λεπτὰ μὲν πρῶτα ξ , δεύτερα δὲ κατ ' ἐπιδιαίρεσιν ͵γχ : εἶτα μείζονος ἀκριβείας δεηθέντες διὰ τὸ ἐν τοῖς
παραδείγματος ἀστείου καὶ εἰσαγωγῆς ἕνεκεν ἕως δευτέρων λεπτῶν τουτέστιν ἕως ͵γχ διαιρεῖσθαι τὴν μονάδα ἤτοι τὸν πόδα : τοῦτο γὰρ
5757350 συμπληρουμενου
συμπληροῖ ἑαυτό : τὸ γάρ τινος συμπληρωτικὸν ἔλασσόν ἐστι τοῦ συμπληρουμένου . οὐ πάνυ δὲ ταῦτα πιθανά : οὐκ ἄρα
μοιρῶν τῆς ἀναφορᾶς πληρουμένης ἢ καὶ ἕως ἑτέρου τετραγώνου ἢ συμπληρουμένου παντὸς τοῦ κύκλου , εἰ δὲ καὶ ἀκάκωτα τύχῃ
5576514 παραπληρωματα
ἔψαλλε . . , : Βλίτυρι καὶ σκινδαψός : ταῦτα παραπληρώματα λόγων , εἰσὶ δὲ καὶ παροιμιώδη . Ἰόβας δὲ
ΡΖ . ἀλλὰ τὸ ΜΠ τῷ ΠΛ ἐστιν ἴσον : παραπληρώματα γὰρ τοῦ ΜΛ παραλληλογράμμου : καὶ τὸ ΑΗ ἄρα
5363467 κʹʹʹ
: ἡ μὲν ἄρα αγ ἀνενεχθήσεται ἐν ο μϚʹ λγʹʹ κʹʹʹ , ἡ δὲ δβ ἐν ο μʹ Ϛʹʹ μʹʹʹ
. αἱ δὲ τοσαῦται ὑπεροχαὶ αἱ ἀνὰ ο οʹ ιγʹʹ κʹʹʹ συντεθεῖσαι γίγνονται ο Ϛʹ κϚʹʹ μʹʹʹ : ὥστε καὶ
5329126 ΚΒΟΣ
καὶ παράλληλοί εἰσιν διὰ τὸ λγʹ τοῦ αʹ . τὸ ΚΒΟΣ ἄρα τετράπλευρον . , . ] τετράπλευρόν ἐστιν ,
κύκλος . Ἤχθω ἀπὸ τοῦ Α σημείου ἐπὶ τὸ τοῦ ΚΒΟΣ τετραπλεύρου ἐπίπεδον κάθετος ἡ ΑΨ καὶ συμβαλλέτω τῷ ἐπιπέδῳ
5296854 ἡμιμοιριον
σμύρνα , σίδιον αὖον . Ἕτερον : ἄνθος χαλκοῦ ὀπτὸν ἡμιμοίριον , σμύρνης δύο ἡμιμοίρια , κρόκου τρεῖς μοῖραι ,
κατήντησεν . ἡ μεταφορὰ ἀπὸ τῶν καθορμιζομένων πλοίων εἴρηται . ἡμιμοίριον : τὸ ἥμισυ τῆς δραγμῆς . ἠρύγγη , πόλιον
5266846 Μμζ
μϚ ιζ , ἕξομεν τὸ ἀπὸ ΔΚ τετράγωνον τῶν αὐτῶν Μμζ ͵δϠδ μϚ ιζ : καὶ μήκει ἄρα ἔσται ἡ
ἐὰν τὰ ͵γχ τοῦ ἀπ ' αὐτῆς τετραγώνου προσθῶμεν ταῖς Μμζ ͵βψ ε λβ , ἕξομεν τὸ ἀπὸ ΔΚ τετράγωνον
5246856 ΔΕΛ
καὶ ἡ μὲν ΛΕ γίνεται δ κβ , ἡ δὲ ΔΕΛ ὅλη τῶν αὐτῶν κβ ἔγγιστα , τοσαύτας ἀποστῆναι δεῖ
τξ , τοιούτων σμ , εἴη ἂν καὶ ἡ ὑπὸ ΔΕΛ τῶν λοιπῶν εἰς τὰς δύο ὀρθὰς ρκ . ὥστε
5166275 ιγʹʹ
ταῖς ἑξῆς περιφερείαις ἀναφορικῆς ὑπεροχῆς , ὅ ἐστιν ο οʹ ιγʹʹ κʹʹʹ , καὶ αἱ λοιπαὶ γνωσθήσονται , ἐν ὅσῳ
ἡ αγ τῆς δβ κθʹ ὑπεροχαῖς ταῖς ἀνὰ ο οʹ ιγʹʹ κʹʹʹ . αἱ δὲ τοσαῦται ὑπεροχαὶ αἱ ἀνὰ ο
