ρα κβ ἢ ταῖς ἀπὸ σνη λη μέχρις σϘ μα συνεμπίπτῃ , τότε μόνον ἐν τοῖς ἐκκειμένοις τόποις δυνατὸν ἔσται
τῶν νβʹ , καὶ εὑρόντα πρῶτον ἐννεαδικὸν ζητεῖν , μὴ συνεμπίπτῃ αὐτῷ ἑβδομαδικός . οὐκ ἀρέσκει δέ τισι τὸ [
6310235 σϘ
Μυρρίνη ἢ μυρϲίνη σπη Μῶλυ ἢ βήϲαϲα σπθ Νάρδου ϲτάχυϲ σϘ Νάρδοϲ κελτική σϘα Νάρθηξ σϘβ Νᾶπυ σϘγ Νάρκιϲϲοϲ σϘδ
ἐπουσίας μήκους μὲν μοίρας σνη ιγ , ἀνωμαλίας δὲ μοίρας σϘ νη , ἐὰν ταύτας ἀφέλωμεν τῶν κατὰ τὴν τήρησιν
6276860 σνη
ρβ τῆς ἀνωμαλίας ἀπέχουσα τοῦ ἀπογείου τοῦ ἐπικύκλου καὶ μοίρας σνη ἕως σο , πλεῖστον καὶ τὸ παρὰ τὴν πρώτην
, παράκειται # λα μη : καὶ ταῖς ρβ καὶ σνη # λδ νδ : ὧν ὑπεροχὴ πρὸς τὰ #
6001508 ἐκκειμενοις
καὶ ταῦτα τοῖς αὐτοῖς ἀριθμοῖς καὶ ἐπὶ τῶν πρώτων στίχων ἐκκειμένοις . ἐπὶ δὲ τοῦ ἐνιαυσίου παραθέντες ἐν τοῖς πρώτοις
τοὺς τῶν ἀπορητικῶν λόγους : φανήσονται γὰρ καὶ οὗτοι τοῖς ἐκκειμένοις ἰσοσθενεῖς καὶ ἕνεκα πειθοῦς μὴ διαφέροντες αὐτῶν . τὸ
5889528 μοιρων
δὲ εʹ . Καὶ ὧδε τὴν τῆς ὥρας διαφορὰν νόει μοιρῶν οὖσαν εʹ , Ϙʹ . Ὁ ὀκτωκαιδέκατος ἀπέχων μοίρας
ἐπὶ τὴν ΑΕ ἡ ΚΖ . ἐπεὶ ἡ ΕΖ περιφέρεια μοιρῶν ἐστιν λ , εἴη ἂν καὶ ἡ μὲν ὑπὸ
5597578 ἑξηκοστα
, ἐλάσσους τῶν ιδ μη . πρὸς ἃς τὰ β ἑξηκοστὰ διάφορα δέδεικται , τοῦ ἡλίου μὴ μένοντος ἀκινήτου ἐν
κατὰ τὸ αὐτὸ μέγιστον ἀπόστημα τῆς σελήνης ὑποτείνει μιᾶς μοίρας ἑξηκοστὰ μ καὶ # . ἡ γὰρ ΔΗ περιφέρεια τῆς
5593768 μηκους
, ὄρθιον δὲ ὅ τι περ ἂν τὸ βάθος τοῦ μήκους . λοξὴ δὲ ὀνομάζεται φάλαγξ ἡ τὸ μὲν ἕτερον
εἰς ἀσάφειαν προάγομεν τὸν λόγον ἢ διὰ τὸ σαφῶς εἰπεῖν μήκους δεόμεθα . χρὴ τοίνυν τὴν συντομίαν σκοπεῖν , εἰ
5570751 ιγ
τοῦ κ καὶ τοῦ ζ περιεχόμενος ἴσος τῷ ὑπὸ τῶν ιγ καὶ ζ καὶ ἔτι τῷ ἀπὸ τοῦ ζ τετραγώνῳ
δ πρῶτος , ὁ δὲ δ καὶ θ γεννᾷ τὸν ιγ , ὅς ἐστι πρῶτος πρὸς τὸν Ϛ . Ὁ
5556886 ἐγγιστα
παρόδους νοτιώτερος ᾖ τοῦ διὰ μέσων μοίραις γ καὶ Ϛʹ ἔγγιστα , οἱ δὲ τῶν περὶ τὰς ὀρθὰς γωνίας λόγοι
ἡ ΒΚ ἐκ τοῦ κέντρου τοῦ ἐπικύκλου ἔσται ια λ ἔγγιστα : ὅπερ ἔδει εὑρεῖν . Ἑξῆς δὲ καὶ τῶν
5522614 ἑξηκοστων
τήρησιν παραλλάξεως διὰ τοῦ παραλλακτικοῦ ὀργάνου δοθείσης μοίρας α καὶ ἑξηκοστῶν ζ , τὸ κατ ' αὐτὴν τὴν τήρησιν τῆς
καὶ ἐπεὶ ταῖς τοσαύταις ὥραις ἐπιβάλλει κατὰ μῆκος παραλλάξεως ἕως ἑξηκοστῶν μη ἔγγιστα δῆλον ὡς ἂν μηδὲν μὲν διαλαμ -
5480761 πενταπλασιου
μεταξὺ τῶν Ρ Θ , πάντες δὲ οἱ μείζους τοῦ πενταπλασίου ποιοῦσι τὸ σημεῖον τῆς τομῆς μεταξὺ τῶν Ρ Τ
τοῦ εἰκοσαέδρου καθέτου τὸ δυνάμει δωδεκαπλάσιον μεῖζόν ἐστιν τοῦ δυνάμει πενταπλασίου τῆς πλευρᾶς τοῦ εἰκοσαέδρου . Ἐκκείσθω κύκλος ὁ ΑΒΓ
5388001 στιχοις
τῶν κατὰ τὸ τρίτον κανόνιον ἐνιαυσίων , τὰ παρακείμενα τοῖς στίχοις ἀμφοτέροις ἐν τοῖς ἑξῆς σελιδίοις ἐπισυνθήσομεν οἰκείως ἐπὶ μὲν
χρόνον συναχθέντων καθ ' ἑκάστην τῶν παρόδων τῶν τοῖς οἰκείοις στίχοις παρακειμένων τῆς ὁμαλῆς κινήσεως ἀριθμῶν , καθ ' ὃν
5381754 μηνιαιος
δ ' ἐστὶ περὶ τὴν διχομηνίαν . Ἔστι δὲ ὁ μηνιαῖος χρόνος ἡμερῶν κθ ∠ ʹ λγʹ . Ἐν δὲ
κατὰ τὰς ἡμέρας καὶ κατὰ τοὺς ἐμβολίμους . Ὁ γὰρ μηνιαῖος χρόνος οὐκ ἀκριβῶς εἴληπται . Ἔστι γὰρ ὁ μηνιαῖος
5339897 πλατικην
ἀνωμαλίας ἀριθμὸν εἰσενεγκόντες εἰς τοὺς αὐτοὺς ἀριθμοὺς τὴν παρακειμένην αὐτῷ πλατικὴν διαφοράν , ἐὰν μὲν τὸ διευκρινημένον μῆκος ἐν τοῖς
διὰ μέσων , ἐὰν μὲν ἐκ τοῦ γʹ σελιδίου τὴν πλατικὴν διαφορὰν ὦμεν εἰληφότες , βορειότερον , ἐὰν δὲ ἐκ
5331585 ἀνωμαλιας
ἡ μὲν φαινομένη μέση πάροδος καὶ τὸ πλεῖστον διάφορον τῆς ἀνωμαλίας ἔσται κατὰ τὰς σο μοίρας , ἡ δ '
καὶ τῆς σελήνης ἀπεχούσης τοῦ ἀκριβοῦς ἀπογείου τὰς ὑποκειμένας τῆς ἀνωμαλίας μοίρας ρκ . Τὰ δὲ τοῦ ηʹ σελιδίου ,
5330035 πλατους
καὶ ὥρας ἰσημερινὰς κγ ιβʹ συνάγει κατὰ τὴν ἀποδεδειγμένην τοῦ πλάτους μέσην κίνησιν ἐπουσίαν μοίρας ρξ καὶ ἑξηκοστὰ δ .
