| τροπῇ τοῦ δ εἰς ζ καὶ τοῦ ε εἰς η ἐκβληθέντος τοῦ ι , οἱονεὶ τὸ μὴ ἔχον διέχειαν ἢ | ||
| σὺ δὲ πετάσῃς ἵνα πλήξῃς ἐκεῖνον , εὐθὺς τεθνήξῃ , ἐκβληθέντος τοῦ κέντρου : ζωὴ γὰρ ἐν σοὶ ἐνυπάρχει τὸ |
| τρίγωνον ὀρθογώνιον ὄν : ὥστε καὶ ἡ τοῦ κώνου κορυφὴ ὀρθογώνιός ἐστιν . εἰ δὲ μείζων ἐστὶν ἡ ΒΓ τῆς | ||
| κύκλος , ἀλλὰ τεταρτημορίου σφαίρας ἐστὶν ἐπιφάνεια , εἴπερ γε ὀρθογώνιός ἐστιν ὁ τῆς ὄψεως κῶνος ὡς ἐδείξαμεν . ἐπιβάλλομεν |
| , οὕτω καὶ νῦν εἰς τύχην ἀνάγει τὸν λόγον . ρπαʹ Τέχνῃ λαβεῖν Ἵνα τεχνικῶς τις διέλῃ πρῶτον εἰς δύο | ||
| ὁ λόγος ἐστὶ τῆς ΗΖ πρὸς τὴν ΖΘ ὁ τῶν ρπαʹ ∠ ʹʹγʹʹ πρὸς τὰ μϚʹ ∠ ʹʹ καὶ κʹʹ |
| λίθος ἐστίν , ἵνα μὴ ἐπὶ ἀναιρέσεως τὸν καταφατικὸν προσδιορισμὸν παραλαμβάνωμεν . Τὰς ἀντιθέσεις ἁπάσας τῶν προσδιωρισμένων προτάσεων ἐν τούτοις | ||
| δὲ ἕνεκεν , μήτε τὸν Ἑρμῆν ? ? ? ? παραλαμβάνωμεν ? εἰς διδασκαλίαν , ὥς φασίν τινες , μήτε |
| Ὑδροχόον : ἅπερ οὐ φαίνεται . δῆλον οὖν ὅτι ὁ εζη κύκλος ἤτοι ἐπὶ τὰ αὐτὰ τῷ παντί , βραδύτερον | ||
| τὴν ξμ κίνησιν ἀποκαθεστακέτω τὸν χψ ἐπὶ τὸν ἐπίκυκλον τὸν εζη , καὶ αὐτὸς ὁ ἥλιος , ἐνεχθεὶς ὁμοίαν λοιπὴν |
| εἰ μὴ κικίννους ἀξίους λίτραιν δυοῖν . σὺν δὲ τῇ λίτρᾳ καὶ ἄλλα ὠνόμασε νομισμάτων ὀνόματα Ἐπίχαρμος ἐν Ἁρπαγαῖς ὥσπερ | ||
| γὰρ ια καὶ ιγ # τοῦ ἐλαίου μίξειϲ τότε τῇ λίτρᾳ τοῦ κηροῦ . Ἐν ταῖϲ ἑψήϲεϲι τῶν φαρμάκων ἡ |
| ἐκ πλειόνων μέν εἰσιν ἁπλῶν λόγων ἡνωμένων δὲ ὑπὸ τοῦ συναπτικοῦ προσαγορευομένου συνδέσμου , οἷον εἰ ἡμέρα ἐστίν , ἥλιος | ||
| ἐν οἷς συμπλέκει λόγους , ἔχων δὲ καὶ τὴν τοῦ συναπτικοῦ , ἐν οἷς ἀκολουθίας ἐστὶ παραστατικός , οὐκ ἀπὸ |
| ἦν ἐν τῇ γʹ ἀκρωνύκτῳ , καὶ ἐπεζεύχθωσαν αἵ τε ΘΑΕ καὶ ΘΒΖ καὶ ΘΗΓ καὶ ΝΚΑ καὶ ΝΛΒ καὶ | ||
| περιφερείας τῆς ΓΒ ἐστι διπλῆ : ἴση ἄρα ἡ ὑπὸ ΘΑΕ γωνία τῇ ὑπὸ ΑΘΕ : ὥστε καὶ ἡ ΘΕ |
| τε καὶ ἀσκήσει καὶ ἐκ τάξεως ἐς τάξιν ἄλλην εὐπετῶς μετακινήσει , τοῦτο ἐπασκητέον . τοσόνδε μέντοι συμβουλεύσαιμ ' ἂν | ||
| δόξαν παρέξουσιν ἐκείνοις , καὶ αὐτὸ τὸ στράτευμα ἐν τῇ μετακινήσει ἀσθενέστερον ἅμα καὶ ἀτακτότερον καθιστᾶσιν . ἀλλὰ τοὺς ψιλοὺς |
| πλευρῶν , καὶ τὸ ἐμβαδὸν εἰς ἴσα διαιρεῖται κατὰ τὴν διαγώνιον διὰ τὴν κοινὴν ἰδιότητα τῶν παραλληλογράμμων . ἐπὶ δὲ | ||
| βάσιν τέμῃ ἐκ τῆς κορυφῆς δίχα κατὰ τὴν τοῦ τετραγώνου διαγώνιον τὴν ἀπὸ τῆς ὀρθῆς , ἔσονται δύο στερεαὶ πυραμίδες |
| ἀκατάληκτα , τὰ δ ' ἄλλα ἑφθημιμερῆ , πλὴν τοῦ παρατελεύτου μονομέτρου ἀκαταλήκτου ὄντος . ἐπὶ τῷ τέλει κορωνίς . | ||
| ἀναλογικώτερον δὲ τὸ βαρύνειν . τὰ γὰρ εἰς χος δισύλλαβα παρατελεύτου ὄντος τοῦ οβαρυτονεῖται : οἷον † λέχος † ὄχος |
| ἐργάζονται . ὁ μισθός : ὁ δοθησόμενος ὑμῖν . ἁ τομά : φησὶ δεῖν ἀπεστραμμένην τοῦ ἀνέμου κεῖσθαι ὑπὲρ τοῦ | ||
| : οὕτω γὰρ ἂν λιπαρὸς διαμένοι ὁ καρπός . ἁ τομά : παρατετηρημένως λέγει τοὺς τὰς ἀμάλας θημονοθετοῦντας οὕτω τιθέναι |