5100909 ὀρθογωνιος
τρίγωνον ὀρθογώνιον ὄν : ὥστε καὶ ἡ τοῦ κώνου κορυφὴ ὀρθογώνιός ἐστιν . εἰ δὲ μείζων ἐστὶν ἡ ΒΓ τῆς
κύκλος , ἀλλὰ τεταρτημορίου σφαίρας ἐστὶν ἐπιφάνεια , εἴπερ γε ὀρθογώνιός ἐστιν ὁ τῆς ὄψεως κῶνος ὡς ἐδείξαμεν . ἐπιβάλλομεν
5093236 ΑΔΘ
: καὶ τῆς ὑπὸ ΓΗΑ ἄρα μείζων ἐστὶν ἡ ὑπὸ ΑΔΘ γωνία : ὥστε μεῖζόν ἐστιν τὸ ὑπὸ ΔΒΓ τοῦ
κοιναὶ τομαὶ ἡ ΑΒ καὶ ἡ ΗΖ , τοῦ δὲ ΑΔΘ κύκλου καὶ τοῦ ΑΗΒΖ κοινὴ τομὴ ἡ ΑΘ ,
5059591 δεδειγμενα
καὶ τῆς ὀρθίας πρὸς τὴν πλαγίαν . καὶ διὰ τὰ δεδειγμένα ἐν τῷ τεσσαρακοστῷ πρώτῳ θεωρήματι τὸ ΓΚΜ τρίγωνον τοῦ
, πάνθ ' ἅμα καὶ μιᾷ δείξει καὶ τὰ μήπω δεδειγμένα καὶ τὰ ἤδη ὡς καὶ τὰ ἐν τῷ δωδεκάτῳ
5051667 ἀκακωτα
. Τὰ μὲν οὖν ὀρθῶς ἀνατέλλοντα ζῴδια ἐπὶ τῆς ἀνατολῆς ἀκάκωτα τυχόντα ἀνεμποδίστως τὰ πραττόμενα τελέσει , τὰ δὲ λοξά
. Τὰ μὲν οὖν ὀρθῶς ἀνατέλλοντα ζῴδια ἐπὶ τῆς ἀνατολῆς ἀκάκωτα τυχόντα ἀνεμποδίστως τὰ πραττόμενα τελέσει , τὰ δὲ λοξά
5039817 ἐπιζευχθεισων
τὸ Η , ἐπειδὴ περὶ τὸ περίγειόν ἐστιν , καὶ ἐπιζευχθεισῶν τῆς τε ΕΗ καὶ τῆς ΒΗ , ἵνα ἡ
Γ ση μείων ἐν τῇ περιφερείᾳ τοῦ ἐκκέντρου ὄντων . ἐπιζευχθεισῶν τοίνυν τῶ ΖΓ , ΖΑ , ἑκατέρα τῶν Α
5034459 ἐκβληθεντος
τροπῇ τοῦ δ εἰς ζ καὶ τοῦ ε εἰς η ἐκβληθέντος τοῦ ι , οἱονεὶ τὸ μὴ ἔχον διέχειαν ἢ
σὺ δὲ πετάσῃς ἵνα πλήξῃς ἐκεῖνον , εὐθὺς τεθνήξῃ , ἐκβληθέντος τοῦ κέντρου : ζωὴ γὰρ ἐν σοὶ ἐνυπάρχει τὸ
5019337 ΛΗΚ
πρὸς τὴν ΗΚ . ὅμοια ἄρα ἐστὶ τὰ ΑΖΒ , ΛΗΚ τρίγωνα , ὡς δέδεικται ἐν τῷ ἕκτῳ θεωρήματι τοῦ
ΒΜΘ , ἡ δὲ ΒΜΘ τῆς ΛΗΚ , ἡ δὲ ΛΗΚ τῆς ΓΕ , ἐν πλείονι ἄρα χρόνῳ τὸ Α
4985463 ΑΕΖΓ
νοήσωμεν μεσημβρινὸν κύκλον τὸν ΑΒΓΔ καὶ ζῳδιακοῦ μὲν ἡμικύκλιον τὸ ΑΕΖΓ , ὁρίζοντος δὲ τὸ ΒΕΔ περὶ πόλον τὸ Η
διαστήματι δὲ ὁποτερῳοῦν τῶν ΒΑ , ΒΓ γεγράφθω κύκλος ὁ ΑΕΖΓ , καὶ ἐκβεβλήσθωσαν αἱ ΑΒΕ , ΑΔΖ , ΑΗΘ
4984879 προαποδεδειγμενα
Ε ἡ ΕΛ , ἐφ ' ἧς δηλονότι διὰ τὰ προαποδεδειγμένα ἡ μέση τοῦ ἡλίου πάροδος θεωρηθήσεται . καὶ ἐπιζευχθείσης
πρὸς τὸ ἀπὸ τῆς Δ . ἔσονται δὴ διὰ τὰ προαποδεδειγμένα αἱ Α , Δ ῥηταὶ δυνάμει μόνον σύμμετροι .
