Παφλαγόσιν ὁμοροῦσιν οἱ Βιθυνοὶ πρὸς δύσιν |
μῆκος οὐθὲν αἰσθητὸν παραλλάσσει . καί ἐστιν ὁ ἀπὸ τῶν ἐποχῶν τῶν κατὰ τὸ αʹ ἔτος Ναβονασσάρου μέχρι τῆς τηρήσεως | ||
δὲ τῶν πανσεληνιακῶν τῶν ἀκριβῶν , διὰ τῶν κατὰ πλάτος ἐποχῶν τῆς σελήνης προχείρως ἐπισκέπτεσθαι δυνώμεθα τάς τε πάντως ἐσομένας |
ἐπογδόῳ , τὸ δ ' ἐπίτριτον διὰ τεσσάρων ἐκ δυεῖν ἐπογδόων καὶ τοῦ διεσιαίου λείμματος : καταπυκνωτέον αὐτὰ τοῖς ἐπογδόοις | ||
ἴσῳ δὲ ὑπερεχομένην . ἡμιολίων δὲ διαστάσεων καὶ ἐπιτρίτων καὶ ἐπογδόων γενομένων ἐκ τούτων τῶν δεσμῶν ἐν ταῖς πρόσθεν διαστάσεσιν |
καὶ ὀλυμπιάδων ὡς ἔχει τὴν τάξιν , ἐν τοῖς ἐπάνω δεδηλώκαμεν . Τῆς μὲν οὖν ἀρχαιότητος τῶν παρ ' ἡμῖν | ||
ἡμῶν : τὰ δὲ πάθη τὰ γεννῶντα τὰς προφανεῖς συμφορὰς δεδηλώκαμεν , μαθόντες παρὰ τῶν εἰδότων . Εὑρίσκειν δὲ πιθανώτερα |
σπονδειασμὸς δὲ ἡ ταὐτοῦ διαστήματος ἐπίτασις , ἐκβολὴ δὲ ε διέσεων ἐπίτασις : ταῦτα δὲ καὶ πάθη τῶν διαστημάτων διὰ | ||
καλεῖται μαλακὸν χρῶμα : τὸ δὲ τρίτον χαρακτηρίζεται μὲν ἐκ διέσεων ἡμιολίων τῆς ἐναρμονίου διέσεως , καλεῖται δὲ ἡμιολίου χρώματος |
, διὰ τοῦ ἐμβρυοτόμου ἢ τοῦ πολυπικοῦ σπαθίου κρυπτομένου μεταξὺ λιχανοῦ καὶ τοῦ μικροῦ δακτύλου κατὰ τὴν ἔνθεσιν , εἰ | ||
, οὗ τρίτος ὁ τόνος ἐπὶ τὸ ὀξύ , ἀπὸ λιχανοῦ ὑπατῶν ἐναρμονίου ἢ χρωματικῆς ἢ διατόνου ἐπὶ παρανήτην διεζευγμένων |
φαινομένης συνόδου τοῦ πλάτους μοιρῶν , περὶ δὲ τὸν καταβιβάζοντα προσθήσομεν ὁμοίως . καὶ οὕτως ἕξομεν τὸν ἐν τῷ χρόνῳ | ||
. τῇ δὲ δοτικῇ ἐπὶ πάσης χρείας πλὴν τῆς παθητικῆς προσθήσομεν τὸ ἔδοξεν ἢ τὸ ἐφάνη ἢ τὸ ἐπῆλθεν ἢ |
διάστασιν προβήσεται ὁ τοιοῦτος . διὰ τοῦτο δὲ αὐτὸν καὶ εὐθυμετρικόν τινες καλοῦσι , Θυμαρίδας δὲ καὶ εὐθυγραμμικόν : ἀπλατὴς | ||
διάστασιν προβήσεται ὁ τοιοῦτος . διὰ τοῦτο δὲ αὐτὸν καὶ εὐθυμετρικόν τινες καλοῦσι , Θυμαρίδας δὲ καὶ εὐθυγραμμικόν : ἀπλατὴς |
