ρα κβ ἢ ταῖς ἀπὸ σνη λη μέχρις σϘ μα συνεμπίπτῃ , τότε μόνον ἐν τοῖς ἐκκειμένοις τόποις δυνατὸν ἔσται | ||
τῶν νβʹ , καὶ εὑρόντα πρῶτον ἐννεαδικὸν ζητεῖν , μὴ συνεμπίπτῃ αὐτῷ ἑβδομαδικός . οὐκ ἀρέσκει δέ τισι τὸ [ |
Μυρρίνη ἢ μυρϲίνη σπη Μῶλυ ἢ βήϲαϲα σπθ Νάρδου ϲτάχυϲ σϘ Νάρδοϲ κελτική σϘα Νάρθηξ σϘβ Νᾶπυ σϘγ Νάρκιϲϲοϲ σϘδ | ||
ἐπουσίας μήκους μὲν μοίρας σνη ιγ , ἀνωμαλίας δὲ μοίρας σϘ νη , ἐὰν ταύτας ἀφέλωμεν τῶν κατὰ τὴν τήρησιν |
ρβ τῆς ἀνωμαλίας ἀπέχουσα τοῦ ἀπογείου τοῦ ἐπικύκλου καὶ μοίρας σνη ἕως σο , πλεῖστον καὶ τὸ παρὰ τὴν πρώτην | ||
, παράκειται # λα μη : καὶ ταῖς ρβ καὶ σνη # λδ νδ : ὧν ὑπεροχὴ πρὸς τὰ # |
καὶ ταῦτα τοῖς αὐτοῖς ἀριθμοῖς καὶ ἐπὶ τῶν πρώτων στίχων ἐκκειμένοις . ἐπὶ δὲ τοῦ ἐνιαυσίου παραθέντες ἐν τοῖς πρώτοις | ||
τοὺς τῶν ἀπορητικῶν λόγους : φανήσονται γὰρ καὶ οὗτοι τοῖς ἐκκειμένοις ἰσοσθενεῖς καὶ ἕνεκα πειθοῦς μὴ διαφέροντες αὐτῶν . τὸ |
δὲ εʹ . Καὶ ὧδε τὴν τῆς ὥρας διαφορὰν νόει μοιρῶν οὖσαν εʹ , Ϙʹ . Ὁ ὀκτωκαιδέκατος ἀπέχων μοίρας | ||
ἐπὶ τὴν ΑΕ ἡ ΚΖ . ἐπεὶ ἡ ΕΖ περιφέρεια μοιρῶν ἐστιν λ , εἴη ἂν καὶ ἡ μὲν ὑπὸ |
, ἐλάσσους τῶν ιδ μη . πρὸς ἃς τὰ β ἑξηκοστὰ διάφορα δέδεικται , τοῦ ἡλίου μὴ μένοντος ἀκινήτου ἐν | ||
κατὰ τὸ αὐτὸ μέγιστον ἀπόστημα τῆς σελήνης ὑποτείνει μιᾶς μοίρας ἑξηκοστὰ μ καὶ # . ἡ γὰρ ΔΗ περιφέρεια τῆς |
, ὄρθιον δὲ ὅ τι περ ἂν τὸ βάθος τοῦ μήκους . λοξὴ δὲ ὀνομάζεται φάλαγξ ἡ τὸ μὲν ἕτερον | ||
εἰς ἀσάφειαν προάγομεν τὸν λόγον ἢ διὰ τὸ σαφῶς εἰπεῖν μήκους δεόμεθα . χρὴ τοίνυν τὴν συντομίαν σκοπεῖν , εἰ |
τοῦ κ καὶ τοῦ ζ περιεχόμενος ἴσος τῷ ὑπὸ τῶν ιγ καὶ ζ καὶ ἔτι τῷ ἀπὸ τοῦ ζ τετραγώνῳ | ||
δ πρῶτος , ὁ δὲ δ καὶ θ γεννᾷ τὸν ιγ , ὅς ἐστι πρῶτος πρὸς τὸν Ϛ . Ὁ |
παρόδους νοτιώτερος ᾖ τοῦ διὰ μέσων μοίραις γ καὶ Ϛʹ ἔγγιστα , οἱ δὲ τῶν περὶ τὰς ὀρθὰς γωνίας λόγοι | ||
ἡ ΒΚ ἐκ τοῦ κέντρου τοῦ ἐπικύκλου ἔσται ια λ ἔγγιστα : ὅπερ ἔδει εὑρεῖν . Ἑξῆς δὲ καὶ τῶν |
τήρησιν παραλλάξεως διὰ τοῦ παραλλακτικοῦ ὀργάνου δοθείσης μοίρας α καὶ ἑξηκοστῶν ζ , τὸ κατ ' αὐτὴν τὴν τήρησιν τῆς | ||
καὶ ἐπεὶ ταῖς τοσαύταις ὥραις ἐπιβάλλει κατὰ μῆκος παραλλάξεως ἕως ἑξηκοστῶν μη ἔγγιστα δῆλον ὡς ἂν μηδὲν μὲν διαλαμ - |
μεταξὺ τῶν Ρ Θ , πάντες δὲ οἱ μείζους τοῦ πενταπλασίου ποιοῦσι τὸ σημεῖον τῆς τομῆς μεταξὺ τῶν Ρ Τ | ||
τοῦ εἰκοσαέδρου καθέτου τὸ δυνάμει δωδεκαπλάσιον μεῖζόν ἐστιν τοῦ δυνάμει πενταπλασίου τῆς πλευρᾶς τοῦ εἰκοσαέδρου . Ἐκκείσθω κύκλος ὁ ΑΒΓ |
τῶν κατὰ τὸ τρίτον κανόνιον ἐνιαυσίων , τὰ παρακείμενα τοῖς στίχοις ἀμφοτέροις ἐν τοῖς ἑξῆς σελιδίοις ἐπισυνθήσομεν οἰκείως ἐπὶ μὲν | ||
χρόνον συναχθέντων καθ ' ἑκάστην τῶν παρόδων τῶν τοῖς οἰκείοις στίχοις παρακειμένων τῆς ὁμαλῆς κινήσεως ἀριθμῶν , καθ ' ὃν |
δ ' ἐστὶ περὶ τὴν διχομηνίαν . Ἔστι δὲ ὁ μηνιαῖος χρόνος ἡμερῶν κθ ∠ ʹ λγʹ . Ἐν δὲ | ||