4979709 Ϟδʹ
γαμικὴν χλαμίδα δότω τις δεῦρό μοι . μετὰ δὲ τὸν Ϟδʹ στίχον κῶλά ἐστιν ἀντισπαστικὰ Ϛʹ , ἐπιμεμιγμένα διιάμβοις ,
μὴ ὄπισθεν , ἀλλ ' ἔμπροσθεν τάξῃ . Κεφ . Ϟδʹ . Ἁρμόζει μὲν ἐφ ' ὧν καὶ ἡ πρὸ
4958160 διαγωνιος
καὶ τῆς ἀναγκαῖον μὴ εἶναι καταφάσεως οὔσης ἀπόφασίς ἐστιν ἡ διαγώνιος ἡ οὐκ ἀναγκαῖον μὴ εἶναι . διὰ τοῦτο οὖν
ῥητοῖς καὶ τοῖς μὴ ῥητοῖς , οἷον ἡ τοῦ τετραγώνου διαγώνιος ὡς μὲν ἐν ῥητοῖς λόγοις πρὸς τὴν πλευρὰν ἄλογος
4938903 θκ
κέντρου τοῦ θ , καὶ τῆς μεταξὺ τῶν κέντρων τῆς θκ ἐκβληθείσης ἐφ ' ἑκάτερα , ἐὰν κέντρῳ τῷ θ
κέντρῳ μὲν τῷ θ τοῦ παντός , διαστήματι δὲ τῷ θκ , γεγράφθαι νοήσωμεν κύκλον τὸν κπρ , ἔπειτα τοῦτον
4937068 κεκινησθω
ἥλιος εἰς τὰ ἐναντία τῶν ζῳδίων κινούμενος πέντε ζῳδίων περιφέρειαν κεκινήσθω καὶ ἔστω ἐπὶ τοῦ πʹ τόπου : ἀπὸ μὲν
, τὸ δὲ Δ τὸ κέντρον τοῦ ζῳδιακοῦ , καὶ κεκινήσθω περὶ μὲν τὸ Γ σημεῖον τὸ Ζ κέντρον τοῦ
4931030 ρϘβʹʹ
ἀεὶ κούφιζε τὸ γʹʹ : λοιπὰ υπʹ : ὧν τὸ ρϘβʹʹ γίνεται βʹ : καὶ τὰ λοιπὰ εἰς ηʹʹ γίνονται
ἐπὶ τὰ ιβʹ τοῦ πάχους γίνονται ͵γωμʹ : ὧν τὸ ρϘβʹʹ γίνεται κʹ : τοσούτων ποδῶν στερεῶν τὸ ξύλον .
4928197 ΙΝ
: ἀσπίς ῥανίς κρηπίς κνημίς ἁψίς . Εἰ δὲ εἰς ΙΝ ἔχουσι τὴν αἰτιατικὴν , περισπῶνται : Βενδῖς Μολῖς Τοτῖς
λοιπὴ ἡ ΙΝ ἑνός : τριπλῆ ἄρα ἡ ΛΙ τῆς ΙΝ : λέγω οὖν ὅτι δώδεκα τὰ ἀπὸ ΟΝ μείζονά
4896461 ἀναβιβασον
τοῦ γεγονότος τετραγώ - νου ἀπὸ τοῦ κζ , εἶτα ἀναβίβασον αὐτὴν καὶ εὑρήσεις οὐδένα ἄλλον ἢ τὸν ε ια
καὶ ὅρα ταῦτα , πῶς κεῖνται ٣٠ ٦٦ ٢٧٦ ταῦτα ἀναβίβασον , καὶ γίνονται λα ι λϚ , ἅτινα λα
4894689 τοσαυταπλασιον
Ζ : ὁσαπλάσιον ἄρα ἐστὶ τὸ ΑΗ τοῦ Γ , τοσαυταπλάσιον ἔσται καὶ τὸ ΔΘ τοῦ Ζ . καὶ συντεθὲν
ὅτι , κἂν πολλαπλάσιον ᾖ τὸ ΗΒ τοῦ Ε , τοσαυταπλάσιον ἔσται καὶ τὸ ΘΔ τοῦ Ζ . Ἐὰν ἄρα
4884744 παραλλασσῃ