κθ ιδ ὡς ἀπὸ τῶν συνδέσμων εἰσαγαγόντες εἰς τὸ τοῦ πλάτους κανόνιον σελήνης , καὶ τὴν παρακειμένην πρὸς ἀνάλογον μοῖραν
5266893 πολυπλασιαζομενων
ἡ ὑγρότης περὶ τὸ βάθος καὶ τίκτονται πνεύματα , ὧνπερ πολυπλασιαζομένων καὶ βουλομένων τὴν ἔξω φορὰν διῶξαι , ποιοῦσί τινας
τοῦ χρόνου γίνονται ιβ προτάσεις . εἶτα τούτων τῶν ιβ πολυπλασιαζομένων ἐπὶ τὴν τριμέρειαν τῆς ὕλης γίνονται λϚ . αὗται
5220204 ιβ
θερινῆς τροπῆς τὰς πβ ∠ ʹ μοίρας : ἐν τοῖς ιβ ἔτεσιν ἄρα τοῖς μεταξὺ τῶν δύο τηρήσεων Ϛʹ ἔγγιστα
ΑΘ ἔσται νθ μδ , ἡ δὲ ΕΘ ὁμοίως ν ιβ . τῶν δ ' αὐτῶν ἐδέδεικτο καὶ ἡ ΕΒ
5099128 κανονια
ἀρχαῖς τῶν δωδεκατημορίων ἐκτεθειμένων . Οἱ δὲ μετὰ τὰ εἰρημένα κανόνια συνημμένοι κανόνες περιέχουσι τὰς γινομένας τῆς σελήνης παραλλάξεις ἐν
ἑξάγωνον , ἧς κατὰ τὰς πλευρὰς ἐν ἴσοις διαστήμασιν ἦν κανόνια γ προσπεπηγότα , ἐφ ' ὧν ἐφεστήκει ἡ στυλὶς
5087924 ἰσημερινων
μοίρᾳ κατὰ τὰς ἐπ ' ὀρθῆς τῆς σφαίρας ἀναφοράς . ἰσημερινῶν μὲν τυγχανουσῶν τῶν διδομένων ὡρῶν ἤτοι τῶν ἀπὸ τῆς
ὅσον τετρακοσίοις σταδίοις , ὅπου ἡ μεγίστη ἡμέρα ὡρῶν ἐστιν ἰσημερινῶν δεκατεττάρων , κατὰ κορυφὴν γίνεται ὁ ἀρκτοῦρος , μικρὸν
5081413 συζυγουντων
πράγματος προκόπτει . Τῆς τοῦ τόπου νοήσεως δεδηλωμένης καὶ τῶν συζυγούντων αὐτῷ πραγμάτων ὑποδεδειγμένων ἀπολείπεται , ὡς ἔστιν ἔθος τοῖς
τῇδε δὲ ἀπὸ δυάδος ἀρτίους ἀπὸ μέσων ἐπὶ πέρατα , συζυγούντων κατ ' ἰσότητα τῶν ἑκατέρωθεν εὐτάκτων . Ἐπιμόριος δὲ
5081003 ρϘϚʹ
ἐννέα κοῦραι πολλαπλασιασθέντα δι ' ἀλλήλων δύνασθαι μυριάδων πλῆθος τρισκαιδεκαπλῶν ρϘϚʹ , δωδεκαπλῶν τξηʹ , ἑνδεκαπλῶν ͵δωʹ , συμφώνως τοῖς
τουτέστι τὰς προκειμένας μυριάδας ἐνναπλᾶς δέκα , ποιοῦσιν μυριάδας τρισκαιδεκαπλᾶς ρϘϚʹ , δωδεκαπλᾶς τξηʹ , ἑνδεκαπλᾶς ͵δωʹ . [ ἐνναπλαῖ
5061815 κδ
ἡ μνᾶ ἔχει οὐγγίας κ , ἡ οὐγγία ἔχει γράμματα κδ , ἡ δραχμὴ ἤτοι ὁλκὴ ἔχει γράμματα γ ,
ἐπιδέχεται , ἀλλὰ δύο ἢ καὶ πλείους , οἷον ὁ κδ : ἥμισυ γὰρ ιβ , καὶ τούτων Ϛ ,
5052145 μοιραις
δηλονότι ποιούντων ἡμέραν μίαν . ἐγένετο δὲ καὶ αὐτὴ Ἰχθύσι μοίραις κδ θ . Τὰ δὲ συναγόμενα ἑξηκοστὰ μετοίσομεν εἰς
ἀλλ ' ἐπεὶ βορειότερός ἐστιν ὁ ἀστὴρ τοῦ διὰ μέσων μοίραις Ϛ καὶ γʹ , ὅσων ἐστὶν ἡ ΚΗ περιφέρεια
5044582 ιε
δὲ τέταρτον τοῦ ἀπ ' αὐτῆς μονάδων ιβ καὶ λεπτῶν ιε . Ἔστωσαν δύο εὐθεῖαι αἱ ΒΓ , Α ,
ε Ϛ ζ η θ ι α γ Ϛ ι ιε κα κη λϚ με δυαδικαὶ συζυγίαι α δ ι
5040082 μʹʹ
αὐτῶν ια . καὶ ἔστιν ὡς τξ πρὸς μζ μβʹ μʹʹ οὕτως πγ πρὸς ια . . . , .