| ὀνόμασιν ὀνομάζονται : ἰδοὺ γὰρ ἡ τυφλότης καὶ κωφότης , στερητικὰ ὄντα , στερητικοῖς ὀνόμασιν οὐκ ὀνομάζονται , ὡς τὸ | ||
| νο , καὶ νω , καὶ νε , καὶ νη στερητικὰ ἐπιῤῥήματα , καθ ' ἑαυτὰ εἶναι μὴ δυνάμενα , |
| τοῦ ταρ . . ἐπεὶ δὲ ἐνεγράφην ἐγὼ καὶ ὁ νόμοϲ ἀπέδωκε τὴν κομιδὴν τῶν καταλειφθέντων τῇ μητρί , ὃϲ | ||
| ! πυμη ! ? [ τί ἂν προϲαξο ? [ νόμοϲ [ ] γὰρ ου ! [ παρὰ τοῖϲ παλαι |
| ἐναρμοσθῇ , μεταξὺ πεσεῖται τῶν Β καὶ Ε σημείων . ἐνηρμόσθω ἡ ΑΖ ἴση τῇ ἐκ τοῦ κέντρου , καὶ | ||
| εὐθειῶν ἐναρμόσαι τῷ ΑΚΓΗ κύκλῳ εὐθεῖαν ἴσην τῇ ΔΖ . ἐνηρμόσθω ἡ ΑΛΜ , καὶ ἐπεζεύχθω ἡ ΑΗ : ἴση |
| τῆς Α , ἴσον παρὰ τὴν ΒΓ παραβεβλήσθω ἐλλεῖπον εἴδει τετραγώ - νῳ , καὶ ἔστω τὸ ὑπὸ τῶν ΒΔ | ||
| τετραγώνισον τὸν κζ , εἶτα λαβὲ τὴν πλευρὰν τοῦ γεγονότος τετραγώ - νου ἀπὸ τοῦ κζ , εἶτα ἀναβίβασον αὐτὴν |
| καὶ ἡ μὲν ΛΕ γίνεται δ κβ , ἡ δὲ ΔΕΛ ὅλη τῶν αὐτῶν κβ ἔγγιστα , τοσαύτας ἀποστῆναι δεῖ | ||
| τξ , τοιούτων σμ , εἴη ἂν καὶ ἡ ὑπὸ ΔΕΛ τῶν λοιπῶν εἰς τὰς δύο ὀρθὰς ρκ . ὥστε |
| , τετράγωνον ὄντα , ποιήσει τὸν ξδ κύβον . . δυναμοδύναμις . Οἷον ὁ ιϚ : τετράκις γὰρ τὰ δ | ||
| πολλαπλασιασθῇ , ποιήσει τὸν ιϚ , καὶ λέγεται ὁ ιϚ δυναμοδύναμις ἐπειδὴ ἐκ τετραγώνου ἐγένετο τοῦ δ ἐφ ' ἑαυτὸν |
| , ὡς ἐν τοῖς Ἀποδεικτικοῖς αὐτὸς ἡμᾶς ἐδίδαξε . καὶ τετραγωνίσαι παραλληλόγραμμον ὀρθογώνιον οὐδὲν ἦν ἄλλο ἢ τῆς μέσης εὕρεσις | ||
| ὅρος τοῦτο , ἀποδείξις δὲ ὁ αὐτὸς οὕτως : ὁ τετραγωνίσαι βουλόμενος μέσην ἀνάλογον ζητεῖ εὑρεῖν : ἡ μέση εὑρεθεῖσα |
| ἐν δὲ τῇ γῇ τὸν ΗΘΚ , ἐν δὲ τῷ σκιάσματι τὴν ΝΞ περιφέρειαν , ἐν δὲ τῷ κώνῳ εὐθείας | ||
| Ϙ . Ἡ ὑποτείνουσα εὐθεῖα ὑπὸ τὴν ἀπολαμβανομένην ἐν τῷ σκιάσματι τῆς γῆς περιφέρειαν τοῦ κύκλου , καθ ' οὗ |
| τὰ ἀφαιρούμενα . Ἐὰν δύο μεγεθῶν [ ἐκκειμένων ] ἀνίσων ἀνθυφαιρουμένου ἀεὶ τοῦ ἐλάσσονος ἀπὸ τοῦ μείζονος τὸ καταλειπόμενον μηδέποτε | ||
| ὄντων ἀνίσων τῶν ΑΒ , ΓΔ καὶ ἐλάσσονος τοῦ ΑΒ ἀνθυφαιρουμένου ἀεὶ τοῦ ἐλάσσονος ἀπὸ τοῦ μείζονος τὸ περιλειπόμενον μηδέποτε |
| τὴν ΑΖ , τῇ δὲ Δ τὴν ΖΗ , καὶ ἐπιζεύξας τὴν ΒΗ ταύτῃ παράλληλον ἤγαγον τὴν ΖΘ . ἐπεὶ | ||
| . εἰ δ ' ἀρεταί : ὅτι ἀρεταὶ κατάκειται εἴρηκεν ἐπιζεύξας πληθυντικῷ ἑνικὸν ῥῆμα τὸ κατάκειται . καὶ ὅτι ὀργὰν |
| δοθέντα κύβον πυραμίδα ἐγγράψαι . Ἔστω ὁ δοθεὶς κύβος ὁ ΑΒΓΔΕΖΗΘ , εἰς ὃν δεῖ πυραμίδα ἐγγράψαι . ἐπεζεύχθωσαν αἱ | ||
| δοθέντα κύβον ὀκτάεδρον ἐγγράψαι . Ἔστω ὁ δοθεὶς κύβος ὁ ΑΒΓΔΕΖΗΘ , καὶ εἰλήφθω τὰ κέντρα τῶν ἐφεστώτων τετραγώνων τὰ |
| λεπτὰ μὲν πρῶτα ξ , δεύτερα δὲ κατ ' ἐπιδιαίρεσιν ͵γχ : εἶτα μείζονος ἀκριβείας δεηθέντες διὰ τὸ ἐν τοῖς | ||
| παραδείγματος ἀστείου καὶ εἰσαγωγῆς ἕνεκεν ἕως δευτέρων λεπτῶν τουτέστιν ἕως ͵γχ διαιρεῖσθαι τὴν μονάδα ἤτοι τὸν πόδα : τοῦτο γὰρ |
| εἰς τὸ αἰσθητὸν καὶ ἀλλότριον , ὡς δὲ πᾶσα κλοπὴ λεληθυῖα τοῦ ἀλλοτρίου μετάθεσίς ἐστιν ὄντως καὶ ταῖς ἐν τῷ | ||
| ῥωγμὴ καὶ τὴν αἴϲθηϲιν διαλανθάνουϲα , δι ' ὃ πολλάκιϲ λεληθυῖα διὰ τὸ μὴ ἀκριβῆ γενέϲθαι τὴν ϲημείωϲιν θανάτου γέγονεν |