τῶν σνϚ πρὸς τὰ σμγ . συνίσταται δὴ τὰ τοιαῦτα τετράχορδα κατὰ τοὺς ἐκκειμένους λόγους ἐν πρώτοις ἀριθμοῖς τούτοις : | ||
ἀπὸ προσλαμβανομένου ἐπὶ νήτην συνημμένων . ὑπάρχει δὲ ἐν αὐτῷ τετράχορδα τρία συνημμένα τάδε : ὑπάτων μέσων συνημμένων , καὶ |
ἡ διπλασία : ἐκ ταύτης γὰρ γεγόνασι . τῶν δὲ ἐπιμερῶν ἡ ἡμιολία , καὶ ἐπὶ τῶν λοιπῶν ὁμοίως . | ||
τοῦ ἐπιμεροῦς γίνεται πολλαπλασιεπιμερής . ἰστέον δὲ κἀκεῖνο ὅτι τῶν ἐπιμερῶν τε καὶ τῶν ἐπιμορίων πάντων οἱ πυθμένες πρῶτοι πρὸς |
: οὐδὲν γὰρ κωλύει φαῦλον ὄντα τινὰ γεωμετρικὸν εἶναι ἢ ἀριθμητικόν , ἃ δήπουθεν ἀγαθά . καὶ τὸ συμπέρασμα διττόν | ||
ἕδη ] ἑδράσματα , ἀγάλματα . τοῦτο μὲν γὰρ ] ἀριθμητικόν ἐστι τὸ σχῆμα , παρὰ τοῖς ῥήτορσιν οὕτω λαμβανόμενον |
γὰρ βραδύτερον ἐξολιϲθαίνει καὶ χαλεπώτερον ἐμβάλλεται διὰ τὴν πυκνότητα τῶν ὑπεροχῶν τε καὶ κοιλοτήτων . πάϲχει μὲν οὖν ἔϲτιν ὅτε | ||
μέσου , ἀλλὰ τοσούτῳ ἔλαττον , ὅσῳ τὸ ὑπὸ τῶν ὑπεροχῶν ἐστιν : ἦν δὲ ἡ ὑπεροχὴ μονάς : ἅπαξ |
Ϛ , τοῦ δὲ β τὰ δύο καὶ δ . πολλαπλασίασον τὴν ἐλάττονα πλευρὰν τοῦ Α μετὰ τῆς μείζονος πλευρᾶς | ||
μῆκος τῆς Α . τὰ δὴ οὖν ε ια μϚ πολλαπλασίασον μετὰ τοῦ Ϛ , καὶ γίνονται μονάδες λ λεπτὰ |
τκδ τξδ τπδ υλβ υπϚ φιβ φοϚ χμη ψκθ ψξη ωξδ Ϡοβ ͵ακδ ͵αρνβ ͵ασϘϚ # ⌉ # Φ Ϲ | ||
. ζʹ ψκθ πα . ηʹ ψξη λθ . θʹ ωξδ ϘϚ . ιʹ Ϡοβ ρη . ιαʹ ͵ακδ νβ |
πόρισμα λέγεται μὲν καὶ ἐπὶ προβλημάτων τινῶν , οἷον τὰ Εὐκλείδῃ γεγραμμένα πορίσματα , λέγεται δὲ ἰδίως , ὅταν ἐκ | ||
, ὑποκριτοῦ πρόσωπον ἂν ᾠδὴν λέγῃ . τραγῳδίας μέρη μὲν Εὐκλείδῃ τάδε : ἄλλοι δέκα λέγουσι τῇ κλήσει τάδε : |
μαθηματικῶς ἐπιχειρεῖν , οἷον περὶ τῶν τεττάρων στοιχείων γεωμετρικῶς ἢ ἀριθμητικῶς ἢ ἁρμονικῶς , καὶ περὶ τῶν ἄλλων ὡσαύτως . | ||
γʹ τῷ δʹ : καὶ οὕτω διῃρημένα μὲν ἀνάλογον ἔχει ἀριθμητικῶς : ἡ αὐτὴ γὰρ ὑπεροχὴ τοῦ δʹ πρὸς τὸ |