ἤτοι κατὰ μὲν τὴν ἑτέραν τῶν συνόδων μηδὲν ἡ σελήνη παραλλάσσῃ ἢ κατ ' ἀμφοτέρας ἐπὶ τὰ αὐτὰ παραλλάσσῃ ,
μὲν ἀπ ' ἄρκτων ᾖ ἡ σελήνη τοῦ ἡλίου καὶ παραλλάσσῃ τὸ πλεῖστον πρὸς μεσημβρίαν , ἡ μὲν ΔΓ ἔσται
4866682 ἀπειραχως
ὅτι δὲ ταῦτα οὐ μοναχῶς ἀλλ ' ὀλίγου δέω λέγειν ἀπειραχῶς ἐν τοῖς οὖσιν ἔστι , πάλαι καὶ πρόπαλαι θεολόγων
ΗΛ , τουτέστιν συναμφοτέρῳ τῇ ΕΒΓ ἴση , καὶ γίνεται ἀπειραχῶς . κϚʹ . Ἔστω δὴ νῦν ἰσοσκελὲς τὸ ΑΒΓ
4850916 ΗΖΛ
τὴν ΖΛ . δύο δὴ τρίγωνά ἐστι τὰ ΒΑΕ , ΗΖΛ μίαν γωνίαν μιᾷ γωνίᾳ ἴσην ἔχοντα τὴν ὑπὸ ΒΑΕ
πάλιν ἀποκατασταθῇ ὅθεν ἤρξατο φέρεσθαι , τὰ μὲν ΚΓΔ , ΗΖΛ ἡμικύκλια ἐνεχθήσεται κατὰ τῶν σφαιρῶν , τὸ δὲ ΑΖ
4838504 ΛΥ
δοθὲν ἄρα καὶ τὸ ὑπὸ ΛΥΦ : καὶ δοθέντα τὰ ΛΥ : δοθὲν ἄρα τὸ Φ : ἀπῆκται οὖν εἰς
ΛΖ βάσις τῇ ΝΖ βάσει , ἴσον ἐστὶ καὶ τὸ ΛΥ στερεὸν τῷ ΝΥ στερεῷ , καὶ εἰ ὑπερέχει ἡ
4748060 διπλασια
τῆς σφαίρας διάμετρος τῆς τοῦ τροπικοῦ διαμέτρου : ἡ ἄρα διπλασία τῆς διαμέτρου τῆς σφαίρας ἐλάσσων ἐστὶν ἢ τετραπλασία τῆς
τοῦ διπλασίου ; Δῆλον δή , ὦ Σώκρατες , ὅτι διπλασία . Ὁρᾷς , ὦ Μένων , ὡς ἐγὼ τοῦτον
4737897 γεωμετρικῳ
εἰς τοσαῦτα μέρη διῃρημένης καλῶς ἔχειν ἐνόμισα τά τε λόγῳ γεωμετρικῷ θεωρούμενα [ καὶ ἀναγκαιότατα περὶ τὴν τῶν βαρῶν κίνησιν
γὰρ τῷ μουσικῷ , καθὸ μουσικός ἐστιν , οὐδὲ τῷ γεωμετρικῷ . οὐκοῦν ὠφελῆσαι θέλεις ; πρὸς τί ; εἰπὲ
4730432 τμηματα
μὲν γὰρ ἐπιστημονικῶς τὴν δοθεῖσαν εὐθεῖαν γραμμὴν εἰς ἴσα διαιρεῖν τμήματα , διαιροῦσι δὲ αὐτὴν εἰς ἄνισα . ὁ δὲ
ἐάσας παγῆναι , κατάτεμε τὸ αἷμα καλάμῳ ὀξεῖ εἰς πολλὰ τμήματα ἐν τῇ λοπάδι κείμενον καὶ σκεπάσας δικτύῳ πυκνῷ ἢ
4722028 μεσημβρινη
. . . . . μζ κε : ἡ δὲ μεσημβρινὴ τῇ ἐπιζευγνυούσῃ τὰ ἐκτεθειμένα δύο πέρατα γραμμῇ παρὰ τὴν
παραλλήλου λαμβάνεται , οὔθ ' ἡ διορίζουσα εὐθεῖα τὰς σφραγῖδας μεσημβρινὴ εἴρηται : ὥστ ' οὐδὲν εἴρηται πρὸς αὐτόν .