σκιᾶς κατὰ μὲν τὸ μέγιστον ἀπόστημα τῆς σελήνης ἑξηκοστὰ μʹ μʹʹ , κατὰ δὲ τὸ ἐλάχιστον ἀπόστημα ἑξηκοστὰ μϚʹ .
5025983 κʹʹʹ
: ἡ μὲν ἄρα αγ ἀνενεχθήσεται ἐν ο μϚʹ λγʹʹ κʹʹʹ , ἡ δὲ δβ ἐν ο μʹ Ϛʹʹ μʹʹʹ
. αἱ δὲ τοσαῦται ὑπεροχαὶ αἱ ἀνὰ ο οʹ ιγʹʹ κʹʹʹ συντεθεῖσαι γίγνονται ο Ϛʹ κϚʹʹ μʹʹʹ : ὥστε καὶ
5023485 ψξη
κατασκευάζουσι τὸ προκείμενον οὕτω . λαμβάνουσιν ἡμιόλιον ἀριθμόν τινα τὸν ψξη πρὸς τὸν φιβ . καὶ ἀπὸ τούτου τοῦ φιβ
͵γοβ καὶ τοῦ δʹ διαστάματος : ὑπερέχει γὰρ καὶ ὑπερέχεται ψξη . ὁ δ ' αὐτὸς μέσος τοῦ τε θʹ
5014923 ιγʹʹ
ταῖς ἑξῆς περιφερείαις ἀναφορικῆς ὑπεροχῆς , ὅ ἐστιν ο οʹ ιγʹʹ κʹʹʹ , καὶ αἱ λοιπαὶ γνωσθήσονται , ἐν ὅσῳ
ἡ αγ τῆς δβ κθʹ ὑπεροχαῖς ταῖς ἀνὰ ο οʹ ιγʹʹ κʹʹʹ . αἱ δὲ τοσαῦται ὑπεροχαὶ αἱ ἀνὰ ο
4973671 Ϟδʹ
γαμικὴν χλαμίδα δότω τις δεῦρό μοι . μετὰ δὲ τὸν Ϟδʹ στίχον κῶλά ἐστιν ἀντισπαστικὰ Ϛʹ , ἐπιμεμιγμένα διιάμβοις ,
μὴ ὄπισθεν , ἀλλ ' ἔμπροσθεν τάξῃ . Κεφ . Ϟδʹ . Ἁρμόζει μὲν ἐφ ' ὧν καὶ ἡ πρὸ
4968279 ἑξηκοστοις
ΘΑ τοῦ ἀπὸ τῆς ΑΕ , τουτέστιν β β , ἑξηκοστοῖς μ , ἅ ἐστιν τοῦ δὶς ὑπὸ ΚΘ ,
ὥστε καὶ ἐνθάδε τὸ παρὰ τὴν ἀνωμαλίαν τῆς σελήνης διήνεγκεν ἑξηκοστοῖς δ , ἅπερ οὐδ ' αὐτὰ ποιεῖ τινα ἀξιόλογον
4965272 χκε
, ὃς ἀπὸ πλευρᾶς λζ ιʹ . . Ἀπὸ τῶν χκε λϚʹ ἀφαιρουμένων υνϚ λϚʹ , λείπεται ρξθ : ἀφαιρουμένων
τρὶς κζ , γίνονται πα , καὶ πεντάκις ρκε γίνονται χκε : οἱ ἄρα πα καὶ χκε πρὸς ἀλλήλους μὲν
4959576 ρϘβ
ρπη Πορφυρῶν ὄϲτρακα ρπθ Ῥίνη θαλαττία ρϘ Ϲηπία ρϘα Ϲκίγκοϲ ρϘβ Τελλίναι ρϘγ Τέττιξ ρϘδ Ὕαινα ρϘε Χελιδόνεϲ ρϘϚ Περὶ
δʹ διαστήματος : ὑπερέχει γὰρ αὐτοῦ τπδ . ιϚʹ ͵αψκη ρϘβ : ἁμιόλιος τοῦ ͵αρνβ , ὃς ἦν μέσος κατ
4955469 ἐννατων
κατὰ μῆνα καὶ τῶν καθ ' ἡμέραν ἀποτελεσμάτων ἀπὸ τῶν ἐννάτων καθὼς ἐδόξασαν οἱ Ἰνδοὶ διηγησόμεθα εἰς τὸ μετέπειτα ,
εἶτα τῆς Ἀφροδίτης . καὶ τοιουτοτρόπως ποιοῦμεν τὸν περίπατον τῶν ἐννάτων τῶν ζῳδίων πάντων , διαγινώσκοντες τοὺς κυρίους ἑκάστης διαιρέσεως
4946081 ἐκκειμενων
κατὰ συζυγίαν πολλαπλάσιός ἐστι κατὰ τὸν ἥμισυν τοῦ πλήθους τῶν ἐκκειμένων ὅρων . ἐπεὶ γὰρ ἡ τῶν αβ βγ ὑπεροχὴ
γδ , τουτέστιν ὅσον ἐστὶ τὸ ἥμισυ τοῦ πλήθους τῶν ἐκκειμένων ὅρων : ὥστε ὁ αη δύο τῶν κατὰ συζυγίαν
4941711 παραλλαξεως
: καὶ τῆς ἐπὶ τοῦ διὰ τοῦ κατὰ κορυφὴν κύκλου παραλλάξεως τοῦ ἡλίου διακρινομένης εἰς τὴν πρὸς τὸν ζῳδιακὸν κατὰ
κ , ἅ ἐστιν ἔγγιστα ιε , τῆς κατὰ μῆκος παραλλάξεως . ἔστιν δὲ καὶ κατὰ προχείρους σύμφωνα ἔγγιστα .