ἐπιδέσεως προκαταβεβλημένου ἀγκτῆρος τὰς ἀρχὰς κατὰ τὸν τῆς κορυφῆς τόπον ἁμματίσαι . Τελαμῶνα δεῖ λαβεῖν αὐτάρκη ὄντα πρὸς τὴν ἐπίδεσιν | ||
τότε τὰς τῶν τελαμωνιδίων ἀρχὰς ἀναγαγεῖν καὶ κατὰ τὰς σφαγὰς ἁμματίσαι . οὗτος ὁ ἐπίδεσμος εὐθετεῖ πρὸς ἐπίδεσιν νώτου τε |
καὶ ἀπὸ τούτου ἐπιτεί - νουσι τόνον καὶ ποιοῦσι τὸν Ϡοβ τῷ ρη ὑπερέχοντα τοῦ ωξδ . ἐπεὶ δὲ οὐκέτι | ||
ρη ὑπερέχοντα τοῦ ωξδ . ἐπεὶ δὲ οὐκέτι ἀπὸ τοῦ Ϡοβ δυνάμεθα ἐπιτεῖναι τόνον , κατ ' ἄνεσιν αὐτὸν εὑρίσκομεν |
ἕνα . Ἐκ τοῦ καθόλου καὶ μερικοῦ , ἵνα τὸν καθολικώτερον καὶ περιεκτικώτερον σκοπὸν αἱρώμεθα μᾶλλον τοῦ μερικωτέρου . ὅθεν | ||
γὰρ αὐτοζῷον παράδειγμα ἔσται τοῦ αὐτοανθρώπου , ἐπειδὴ τὸ μὲν καθολικώτερον τὸ δὲ εἰδικώτερον : πάλιν ὁ αὐτοάνθρωπος παράδειγμα μὲν |
Τὸ ηʹ ὅμοιον τῷ αʹ τῆς στροφῆς . Τὸ θʹ Στησιχόρειον ἐξ ἐπιτρίτων Στησιχόρου εὑρόντος αὐτό : δεύτεροι δὲ οἱ | ||
συλλαβῇ τοῦ Ἀρχιλοχείου ἢ τοῦ Ἐρασμονίδη Χαρίλαε . τὸ ιαʹ Στησιχόρειον . Γέγραφε τὴν ᾠδὴν Ἡροδότῳ τῷ Θηβαίῳ , τινὲς |
δὲ τέταρτον τοῦ ἀπ ' αὐτῆς μονάδων ιβ καὶ λεπτῶν ιε . Ἔστωσαν δύο εὐθεῖαι αἱ ΒΓ , Α , | ||
ε Ϛ ζ η θ ι α γ Ϛ ι ιε κα κη λϚ με δυαδικαὶ συζυγίαι α δ ι |
καὶ δʹ διαστήματος : ὑπερέχει γὰρ αὐτοῦ τπδ . ιϚʹ ͵αψκη ρϘβ : ἁμιόλιος τοῦ ͵αρνβ , ὃς ἦν μέσος | ||
κδʹ καὶ ἁρμονικὸς τῶν τελευταίων διαστημάτων : ὑπερέχει δὲ αὐτοῦ ͵αψκη . ὁ δ ' αὐτὸς κατ ' ἀριθμητικὰν μέσος |
τοῖς ὁμοίοις Ϡξδ , ἅ ἐστιν Αἰγυπτιακὰ Ϡξδ καὶ νυχθήμερα σμζ λγ β με κγ μ κη ἔγγιστα , ἀνωμαλίας | ||
τοῦ ἐπικύκλου , ὃν ἔχει τὰ ͵γρκβ ∠ ʹ πρὸς σμζ ∠ ʹ , ᾧ λόγῳ ὁ αὐτός ἐστιν ὁ |
λευκόφυλλον , ᾧ χρῶνται εἰς τοὺς τραχήλους καὶ τὰς μασχάλας ρλʹ . Ὑγρομύρου σκευασία , ᾧ χρῶνται εἰς τὰ ὦτα | ||
τοῦ κατακλυσμοῦ ἀμφότεροι διήμαρτον ἕως τοῦ Ἀβραὰμ καὶ Μωϋσέως ἔτεσι ρλʹ τοῦ δευτέρου Καϊνᾶν υἱοῦ Ἀρφαξὰδ καὶ γενεᾷ μιᾷ , |