| , καὶ ἐνηνέχθαι δόξει τὴν σγ τοῦ ζῳδιακοῦ ἐλάττονα ἢ τεταρτημοριαίαν καὶ προσιέναι τῷ γ βραδέως . πάλιν δὴ τὸ | ||
| ἀπερχόμενος τοῦ α σημείου . πάλιν τὸ ο κέντρον μεταβεβηκέτω τεταρτημοριαίαν τὴν ον , καὶ ὁ ἥλιος ὁμοίαν τοῦ ἐπικύκλου |
| λάβῃ , μήπω παιδίων ὄντων , ἐὰν μέν τι ἐκεῖνος τάξῃ , ταῦτα κύρια ἔστω : ἐὰν δὲ βούληται Θεόφραστος | ||
| ἀξίαν ἀμοιβὴν δοκιμαστοῦ , ἣν ἂν ὁ ἔμπειρος τῶν πραγμάτων τάξῃ , ὅμοιον εἰπεῖν ἀμείβεσθαι πυροὺς πρὸς τὰς σὺν ἡμιόνῳ |
| βάξω , ἀφαιρέσει τοῦ ω βάξ , ὡς ἄλκω ἄλξω ἄλξ , καὶ ἐν διπλασιασμῷ βάβαξ . πολλὰ δὲ παρὰ | ||
| , χρίπτω χρίμπτω , πίπλημι πίμπλημι . . . . ἄλξ : ἡ δύναμις : ἀπὸ τῶν εἰς κη θηλυκῶν |
| ποτ ' ἄλλαλα , ὃν τὰ τετράγωνα τὰ ἀπὸ τᾶν ἐπιψαυουσᾶν : ὁμόλογον δὲ ἐσσεῖται τὸ περιεχόμενον ὑπὸ τῶν τᾶς | ||
| ποτ ' ἄλλαλα , ὃν τὰ τετράγωνα τὰ ἀπὸ τᾶν ἐπιψαυουσᾶν : ὁμόλογον δὲ ἐσσεῖται τὸ περιεχόμενον ὑπὸ τῶν τᾶς |
| μεταξὺ τῶν Ρ Θ , πάντες δὲ οἱ μείζους τοῦ πενταπλασίου ποιοῦσι τὸ σημεῖον τῆς τομῆς μεταξὺ τῶν Ρ Τ | ||
| τοῦ εἰκοσαέδρου καθέτου τὸ δυνάμει δωδεκαπλάσιον μεῖζόν ἐστιν τοῦ δυνάμει πενταπλασίου τῆς πλευρᾶς τοῦ εἰκοσαέδρου . Ἐκκείσθω κύκλος ὁ ΑΒΓ |
| : καὶ τῆς ὑπὸ ΓΗΑ ἄρα μείζων ἐστὶν ἡ ὑπὸ ΑΔΘ γωνία : ὥστε μεῖζόν ἐστιν τὸ ὑπὸ ΔΒΓ τοῦ | ||
| κοιναὶ τομαὶ ἡ ΑΒ καὶ ἡ ΗΖ , τοῦ δὲ ΑΔΘ κύκλου καὶ τοῦ ΑΗΒΖ κοινὴ τομὴ ἡ ΑΘ , |
| τὸ τῶν ἰχθύων : ψυχροῦ δὲ τοῦ λοιποῦ καὶ ἤδη κατωφεροῦς ὑπάρχοντος τὴν τῶν ἑρπετῶν αἱ ψυχαὶ φύσιν ἐκαινούργουν . | ||
| μετὰ πλοίου πορεύεσθαι . τρήρωνος τῆς δειλῆς καὶ ταχείας καὶ κατωφεροῦς : οἰκεῖον γὰρ Ἀφροδίτης τὸ ζῷον . ἢ ἐπεὶ |
| ἕξει ὅ τε Κριὸς καὶ ἡ Παρθένος . Ἵνα δὲ συντομωτέραν τὴν πῆξιν δηλώσωμεν πρὸς τό τινας καὶ ὅλον τὸ | ||
| τὴν ὑποδειχθησομένην ὁδόν . Ἐδοκιμάσθη οὖν ἕκαστος τούτων τῶν ἀριθμῶν συντομωτέραν ἐπωνυμίαν κτησάμενος στοιχεῖον τῆς ἀριθμητικῆς θεωρίας εἶναι : καλεῖται |
| . [ ] του ? δουλ [ ? [ ] οτου [ . . . . . . ] ντο | ||
| ] ος ἀπὸ [ ] εται ? καὶ [ ] οτου ? λ ! ! ! ! [ ] ἡ |
| : τὰ γὰρ σύμφωνα οὔτε δασεῖαν ἐπιδέχονται οὔτε ψιλήν , ὑπεσταλμένου τοῦ ρ , τοῦτο γὰρ πέφυκε καὶ δασύνεσθαι , | ||
| καὶ ἡ φυγάς , ὁ Ἀρκάς καὶ ἡ Ἀρκάς , ὑπεσταλμένου τοῦ ἀνδριάς ἀνδριάντος καὶ ἱμάς ἱμάντος , ἅτινα καὶ |
| τῷ συμπεράσματι , καὶ διὰ παραδείγματος δείκνυσι τὴν ἐν ἡμικυκλίῳ ἐγγεγραμμένην γωνίαν παραλαμβάνων . τίς μὲν οὖν ἡ ἐν ἡμικυκλίῳ | ||
| εἰσεκομίσθη γράμματα τρόπῳ τοιῷδε . Ἄνθρωπος ἐπέμφθη ἐπιστολὴν ἔχων φύλλοις ἐγγεγραμμένην , τὰ δὲ φύλλα ἐφ ' ἕλκει καταδεδεμένα ἦν |
| αἰσθητὴ οὖσα ἡ καθ ' ἕκαστα ἔκλειψις ἡ αὐτὴ καὶ ἐπιστητή ἐστιν , ἀλλ ' ὅτι ἡ μὲν αἴσθησις τοῦ | ||
| ' ἐπιστήμην αὐτῆς ἔχομεν : δοξαστὴ γάρ ἐστι καὶ οὐκ ἐπιστητή , καὶ ὡς ὁ Πλάτων φησί , νόθῳ λογισμῷ |
| , πρὸς τὴν Ὁμηρικὴν ποίησιν , ὥς φασι , Φειδίου παραβαλλομένου , τοῦ κινήσαντος ὀλίγῳ νεύματι τῶν ὀφρύων τὸν ξύμπαντα | ||