4927511 ἡμισους
ὑπὸ ΖΗΑ ὀρθή : καὶ λοιπὴ ἄρα ἡ ὑπὸ ΑΖΗ ἡμίσους ὀρθῆς : ἴση ἄρα ἡ ΑΗ τῇ ΖΗ :
τέλειός ἐστι τοῖς ἑαυτοῦ μέρεσι , συμπληρούμενος ἐκτῶν αὐτῶν , ἡμίσους μὲν τριάδος , τρίτου δὲ δυάδος , ἕκτου δὲ
4926830 σνϚ
τῶν τετραπλασίων α δ ιϚ σνϚ : μετρεῖται γὰρ ὁ σνϚ καὶ ὑπὸ ἑτέρων ἀριθμῶν , οὐ μὴν ὑπὸ πρώτων
٣ ١٠ ٤١ ἡ Θ ١٦ τὸ ἀπὸ τῆς Θ σνϚ ἡ ΚΛ ٨ ٢٦ ٥٤ ἡ ΖΒ ١٠ ١٨
4914119 οʹ
, Ἀφροδίτη κβʹ ὥρας ιηʹ , Ζεὺς λδʹ , Σελήνη οʹ ὥρας ιηʹ , Ἄρης μβʹ ὥρας ιβʹ . Ἄλλη
ἐστιν ἀπέχον τῆς θαλάσσης . Ἀπὸ Βιένου εἰς Λέβηναν στάδιοι οʹ : ἐκεῖ παράκειται νησίον , ὃ καλεῖται Ὀξεῖα :
4900367 γνωμονας
ἢ ἀφελόντας τῶν ἰσημερινῶν χρόνων πρότερον : ἀμφοτέρους γὰρ τοὺς γνώμονας ἐπισυνθέντες καὶ τὴν ἡμίσειαν λαβόντες εὑρήσετε τὸ συνεχὲς ζητούμενον
ἐπ ' ἄκρας τῆς Ἰνδικῆς ἰδεῖν ἔστιν ἀσκίους ὄντας τοὺς γνώμονας , νυκτὸς δὲ τὰς ἄρκτους ἀθεωρήτους : ἐν δὲ
4899691 Ϟʹ
, καὶ τὴν ηκ πηʹ ηʹʹ , τὴν δὲ κε Ϟʹ ηʹʹ . φανερὸν οὖν ὡς ἐπὶ μὲν τοῦ ε
μὲν οʹ τριπλασιασθεῖσαι τοῦ σιʹ ποιητικαί εἰσιν , αἱ δὲ Ϟʹ τοῦ σοʹ , ἑπταμήνου καὶ ἐννεαμήνου . ὅτι καὶ
4884455 σνδ
☾ ὅροι ἀπὸ οδ μη ἕως ρε ιβ καὶ ἀπὸ σνδ μη ἕως σπε ιβ Ὅταν οὖν προαιρώμεθα κατά τινα
͵αιϚ λαʹ ξβʹ ρκδʹ σμηʹ υϘϚʹ ιϚʹ φη υϘϚ λβʹ σνδ ∠ ʹ σμη ξδʹ ρκζ δʹ ρκδ ρκζʹ ξδ
4877382 μοιρας
Ψέλκιν καὶ τὸν μέγαν καταῤῥάκτην , οὗ ἡ θέσις ἐπέχει μοίρας . . . . . . . . .
ἡ διάμετρος τῆς σελήνης ὑποτείνει μεγίστου κύκλου περιφέρειαν ἑξηκοστῶν μιᾶς μοίρας λα γʹ . εὐκατανόητον δ ' αὐτόθεν , ὅτι
4872962 ἀριθμοις
. ὅταν οὖν μάλιστα ἡ ☾ τῷ φωτὶ καὶ τοῖς ἀριθμοῖς ἀφαιρεῖ , ἔσονται διπλαῖ σημασίαι . καὶ οἱ πυρετοὶ
☾ οὔσης ♑ κατακλιθῇ τις ἀφαιρούσης τῆς ☾ καὶ τοῖς ἀριθμοῖς καὶ τῷ φωτὶ ♄ συνόντος αὐτῇ , ἢ ☍
4866943 Ἀρατωι
σφαῖραι Πτολεμαίωι μέν , ὡς εἰκός , ἔν τισιν , Ἀράτωι δὲ κατὰ τὸ πλεῖστον οὐ συμφωνοῦσιν , ὥστε τῶν
συγκαταδύσεων : οἳ μὲν γὰρ ἔφασαν τὴν πραγματείαν εἶναι τῶι Ἀράτωι ἄρχοντος ἀνατέλλειν τοῦ ζωιδιακοῦ , οἳ δὲ μεσοῦντος ,
4866923 αὐξομειωσιν
ρβ ιβ καὶ τὸν τῶν σνζ μη , πάλιν τὴν αὐξομείωσιν αὐτῶν ποιησόμεθα τοῖς ἐπιβάλλουσι τῷ ιβʹ τῆς τότε σεληνιακῆς
μὲν οὖν καθόλου τύπος τῆς προκειμένης ἐπισκέψεως τοιαύτην τινὰ τὴν αὐξομείωσιν ἔχει τῶν ἀξιωμάτων , τὰς δὲ μεταξὺ τούτων καταστάσεις
4865883 ιϚ
ο κϚ πθ ζ Ἡλίου η κϚ Ϛ ιε ζ ιϚ νϚ ο κη ϘϚ Ϛ ι λβ ε η
. . . . . . . . . Ζυγοῦ ιϚ ∠ ʹ γʹ νο λγ εʹ ὁ ἐπὶ τῆς
4865652 κεʹ
καὶ ὁμοίως κατὰ τὴν προκειμένην ἔφοδον , ἐὰν ἀφέλῃς τὰς κεʹ τοῦ Ὑδροχόου καὶ τῶν λοιπῶν τὸ τρίτον λάβῃς ,
δὲ ἀπὸ τῶν βάσεων , τό τε ηʹ καὶ τὸ κεʹ . δεῖ οὖν τούτοις τοῖς τέσσαρσι τῷ δʹ καὶ
4852774 παραπηγματα
καταλαμβάνω κζʹ περὶ τοῦ παντὶ λόγῳ λόγον ἴσον ἀντικεῖσθαι κηʹ παραπήγματα περὶ τῶν σκεπτικῶν φωνῶν κθʹ εἰ ἡ σκεπτικὴ ὁδός
ἐπὶ τὸ τεῖχος δι ' αὐτοῦ . Ἔχει δὲ καὶ παραπήγματα ἐξ ἑκατέρου μέρους ὁ κριὸς , † ἐπειδὴ τὰ
4850450 ἐμβολιμοι
δὲ ] εἰς ἁπλότητα : καὶ Εὔπολις Ἱπποκράτους τε παῖδες ἐμβόλιμοί τινες βληχητὰ τέκνα κοὐδαμῶς γε τοῦ τρόπου . εἴξεις
συώδεις καὶ ἀνόητοι . καὶ Εὔπολις ἐν Δήμοις Ἱπποκράτους παῖδες ἐμβόλιμοί τινες βληχητὰ τέκνα : καὶ οὐδαμῶς τοῦ τρόπου .