ἐναντιωτάτης περ ὄντων φύσεως , ἐναρμόνιον καὶ συμφυεστάτην σύζευξιν , ἐκθετέον στιχηδὸν καὶ παραλλήλως ἑκατέρους ἀπὸ τῆς οἰκείας ἀρχῆς , | ||
δὴ καὶ ἐννέα Μούσας προσηγορεύκασιν . Ἀλλὰ πρὸς ἀπόδειξιν ἀληθεστέραν ἐκθετέον καὶ τὰ ὄργανα οὕτως . Ἔστω τετράγωνον ἰσόπλευρον τὸ |
κατὰ τὴν μονάδα ἔμπαλιν τὰ ρκηʹ . ἐὰν δὲ ἐν περισσοῖς ὅροις ἡ ἔκθεσις γένηται , οἷον ἐν ἑπτά , | ||
γὰρ βʹ βʹ : διὸ καὶ περισσοειδὴς εἴρηται ταὐτὸ τοῖς περισσοῖς πεπονθυῖα . πρὸς ἀλλήλους δὲ λέγονται πρῶτοι ἀριθμοὶ καὶ |
. γενο - μένων σημείων . . . . . κανονίῳ δι ' αὐα . . . . . . | ||
αὐτῶν μ β . παραθήσομεν ἄρα καὶ ἐν τῷ βʹ κανονίῳ τῶν σεληνιακῶν ἐκλείψεων τῷ τῶν ιε δακτύλων ἀριθμῷ κατὰ |
, κἂν μὲν ἐντὸς τῶν Ϙ μοιρῶν ὦσιν , αὐτὰς ἀπογραψόμεθα , ἐὰν δ ' ὑπὲρ τὰς Ϙ , τὰς | ||
τε τοῖς τῶν παρόδων σελιδίοις καὶ ἐν τοῖς τῶν δακτύλων ἀπογραψόμεθα χωρὶς ἕκαστα : ἔπειτα καὶ τὸν τῆς ἀνωμαλίας ἀριθμὸν |
οὐδετέρῳ δὲ ὅ τε ἐπόγδοος καὶ ὁ τῶν σνϚʹ πρὸς σμγʹ , καὶ οἱ τούτοις ὑπεναντίοι ὅ τε ὑποδιπλάσιος καὶ | ||
ὅμοιον τὸν ἐν τῷ διατονικῷ τὸν τῶν σνϚʹ πρὸς τὰ σμγʹ . συνίσταται δὴ τὰ τοιαῦτα τετράχορδα κατὰ τοὺς ἐκκειμένους |
ληʹ ∠ ʹʹ Ἰασπίς ιβʹ γʹʹ ληʹ ∠ ʹʹγʹʹ ιβʹʹ Ἀνατολικώτεροι δὲ τούτων τε καὶ τῶν Βαστιτανῶν καὶ τῶν Κελτιβήρων | ||
Σεγαλλαυνοὶ , ὧν πόλις Οὐαλεντία κολωνία κγʹ μδʹ ∠ ʹʹ Ἀνατολικώτεροι δὲ Τρικαστινοὶ , ὧν πόλις Νοιόμαγος κϚʹ ∠ ʹʹ |
κενωθῆναι ἅπαν τὸ ἄχρηστον , τοιοῦτον ἐκτίθεται βοήθημα ἐκλεκτόν . Μύρτων μελάνων χωρὶς τῶν γιγάρτων ἰταλικὸν ξέστην ἕνα , ῥόδων | ||
στυππίῳ μετὰ ῥοδίνου . [ Πρὸς κοιλιακοὺς ἐργαλεῖον . ] Μύρτων χλωρῶν , ῥόδων ξηρῶν , σιδίων ῥοιᾶς , βαλαύστια |
ἰαμβέλεγος πλεονάζων συλλαβῇ . τὸ δʹ ἐπιχοριαμβικὸν Πινδαρικὸν , ἢ ἰαμβέλεγος . τὸ εʹ προσοδιακὸν δίμετρον ὑπερκατάληκτον . τὸ Ϛʹ | ||