κατὰ τὰς ἡμέρας καὶ κατὰ τοὺς ἐμβολίμους . Ὁ γὰρ μηνιαῖος χρόνος οὐκ ἀκριβῶς εἴληπται . Ἔστι γὰρ ὁ μηνιαῖος |
ἀνωμαλίας ἀριθμὸν εἰσενεγκόντες εἰς τοὺς αὐτοὺς ἀριθμοὺς τὴν παρακειμένην αὐτῷ πλατικὴν διαφοράν , ἐὰν μὲν τὸ διευκρινημένον μῆκος ἐν τοῖς | ||
διὰ μέσων , ἐὰν μὲν ἐκ τοῦ γʹ σελιδίου τὴν πλατικὴν διαφορὰν ὦμεν εἰληφότες , βορειότερον , ἐὰν δὲ ἐκ |
ἡ μὲν φαινομένη μέση πάροδος καὶ τὸ πλεῖστον διάφορον τῆς ἀνωμαλίας ἔσται κατὰ τὰς σο μοίρας , ἡ δ ' | ||
καὶ τῆς σελήνης ἀπεχούσης τοῦ ἀκριβοῦς ἀπογείου τὰς ὑποκειμένας τῆς ἀνωμαλίας μοίρας ρκ . Τὰ δὲ τοῦ ηʹ σελιδίου , |
καὶ ὥρας ἰσημερινὰς κγ ιβʹ συνάγει κατὰ τὴν ἀποδεδειγμένην τοῦ πλάτους μέσην κίνησιν ἐπουσίαν μοίρας ρξ καὶ ἑξηκοστὰ δ . | ||
κθ ιδ ὡς ἀπὸ τῶν συνδέσμων εἰσαγαγόντες εἰς τὸ τοῦ πλάτους κανόνιον σελήνης , καὶ τὴν παρακειμένην πρὸς ἀνάλογον μοῖραν |
ἡ ὑγρότης περὶ τὸ βάθος καὶ τίκτονται πνεύματα , ὧνπερ πολυπλασιαζομένων καὶ βουλομένων τὴν ἔξω φορὰν διῶξαι , ποιοῦσί τινας | ||
τοῦ χρόνου γίνονται ιβ προτάσεις . εἶτα τούτων τῶν ιβ πολυπλασιαζομένων ἐπὶ τὴν τριμέρειαν τῆς ὕλης γίνονται λϚ . αὗται |
θερινῆς τροπῆς τὰς πβ ∠ ʹ μοίρας : ἐν τοῖς ιβ ἔτεσιν ἄρα τοῖς μεταξὺ τῶν δύο τηρήσεων Ϛʹ ἔγγιστα | ||
ΑΘ ἔσται νθ μδ , ἡ δὲ ΕΘ ὁμοίως ν ιβ . τῶν δ ' αὐτῶν ἐδέδεικτο καὶ ἡ ΕΒ |
ἀρχαῖς τῶν δωδεκατημορίων ἐκτεθειμένων . Οἱ δὲ μετὰ τὰ εἰρημένα κανόνια συνημμένοι κανόνες περιέχουσι τὰς γινομένας τῆς σελήνης παραλλάξεις ἐν | ||
ἑξάγωνον , ἧς κατὰ τὰς πλευρὰς ἐν ἴσοις διαστήμασιν ἦν κανόνια γ προσπεπηγότα , ἐφ ' ὧν ἐφεστήκει ἡ στυλὶς |
μοίρᾳ κατὰ τὰς ἐπ ' ὀρθῆς τῆς σφαίρας ἀναφοράς . ἰσημερινῶν μὲν τυγχανουσῶν τῶν διδομένων ὡρῶν ἤτοι τῶν ἀπὸ τῆς | ||
ὅσον τετρακοσίοις σταδίοις , ὅπου ἡ μεγίστη ἡμέρα ὡρῶν ἐστιν ἰσημερινῶν δεκατεττάρων , κατὰ κορυφὴν γίνεται ὁ ἀρκτοῦρος , μικρὸν |
πράγματος προκόπτει . Τῆς τοῦ τόπου νοήσεως δεδηλωμένης καὶ τῶν συζυγούντων αὐτῷ πραγμάτων ὑποδεδειγμένων ἀπολείπεται , ὡς ἔστιν ἔθος τοῖς | ||
τῇδε δὲ ἀπὸ δυάδος ἀρτίους ἀπὸ μέσων ἐπὶ πέρατα , συζυγούντων κατ ' ἰσότητα τῶν ἑκατέρωθεν εὐτάκτων . Ἐπιμόριος δὲ |
ἐννέα κοῦραι πολλαπλασιασθέντα δι ' ἀλλήλων δύνασθαι μυριάδων πλῆθος τρισκαιδεκαπλῶν ρϘϚʹ , δωδεκαπλῶν τξηʹ , ἑνδεκαπλῶν ͵δωʹ , συμφώνως τοῖς | ||
τουτέστι τὰς προκειμένας μυριάδας ἐνναπλᾶς δέκα , ποιοῦσιν μυριάδας τρισκαιδεκαπλᾶς ρϘϚʹ , δωδεκαπλᾶς τξηʹ , ἑνδεκαπλᾶς ͵δωʹ . [ ἐνναπλαῖ |
ἡ μνᾶ ἔχει οὐγγίας κ , ἡ οὐγγία ἔχει γράμματα κδ , ἡ δραχμὴ ἤτοι ὁλκὴ ἔχει γράμματα γ , | ||
ἐπιδέχεται , ἀλλὰ δύο ἢ καὶ πλείους , οἷον ὁ κδ : ἥμισυ γὰρ ιβ , καὶ τούτων Ϛ , |
δηλονότι ποιούντων ἡμέραν μίαν . ἐγένετο δὲ καὶ αὐτὴ Ἰχθύσι μοίραις κδ θ . Τὰ δὲ συναγόμενα ἑξηκοστὰ μετοίσομεν εἰς | ||
ἀλλ ' ἐπεὶ βορειότερός ἐστιν ὁ ἀστὴρ τοῦ διὰ μέσων μοίραις Ϛ καὶ γʹ , ὅσων ἐστὶν ἡ ΚΗ περιφέρεια |