4848555 ια
. . . . . . . . . Αἰγόκερω ια # βο γ ∠ ʹ γʹ Ϛʹ ὁ νοτιώτερος
? τοϲουτουῒ ] χρόνου : ] χρόνοϲ ] Βυζαντίου ] ια ? ? πόλιϲ ] τοϲ ? ἦρξ ' ἐγώ
4846229 τμημασιν
τοσαύτην κατὰ πλάτος παραχώρησιν ὁ ἥλιος διορθοῦται πρὸς τοῖς ἰσημερινοῖς τμήμασιν τέταρτον μιᾶς μοίρας κατὰ μῆκος ἐπὶ τοῦ λοξοῦ κύκλου
] ὡς ὕλη , ἐπειδὴ δύναται χωρίζεσθαι ἐφ ' οἷς τμήμασιν ἐπιγίνεται τὸ τοῦ κύκλου εἶδος . τὰ γοῦν τμήματα
4845823 περισσαρτιων
τούς τε περιττοὺς καὶ τοὺς ἀρτιάκις ἀρτίους καὶ ποιήσομεν στίχους περισσαρτίων καὶ εὑρίσκομεν τὸ ζητούμενον : γ , ε ,
παραδείγματος : εἰ δοκεῖ μέν , ἅμα τοὺς στίχους τῶν περισσαρτίων ἐκθώμεθα : εὑρήσεις τοίνυν ἐπὶ τῶν στίχων κοινωνίαν πρὸς
4843770 ςʹ
γὰρ ἰσημερίας ἐαρινῆς ἐπὶ τροπὴν θερινὴν ἐν ἡμέραις παραγίνεται Ϟδʹ ςʹ , ἀπὸ δὲ θερινῆς τροπῆς ἐπὶ ἰσημερίαν μετοπωρινὴν ἡμέραις
ἀνήλισκον δὲ ἡμιτάλαντον : οἱ δὲ τὸ ζευγίσιον τελοῦντες ἀπὸ ςʹ μέτρων διελέγοντο , ἀνήλισκον δὲ μνᾶς ιʹ : οἱ
4842538 προηγησεων
προηγήσεις προλαμβανομένων . βʹ . ἀπόδειξις τῶν τοῦ τοῦ Κρόνου προηγήσεων . γʹ . ἀπόδειξις τῶν τοῦ τοῦ Διὸς προηγήσεων
Διὸς προηγήσεων . δʹ . ἀπόδειξις τῶν τοῦ τοῦ Ἄρεως προηγήσεων . εʹ . ἀπόδειξις τῶν τοῦ τῆς Ἀφροδίτης προηγήσεων
4838240 ρκη
Χαβηρὶς ἐμπόριον . . . . . . . . ρκη ∠ ʹ ιε γοʹ Σαβούρας ἐμπόριον . . .
. . . . . . . . . . ρκη δʹ λβ γʹ Ὀστοβαλάσαρα . . . . .
4833724 σελιδιοις
μοιρῶν ρϘα λθ , ἃς καὶ παραθήσομεν ἐν τοῖς αὐτοῖς σελιδίοις κατὰ τὸν τῶν ρπ ἀριθμόν . ἐπὶ δὲ τοῦ
ΝΖΗ γίνεσθαι μοιρῶν ε λε . Παράκειται δὲ τοῖς εἰρημένοις σελιδίοις καὶ ζʹ σελίδιον , ἐπιγραφὴν ἔχον πλάτους . δύναται
4830072 ιζ
ἐμπόριον . . . . . . . ριγ δʹ ιζ γʹ : ἀπὸ δὲ ἀνατολῶν αὐτοῦ τοῦ ποταμοῦ Ἀγρινάγαρα
ὡς α πρὸς ια ∠ ʹ οὕτως α λα πρὸς ιζ κϚ . ἡ ἄρα ΓΜ μοιρῶν ἐστιν ιζ κϚ
4804258 κηʹ
Αἰγός , ὃ καὶ ὀνομάζομεν τὸν ἀστέρα αὐτόν , μοίρας κηʹ λεπτῶν μʹ , βόρειος , μεγέθους αʹ , κράσεως
ἀντὶ ἰωνικοῦ , καὶ διιάμβου διὰ τὴν ἀδιάφορον . τὸ κηʹ ἀντισπαστικὸν ἡμιόλιον ἐξ ἀντισπάστου καὶ σπονδείου . τὸ κθʹ
4793227 ἀναβιβασον
τοῦ γεγονότος τετραγώ - νου ἀπὸ τοῦ κζ , εἶτα ἀναβίβασον αὐτὴν καὶ εὑρήσεις οὐδένα ἄλλον ἢ τὸν ε ια
καὶ ὅρα ταῦτα , πῶς κεῖνται ٣٠ ٦٦ ٢٧٦ ταῦτα ἀναβίβασον , καὶ γίνονται λα ι λϚ , ἅτινα λα
4792207 κδʹ
. Παράληψις Κύπρου τε πάσης καὶ τῆς Πτολεμαίου δυνάμεως . κδʹ . Ὡς μετὰ τὴν νίκην ταύτην Ἀντιγόνου καὶ Δημητρίου
Καρκίνου μοίρᾳ κδʹ , τὸ δὲ δῦνον ὡσαύτως Αἰγοκέρωτος μοίρᾳ κδʹ , καὶ τὸ μὲν ὑπέργειον μεσουράνημα Κριοῦ μοίρᾳ ιʹ
4753345 λελυϲθαι
τοῦ πιϲτῶϲ λελύϲθαι τὸ νόϲημα νδ Γνωρίϲματα τοῦ μὴ τελέωϲ λελύϲθαι τὸ νόϲημα νε Πρόγνωϲιϲ ἡμέραϲ ἐν ᾗ μέλλει τεθνήξεϲθαι
ἀρξάμενοϲ ὁ ἄνθρωποϲ οὕτω ϲαφῶϲ , ὡϲ τὴν ϲυνέχειαν αὐτῷ λελύϲθαι τοῦ ϲώματοϲ καὶ μηκέτι ἰϲχύειν προιέναι ἐπ ' ἀγορᾶϲ
4745742 κανονιων
δάκτυλοι ιβ , ὥσπερ καὶ ἐπ ' αὐτῶν τῶν ἐκλειπτικῶν κανονίων ὡς τοῦ ἑνὸς δακτύλου περιέχοντος τὸ ιβʹ τῆς διαμέτρου
τῆς ἐμπτώσεως καὶ τῶν τῆς ἀνακαθάρσεως χωρὶς ἐξ ἑκατέρου τῶν κανονίων εἰσοίσομεν καὶ τὸν ἀπὸ τοῦ ἀπογείου κατὰ τὴν φαινομένην
4722485 χρονων
ἀλογία ἐν χρόνοις κειμένη εἰρημένον ἀφορισμὸν ἔχουσα . Τῶν δὲ χρόνων εἰσὶν οἱ μὲν εὔρυθμοι , οἱ δὲ ῥυθμοειδεῖς ,
ἐπελθεῖν ἐποίησε . ἔμπας ] ὅμως . * ἤγουν πρὸ χρόνων . ἤγουν τὸ ἐλθεῖν με κατὰ τῶν Ἀθηναίων .