πενθημιμερές . τὸ Ϛʹ τροχαϊκὸν ἢ ἐπίτριτος . τὸ ζʹ ἰαμβέλεγος . τὸ ηʹ ἰαμβικὸν πενθημιμερές . τὸ θʹ ὅμοιον |
. . . . . . . . . . ξδ ∠ ʹ μα . Ὑπὸ δὲ τὰ εἰρημένα ἔθνη | ||
ἀντιπερίστασιν κἀνταῦθα τὰς λβ ἐπὶ τὰς β , καὶ γίνονται ξδ : καὶ πάλιν τὰς ιϚ ἐπὶ τὰς δ . |
τὸν ἐπίτριτον , καὶ ὁ ε πρὸς τὸν δ τὸν ἐπιτέταρτον , καὶ ἐφεξῆς ὡσαύτως . ἀπὸ δὲ τοῦ τρίτου | ||
λόγου πρὸς ἡμιόλιον καὶ ἡμιολίου πρὸς ἐπίτριτον καὶ ἐπιτρίτου πρὸς ἐπιτέταρτον : ἐν μὲν γὰρ τοῖς βʹ δʹ Ϛʹ ὅροις |
Ἀντωνίνου Φαωφὶ ιʹ : εἰσὶ σμγʹ , καὶ γίνονται ὁμοῦ υλβʹ . ἀφαιρῶ τὰς τξʹ , λοιπαὶ οβʹ : ταύτας | ||
. . . . . . . . . τπδʹ υλβʹ υπϚʹ φιβʹ φοϚʹ χμηʹ ψκθʹ λεῖμμα βπλάσιον τοῦ αʹ |
ἀντισπαστικῶν μονομέτρων καὶ διμέτρων καὶ τριμέτρων καταληκτικῶν καὶ ἀκαταλήκτων καὶ βραχυκαταλήκτων κθʹ , ὧν τελευταῖον : μιάστορ ' ἐκείνου πάσσεται | ||
στίχων θʹ . ὧν ὁ πρῶτος ἀσυνάρτητος ἐξ ἀναπαιστικῶν διμέτρων βραχυκαταλήκτων , καὶ ἰαμβικῆς βάσεως διὰ τὴν ἀδιάφορον . ὁ |
τοῦ ὁρίζοντος καὶ τοῦ ζῳδιακοῦ καὶ τὰς ἐν τῷ δʹ σελιδίῳ τῶν παραλλάξεων μοίρας χωρὶς καὶ ἔτι τοὺς παρακειμένους ἀριθμοὺς | ||
ιη , τῆς διπλῆς ἀποχῆς . ταύταις δὲ παράκεινται τρίτῳ σελιδίῳ μοῖρα α μθ , εἰς ἣν θέσιν γίνονται ἀνωμαλίας |
τὰ δὲ παʹ τρὶς σμγʹ : ηʹ θʹ ξδʹ οβʹ παʹ ρϞβʹ σιϚʹ σμγʹ : εἶτα προστίθεμεν τοῖς σμγʹ ἀπὸ | ||
θʹ , κατὰ δὲ ἐμβαδομετρίαν ὡς ὁ κεʹ πρὸς τὸν παʹ , κατὰ δὲ στερεομετρίαν ὡς ὁ ρκεʹ πρὸς τὸν |
τοὺς πρώτους καὶ γνωριμωτάτους καὶ κυριωτάτους λόγους πολλαπλασίους τε καὶ ἐπιμορίους ἤδη καὶ σύμφωνοι . συμφωνοῦσι δὲ φθόγγοι πρὸς ἀλλήλους | ||
στίχον τοὺς πολλαπλασίους ποιοῦσι , πρὸς δὲ τοὺς γείτονας τοὺς ἐπιμορίους , οἷον ὁ γ πρὸς τὸν β τὸν ἡμιόλιον |
Ἄρεως , ἐτάξαμεν ἐπὶ σελίδια γ , τῶν μὲν πρώτων σελιδίων περιεχόντων τὰς τῶν δωδεκατημορίων ἀρχάς , τῶν δὲ δευτέρων | ||