δὲ τέταρτον τοῦ ἀπ ' αὐτῆς μονάδων ιβ καὶ λεπτῶν ιε . Ἔστωσαν δύο εὐθεῖαι αἱ ΒΓ , Α , | ||
ε Ϛ ζ η θ ι α γ Ϛ ι ιε κα κη λϚ με δυαδικαὶ συζυγίαι α δ ι |
αὐτῶν ια . καὶ ἔστιν ὡς τξ πρὸς μζ μβʹ μʹʹ οὕτως πγ πρὸς ια . . . , . | ||
σκιᾶς κατὰ μὲν τὸ μέγιστον ἀπόστημα τῆς σελήνης ἑξηκοστὰ μʹ μʹʹ , κατὰ δὲ τὸ ἐλάχιστον ἀπόστημα ἑξηκοστὰ μϚʹ . |
: ἡ μὲν ἄρα αγ ἀνενεχθήσεται ἐν ο μϚʹ λγʹʹ κʹʹʹ , ἡ δὲ δβ ἐν ο μʹ Ϛʹʹ μʹʹʹ | ||
. αἱ δὲ τοσαῦται ὑπεροχαὶ αἱ ἀνὰ ο οʹ ιγʹʹ κʹʹʹ συντεθεῖσαι γίγνονται ο Ϛʹ κϚʹʹ μʹʹʹ : ὥστε καὶ |
κατασκευάζουσι τὸ προκείμενον οὕτω . λαμβάνουσιν ἡμιόλιον ἀριθμόν τινα τὸν ψξη πρὸς τὸν φιβ . καὶ ἀπὸ τούτου τοῦ φιβ | ||
͵γοβ καὶ τοῦ δʹ διαστάματος : ὑπερέχει γὰρ καὶ ὑπερέχεται ψξη . ὁ δ ' αὐτὸς μέσος τοῦ τε θʹ |
ταῖς ἑξῆς περιφερείαις ἀναφορικῆς ὑπεροχῆς , ὅ ἐστιν ο οʹ ιγʹʹ κʹʹʹ , καὶ αἱ λοιπαὶ γνωσθήσονται , ἐν ὅσῳ | ||
ἡ αγ τῆς δβ κθʹ ὑπεροχαῖς ταῖς ἀνὰ ο οʹ ιγʹʹ κʹʹʹ . αἱ δὲ τοσαῦται ὑπεροχαὶ αἱ ἀνὰ ο |
γαμικὴν χλαμίδα δότω τις δεῦρό μοι . μετὰ δὲ τὸν Ϟδʹ στίχον κῶλά ἐστιν ἀντισπαστικὰ Ϛʹ , ἐπιμεμιγμένα διιάμβοις , | ||
μὴ ὄπισθεν , ἀλλ ' ἔμπροσθεν τάξῃ . Κεφ . Ϟδʹ . Ἁρμόζει μὲν ἐφ ' ὧν καὶ ἡ πρὸ |
ΘΑ τοῦ ἀπὸ τῆς ΑΕ , τουτέστιν β β , ἑξηκοστοῖς μ , ἅ ἐστιν τοῦ δὶς ὑπὸ ΚΘ , | ||
ὥστε καὶ ἐνθάδε τὸ παρὰ τὴν ἀνωμαλίαν τῆς σελήνης διήνεγκεν ἑξηκοστοῖς δ , ἅπερ οὐδ ' αὐτὰ ποιεῖ τινα ἀξιόλογον |
, ὃς ἀπὸ πλευρᾶς λζ ιʹ . . Ἀπὸ τῶν χκε λϚʹ ἀφαιρουμένων υνϚ λϚʹ , λείπεται ρξθ : ἀφαιρουμένων | ||
τρὶς κζ , γίνονται πα , καὶ πεντάκις ρκε γίνονται χκε : οἱ ἄρα πα καὶ χκε πρὸς ἀλλήλους μὲν |
ρπη Πορφυρῶν ὄϲτρακα ρπθ Ῥίνη θαλαττία ρϘ Ϲηπία ρϘα Ϲκίγκοϲ ρϘβ Τελλίναι ρϘγ Τέττιξ ρϘδ Ὕαινα ρϘε Χελιδόνεϲ ρϘϚ Περὶ | ||
δʹ διαστήματος : ὑπερέχει γὰρ αὐτοῦ τπδ . ιϚʹ ͵αψκη ρϘβ : ἁμιόλιος τοῦ ͵αρνβ , ὃς ἦν μέσος κατ |
κατὰ μῆνα καὶ τῶν καθ ' ἡμέραν ἀποτελεσμάτων ἀπὸ τῶν ἐννάτων καθὼς ἐδόξασαν οἱ Ἰνδοὶ διηγησόμεθα εἰς τὸ μετέπειτα , | ||
εἶτα τῆς Ἀφροδίτης . καὶ τοιουτοτρόπως ποιοῦμεν τὸν περίπατον τῶν ἐννάτων τῶν ζῳδίων πάντων , διαγινώσκοντες τοὺς κυρίους ἑκάστης διαιρέσεως |
κατὰ συζυγίαν πολλαπλάσιός ἐστι κατὰ τὸν ἥμισυν τοῦ πλήθους τῶν ἐκκειμένων ὅρων . ἐπεὶ γὰρ ἡ τῶν αβ βγ ὑπεροχὴ | ||
γδ , τουτέστιν ὅσον ἐστὶ τὸ ἥμισυ τοῦ πλήθους τῶν ἐκκειμένων ὅρων : ὥστε ὁ αη δύο τῶν κατὰ συζυγίαν |
: καὶ τῆς ἐπὶ τοῦ διὰ τοῦ κατὰ κορυφὴν κύκλου παραλλάξεως τοῦ ἡλίου διακρινομένης εἰς τὴν πρὸς τὸν ζῳδιακὸν κατὰ | ||
κ , ἅ ἐστιν ἔγγιστα ιε , τῆς κατὰ μῆκος παραλλάξεως . ἔστιν δὲ καὶ κατὰ προχείρους σύμφωνα ἔγγιστα . |
ὑπὸ ΖΗΑ ὀρθή : καὶ λοιπὴ ἄρα ἡ ὑπὸ ΑΖΗ ἡμίσους ὀρθῆς : ἴση ἄρα ἡ ΑΗ τῇ ΖΗ : | ||
τέλειός ἐστι τοῖς ἑαυτοῦ μέρεσι , συμπληρούμενος ἐκτῶν αὐτῶν , ἡμίσους μὲν τριάδος , τρίτου δὲ δυάδος , ἕκτου δὲ |
τῶν τετραπλασίων α δ ιϚ σνϚ : μετρεῖται γὰρ ὁ σνϚ καὶ ὑπὸ ἑτέρων ἀριθμῶν , οὐ μὴν ὑπὸ πρώτων | ||