4717807 χρονους
ἀπεῖχε δὲ καὶ κατὰ τὴν πρώτην θέσιν ἐπὶ τὰ αὐτὰ χρόνους λβ . ἐν τοῖς τῆς ὑπεροχῆς ἄρα χρόνοις ο
ἀγαθοῖς , Θάλειαν δ ' ἀπὸ τοῦ θάλλειν ἐπὶ πολλοὺς χρόνους τοὺς διὰ τῶν ποιημάτων ἐγκωμιαζομένους , Μελπομένην δ '
4716240 προλεχθεισι
Ἰάπυγος , ὄρτυξ ὄρτυγος : οὐχ ὑποπίπτουσι γὰρ ταῦτα τοῖς προλεχθεῖσι κανόσιν . Πρόσκειται ὡς ἐπὶ τὸ πλεῖστον διὰ τὸ
πεδίοις ἡπλωμένον καὶ ἐκτεταμένον πρὸς ἀνατολήν . Ἐπὶ γὰρ τοῖς προλεχθεῖσι παρ ' ἐμοῦ εἰπόντος ἀκούσας ἐπίστασαι Ταῦρον τὸ ὄρος
4710037 ἐπογδοου
καὶ περὶ τὰς τέτταρας περιεχομένας λόγοις τοῖς ἐφεξῆς ἀπὸ τοῦ ἐπογδόου μέχρι τοῦ ἐπὶ ιαʹ . ποιοῦσι μὲν οὖν τὸ
τούτων τῶν δεσμῶν ἐν ταῖς πρόσθεν διαστάσεσιν , τῷ τοῦ ἐπογδόου διαστήματι τὰ ἐπίτριτα πάντα συνεπληροῦτο , λείπων αὐτῶν ἑκάστου
4692823 ψκθ
κζ πολλαπλασιαζέτω τὸν κζ : εἰκοσιεπτάκις κζ : καὶ γίνονται ψκθ . καὶ ἐπεὶ ὁ ιη οὐ μετρεῖ τὸν ψκθ
μετρεῖται . τκδ τξδ τπδ υλβ υπϚ φιβ φοϚ χμη ψκθ ψξη ωξδ Ϡοβ ͵ακδ ͵αρνβ ͵ασϘϚ # ⌉ #
4684881 ξʹ
ἐπέχουσι διάστημα , αἱ δὲ Ϙʹ τριῶν , αἱ δὲ ξʹ δύο , ὧν ὁ γʹ κείμενος μέσος πρὸς μὲν
. νθʹ . Πῶϲ ἄν τιϲ ἰάϲαιτο κατιϲχνωθέντα μόρια . ξʹ . Διάγνωϲιϲ ἀρίϲτηϲ κράϲεωϲ . ξαʹ . Διάγνωϲιϲ τῶν
4679631 συνανενεχθησεται
τὰς ἐν τῷ ὑποκειμένῳ κλίματι τῶν αὐτῶν ἀναφοράς . καὶ συνανενεχθήσεται ἡ μὲν μέχρι τῆς πρώτης δεκαμοιρίας περιφέρεια τοῖς λοιποῖς
ὥστε καὶ ἑκάτερον μὲν τῶν ἑκατέρωθεν τοῦ ἐαρινοῦ σημείου τεταρτημορίων συνανενεχθήσεται χρόνοις οα ιε , ἑκάτερον δὲ τῶν ἑκατέρωθεν τοῦ
4669188 παραλλακτικου
ρκ . Τῆς οὖν κατὰ τὴν τήρησιν παραλλάξεως διὰ τοῦ παραλλακτικοῦ ὀργάνου δοθείσης μοίρας α καὶ ἑξηκοστῶν ζ , τὸ
ἀποστημάτων , ἐν ᾧ τὴν καθόλου πρῶτον παράλλαξιν διὰ τοῦ παραλλακτικοῦ ὀργάνου μοίρας α καὶ ἑξηκοστῶν ζ εὑρὼν καὶ ὑποθέμενος
4648703 παραυξησεων
τοὺς μέσους δρόμους ὦσιν , ὅπου μείζονές εἰσιν αἱ τῶν παραυξήσεων ὑπεροχαί , τήν γε μέχρι τῶν τοσούτων ὡρῶν πάροδον
. τοῦ τῆς διορθώσεως ἐνταῦθα κανονίου ἐστὶν ἐπιλογίσασθαι , τῶν παραυξήσεων κατὰ στίχον ἐν τούτοις περὶ τοὺς μέσους δρόμους τὸ
4636043 ξδ
. . . . . . . . . . ξδ ∠ ʹ μα . Ὑπὸ δὲ τὰ εἰρημένα ἔθνη
ἀντιπερίστασιν κἀνταῦθα τὰς λβ ἐπὶ τὰς β , καὶ γίνονται ξδ : καὶ πάλιν τὰς ιϚ ἐπὶ τὰς δ .