4715263 ἀποστηματος
ἐπιπλεούσης δὲ τῆς ἀσφάλτου πελαγίας ὁ τόπος φαίνεται τοῖς ἐξ ἀποστήματος θεωροῦσιν οἱονεί τις νῆσος . τὴν δ ' ἔκπτωσιν
ἡ γῆ σημείου καὶ κέντρου λόγον ἔχει , οὐδὲ τοῦ ἀποστήματος λόγος δίδοται . Ἐπὶ δὲ σελήνης παραλλάξεώς τινος ληφθείσης
4710915 ἀνακλασεων
δύνασθαι ποιεῖν τὸ ἀποπαλλόμενον φῶς , ὅπερ ἐπὶ τῶν ἄλλων ἀνακλάσεων οὐ συμβαίνει . οὕτως οὖν καὶ ἠχὼ πανταχόθεν μὲν
τῆς ΓΚ , ἐάν τε ἴση , ἡ σύμπτωσις τῶν ἀνακλάσεων οὔτε ἐπὶ τῆς περιφερείας τοῦ κύκλου οὔτε ἐκτὸς οὐ
4709936 ΔΨ
ΖΚ βάσις πρὸς τὴν ΞΡ βάσιν , οὕτως τὸ τοῦ ΔΨ στερεοῦ ὕψος πρὸς τὸ τοῦ ΒΤ στερεοῦ ὕψος .
στερεοῦ ὕψος . τὰ δ ' αὐτὰ ὕψη ἐστὶ τῶν ΔΨ , ΒΤ στερεῶν καὶ τῶν ΔΓ , ΒΑ :
4709797 ἀποκατασταθῃ
μενούσης τῆς ΒΔ τὸ ΑΒΓ τμῆμα περιενεχθὲν εἰς τὸ αὐτὸ ἀποκατασταθῇ , ἔσται σφαιρικὴ ἐπιφάνεια , πρὸς ἣν αἱ πρὸς
τὴν ὀρθὴν γωνίαν τὴν Κ περιενεχθὲν εἰς τὸ αὐτὸ πάλιν ἀποκατασταθῇ , ὅθεν ἤρξατο φέρεσθαι , ἡ μὲν ΒΓ καθ
4708188 κʹʹ
δον μέρος τῆς ἀποκαταστάσεως , ἐπὶ τὰς ἡμέρας Ϛ νγʹ κʹʹ , ἀποτελοῦνται μοῖραι β δʹ : ταῦτα προσέθηκα τῇ
# λαʹ κʹʹ , κατὰ δὲ τὸ ἐλάχιστον # λεʹ κʹʹ , ἡ δὲ διάμετρος τοῦ κύκλου τῆς σκιᾶς κατὰ
4696581 ἀντιστροφα
εἰς ἀδύνατον ἀπαγωγῆς : διὰ ταύτης γὰρ φιλεῖ δείκνυσθαι τὰ ἀντίστροφα τῶν θεωρημάτων καὶ οὕτω φέρεσθαι . ἐν δέ γε
τοῦ πρώτου ἐπὶ τὸ ἔσχατον ἔρχῃ , ἵνα τὰ ἀλλήλοις ἀντίστροφα ᾖ μετ ' ἀλλήλων . ταύτῃ γὰρ κελεύει τὸ
4666810 ΑΒΓΔΕΖΗΘ
δοθέντα κύβον πυραμίδα ἐγγράψαι . Ἔστω ὁ δοθεὶς κύβος ὁ ΑΒΓΔΕΖΗΘ , εἰς ὃν δεῖ πυραμίδα ἐγγράψαι . ἐπεζεύχθωσαν αἱ
δοθέντα κύβον ὀκτάεδρον ἐγγράψαι . Ἔστω ὁ δοθεὶς κύβος ὁ ΑΒΓΔΕΖΗΘ , καὶ εἰλήφθω τὰ κέντρα τῶν ἐφεστώτων τετραγώνων τὰ
4659206 ὑψη
. ἐς δὲ κίνδυνον βαθὺν ἱέμενοι : ἐς δὲ τὸν ὑψη - λότατον κίνδυνον προθυμίαν ἔχοντες καὶ σπουδὴν τὸν τῶν
ἀναστρεφόμενος . ἢ οἱ περὶ τὰ αἰπά , ὅ ἐστιν ὑψη - λοῖς τόποις , περιπολοῦντες : χαίρουσι γὰρ τοῖς
4650091 ρπαʹ
, οὕτω καὶ νῦν εἰς τύχην ἀνάγει τὸν λόγον . ρπαʹ Τέχνῃ λαβεῖν Ἵνα τεχνικῶς τις διέλῃ πρῶτον εἰς δύο
ὁ λόγος ἐστὶ τῆς ΗΖ πρὸς τὴν ΖΘ ὁ τῶν ρπαʹ ∠ ʹʹγʹʹ πρὸς τὰ μϚʹ ∠ ʹʹ καὶ κʹʹ