| α μγ νε . παρὰ τὴν πλευρὰν γοῦν τοῦ γ παραβαλλομένου τοῦ ἀπὸ τῆς Α πλάτος ποιεῖ τὴν ΓΔ τὸν |
| νοήσωμεν μεσημβρινὸν κύκλον τὸν ΑΒΓΔ καὶ ζῳδιακοῦ μὲν ἡμικύκλιον τὸ ΑΕΖΓ , ὁρίζοντος δὲ τὸ ΒΕΔ περὶ πόλον τὸ Η | ||
| διαστήματι δὲ ὁποτερῳοῦν τῶν ΒΑ , ΒΓ γεγράφθω κύκλος ὁ ΑΕΖΓ , καὶ ἐκβεβλήσθωσαν αἱ ΑΒΕ , ΑΔΖ , ΑΗΘ |
| . παύονται δὲ τῶν καθάρϲεων αἱ μὲν περὶ τὸ πεντηκοϲτὸν ἔτοϲ , ϲπάνιαι δὲ μέχρι τῶν ἑξήκοντα , ἐνίαιϲ δὲ | ||
| ἡ παροῦϲα ὥρα τοῦ ἔτουϲ , ποταπὸν δὲ τὸ ϲύμπαν ἔτοϲ : ἐντεῦθεν γὰρ τὰϲ διαίταϲ εὑρήϲειϲ ποιεῖϲθαι κάλλιϲτα , |
| μᾶλλον καὶ ἧττον : οἷον τὸ τρίγωνον καὶ τὸ τετράγωνον ἀπλατῆ εἰσι , διὰ τοῦτο οὐκ ἐπιδέχονται τὸ μᾶλλον καὶ | ||
| ὀφθαλμοῦ εὐθεῖά ἐστι καὶ αὕτη ἑξάκι καταμετρεῖ τὸν μέγιστον καὶ ἀπλατῆ κύκλον , ἀλλ ' οὐχὶ τὸν πλάτος ἔχοντα : |
| λοιπὰ ὁμοίως ἀναγράφει : τὴν δὲ κεφαλὴν τοῦ Ὀφιούχου γράφει ἀνατέλλουσαν καὶ τὴν ἀριστερὰν μόνον χεῖρα : . . . | ||
| τοῦ Καρκίνου , ὁ Ἄρατος θεωρῶν τὴν κεφαλὴν τοῦ Λέοντος ἀνατέλλουσαν καὶ ὑπολαμβάνων τὸ κατὰ τὸν Λέοντα δωδεκατημόριον ἀναφέρεσθαι , |
| ἐν τῷ ε λόγῳ : α Ὅτι χρὴ τὸν ἰατρὸν ἐπιϲτήμονα τῶν τῆϲ φύϲεωϲ ἔργων εἶναι καὶ τί ὤφελεν ἐρωτᾶν | ||
| ὥραν ἐν ᾗ μέλλει τεθνήξεϲθαι ὁ ἄρρωϲτοϲ δυνατὸν προγνῶναι τὸν ἐπιϲτήμονα . τεττάρων δὲ ὄντων καὶ τοῦ μερικοῦ παροξυϲμοῦ καιρῶν |
| καὶ παράλληλοί εἰσιν διὰ τὸ λγʹ τοῦ αʹ . τὸ ΚΒΟΣ ἄρα τετράπλευρον . , . ] τετράπλευρόν ἐστιν , | ||
| κύκλος . Ἤχθω ἀπὸ τοῦ Α σημείου ἐπὶ τὸ τοῦ ΚΒΟΣ τετραπλεύρου ἐπίπεδον κάθετος ἡ ΑΨ καὶ συμβαλλέτω τῷ ἐπιπέδῳ |
| τοῦ γεγονότος τετραγώ - νου ἀπὸ τοῦ κζ , εἶτα ἀναβίβασον αὐτὴν καὶ εὑρήσεις οὐδένα ἄλλον ἢ τὸν ε ια | ||
| καὶ ὅρα ταῦτα , πῶς κεῖνται ٣٠ ٦٦ ٢٧٦ ταῦτα ἀναβίβασον , καὶ γίνονται λα ι λϚ , ἅτινα λα |
| τὴν ΖΛ . δύο δὴ τρίγωνά ἐστι τὰ ΒΑΕ , ΗΖΛ μίαν γωνίαν μιᾷ γωνίᾳ ἴσην ἔχοντα τὴν ὑπὸ ΒΑΕ | ||
| πάλιν ἀποκατασταθῇ ὅθεν ἤρξατο φέρεσθαι , τὰ μὲν ΚΓΔ , ΗΖΛ ἡμικύκλια ἐνεχθήσεται κατὰ τῶν σφαιρῶν , τὸ δὲ ΑΖ |
| μὲν πρόσωπον πάντῃ ἐκλείπειν ἀδύνατον : τοῦ γὰρ δράσαντος μὴ ὑπόντος κατὰ τίνος ἐξοίσει τὴν ψῆφον ὁ δικαστής ; ἀλλ | ||
| γυναῖκες , οὐκ ἄλλως λέγω : ὅταν δ ' , ὑπόντος τοῦδ ' , ἁμαρτάνηι πόσις τἄνδον παρώσας λέκτρα , |
| . βελόνην οὖν λαβόντεϲ ἰϲχνοτάτην διείρομεν διὰ τοῦ ὠτὸϲ αὐτῆϲ τριχὸϲ γυναικείαϲ ἢ ἁπλουϲτάτου κλωνὸϲ βύϲϲου τὰ δύο ὁμοῦ πέρατα | ||
| ! ! ] οὐδ ] ? ' ἂν ? ? τριχὸϲ πριαίμην . ] ν ] ! οϲ τὰϲ ? |
| οὐδὲν κωλύει ἐπιστητὸν εἶναι , οἷον καὶ ὁ τοῦ κύκλου τετραγωνισμὸς εἴ γ ' ἔστιν ἐπιστητόν , ἐπιστήμη μὲν αὐτοῦ | ||
| ψευδογράφημα περὶ ἀληθές , οἷον τὸ Ἱπποκράτους [ ἢ ὁ τετραγωνισμὸς ὁ διὰ τῶν μηνίσκων ] . . Α . |
| ΗΘΓ καθέτους γίνεσθαι καὶ πρὸς αὐτήν . ἐφαρμόσαντες δὴ τῇ χορδῇ κανόνιον καὶ μεταλαβόντες ἐπ ' αὐτοῦ τὸ ΕΗ μῆκος | ||
| ἐν μὲν τῷ αὐλῷ διὰ τρυπημάτων , ἐν δὲ τῇ χορδῇ δι ' ὑπαγωγέως , ἄλλον ἐξ ἄλλου τρόπον ἀποτελεῖσθαι |