4622921 ἐκθεσεσιν
λβ καὶ τοῦτο δι ' ὅλου : ἐν δὲ περισσαῖς ἐκθέσεσιν ἶσον τὸ ἅπαξ ξδ τῷ δὶς λβ καὶ τοῦτο
διὰ τετάρτης ἀπαντᾶν ἡμέρας , ὡς ἐν ταῖς αὐτῶν ἀνάλογον ἐκθέσεσιν εἰς τὰς τετάρτας πάντως οἱ κύβοι ἀποτελοῦνται χώρας :
4622801 ἀνυπερβατως
βαλανείοις καὶ αἰώραις καὶ γυμνασίαις ταῖς διὰ τῶν χειρῶν : ἀνυπερβάτως γὰρ σώζονται . τινὲς δὲ ἐπὶ αὐτῆς τῆς □
σοι φανήσεται ἢ τὸ τῆς μήνιγγος ἀποθέμενοι , σώζονται οὗτοι ἀνυπερβάτως . ἐὰν δὲ ἀπὸ τῆς ☍ ἐπὶ τὸ μεῖζον
4619317 σπε
τ ] . . . . . . ! ! σπε ? [ [ ] ἀπὸ Μυτιλήνης ? [ [
οδ μη ἕως ρε ιβ καὶ ἀπὸ σνδ μη ἕως σπε ιβ Ὅταν οὖν προαιρώμεθα κατά τινα τῶν ἐπιζητουμένων ἐνιαυτῶν
4608330 σιϚ
ὁ Γ πρὸς κύβον τὸν Δ . ἔστι δὲ ὁ σιϚ κύβος , πλευραὶ δὲ αὐτοῦ ὁ Ϛ καὶ ὁ
Γ Ϙ καὶ ἓξ καὶ τὸ ἀπ ' αὐτῆς ἐννακισχίλια σιϚ , ἡ δὲ Δ λβ καὶ τὸ ἀπ '
4605927 ὁροις
: ἦμεν γὰρ ἐν τῷ μεσομφάλῳ τῆς Γερμανίας καὶ τοῖς ὅροις αὐτῶν . Ἅμα δὲ τῷ τούτους ῥίψαι ἐπὶ τὴν
ταύτης παράδοσιν . ἔστιν οὖν ἡ μουσικὴ καλουμένη ἀναλογία ἐν ὅροις τέσσαρσι , δύο μὲν ἄκροις δύο δὲ μέσοις ,
4604448 δεκατων
ἀριθμῶν τῷ τε τῶν ξη δεκάτων καὶ τῷ τῶν ρλβ δεκάτων προστιθέμενος ὁ τετράγωνος , ἤτοι τὰ μθ ρα ,
βου . Πῶς ἑκατέρῳ τῶν ἀριθμῶν τῷ τε τῶν ξη δεκάτων καὶ τῷ τῶν ρλβ δεκάτων προστιθέμενος ὁ τετράγωνος ,
4601414 πεντασυλλαβοι
. τούτων πάλιν συντιθεμένων γίνονται πόδες δισυλλάβων μὲν καὶ τρισυλλάβων πεντασύλλαβοι λβ , τῶν δὲ τρισυλλάβων ἀλλήλοις παρατιθεμένων ἑξασύλλαβοι ξδ
τάξει αὐτῶν κεῖνται , ἀλλὰ προστιθεμένης καὶ ἑτέρας συλλαβῆς γίνονται πεντασύλλαβοι καὶ ἀποτελοῦσιν ἐπιτρίτους : ὁμοίως καὶ οἱ λοιποί .
4598805 πολλαπλασιαζων
πολλαπλασιαζόμενοι ἑκάτερος τούτων καὶ εἰς ἀλλήλους παραβαλλόμενοι καὶ ἕτερος θάτερον πολλαπλασιάζων ποιοῦσι τὸ ὅλον ἐμβαδὸν τοῦ τετραγώνου ἤγουν τοῦ ΑΔΕΒ
καὶ ἐφεξῆς οὕτω παρ ' ἕνα ποτὲ ἄρτιόν ποτε περιττὸν πολλαπλασιάζων , ποιήσεις τοὺς διπλασίους . τριπλάσιοι δὲ πάντες εἰσίν
4597561 φιβ
δὲ προστιθέμενος , κύβος ἀπὸ τοῦ η , τουτέστι ΚΥ φιβ # ʂ ε , καὶ προστεθεὶς ʂ ε ,
ε : θέλομεν οὖν ταῦτα κυβικὴν εἶναι πλ . ΚΥ φιβ . ʂ ἄρα η ἴσοι εἰσὶ ΚΥ χλζ #
4594817 κβ
κζ ιε τὸ πλεῖστον ἑῷος ἀφέξει τοῦ ἀκριβοῦς ἡλίου μοίρας κβ κγ . πάλιν ὑποκείσθω τὸ μέσον μῆκος ἀπέχων ἐπὶ
γίνονται ξϚ : καὶ μέριζε καθολικῶς : ὧν τρίτον , κβ . ἔστω ἡ διάμετρος τοσοῦτον . Ἔστω δωδεκάγωνον καὶ
4594080 μετοπωρινου
χυλοῖσι καὶ ζωμοῖσιν ὑγιὴς ἐγένετο . Ξυνέβη δὲ τελευτῶντος τοῦ μετοπωρινοῦ καιροῦ . Ὁ παρὰ Ἁρπαλίδῃ ἀλείπτης , ἀκρατέστερος σκελέων
ἤδη ταῦτα γίγνηται πάνταἡ τοῦ καύματος ἐλάττωσις , ἡ τοῦ μετοπωρινοῦ ὄμβρου φορά , ἡ τῶν σωμάτων τῶν ἀνθρωπίνων ἀνάψυξις
4577557 κεκινησθω
ἥλιος εἰς τὰ ἐναντία τῶν ζῳδίων κινούμενος πέντε ζῳδίων περιφέρειαν κεκινήσθω καὶ ἔστω ἐπὶ τοῦ πʹ τόπου : ἀπὸ μὲν
, τὸ δὲ Δ τὸ κέντρον τοῦ ζῳδιακοῦ , καὶ κεκινήσθω περὶ μὲν τὸ Γ σημεῖον τὸ Ζ κέντρον τοῦ
4577338 πολλαπλασιασμων
. ἔτι προμήκης ἐστὶν ὁ κατὰ πάσας τὰς σχέσεις τῶν πολλαπλασιασμῶν πλέον ἢ μονάδι μείζονα τὴν ἑτέραν ἔχων πλευράν :
σημεῖον Ψ ἐλλιπὲς κάτω νεῦον , # . Καὶ τῶν πολλαπλασιασμῶν σοι σαφηνισθέντων , φανεροί εἰσιν οἱ μερισμοὶ τῶν προκειμένων
4572859 μετρησεις
ἐπιδείκνυε τὸν ζυγὸν ἢ τὸν μέδιμνον . ἢ μέχρι τίνος μετρήσεις τὴν σποδόν ; οὐ ταῦτά σε ἀποδεικνύειν δεῖ ,
, ἑξῆς δὲ στροφὴν μονόστροφον κώλων κβʹ , ἃ καὶ μετρήσεις τοῖς προτέροις ἑπόμενος . ἐν οἷς εἰσι καὶ ἰαμβικοὶ