4646218 διειρον
ἐντὸς τῆς ἀσπίδος πρόσθημα , δι ' οὗ τὴν χεῖρα διεῖρον . πούλυπον καὶ πουλύπουν : Ἀττικοί , πολύποδα Ἴωνες
: μηχάνημα τροχῷ ἐμφερές , δι ' οὗ τὸν τράχηλον διεῖρον καὶ τῶν ὑποζυγίων ὥστε μὴ ἐσθίειν καὶ τῶν ἀνθρώπων
4625241 ὀγδοα
τὰ μέρη ἐπὶ τοῦ πρώτου , ἐπὶ δὲ τοῦ ἑξῆς ὄγδοα , εἶτα ἑνδέκατα , εἶτα τεσσαρεσκαιδέκατα , ἑξῆς ἀκολούθως
πλευραὶ ἦσαν ε δʹ . Εὑρέθη δὲ ὁ ἀριθμὸς ιζ ὄγδοα . Ἔσται ὁ λοιπὸς ε δʹ τῶν η :
4620781 ἀχθωσιν
ἀπὸ τῶν ἴσων γωνιῶν ἐπὶ τὰς βάσεις κάθετοι εὐθεῖαι γραμμαὶ ἀχθῶσιν , ᾖ δέ , ὡς ἡ τοῦ πρώτου τριγώνου
τομῶν β σημεῖα ληφθῇ , καὶ ἀφ ' ἑκατέρου παράλληλοι ἀχθῶσιν , ὁμοίως ἴσα ἔσται τὰ γινόμενα ὑπ ' αὐτῶν
4614988 ΘΛΖ
ΒΓ τῇ ΣΛ , καὶ ὅμοιον τὸ ΘΓΒ τρίγωνον τῷ ΘΛΖ , καί ἐστιν , ὡς ἡ ΘΒ πρὸς ΓΒ
ἡ ΣΥ . λέγω , ὅτι τὸ ΣΛΥ τρίγωνον τοῦ ΘΛΖ τριγώνου μεῖζόν ἐστι τῷ ΘΓΒ . ἤχθω γὰρ διὰ
4592958 τριπλη
κεφαλαίων αὕτη . Ἐστὶ δὲ πραγματικὴ ἁπλῆ καὶ διπλῆ καὶ τριπλῆ : καὶ ἁπλῆ μὲν , οἷον συμβουλεύει τις βοηθεῖν
ΓΖ . ἐπεὶ οὖν ἡ ΑΓ τῆς μὲν ΒΓ δυνάμει τριπλῆ ἐστιν , τῆς δὲ ΗΖ πενταπλῆ , οἵων ἄρα
4584101 παραλληλογραμμα
ἀεὶ παρὰ τὴν τοῦ συσταθέντος πλευρὰν τοῖς τριγώνοις ἴσα παραβάλλων παραλληλόγραμμα . ἐκ τούτου δέ φασι καὶ εἰς ζήτησιν τοῦ
εἰς δύο ποιεῖσθαι χρὴ τὴν πρώτην καὶ τὰ μὲν αὐτῶν παραλληλόγραμμα λέγειν , τὰ δ ' οὐ παραλληλόγραμμα , τῶν
4554465 Ἀφῃρησθω
ἐστὶ τοῦ τοιούτου μέρους τοῦ ἐξ ἀρχῆς ἀριθμοῦ . . Ἀφῃρήσθω κοινὴ λεῖψις τὰ κ . Ϟοὶ ἄρα τρεῖς λείψει
ὅτι μεῖζόν ἐστιν τὸ ὑπὸ ΔΒΓ τοῦ Ε χωρίου . Ἀφῃρήσθω γὰρ τὸ δοθὲν χωρίον τὸ ὑπὸ ΑΒΗ : λοιποῦ
4540897 ἀνιουσης
' ἀμφοτέρως ἐκέρδαινον , σοί τε συνὼν καὶ τῆς νῦν ἀνιούσης ἡμῖν πόλεως ἀπολαύων τὰ γιγνόμενα . ἐπεὶ δ '
ἡ μὲν ὀρθὴ γωνία σύμβολον εἶναι ζωῆς κατ ' ἀρετὴν ἀνιούσης καὶ εἰς ὕψος αἰρομένης καὶ μενούσης ἀκλίτου πρὸς τὰ
4533713 παραστατικα
δηλοῖ ἐάν τε καὶ παρέλκῃ , τοῦ αὐτοῦ τόνου ἐστὶ παραστατικά . εἴπερ οὖν παρέλκεται ὁ οὖν σύνδεσμος μετὰ τῆς
ἀντωνυμιῶν ᾠκείωται τοῖς κτητικοῖς ὀνόμασι , καθὸ ἀμφότερα δύο τρίτων παραστατικά , τοῦ τε κτήτορος καὶ τοῦ κτήματος , οὐδὲν