| . Καὶ ὅλως ἁπλουστέραν τοῦ ἑνὸς οὐκ ἔστιν ἐπινοῆσαι : πανταχῶς ἄρα τὸ ἓν πρὸ τοῦ ὄντος . Ἵνα δὲ | ||
| τετράδι δειπνῇ παρ ' ἑτέροις : τὰ τῆς θεοῦ γὰρ πανταχῶς ἔχειν καλῶς . μνημονεύει αὐτοῦ καὶ ἐν Ἀνδρογύνῳ ἢ |
| ἀπὸ τοῦ τῆς συμβολῆς τῶν περιφερειῶν σημείου ἐπὶ τὰ κέντρα ἐπιζεῦξαι εὐθείας περιεχούσας τὴν λείπουσαν εἰς τὰς δύο ὀρθὰς τῆς | ||
| Θ , καθ ' ὃ τέμνει τὴν τετραγωνίζουσαν , καὶ ἐπιζεῦξαι τὴν ΘΗ , καὶ δίχα τεμόντα τὴν ΑΒ καὶ |
| [ πόλεως ] ? γιν [ ] [ ] ! υτοι οἱ [ ] [ ] ξαι τιτ [ ] | ||
| ! [ ] μαρ ! ! [ ] [ ] υτοι ! ! [ ] [ ] λλογ [ ] |
| ' ἑτέρων συζυγιῶν ἀναπεπληρῶσθαι , πῶς οὐχὶ γέλοιον τοσαύτας φωνὰς συζύγως κατὰ τύχην σεσιγῆσθαι ; τούτου οὖν ἐν μηδενὶ μέρει | ||
| ὧν ἐστὶ καὶ ὁ Ἅβρων , θέμα ἐστίν , ὃ συζύγως οἱ αὐτοί φασι τῇ μὲν ἐγών τὴν ἱών , |
| τοῖς φίλοις , ” ἀνακοινώσασθαι Ἕλληνες . ἄφυκτον Ἀττικοί , ἄφευκτον Ἕλληνες . ἀχθέσεται Ἀττικοί , ἀχθεσθήσεται Ἕλληνες . ἀπελαθείς | ||
| εἰδότων σωτήριον , τὰ πάντα σοι πάσχοντι συντόμως φράσω . ἄφευκτον ἦλθες πρῶτον ἐς βάθος κακῶν : οὐ γὰρ σιδηρόπλαστον |
| , καὶ τὸ θεά προσηγορία πάλιν θηλυκή , καὶ τὸ Πηληιάδεω ὄνομα πατρωνυμικόν , πρὸς δὲ τούτοις καὶ τὸ Ἀχιλῆος | ||
| ἤτοι ὅλου τοῦ στίχου μέρος ἐστὶν ἢ τοῦ ἄειδε θεὰ Πηληιάδεω Ἀχιλῆος . ἀλλ ' εἰ μὲν τοῦ ὅλου στίχου |
| . σφῶν : τῶν Λακεδαιμονίων . εἰρημένον : ἀντὶ τοῦ ὁρισθέντος . κύριον : κεκυρωμένον , βέβαιον Κορίνθιοι : τὸ | ||
| ὅσον κατὰ τὴν τοῦ ὁρισμοῦ ἀπόδοσιν ἔστιν ἐρωτᾶν περὶ τοῦ ὁρισθέντος , διὰ τί ἐστι , καὶ διὰ τί τοῦτ |
| ἐν τοῖς φρουρίοις γέροντες καὶ νέοι ἦσαν τοῦ τε γὰρ Φαληρικοῦ τείχους κτλ . : [ ἀντὶ ] [ τοῦ | ||
| Τριφάλητι , τοῦ τε βορείου καὶ τοῦ νοτίου καὶ τοῦ Φαληρικοῦ , διὰ μέσου τῶν παρ ' ἑκάτερα ἐλέγετο τὸ |
| καὶ ἀμύνεσθαι μέχρι θανάτου μᾶλλον ἢ ἑκόντας ἐνδέξασθαι δουλείαν ἄνωθεν ἀδιόρθωτον : τά τε ἀρχαῖα Ῥωμαίων ἐπὶ ἐλευθερίᾳ φρονήματα καὶ | ||
| ἐστιν ἡ λόξωσις , ἔχομεν εἰπεῖν , ἀλλ ' ἐᾶν ἀδιόρθωτον , λοξὴν φυλάξαντες , ὡς οἱ ἀρχαῖοι πίνακες παρέχουσι |
| ὁμοίων ἐπιπέδων περιεχόμενα ἴσων τῷ πλήθει καὶ τῷ μεγέθει . Στερεὰ γωνία ἐστὶν ἡ ὑπὸ πλειόνων ἢ δύο γραμμῶν ἁπτομένων | ||
| ἡμέραι : πᾶσα γὰρ τετρὰς ἱερὰ ὡς καὶ στερεά . Στερεὰ δὲ λέγεται , διότι πάντα τὰ συνεστῶτα ἐκ στιγμῆς |
| καὶ ] κλίνεται ἰπός : [ ἐκ τούτου ] γίνεται ἰάπτω , ἐξ οὗ ῥηματικὸν ὄνομα ἰάπτους καὶ κατὰ στέρησιν | ||
| , ἐκ γὰρ τοῦ ἵπτω τὸ βλάπτω οὐ μόνον τὸ ἰάπτω γίνεται , ἀλλὰ καὶ ἵπτος ἡ παγὶς τῶν μυῶν |
| τουτέστιν οἱ κινοῦντες ἔστωσαν ἄνθρωποι μʹ , ἡ δὲ ὑπὸ ΚΜΝ γωνία , τουτέστιν ἡ ὑπὸ ΕΘΛ , διμοίρου ὀρθῆς | ||
| , καὶ τῇ ὑπὸ ΑΘΔ γωνίᾳ ἴση συνεστάτω ἡ ὑπὸ ΚΜΝ , καὶ ἀπὸ τῶν Κ Λ κάθετοι αἱ ΛΟ |
| πλευρῶν ἕτερον ἐκ δὶς τοσούτων συνεστηκὸς ἐντὸς συνήρμοσται σχῆμα κύκλον περιλαβὸν μετεωρίζοντά που τὸν ὄροφον , τὸ διὰ πάντων ἤδη | ||