Παρεγράψαμεν δὴ κανόνια γʹ , στίχων μὲν ἕκαστον ηʹ , σελιδίων δὲ τὸ μὲν πρῶτον εʹ , τὸ δὲ δεύτερον |
τὴν ἄνεσιν ὁ λβ . εἰ δὲ ἀπὸ τοῦ οβ ἀφελοῦμεν τὸν κζ καὶ τὸν λβ , καταλειπόμενα ἔσται ιγ | ||
συνθέντες τὰς τοῖς χρόνοις παρακειμένας ἡμέρας ἐν ἑκατέρῳ σελιδίῳ , ἀφελοῦμεν αὐτὰς ἀπὸ τῶν ἀπογεγραμμένων ἀπὸ Θὼθ ἡμερῶν , οἵων |
δὲ καὶ κατὰ τὸ ἑξῆς ἀριθμοὶ τέσσαρες , ρϘβ σιϚ σμγ σνϚ : ὧν δὴ καὶ ὁ θεῖος Πλάτων ἐν | ||
καὶ πάλιν ἀπὸ τοῦ σιϚ ἐπιτείνουσι τόνον καὶ ποιοῦσι τὸν σμγ ἐπόγδοον ὄντα τοῦ σιϚ : περιέχει γὰρ αὐτὸν καὶ |
τῶν ἰσχίων , λάσιον ἐγκηρώσας , ὅκως καὶ τὰ ἔξωθεν περιέξει , καὶ διαλιπὼν πυρία τοῖσιν ἀσκίοισι , θερμὸν ὕδωρ | ||
δύο κανονίων τοῦ τε τῆς Ἀφροδίτης καὶ τοῦ τοῦ Ἑρμοῦ περιέξει τὰς ὑπὸ τῶν μεγίστων λοξώσεων τῶν ἐπικύκλων αὐτῶν , |
ποιούντων ἔγγιστα ε περιόδους τὰ μὲν υη ἔτη συνάγει περιόδους σνε , τὸ δὲ λοιπὸν ἔτος ἓν μετὰ τῶν ἐπιλαμβανομένων | ||
σφαῖραν μεταλαμβανομένοις ϠϘγσιν , ἅ ἐστιν Αἰγυπτιακὰ ϠϘγ καὶ νυχθήμερα σνε # νδ μϚ να ἔγγιστα , ἀνωμαλίας ἀποκαταστάσεις ποιείσθω |
εἰπεῖν ὑπονοοῦντες ἴσως τινὰ ἐρεῖν , ὅτι δύναμαι μηδὲν τῶν ἀπογεγραμμένων ταὐτόν τι λαβών , ὅπερ ἐν πᾶσι τοῖς προβλήμασιν | ||
ἑξηκοστὰ ἐν τῷ τρίτῳ σελιδίῳ , τὰ τοσαῦτα ἑκατέρας τῶν ἀπογεγραμμένων παραλλάξεων προσθέντες χωρὶς ἑκάτερα τὰς ἐπὶ τοῦ τότε ἀποστήματος |
παραθέντες τὸν τῶν δέκα πληροῦμεν ἀριθμόν , τοῦτον δὲ τῷ τριακονταπέντε συνθέντες ποιήσομεν τὸν τεσσαρακονταπέντε , καθ ' ὅν φασι | ||
τριακοντατέσσαρα ὁ τριακοντατρία , τοῦ δὲ τριακοντατέσσαρα καὶ τριακονταὲξ ὁ τριακονταπέντε , ὡς μεταξὺ τριακονταδύο καὶ τριακοντατέσσαρα γίνεσθαι δύο διαστήματα |
τῷ Ϛ : ἑξάκις γὰρ ϘϚ φοϚ καὶ ἑξάκις ρν ἐννακόσιοι . ὥστε ἡ εἰκοσιτεσσαράπους καὶ ἡ τριακοντάπους μήκει μὲν | ||
] πάντες πεζοὶ μὲν μύριοι καὶ ἑξακισχίλιοι , ἱππεῖς δὲ ἐννακόσιοι , οἱ δ ' Ἀντιγόνου χωρὶς τῶν ἐλεφάντων πεζοὶ |