4529077 πλαγια
τῶν μορίων ὀπίσω φέρεται , τῷ δὲ θατέρῳ πρὸς τὰ πλάγια . μόνους δ ' εἰς τοὺς περὶ τὴν διάρθρωσιν
, τὸ ἔγγιον ἔγγιον , τὸ ἀπώτερον ἀπώτερον . Τὰ πλάγια μήκη ἀπὸ τῶν κυρτῶν ἐνόπτρων , καθάπερ ἐστὶν ἀληθῶς
4527346 ΦΟ
ὑπὸ ΜΧΟ γωνία : καὶ τὰ ἀπὸ τῶν ΓΦ , ΦΟ ἄρα ἴσα ἐστὶ τοῖς ἀπὸ τῶν ΜΧ , ΧΥ
: μείζων ἄρα ἐστὶν ἢ ὁμοία ἡ μὲν ΧΩ τῆς ΦΟ , ἡ δὲ ΦΟ τῆς ΞΤ : ἐν πλείονι
4521982 τετραγω
τῆς Α , ἴσον παρὰ τὴν ΒΓ παραβεβλήσθω ἐλλεῖπον εἴδει τετραγώ - νῳ , καὶ ἔστω τὸ ὑπὸ τῶν ΒΔ
τετραγώνισον τὸν κζ , εἶτα λαβὲ τὴν πλευρὰν τοῦ γεγονότος τετραγώ - νου ἀπὸ τοῦ κζ , εἶτα ἀναβίβασον αὐτὴν
4510572 εἰκοσακις
ὃ δὴ τοῦ παντὸς ἔθεμεν δωδεκατημόριον , ἓν καὶ εἴκοσιν εἰκοσάκις ὀρθότατα φύν . ἔχει δὲ διανομὰς δώδεκα μὲν ὁ
καρὸς αἴσῃ . οὐδ ' εἴ μοι δεκάκις τε καὶ εἰκοσάκις τόσα δοίη ὅσσά τέ οἱ νῦν ἔστι , καὶ
4501892 πενταπλασιου
μεταξὺ τῶν Ρ Θ , πάντες δὲ οἱ μείζους τοῦ πενταπλασίου ποιοῦσι τὸ σημεῖον τῆς τομῆς μεταξὺ τῶν Ρ Τ
τοῦ εἰκοσαέδρου καθέτου τὸ δυνάμει δωδεκαπλάσιον μεῖζόν ἐστιν τοῦ δυνάμει πενταπλασίου τῆς πλευρᾶς τοῦ εἰκοσαέδρου . Ἐκκείσθω κύκλος ὁ ΑΒΓ
4501280 ἐπιζυγιδος
τε ἀγκῶνας πυκνὰ πονεῖν τῶν τοιούτων ὀργάνων . τῆς δὲ ἐπιζυγίδος τὸ μὲν πάχος ἀρκεῖν γενόμενον τοῦ πέμπτου μέρους τῆς
καὶ ἐυεργέστερον ἀντὶ τοῦ ὀρθοῦ ἄξονος ἀπὸ τῆς τῶν μεσοστατῶν ἐπιζυγίδος ἀρτήματι κρεμάσαι τὸν κάμακα τοῦτον ὡς κριὸν , οὕτως
4501214 ΑΖΔ
τὸ Δ , καὶ ἐπὶ τῆς ΑΔ γεγράφθω ἡμικύκλιον τὸ ΑΖΔ , καὶ ἤχθω τις εἰς τὸ ἡμικύκλιον παράλληλος τῇ
, ΖΒ , ΖΕ . ἐπεὶ οὖν ἐλάττων ἡ ὑπὸ ΑΖΔ τῆς ὑπὸ ΒΖΕ γωνίας , ἔλαττον ἄρα τὸ ΑΔ
4497216 στεφανιαια
δὲ λοξὴ , ὡς τὰ ὀνόματα σημαίνει : ἄλλη δὲ στεφανιαία , ἡ δὲ μετωπιαία , ἡ δὲ παρείας ,
ὀστᾶ . ῥαφαὶ δὲ εὑρίσκονται ἐπὶ τῶν πλείστων πέντε . στεφανιαία ἡ διὰ τοῦ βρέγματος . ὀβολιαία ἡ διὰ τῆς
4476604 μʹʹ
αὐτῶν ια . καὶ ἔστιν ὡς τξ πρὸς μζ μβʹ μʹʹ οὕτως πγ πρὸς ια . . . , .
σκιᾶς κατὰ μὲν τὸ μέγιστον ἀπόστημα τῆς σελήνης ἑξηκοστὰ μʹ μʹʹ , κατὰ δὲ τὸ ἐλάχιστον ἀπόστημα ἑξηκοστὰ μϚʹ .