| : μέχρι μὲν οὖν ἂν ἁπλῶς τοιοῦτο λέγηται , πάντα περιλαβὸν ἐν ἑαυτῷ ἔχει : ἐπειδὰν δὲ τὸ εἰδοποιοῦν ἑκάστῳ |
| τοῦ μεσαιτάτου , ἵνα μὴ περαιτέρω τοῦ ἡμίσους ὁ τῆς κρούσεως κραδασμὸς χωρήσῃ , διὰ πασῶν εὑρήσει τὸν ἀπὸ τῆς | ||
| ἔσται τῶν κακῶν . ἐπὶ δὲ νυκτὸς ἐξ ἀπο - κρούσεως φερομένης τῆς Σελήνης εἰς πάντα ἀγαθὸς καὶ ὠφέλιμος ἔσται |
| ὅτι ἐλλείπουσι ταῦτα τὸ τ : καὶ τὸ τάλας δὲ τάλανος καὶ μέλας μέλανος ἐλλείπουσι τὸ τ , μέλαντος γὰρ | ||
| νυκτός ἄνακτος , ἐνδεῖ δέ , ὡς ἐν τῷ μέλανος τάλανος : τὸ δὲ κάρα λίπα ἄλειφα ἀποκοπὰς παθόντα τὴν |
| σημείου δοθέντος τοῦ Ϡ , λαβεῖν δύο σημεῖα ὡς Ε͵ Ζ͵ , ὥστε εἶναι ὡς μὲν τὴν ΔΗ πρὸς τὴν | ||
| τῆς ΔϠ , κἂν τὸ Θ͵ μεταξὺ βούληται πίπτειν τῶν Ζ͵ Ϡ . οὐδὲν γὰρ ἕξει καὶ ὧδε λέγειν ἀνασκευαστικόν |
| διὰ τέσσαρα κύκλος : κείνου δ ' ἡμίτονον φαίνων ἀνίησι χαλασθείς , τοῦ δὲ τόσον φαέθων ὅσον ὄβριμος Ἄρεος ἀστήρ | ||
| διὰ τέσσαρα κύκλος : κείνου δ ' ἡμίτονον Φαίνων ἀνίησι χαλασθείς , τοῦ δὲ τόσον Φαέθων ὅσον ὄβριμος Ἄρεος ἀστήρ |
| δον μέρος τῆς ἀποκαταστάσεως , ἐπὶ τὰς ἡμέρας Ϛ νγʹ κʹʹ , ἀποτελοῦνται μοῖραι β δʹ : ταῦτα προσέθηκα τῇ | ||
| # λαʹ κʹʹ , κατὰ δὲ τὸ ἐλάχιστον # λεʹ κʹʹ , ἡ δὲ διάμετρος τοῦ κύκλου τῆς σκιᾶς κατὰ |
| ῥαφή : ἀντὶ τοῦ παραλογίζεται , ὡς καὶ ἐν εʹ Ἐπιδημιῶν φησιν : ἔκλεψαν δέ μου τὴν γνώμην αἱ ῥαφαὶ | ||
| συνώνυμον θεὶς τὸ ἀλύειν τῷ πλανᾶσθαι . κεῖται ἐν τετάρτῳ Ἐπιδημιῶν καὶ ἐν αʹ Γυναικείων καὶ ἐν Ἀφορισμοῖς . ἀπεδείξαμεν |
| ἁπλᾶς , ἀλλὰ καὶ τρίτην ἄλλην τὴν περὶ κύλινδρον ἕλικα γραφομένην : καὶ αὕτη γάρ , φασίν , ὁμοιομερὴς ὥσπερ | ||
| ἀρχαὶ ἀπὸ φωνηέντων ἐγίνοντο , τὴν ου συλλαβὴν ἑνὶ στοιχείῳ γραφομένην . τοῦτο δ ' ἦν ὥσπερ γάμμα διτταῖς ἐπὶ |
| κατασκευῇ ἓν αἴτημα καὶ πρῶτον καὶ τὸ τρίτον θεώ - ρημα , πρὸς δὲ τὴν ἀπόδειξιν τὸ ὄγδοον μόνον θεώρημα | ||
| λόγον ἀκριβῶς καταμαθόντες ἐπί τι μεῖζον ἕτερον χωρεῖν θεώ - ρημα , καταλιπόντες τὰς αἰσθήσεως ὀπάς , αἳ Χαρρὰν ὀνομάζονται |
| . . . . . μζ κε : ἡ δὲ μεσημβρινὴ τῇ ἐπιζευγνυούσῃ τὰ ἐκτεθειμένα δύο πέρατα γραμμῇ παρὰ τὴν | ||
| παραλλήλου λαμβάνεται , οὔθ ' ἡ διορίζουσα εὐθεῖα τὰς σφραγῖδας μεσημβρινὴ εἴρηται : ὥστ ' οὐδὲν εἴρηται πρὸς αὐτόν . |
| καὶ κηκίδων ὑποκιστίδος τε ἢ ἀκακίας ἢ πάλης ἀλφίτων . παραμένοντος δὲ τοῦ ἐμέτου καὶ τῆς τῶν σιτίων ἀποβολῆς ἁρμόσει | ||
| ἐντίθησίν οἱ τὸ κατὰ μικρὰ ἀδεές . προσελθόντος δὲ καὶ παραμένοντος ἀπαθοῦς καὶ οἱ μετέωροι πίθηκοι θαρροῦσιν ἤδη , καὶ |
| , ἐὰν πρὸς πάσας τὰς ἐπιφανείας πᾶς ὁπλίτης παρατάσσηται ἐν ἑτερομήκει σχήματι : πλινθίον δέ , ἐὰν ἴσαις ταῖς φάλαγξι | ||
| τὸ γοῦν ἀπὸ ταύτης ἀναγραφὲν τετράγωνον ἴσον ἔσται τῷ προρρηθέντι ἑτερομήκει . δὶς γὰρ ηʹ ιϚʹ : οὕτω γὰρ ἐκείνῳ |
| ἢ ἐκ πλειόνων συλλαβῶν εἰς [ διπλασιασμὸν , ἤτοι ] δισυλλαβίαν μεταστῇ : πιστός ξυστός [ μαστός ] μεστός κεστός | ||