٣ ١٠ ٤١ ἡ Θ ١٦ τὸ ἀπὸ τῆς Θ σνϚ ἡ ΚΛ ٨ ٢٦ ٥٤ ἡ ΖΒ ١٠ ١٨ |
, Ἀφροδίτη κβʹ ὥρας ιηʹ , Ζεὺς λδʹ , Σελήνη οʹ ὥρας ιηʹ , Ἄρης μβʹ ὥρας ιβʹ . Ἄλλη | ||
ἐστιν ἀπέχον τῆς θαλάσσης . Ἀπὸ Βιένου εἰς Λέβηναν στάδιοι οʹ : ἐκεῖ παράκειται νησίον , ὃ καλεῖται Ὀξεῖα : |
ἢ ἀφελόντας τῶν ἰσημερινῶν χρόνων πρότερον : ἀμφοτέρους γὰρ τοὺς γνώμονας ἐπισυνθέντες καὶ τὴν ἡμίσειαν λαβόντες εὑρήσετε τὸ συνεχὲς ζητούμενον | ||
ἐπ ' ἄκρας τῆς Ἰνδικῆς ἰδεῖν ἔστιν ἀσκίους ὄντας τοὺς γνώμονας , νυκτὸς δὲ τὰς ἄρκτους ἀθεωρήτους : ἐν δὲ |
, καὶ τὴν ηκ πηʹ ηʹʹ , τὴν δὲ κε Ϟʹ ηʹʹ . φανερὸν οὖν ὡς ἐπὶ μὲν τοῦ ε | ||
μὲν οʹ τριπλασιασθεῖσαι τοῦ σιʹ ποιητικαί εἰσιν , αἱ δὲ Ϟʹ τοῦ σοʹ , ἑπταμήνου καὶ ἐννεαμήνου . ὅτι καὶ |
☾ ὅροι ἀπὸ οδ μη ἕως ρε ιβ καὶ ἀπὸ σνδ μη ἕως σπε ιβ Ὅταν οὖν προαιρώμεθα κατά τινα | ||
͵αιϚ λαʹ ξβʹ ρκδʹ σμηʹ υϘϚʹ ιϚʹ φη υϘϚ λβʹ σνδ ∠ ʹ σμη ξδʹ ρκζ δʹ ρκδ ρκζʹ ξδ |
Ψέλκιν καὶ τὸν μέγαν καταῤῥάκτην , οὗ ἡ θέσις ἐπέχει μοίρας . . . . . . . . . | ||
ἡ διάμετρος τῆς σελήνης ὑποτείνει μεγίστου κύκλου περιφέρειαν ἑξηκοστῶν μιᾶς μοίρας λα γʹ . εὐκατανόητον δ ' αὐτόθεν , ὅτι |
. ὅταν οὖν μάλιστα ἡ ☾ τῷ φωτὶ καὶ τοῖς ἀριθμοῖς ἀφαιρεῖ , ἔσονται διπλαῖ σημασίαι . καὶ οἱ πυρετοὶ | ||
☾ οὔσης ♑ κατακλιθῇ τις ἀφαιρούσης τῆς ☾ καὶ τοῖς ἀριθμοῖς καὶ τῷ φωτὶ ♄ συνόντος αὐτῇ , ἢ ☍ |
σφαῖραι Πτολεμαίωι μέν , ὡς εἰκός , ἔν τισιν , Ἀράτωι δὲ κατὰ τὸ πλεῖστον οὐ συμφωνοῦσιν , ὥστε τῶν | ||
συγκαταδύσεων : οἳ μὲν γὰρ ἔφασαν τὴν πραγματείαν εἶναι τῶι Ἀράτωι ἄρχοντος ἀνατέλλειν τοῦ ζωιδιακοῦ , οἳ δὲ μεσοῦντος , |
ρβ ιβ καὶ τὸν τῶν σνζ μη , πάλιν τὴν αὐξομείωσιν αὐτῶν ποιησόμεθα τοῖς ἐπιβάλλουσι τῷ ιβʹ τῆς τότε σεληνιακῆς | ||
μὲν οὖν καθόλου τύπος τῆς προκειμένης ἐπισκέψεως τοιαύτην τινὰ τὴν αὐξομείωσιν ἔχει τῶν ἀξιωμάτων , τὰς δὲ μεταξὺ τούτων καταστάσεις |
ο κϚ πθ ζ Ἡλίου η κϚ Ϛ ιε ζ ιϚ νϚ ο κη ϘϚ Ϛ ι λβ ε η | ||
. . . . . . . . . Ζυγοῦ ιϚ ∠ ʹ γʹ νο λγ εʹ ὁ ἐπὶ τῆς |
καὶ ὁμοίως κατὰ τὴν προκειμένην ἔφοδον , ἐὰν ἀφέλῃς τὰς κεʹ τοῦ Ὑδροχόου καὶ τῶν λοιπῶν τὸ τρίτον λάβῃς , | ||
δὲ ἀπὸ τῶν βάσεων , τό τε ηʹ καὶ τὸ κεʹ . δεῖ οὖν τούτοις τοῖς τέσσαρσι τῷ δʹ καὶ |
καταλαμβάνω κζʹ περὶ τοῦ παντὶ λόγῳ λόγον ἴσον ἀντικεῖσθαι κηʹ παραπήγματα περὶ τῶν σκεπτικῶν φωνῶν κθʹ εἰ ἡ σκεπτικὴ ὁδός | ||
ἐπὶ τὸ τεῖχος δι ' αὐτοῦ . Ἔχει δὲ καὶ παραπήγματα ἐξ ἑκατέρου μέρους ὁ κριὸς , † ἐπειδὴ τὰ |
δὲ ] εἰς ἁπλότητα : καὶ Εὔπολις Ἱπποκράτους τε παῖδες ἐμβόλιμοί τινες βληχητὰ τέκνα κοὐδαμῶς γε τοῦ τρόπου . εἴξεις | ||
συώδεις καὶ ἀνόητοι . καὶ Εὔπολις ἐν Δήμοις Ἱπποκράτους παῖδες ἐμβόλιμοί τινες βληχητὰ τέκνα : καὶ οὐδαμῶς τοῦ τρόπου . |
. . . . . . . . . Αἰγόκερω ια # βο γ ∠ ʹ γʹ Ϛʹ ὁ νοτιώτερος | ||
? τοϲουτουῒ ] χρόνου : ] χρόνοϲ ] Βυζαντίου ] ια ? ? πόλιϲ ] τοϲ ? ἦρξ ' ἐγώ |