4566747 ἐννατου
ἡμέρας προσγενέσθαι ἐς τὰς τεσσαράκοντα , ὁτὲ δὲ ἀπὸ τοῦ ἐννάτου : ὧδε γὰρ ἀνάγκη γίνεσθαι , ὅκως ἂν τύχῃ
τοῦ Σκορπίου : καὶ οὕτως ποιῶν εὑρήσεις τὸν κύριον τοῦ ἐννάτου ἐννάτου τὸν Ἑρμῆν τὸν κύριον τῶν Διδύμων . εἰ
4543553 περιπιπτωμεν
καὶ τοῦ μέλλοντος πρόνοιαν ποιουμένους , ἵνα μὴ τοῖς ὁμοίοις περιπίπτωμεν ἀεί . καὶ πάλιν : ἐμίχθη τις ταριχευομένῳ σώματι
κατὰ τὰς διαβολὰς πιθανότητος . ἵν ' οὖν ὡς ἥκιστα περιπίπτωμεν αὐταῖς , ὑποδεῖξαι βούλομαι τῷ λόγῳ καθάπερ ἐπί τινος
4534511 κανονιον
ἐν τῷ γʹ καὶ δʹ σελιδίῳ κατὰ τὸ τῶν προσνεύσεων κανόνιον . ἐὰν μὲν οὖν βορειότερον ᾖ τὸ κέντρον τῆς
τῶν τῆς διαμέτρου δωδεκάτων εἰσενεχθέντων εἰς τὸ ἐπὶ πᾶσι βραχὺ κανόνιον καὶ τὰ ιβʹ τῶν ὅλων ἐμβαδῶν εὑρήσομεν ἐκ τῶν
4531428 ὀγδοον
. ὁ ἕκτος καὶ ἕβδομος τροχαϊκοὶ τρίμετροι ἀκατάληκτοι . τὸ ὄγδοον ὅμοιον τῷ τετάρτῳ . εἰσὶ δὲ καὶ ταῦτα τὰ
δίς , οὕτως ἡμισάκις ἥμισυ ἡμισάκις , ὀκτώ τε καὶ ὄγδοον : καὶ ὡς δὶς τρία ἕξ , οὕτως ἡμισάκις
4528864 πεπραγματευμενοις
Μασσαλιώτης παρεῖναι . Φησὶ γοῦν ἐν τοῖς Περὶ τοῦ Ὠκεανοῦ πεπραγματευμένοις αὐτῷ , ὅτι ἐδείκνυον ἡμῖν οἱ βάρβαροι , ὅπου
ἀπαραλείπτως ἔνεστί σοι καὶ ῥᾳδίως ἐντυγχάνοντι τοῖς ὑπὸ τοῦ Πτολεμαίου πεπραγματευμένοις περὶ τούτων συντάγμασιν ἐπιγινώσκειν . Ὁ καλούμενος ἀναλυόμενος ,
4526530 μϚ
δʹ , τὰ γενόμενα # Ϛ λε προσθήσομεν τοῖς # μϚ ιζ τοῦ τρίτου σελιδίου . καὶ τὰ γενόμενα #
. . . . . . . . . . μϚ ∠ ʹδʹ κθ ὑφ ' ἣν οἱ ὁμώνυμοι βωμοὶ
4519801 ιεʹ
πέντε τὸν ἀριθμὸν , ὧν ἡ μὲν δυτικωτέρα καλεῖται Αἰβοῦδα ιεʹ ξβʹ ἡ δ ' ἐφεξῆς αὐτῆς πρὸς ἀνατολὰς ὁμοίως
ἀπολῶ σε κακῶς ” μονόμετρον ἐκ δύο ἀναπαίστων : τὸ ιεʹ “ εἰπέ , τί ποιῶν ” μονόμετρον ἐξ ἀναπαίστου
4513112 σελιδιου
νθ . ταῦτα μετὰ τῶν # μθ ιη τοῦ τρίτου σελιδίου , γίνεται # νϚ ιζ . πάλιν τὰ τοῦ
τοῦ ηʹ σελιδίου ἑξηκοστῶν μγ κδ ἐπὶ τὰ τοῦ ἕκτου σελιδίου γενόμενα # κγ α , ποιεῖ # ιϚ λθ
4509714 ἡλιακου
τὸ φαινόμενον τῆς σελήνης ὥστε ἐφάπτεσθαι . . . τοῦ ἡλιακοῦ κατὰ τὸ Ζ σημεῖον , ἡ ΑΕ περιφέρεια ἣν
ἐστὶν ὁ ΕΖΗΘ κύκλος τξ , τοιούτων ἐπὶ μὲν τοῦ ἡλιακοῦ ἀποστήματος ἔσται # α κε , ἐπὶ δὲ τῶν
4507103 κʹʹ
δον μέρος τῆς ἀποκαταστάσεως , ἐπὶ τὰς ἡμέρας Ϛ νγʹ κʹʹ , ἀποτελοῦνται μοῖραι β δʹ : ταῦτα προσέθηκα τῇ
# λαʹ κʹʹ , κατὰ δὲ τὸ ἐλάχιστον # λεʹ κʹʹ , ἡ δὲ διάμετρος τοῦ κύκλου τῆς σκιᾶς κατὰ
4498671 διαστηματα
τίς ἐστι παρὰ μουσικοῖς : περιγράφεται δέ τινα πρὸς τούτων διαστήματα , καθ ' ἃ καὶ ἡ φωνὴ κινεῖται ἤτοι
κατὰ μέλος ὃ ἡ φωνὴ μελῳδοῦσα μὴ δύναται διαιρεῖν εἰς διαστήματα . ὑποκείσθω δὲ καὶ τῶν συμφώνων ἕκαστον μὴ διαιρεῖσθαι
4497591 χρονοις
ἄλλα πλείω μικρὰ ἔθνη κατέχοντα τὴν Ἰταλίαν ἐν τοῖς πρόσθεν χρόνοις λῃ - στρικὰ καὶ ἄπορα : νυνὶ δὲ τὰ
Προκλῆς . Αὗται μὲν δώδεκα Ἰωνικαὶ πόλεις , προσελήφθη δὲ χρόνοις ὕστερον καὶ Σμύρνα εἰς τὸ Ἰωνικὸν ἐναγαγόντων Ἐφεσίων :
4497211 κανονιου
τὰς γωνίας ἐξεθέμεθα , καὶ διεγράψαμεν κατὰ τὸ εὐθεώρητον ἀντὶ κανονίου κύκλους η περὶ τὸ αὐτὸ κέντρον ἐν τῷ τοῦ
προχειρότερον τὸ ὡριαῖον μέγεθος λαμβανομένης ἐκ τοῦ προκειμένου τῶν ἀναφορῶν κανονίου τῆς ὑπεροχῆς τῶν παρακειμένων ἐπισυναγωγῶν , ἡμέρας μὲν τῇ
4495372 νϚ
, ἡ ΕΔ γ νβ κβ , ἡ ΕΖ α νϚ ια , τὸ ἀπὸ τῆς ΕΖ γ μδ νη
. νϚ μα ∠ ʹ Αἰσήπου ποταμοῦ ἐκβολαί . . νϚ μα γʹ Πάριον . . . . . .

Back