| πρῶτον ἰαμβικὸν ἑφθημιμερές , τὸ δὲ δεύτερον δακτυλικὸν τρίπουν εἰς δισυλλαβίαν , . . . . τὸ δὲ τέταρτον τροχαϊκὸν |
| μηροὺς τούτῳ ἀνέθεσαν , ἔστι δὲ οἶκος τοῦ Διὸς καὶ τριγωνίζεται τῷ τε Λέοντι καὶ τῷ Κριῷ καθὰ δὴ καὶ | ||
| , ἐν καλῷ τόπῳ ἕστηκεν ἰδιοθρονῶν καὶ ὑπὸ τῆς Ἀφροδίτης τριγωνίζεται , τοῦ Ἄρεως ἀποστρόφου ὄντος , βίον καλὸν ἕξει |
| τὸ Η , ἐπειδὴ περὶ τὸ περίγειόν ἐστιν , καὶ ἐπιζευχθεισῶν τῆς τε ΕΗ καὶ τῆς ΒΗ , ἵνα ἡ | ||
| Γ ση μείων ἐν τῇ περιφερείᾳ τοῦ ἐκκέντρου ὄντων . ἐπιζευχθεισῶν τοίνυν τῶ ΖΓ , ΖΑ , ἑκατέρα τῶν Α |
| , ἑξάκις ἂν τόσση μιν ὑποδράμοι : αὐτὰρ ἑκάστη ἴση μετρηθεῖσα δύω περιτέλλεται ἄστρα οὐ γραμματικοῦ τοῦτο νοῆσαι , ὅτι | ||
| τοῦ λίθου δυνάμει . Ἀλλὰ οὖσα πρώτη φύσις καὶ οὐ μετρηθεῖσα οὐδὲ ὁρισθεῖσα ὁπόσον δεῖ εἶναιταύτῃ γὰρ αὖ ἡ ἑτέρα |
| τυποῦσθαι συμβέβηκε . καὶ γὰρ ἐξ οὐρανοῦ δυνάμεις ἀσώματοι ἐνθάδε διήκουσαι σύνθημα κινήσεως ὡρισμένης δωροῦνται ταῖς φύσει ἀφ ' ἑαυτῶν | ||
| , οὐ πολὺ ἀλλήλων διεστώσας διάστημα αὗται μέχρι τοῦ χείλους διήκουσαι τοῦ ποτηρίου καὶ μικρὸν μετεωριζόμεναι κατὰ μὲν τὴν ἀπόστασιν |
| ἐστι καὶ ἡ ΑΒ ἡ τρίπηχυς καὶ σύμμετρος μήκει τῇ προτεθείσῃ πηχυαίᾳ τῇ ΗΘ : ὁ γὰρ πῆχυς καὶ ἑαυτὸν | ||
| τούτου τοῦ βιβλίου . Τούτων ὑποκειμένων δείκνυται , ὅτι τῇ προτεθείσῃ εὐθείᾳ , τουτέστιν ἀφ ' ἧς θέσει τὰ μέτρα |
| ; πρῴην Ἱππόλυτον τὸν Εὐριπίδου θρήνων οὐκ ἠξίωσα τοσούτων , ὅσωνπερ ἄν , εἰ παρῆν καὶ ἑώρων τὸ πάθος ; | ||
| . Ἀλλὰ μὴν πλειόνων γε μέτρων ὂν ἢ ἐλαττόνων , ὅσωνπερ μέτρων , τοσούτων καὶ μερῶν ἂν εἴη : καὶ |
| ἡ τεχνολογία ὁμοία οὖσα τοῖς ἀπὸ τῶν εἰς ω . Ἑνικά . Θές , θέτω : ἔδει μὲν τῆς μετοχῆς | ||
| στησάσα . Πληθ . Στήσαντες , στήσασαι , στήσαντα . Ἑνικά . Θείς , θεῖσα , θέν : καὶ αὕτη |
| ἕξει ἡ ἰσότης πρὸς τὴν ἀνισότητα , καθάπερ καὶ ἐν γραμμικοῖς ἡ ὀρθὴ γωνία πρὸς ἀμβλεῖαν καὶ ὀξεῖαν , καὶ | ||
| ἰσοδιάστατοι , καθ ' ὁμοιότητα καὶ αὐτοὶ λαμβανόμενοι τῶν ἐν γραμμικοῖς : καλοῦνται δ ' οὗτοι κύβοι καὶ τετράεδροι πυραμίδες |
| , στερεωτάτῃ ὑπαρχούσῃ καὶ ἑδραιοτάτῃ : τῷ δὲ σχήματι τῷ δωδεκαέδρῳ πρὸς τὸ πᾶν κατεχρήσατο . Πάντων δὲ τούτων ἀρχικωτέρα | ||
| ἐξ ὁποίων ἓξ τετραγώνων ὁ κύβος συνίσταται : τῷ δὲ δωδεκαέδρῳ εἰς τὸ πᾶν ὁ θεὸς κατεχρήσατο , διότι ζῴδιά |
| [ ] ενεοιγερ ? ? [ ! ! ! ] ντε ? ποδα ? ? ? [ ] [ ] | ||
| . . . [ ] [ ] [ ] ! ντε [ ] ς ? [ ] [ ] [ |
| δυνήσονται . καὶ μὴν οὐδὲ κατὰ ἀναλογίαν παρῆλθεν ἡ τοῦ ἀπλατοῦς μήκους νόησις . τὰ γὰρ κατὰ ἀναλογίαν νοούμενα ἔχει | ||
| νύκτα ἡμικύκλιον ἀνατέλλει καὶ δύνει , τοῦ ἡλίου ἐπὶ τοῦ ἀπλατοῦς καὶ διὰ μέσων τῶν ζῳδίων φερομένου : ἐπὶ γὰρ |
| τε ἀγκῶνας πυκνὰ πονεῖν τῶν τοιούτων ὀργάνων . τῆς δὲ ἐπιζυγίδος τὸ μὲν πάχος ἀρκεῖν γενόμενον τοῦ πέμπτου μέρους τῆς | ||
| καὶ ἐυεργέστερον ἀντὶ τοῦ ὀρθοῦ ἄξονος ἀπὸ τῆς τῶν μεσοστατῶν ἐπιζυγίδος ἀρτήματι κρεμάσαι τὸν κάμακα τοῦτον ὡς κριὸν , οὕτως |