τοσαύτην κατὰ πλάτος παραχώρησιν ὁ ἥλιος διορθοῦται πρὸς τοῖς ἰσημερινοῖς τμήμασιν τέταρτον μιᾶς μοίρας κατὰ μῆκος ἐπὶ τοῦ λοξοῦ κύκλου | ||
] ὡς ὕλη , ἐπειδὴ δύναται χωρίζεσθαι ἐφ ' οἷς τμήμασιν ἐπιγίνεται τὸ τοῦ κύκλου εἶδος . τὰ γοῦν τμήματα |
τούς τε περιττοὺς καὶ τοὺς ἀρτιάκις ἀρτίους καὶ ποιήσομεν στίχους περισσαρτίων καὶ εὑρίσκομεν τὸ ζητούμενον : γ , ε , | ||
παραδείγματος : εἰ δοκεῖ μέν , ἅμα τοὺς στίχους τῶν περισσαρτίων ἐκθώμεθα : εὑρήσεις τοίνυν ἐπὶ τῶν στίχων κοινωνίαν πρὸς |
γὰρ ἰσημερίας ἐαρινῆς ἐπὶ τροπὴν θερινὴν ἐν ἡμέραις παραγίνεται Ϟδʹ ςʹ , ἀπὸ δὲ θερινῆς τροπῆς ἐπὶ ἰσημερίαν μετοπωρινὴν ἡμέραις | ||
ἀνήλισκον δὲ ἡμιτάλαντον : οἱ δὲ τὸ ζευγίσιον τελοῦντες ἀπὸ ςʹ μέτρων διελέγοντο , ἀνήλισκον δὲ μνᾶς ιʹ : οἱ |
προηγήσεις προλαμβανομένων . βʹ . ἀπόδειξις τῶν τοῦ τοῦ Κρόνου προηγήσεων . γʹ . ἀπόδειξις τῶν τοῦ τοῦ Διὸς προηγήσεων | ||
Διὸς προηγήσεων . δʹ . ἀπόδειξις τῶν τοῦ τοῦ Ἄρεως προηγήσεων . εʹ . ἀπόδειξις τῶν τοῦ τῆς Ἀφροδίτης προηγήσεων |
Χαβηρὶς ἐμπόριον . . . . . . . . ρκη ∠ ʹ ιε γοʹ Σαβούρας ἐμπόριον . . . | ||
. . . . . . . . . . ρκη δʹ λβ γʹ Ὀστοβαλάσαρα . . . . . |
μοιρῶν ρϘα λθ , ἃς καὶ παραθήσομεν ἐν τοῖς αὐτοῖς σελιδίοις κατὰ τὸν τῶν ρπ ἀριθμόν . ἐπὶ δὲ τοῦ | ||
ΝΖΗ γίνεσθαι μοιρῶν ε λε . Παράκειται δὲ τοῖς εἰρημένοις σελιδίοις καὶ ζʹ σελίδιον , ἐπιγραφὴν ἔχον πλάτους . δύναται |
ἐμπόριον . . . . . . . ριγ δʹ ιζ γʹ : ἀπὸ δὲ ἀνατολῶν αὐτοῦ τοῦ ποταμοῦ Ἀγρινάγαρα | ||
ὡς α πρὸς ια ∠ ʹ οὕτως α λα πρὸς ιζ κϚ . ἡ ἄρα ΓΜ μοιρῶν ἐστιν ιζ κϚ |
Αἰγός , ὃ καὶ ὀνομάζομεν τὸν ἀστέρα αὐτόν , μοίρας κηʹ λεπτῶν μʹ , βόρειος , μεγέθους αʹ , κράσεως | ||
ἀντὶ ἰωνικοῦ , καὶ διιάμβου διὰ τὴν ἀδιάφορον . τὸ κηʹ ἀντισπαστικὸν ἡμιόλιον ἐξ ἀντισπάστου καὶ σπονδείου . τὸ κθʹ |
τοῦ γεγονότος τετραγώ - νου ἀπὸ τοῦ κζ , εἶτα ἀναβίβασον αὐτὴν καὶ εὑρήσεις οὐδένα ἄλλον ἢ τὸν ε ια | ||
καὶ ὅρα ταῦτα , πῶς κεῖνται ٣٠ ٦٦ ٢٧٦ ταῦτα ἀναβίβασον , καὶ γίνονται λα ι λϚ , ἅτινα λα |
. Παράληψις Κύπρου τε πάσης καὶ τῆς Πτολεμαίου δυνάμεως . κδʹ . Ὡς μετὰ τὴν νίκην ταύτην Ἀντιγόνου καὶ Δημητρίου | ||
Καρκίνου μοίρᾳ κδʹ , τὸ δὲ δῦνον ὡσαύτως Αἰγοκέρωτος μοίρᾳ κδʹ , καὶ τὸ μὲν ὑπέργειον μεσουράνημα Κριοῦ μοίρᾳ ιʹ |
τοῦ πιϲτῶϲ λελύϲθαι τὸ νόϲημα νδ Γνωρίϲματα τοῦ μὴ τελέωϲ λελύϲθαι τὸ νόϲημα νε Πρόγνωϲιϲ ἡμέραϲ ἐν ᾗ μέλλει τεθνήξεϲθαι | ||
ἀρξάμενοϲ ὁ ἄνθρωποϲ οὕτω ϲαφῶϲ , ὡϲ τὴν ϲυνέχειαν αὐτῷ λελύϲθαι τοῦ ϲώματοϲ καὶ μηκέτι ἰϲχύειν προιέναι ἐπ ' ἀγορᾶϲ |
δάκτυλοι ιβ , ὥσπερ καὶ ἐπ ' αὐτῶν τῶν ἐκλειπτικῶν κανονίων ὡς τοῦ ἑνὸς δακτύλου περιέχοντος τὸ ιβʹ τῆς διαμέτρου | ||
τῆς ἐμπτώσεως καὶ τῶν τῆς ἀνακαθάρσεως χωρὶς ἐξ ἑκατέρου τῶν κανονίων εἰσοίσομεν καὶ τὸν ἀπὸ τοῦ ἀπογείου κατὰ τὴν φαινομένην |
ἀλογία ἐν χρόνοις κειμένη εἰρημένον ἀφορισμὸν ἔχουσα . Τῶν δὲ χρόνων εἰσὶν οἱ μὲν εὔρυθμοι , οἱ δὲ ῥυθμοειδεῖς , | ||
ἐπελθεῖν ἐποίησε . ἔμπας ] ὅμως . * ἤγουν πρὸ χρόνων . ἤγουν τὸ ἐλθεῖν με κατὰ τῶν Ἀθηναίων . |
ἀπεῖχε δὲ καὶ κατὰ τὴν πρώτην θέσιν ἐπὶ τὰ αὐτὰ χρόνους λβ . ἐν τοῖς τῆς ὑπεροχῆς ἄρα χρόνοις ο | ||
ἀγαθοῖς , Θάλειαν δ ' ἀπὸ τοῦ θάλλειν ἐπὶ πολλοὺς χρόνους τοὺς διὰ τῶν ποιημάτων ἐγκωμιαζομένους , Μελπομένην δ ' |
Ἰάπυγος , ὄρτυξ ὄρτυγος : οὐχ ὑποπίπτουσι γὰρ ταῦτα τοῖς προλεχθεῖσι κανόσιν . Πρόσκειται ὡς ἐπὶ τὸ πλεῖστον διὰ τὸ | ||
πεδίοις ἡπλωμένον καὶ ἐκτεταμένον πρὸς ἀνατολήν . Ἐπὶ γὰρ τοῖς προλεχθεῖσι παρ ' ἐμοῦ εἰπόντος ἀκούσας ἐπίστασαι Ταῦρον τὸ ὄρος |
καὶ περὶ τὰς τέτταρας περιεχομένας λόγοις τοῖς ἐφεξῆς ἀπὸ τοῦ ἐπογδόου μέχρι τοῦ ἐπὶ ιαʹ . ποιοῦσι μὲν οὖν τὸ | ||
τούτων τῶν δεσμῶν ἐν ταῖς πρόσθεν διαστάσεσιν , τῷ τοῦ ἐπογδόου διαστήματι τὰ ἐπίτριτα πάντα συνεπληροῦτο , λείπων αὐτῶν ἑκάστου |
κζ πολλαπλασιαζέτω τὸν κζ : εἰκοσιεπτάκις κζ : καὶ γίνονται ψκθ . καὶ ἐπεὶ ὁ ιη οὐ μετρεῖ τὸν ψκθ | ||
μετρεῖται . τκδ τξδ τπδ υλβ υπϚ φιβ φοϚ χμη ψκθ ψξη ωξδ Ϡοβ ͵ακδ ͵αρνβ ͵ασϘϚ # ⌉ # |
ἐπέχουσι διάστημα , αἱ δὲ Ϙʹ τριῶν , αἱ δὲ ξʹ δύο , ὧν ὁ γʹ κείμενος μέσος πρὸς μὲν | ||
. νθʹ . Πῶϲ ἄν τιϲ ἰάϲαιτο κατιϲχνωθέντα μόρια . ξʹ . Διάγνωϲιϲ ἀρίϲτηϲ κράϲεωϲ . ξαʹ . Διάγνωϲιϲ τῶν |
τὰς ἐν τῷ ὑποκειμένῳ κλίματι τῶν αὐτῶν ἀναφοράς . καὶ συνανενεχθήσεται ἡ μὲν μέχρι τῆς πρώτης δεκαμοιρίας περιφέρεια τοῖς λοιποῖς | ||
ὥστε καὶ ἑκάτερον μὲν τῶν ἑκατέρωθεν τοῦ ἐαρινοῦ σημείου τεταρτημορίων συνανενεχθήσεται χρόνοις οα ιε , ἑκάτερον δὲ τῶν ἑκατέρωθεν τοῦ |
ρκ . Τῆς οὖν κατὰ τὴν τήρησιν παραλλάξεως διὰ τοῦ παραλλακτικοῦ ὀργάνου δοθείσης μοίρας α καὶ ἑξηκοστῶν ζ , τὸ | ||
ἀποστημάτων , ἐν ᾧ τὴν καθόλου πρῶτον παράλλαξιν διὰ τοῦ παραλλακτικοῦ ὀργάνου μοίρας α καὶ ἑξηκοστῶν ζ εὑρὼν καὶ ὑποθέμενος |
τοὺς μέσους δρόμους ὦσιν , ὅπου μείζονές εἰσιν αἱ τῶν παραυξήσεων ὑπεροχαί , τήν γε μέχρι τῶν τοσούτων ὡρῶν πάροδον | ||
. τοῦ τῆς διορθώσεως ἐνταῦθα κανονίου ἐστὶν ἐπιλογίσασθαι , τῶν παραυξήσεων κατὰ στίχον ἐν τούτοις περὶ τοὺς μέσους δρόμους τὸ |
. . . . . . . . . . ξδ ∠ ʹ μα . Ὑπὸ δὲ τὰ εἰρημένα ἔθνη | ||
ἀντιπερίστασιν κἀνταῦθα τὰς λβ ἐπὶ τὰς β , καὶ γίνονται ξδ : καὶ πάλιν τὰς ιϚ ἐπὶ τὰς δ . |
λβ καὶ τοῦτο δι ' ὅλου : ἐν δὲ περισσαῖς ἐκθέσεσιν ἶσον τὸ ἅπαξ ξδ τῷ δὶς λβ καὶ τοῦτο | ||
διὰ τετάρτης ἀπαντᾶν ἡμέρας , ὡς ἐν ταῖς αὐτῶν ἀνάλογον ἐκθέσεσιν εἰς τὰς τετάρτας πάντως οἱ κύβοι ἀποτελοῦνται χώρας : |
βαλανείοις καὶ αἰώραις καὶ γυμνασίαις ταῖς διὰ τῶν χειρῶν : ἀνυπερβάτως γὰρ σώζονται . τινὲς δὲ ἐπὶ αὐτῆς τῆς □ | ||
σοι φανήσεται ἢ τὸ τῆς μήνιγγος ἀποθέμενοι , σώζονται οὗτοι ἀνυπερβάτως . ἐὰν δὲ ἀπὸ τῆς ☍ ἐπὶ τὸ μεῖζον |
τ ] . . . . . . ! ! σπε ? [ [ ] ἀπὸ Μυτιλήνης ? [ [ | ||
οδ μη ἕως ρε ιβ καὶ ἀπὸ σνδ μη ἕως σπε ιβ Ὅταν οὖν προαιρώμεθα κατά τινα τῶν ἐπιζητουμένων ἐνιαυτῶν |