| γαμικὴν χλαμίδα δότω τις δεῦρό μοι . μετὰ δὲ τὸν Ϟδʹ στίχον κῶλά ἐστιν ἀντισπαστικὰ Ϛʹ , ἐπιμεμιγμένα διιάμβοις , | ||
| μὴ ὄπισθεν , ἀλλ ' ἔμπροσθεν τάξῃ . Κεφ . Ϟδʹ . Ἁρμόζει μὲν ἐφ ' ὧν καὶ ἡ πρὸ |
| μετοχῆς , ἥτίς ἐστιν ὁ τετυμμένος καὶ διὰ τοῦ εὐκτικοῦ ὑπαρκτικοῦ ῥήματος , ὅπέρ ἐστι τὸ εἴην καὶ τετυμμένος εἴην | ||
| ἐπίρρημα : ἀπὸ τῆς ἀντί προθέσεως καὶ τοῦ ὧν † ὑπαρκτικοῦ ἀριθμοῦ † . ἐπὶ δὲ τῶν βοτανῶν οὐ δεῖ |
| ἐν τῷ φόβῳ . Ὁμαρτεῖν . συγκοπῇ ἐκ τοῦ ἅμα ἐπιῤῥήματος , καὶ τοῦ ἄργω βαρυτόνου ῥήματος . Ὁμηρεῦσαι . | ||
| μὲν περὶ μετοχῆς καὶ ἄρθρου καὶ ἀντωνυμίας καὶ προθέσεως καὶ ἐπιῤῥήματος καὶ συνδέσμου ἐφθέγξατο καὶ ταῦτα κατ ' ἐπιτομὴν καὶ |
| τὸ ΗΘ . καὶ ἔστιν ἰσογώνιον τὸ ΓΗΚ τρίγωνον τῷ ΕΘΛ , ὅτι καὶ ἡ ΓΚ παράλληλός ἐστι τῇ ΕΛ | ||
| ΚΘΛ ἴση . ἐπεὶ οὖν δύο αἱ ΚΘΛ δυσὶν ταῖς ΕΘΛ ἴσαι , καὶ γωνία γωνίᾳ , καὶ βάσις ἡ |
| ΒΓ τῇ ΣΛ , καὶ ὅμοιον τὸ ΘΓΒ τρίγωνον τῷ ΘΛΖ , καί ἐστιν , ὡς ἡ ΘΒ πρὸς ΓΒ | ||
| ἡ ΣΥ . λέγω , ὅτι τὸ ΣΛΥ τρίγωνον τοῦ ΘΛΖ τριγώνου μεῖζόν ἐστι τῷ ΘΓΒ . ἤχθω γὰρ διὰ |
| ! ! ταα ! ! [ ] ! ! αὖ βουλ [ ] ! ! ! [ ] ! ! | ||
| ? [ ί ! [ δ [ [ ] κακη βουλ ! [ ὰ̄ [ ἡ [ ! [ κλύη |
| δ ' ὑποδεχόμενος παρ ' αὐτόν , ἐφεξῆς δ ' ἑκατέρωθε κατ ' ἀξίαν ἧς ἔχουσιν ὑπεροχῆς . καὶ οἱ | ||
| [ τρο ? ! [ ! ! ] δύ ' ἑκατέρωθε [ καὶ τοῦτο φοβερὸν ἐκπ ? [ φέρ ' |
| ? ? ? ? [ ! ] ? ? [ ἅνθρωποϲ οὐκ εἰϲέρχετ ' εἰϲ τὴν οἰκίαν , ἐπὶ ταῖϲ | ||
| ! ! ! [ πάλιν αὐτὸν αἰτεῖν ? ? [ ἅνθρωποϲ αἰεί φηϲιν αιτη ? ? [ αἰεὶ ? [ |
| ἐφάνη τὸ συνεχές , ὅπερ ἐστὶ πηλίκον , ἀντιπάσχον τῷ διῃρημένῳ , τουτέστι ποσῷ , κέχρηται δὲ ἤδη τὸ πρότερον | ||
| καὶ εὑρεθῇ ἐν τῷ διορύγματι τουτέστιν ἐν τῷ τετρημένῳ καὶ διῃρημένῳ , ὃς τὸν ἴδιον νοῦν ἐνεργοῦντα οἶδεν , ἀλλ |
| μεῖζόν ἐστιν : ὅπερ ἔδει δεῖξαι . Ϛʹ , λʹ ΑΛΛΩΣ Ἔστω ἡ δοθεῖσα εὐθεῖα ἡ ΑΒ . δεῖ δὴ | ||
| ΚΟΤΕΕΙ . Ζηλοῖ , ὀργίζεται , φθονεῖ , βασκαίνει . ΑΛΛΩΣ . Προτρέπεται πρὸς γεωργίαν διὰ τοῦτο . Ἐν γὰρ |
| ε καὶ ω ἀττικῶς : εἰ δὲ οὐκ εὐποροῦσι χρήσεως τριγενείας , οὐκ ἔχουσι γὰρ χρῆσιν δοῦναι ἡμῖν οὔτε τοῦ | ||
| εἰ δέ τι ὀξύνεται , διαστολὴν πέπονθεν , ἢ ἕνεκα τριγενείας : πάλος σάλος λάλος φάλος θόλος . τὸ δὲ |
| πρὸς τὴν ΗΚ . ὅμοια ἄρα ἐστὶ τὰ ΑΖΒ , ΛΗΚ τρίγωνα , ὡς δέδεικται ἐν τῷ ἕκτῳ θεωρήματι τοῦ | ||
| ΒΜΘ , ἡ δὲ ΒΜΘ τῆς ΛΗΚ , ἡ δὲ ΛΗΚ τῆς ΓΕ , ἐν πλείονι ἄρα χρόνῳ τὸ Α |
| κατὰ τὸ καρτερώτατον , οὔτε χρόνου φειδόμενος εἰς οὐδὲν δέον δαπανωμένου οὔτε δόξης ἀμείνονος ἐπιστροφήν τινα ποιησάμενος . ἤκουσε γὰρ | ||
| διπλασιάζων τὸ ἐγγραφόμενον πολύγωνον καὶ τοῦτο ἀεὶ ποιῶν ὥστε ποτὲ δαπανωμένου τοῦ ἐπιπέδου ἐγγραφήσεσθαί τι πολύγωνον τούτῳ τῷ τρόπῳ ἐν |
| μαθηματικοῦ , γραμμικῶς αὐτὸ ἀποδεικνύντος , ὅτι τὸ ἕκτον τοῦ ζωδιακοῦ κύκλου μέρος ἀπὸ τῆς μέχρι τῆς ἀνατολῆς ἐκβαλλομένης εὐθείας | ||
| ὡς καὶ ὁ Ἄρατος πρῶτον ἀναγράφει τὰ βορειότερα ἄστρα τοῦ ζωδιακοῦ , ἔπειθ ' οὕτως τὰ νοτιώτερα . Καὶ τὰς |