ὁ Γ πρὸς κύβον τὸν Δ . ἔστι δὲ ὁ σιϚ κύβος , πλευραὶ δὲ αὐτοῦ ὁ Ϛ καὶ ὁ | ||
Γ Ϙ καὶ ἓξ καὶ τὸ ἀπ ' αὐτῆς ἐννακισχίλια σιϚ , ἡ δὲ Δ λβ καὶ τὸ ἀπ ' |
: ἦμεν γὰρ ἐν τῷ μεσομφάλῳ τῆς Γερμανίας καὶ τοῖς ὅροις αὐτῶν . Ἅμα δὲ τῷ τούτους ῥίψαι ἐπὶ τὴν | ||
ταύτης παράδοσιν . ἔστιν οὖν ἡ μουσικὴ καλουμένη ἀναλογία ἐν ὅροις τέσσαρσι , δύο μὲν ἄκροις δύο δὲ μέσοις , |
ἀριθμῶν τῷ τε τῶν ξη δεκάτων καὶ τῷ τῶν ρλβ δεκάτων προστιθέμενος ὁ τετράγωνος , ἤτοι τὰ μθ ρα , | ||
βου . Πῶς ἑκατέρῳ τῶν ἀριθμῶν τῷ τε τῶν ξη δεκάτων καὶ τῷ τῶν ρλβ δεκάτων προστιθέμενος ὁ τετράγωνος , |
. τούτων πάλιν συντιθεμένων γίνονται πόδες δισυλλάβων μὲν καὶ τρισυλλάβων πεντασύλλαβοι λβ , τῶν δὲ τρισυλλάβων ἀλλήλοις παρατιθεμένων ἑξασύλλαβοι ξδ | ||
τάξει αὐτῶν κεῖνται , ἀλλὰ προστιθεμένης καὶ ἑτέρας συλλαβῆς γίνονται πεντασύλλαβοι καὶ ἀποτελοῦσιν ἐπιτρίτους : ὁμοίως καὶ οἱ λοιποί . |
πολλαπλασιαζόμενοι ἑκάτερος τούτων καὶ εἰς ἀλλήλους παραβαλλόμενοι καὶ ἕτερος θάτερον πολλαπλασιάζων ποιοῦσι τὸ ὅλον ἐμβαδὸν τοῦ τετραγώνου ἤγουν τοῦ ΑΔΕΒ | ||
καὶ ἐφεξῆς οὕτω παρ ' ἕνα ποτὲ ἄρτιόν ποτε περιττὸν πολλαπλασιάζων , ποιήσεις τοὺς διπλασίους . τριπλάσιοι δὲ πάντες εἰσίν |
δὲ προστιθέμενος , κύβος ἀπὸ τοῦ η , τουτέστι ΚΥ φιβ # ʂ ε , καὶ προστεθεὶς ʂ ε , | ||
ε : θέλομεν οὖν ταῦτα κυβικὴν εἶναι πλ . ΚΥ φιβ . ʂ ἄρα η ἴσοι εἰσὶ ΚΥ χλζ # |
κζ ιε τὸ πλεῖστον ἑῷος ἀφέξει τοῦ ἀκριβοῦς ἡλίου μοίρας κβ κγ . πάλιν ὑποκείσθω τὸ μέσον μῆκος ἀπέχων ἐπὶ | ||
γίνονται ξϚ : καὶ μέριζε καθολικῶς : ὧν τρίτον , κβ . ἔστω ἡ διάμετρος τοσοῦτον . Ἔστω δωδεκάγωνον καὶ |
χυλοῖσι καὶ ζωμοῖσιν ὑγιὴς ἐγένετο . Ξυνέβη δὲ τελευτῶντος τοῦ μετοπωρινοῦ καιροῦ . Ὁ παρὰ Ἁρπαλίδῃ ἀλείπτης , ἀκρατέστερος σκελέων | ||
ἤδη ταῦτα γίγνηται πάνταἡ τοῦ καύματος ἐλάττωσις , ἡ τοῦ μετοπωρινοῦ ὄμβρου φορά , ἡ τῶν σωμάτων τῶν ἀνθρωπίνων ἀνάψυξις |
ἥλιος εἰς τὰ ἐναντία τῶν ζῳδίων κινούμενος πέντε ζῳδίων περιφέρειαν κεκινήσθω καὶ ἔστω ἐπὶ τοῦ πʹ τόπου : ἀπὸ μὲν | ||
, τὸ δὲ Δ τὸ κέντρον τοῦ ζῳδιακοῦ , καὶ κεκινήσθω περὶ μὲν τὸ Γ σημεῖον τὸ Ζ κέντρον τοῦ |
. ἔτι προμήκης ἐστὶν ὁ κατὰ πάσας τὰς σχέσεις τῶν πολλαπλασιασμῶν πλέον ἢ μονάδι μείζονα τὴν ἑτέραν ἔχων πλευράν : | ||
σημεῖον Ψ ἐλλιπὲς κάτω νεῦον , # . Καὶ τῶν πολλαπλασιασμῶν σοι σαφηνισθέντων , φανεροί εἰσιν οἱ μερισμοὶ τῶν προκειμένων |
ἐπιδείκνυε τὸν ζυγὸν ἢ τὸν μέδιμνον . ἢ μέχρι τίνος μετρήσεις τὴν σποδόν ; οὐ ταῦτά σε ἀποδεικνύειν δεῖ , | ||
, ἑξῆς δὲ στροφὴν μονόστροφον κώλων κβʹ , ἃ καὶ μετρήσεις τοῖς προτέροις ἑπόμενος . ἐν οἷς εἰσι καὶ ἰαμβικοὶ |
ἡμέρας προσγενέσθαι ἐς τὰς τεσσαράκοντα , ὁτὲ δὲ ἀπὸ τοῦ ἐννάτου : ὧδε γὰρ ἀνάγκη γίνεσθαι , ὅκως ἂν τύχῃ | ||
τοῦ Σκορπίου : καὶ οὕτως ποιῶν εὑρήσεις τὸν κύριον τοῦ ἐννάτου ἐννάτου τὸν Ἑρμῆν τὸν κύριον τῶν Διδύμων . εἰ |
καὶ τοῦ μέλλοντος πρόνοιαν ποιουμένους , ἵνα μὴ τοῖς ὁμοίοις περιπίπτωμεν ἀεί . καὶ πάλιν : ἐμίχθη τις ταριχευομένῳ σώματι | ||
κατὰ τὰς διαβολὰς πιθανότητος . ἵν ' οὖν ὡς ἥκιστα περιπίπτωμεν αὐταῖς , ὑποδεῖξαι βούλομαι τῷ λόγῳ καθάπερ ἐπί τινος |
ἐν τῷ γʹ καὶ δʹ σελιδίῳ κατὰ τὸ τῶν προσνεύσεων κανόνιον . ἐὰν μὲν οὖν βορειότερον ᾖ τὸ κέντρον τῆς | ||
τῶν τῆς διαμέτρου δωδεκάτων εἰσενεχθέντων εἰς τὸ ἐπὶ πᾶσι βραχὺ κανόνιον καὶ τὰ ιβʹ τῶν ὅλων ἐμβαδῶν εὑρήσομεν ἐκ τῶν |
. ὁ ἕκτος καὶ ἕβδομος τροχαϊκοὶ τρίμετροι ἀκατάληκτοι . τὸ ὄγδοον ὅμοιον τῷ τετάρτῳ . εἰσὶ δὲ καὶ ταῦτα τὰ | ||
δίς , οὕτως ἡμισάκις ἥμισυ ἡμισάκις , ὀκτώ τε καὶ ὄγδοον : καὶ ὡς δὶς τρία ἕξ , οὕτως ἡμισάκις |
Μασσαλιώτης παρεῖναι . Φησὶ γοῦν ἐν τοῖς Περὶ τοῦ Ὠκεανοῦ πεπραγματευμένοις αὐτῷ , ὅτι ἐδείκνυον ἡμῖν οἱ βάρβαροι , ὅπου | ||
ἀπαραλείπτως ἔνεστί σοι καὶ ῥᾳδίως ἐντυγχάνοντι τοῖς ὑπὸ τοῦ Πτολεμαίου πεπραγματευμένοις περὶ τούτων συντάγμασιν ἐπιγινώσκειν . Ὁ καλούμενος ἀναλυόμενος , |
δʹ , τὰ γενόμενα # Ϛ λε προσθήσομεν τοῖς # μϚ ιζ τοῦ τρίτου σελιδίου . καὶ τὰ γενόμενα # | ||
. . . . . . . . . . μϚ ∠ ʹδʹ κθ ὑφ ' ἣν οἱ ὁμώνυμοι βωμοὶ |
πέντε τὸν ἀριθμὸν , ὧν ἡ μὲν δυτικωτέρα καλεῖται Αἰβοῦδα ιεʹ ξβʹ ἡ δ ' ἐφεξῆς αὐτῆς πρὸς ἀνατολὰς ὁμοίως | ||
ἀπολῶ σε κακῶς ” μονόμετρον ἐκ δύο ἀναπαίστων : τὸ ιεʹ “ εἰπέ , τί ποιῶν ” μονόμετρον ἐξ ἀναπαίστου |
νθ . ταῦτα μετὰ τῶν # μθ ιη τοῦ τρίτου σελιδίου , γίνεται # νϚ ιζ . πάλιν τὰ τοῦ | ||
τοῦ ηʹ σελιδίου ἑξηκοστῶν μγ κδ ἐπὶ τὰ τοῦ ἕκτου σελιδίου γενόμενα # κγ α , ποιεῖ # ιϚ λθ |
τὸ φαινόμενον τῆς σελήνης ὥστε ἐφάπτεσθαι . . . τοῦ ἡλιακοῦ κατὰ τὸ Ζ σημεῖον , ἡ ΑΕ περιφέρεια ἣν | ||
ἐστὶν ὁ ΕΖΗΘ κύκλος τξ , τοιούτων ἐπὶ μὲν τοῦ ἡλιακοῦ ἀποστήματος ἔσται # α κε , ἐπὶ δὲ τῶν |
δον μέρος τῆς ἀποκαταστάσεως , ἐπὶ τὰς ἡμέρας Ϛ νγʹ κʹʹ , ἀποτελοῦνται μοῖραι β δʹ : ταῦτα προσέθηκα τῇ | ||
# λαʹ κʹʹ , κατὰ δὲ τὸ ἐλάχιστον # λεʹ κʹʹ , ἡ δὲ διάμετρος τοῦ κύκλου τῆς σκιᾶς κατὰ |
τίς ἐστι παρὰ μουσικοῖς : περιγράφεται δέ τινα πρὸς τούτων διαστήματα , καθ ' ἃ καὶ ἡ φωνὴ κινεῖται ἤτοι | ||
κατὰ μέλος ὃ ἡ φωνὴ μελῳδοῦσα μὴ δύναται διαιρεῖν εἰς διαστήματα . ὑποκείσθω δὲ καὶ τῶν συμφώνων ἕκαστον μὴ διαιρεῖσθαι |
ἄλλα πλείω μικρὰ ἔθνη κατέχοντα τὴν Ἰταλίαν ἐν τοῖς πρόσθεν χρόνοις λῃ - στρικὰ καὶ ἄπορα : νυνὶ δὲ τὰ | ||
Προκλῆς . Αὗται μὲν δώδεκα Ἰωνικαὶ πόλεις , προσελήφθη δὲ χρόνοις ὕστερον καὶ Σμύρνα εἰς τὸ Ἰωνικὸν ἐναγαγόντων Ἐφεσίων : |
τὰς γωνίας ἐξεθέμεθα , καὶ διεγράψαμεν κατὰ τὸ εὐθεώρητον ἀντὶ κανονίου κύκλους η περὶ τὸ αὐτὸ κέντρον ἐν τῷ τοῦ | ||
προχειρότερον τὸ ὡριαῖον μέγεθος λαμβανομένης ἐκ τοῦ προκειμένου τῶν ἀναφορῶν κανονίου τῆς ὑπεροχῆς τῶν παρακειμένων ἐπισυναγωγῶν , ἡμέρας μὲν τῇ |
, ἡ ΕΔ γ νβ κβ , ἡ ΕΖ α νϚ ια , τὸ ἀπὸ τῆς ΕΖ γ μδ νη | ||
. νϚ μα ∠ ʹ Αἰσήπου ποταμοῦ ἐκβολαί . . νϚ μα γʹ Πάριον . . . . . . |