4475489 ἀναγραφομενον
παραλληλεπίπεδον πρὸς τὸ ἀπὸ τῆς δευτέρας τὸ ὅμοιον καὶ ὁμοίως ἀναγραφόμενον , ἐπείπερ καὶ ἡ πρώτη πρὸς τὴν τετάρτην τριπλασίονα
πρώτης πρὸς τὸ ἀπὸ τῆς δευτέρας τὸ ὅμοιον καὶ ὁμοίως ἀναγραφόμενον . ἀλλ ' ὡς ἡ Α πρὸς τὴν Ζ
4463693 ΕΒΓΖ
ΗΒΓ τρίγωνον : ὅλον ἄρα τὸ ΑΒΓΔ παραλληλόγραμμον ὅλῳ τῷ ΕΒΓΖ παραλληλογράμμῳ ἴσον ἐστίν . Τὰ ἄρα παραλληλόγραμμα τὰ ἐπὶ
ΒΓ : λέγω , ὅτι ἴσον ἐστὶ τὸ ΑΒΓΔ τῷ ΕΒΓΖ παραλληλογράμμῳ . Ἐπεὶ γὰρ παραλληλόγραμμόν ἐστι τὸ ΑΒΓΔ ,
4458493 διαγωνιον
πλευρῶν , καὶ τὸ ἐμβαδὸν εἰς ἴσα διαιρεῖται κατὰ τὴν διαγώνιον διὰ τὴν κοινὴν ἰδιότητα τῶν παραλληλογράμμων . ἐπὶ δὲ
βάσιν τέμῃ ἐκ τῆς κορυφῆς δίχα κατὰ τὴν τοῦ τετραγώνου διαγώνιον τὴν ἀπὸ τῆς ὀρθῆς , ἔσονται δύο στερεαὶ πυραμίδες
4456805 σαρκουται
ἄλλων θεραπείαν παραγίνεσθαι . Σαρκοῦται ἡ οὐρήθρα ἑλκώσεως προηγησαμένης : σαρκοῦται δ ' οὐχ ὅλη , ἀλλὰ κατά τι μέρος
. Καίτοι καὶ ἢν ἐκπέσῃ τὸ ἐκπεσούμενον , θᾶσσόν τε σαρκοῦται ἐκείνως ἢ ἑτέρως ἰητρευόμενον , καὶ θᾶσσον ὠτειλοῦται .
4456063 ἀφωρισμενας
ἔστιν εἰπεῖν τὰ στοιχεῖα καὶ τὰς ἀρχὰς ταύτης τῆς συλλαβῆς ἀφωρισμένας εἶναι , παρέθετο καὶ τοῦτο , καὶ ἔδειξεν ὅτι
λέγειν , ὡς κἀκεῖ ἐπὶ τοῦ κύκλου οὐκ οὔσας γραμμὰς ἀφωρισμένας ἔστι λαμβάνειν : ἐπίπεδον γὰρ ἕν . Οὗ δὲ
4454088 ὑποτεινουσι
καὶ αἱ ἐπιζευγνύουσαι αὐτὰ ἴσαι εἰσίν : ἴσων γὰρ πενταγώνων ὑποτείνουσι γωνίας : καὶ εἰσὶν ἐν κύκλῳ : τετράγωνον ἄρα
ἐστιν ἡ μὲν ΑΓ τῇ ΘΗ : ἴσας γὰρ γωνίας ὑποτείνουσι τὰς ὑπὸ ΑΒΓ , ΘΛΗ : ἡ δὲ ΒΔ
4442114 περιεχεσθω
καλουμένη ἐκ δύο μέσων δευτέρα . Χωρίον γὰρ τὸ ΑΒΓΔ περιεχέσθω ὑπὸ ῥητῆς τῆς ΑΒ καὶ τῆς ἐκ δύο ὀνομάτων
παραλληλόγραμμά ἐστιν . Στερεὸν γὰρ τὸ ΓΔΘΗ ὑπὸ παραλλήλων ἐπιπέδων περιεχέσθω τῶν ΑΓ , ΗΖ , ΑΘ , ΔΖ ,
4437069 ξον
] τὴν ΑΔ οὖσαν μοῖραν α , ἐπὶ τὸ ἓν ξον , λέγω δὴ τὴν ΑΞ , ἔσται τὸ πρῶτον
, ΣΥ ξξα πρῶτα : ἐὰν δὴ πολλαπλασιάσω τὸ πρῶτον ξον τὸ ΑΞ ἐπὶ τὸ πρῶτον τὸ ΑΣ , ἔσται
4434781 προστεθεντα
νδ λ γενόμενα ποιεῖ # γ νδ λ . ταῦτα προστεθέντα τοῖς # ε μ λ γίνεται # θ λε
ὅστις χρηστὸς ἦν ἡδύς τ ' ἀνήρ , τὰ σῦκα προστεθέντα δηλοῦν τὸν τρόπον : νυνὶ δὲ πρὸς μοχθηρὸν ἡδὺ
4432711 προδεδεικται
ἐστὶν ἡ διὰ τῶν Η Μ Κ : τοῦτο γὰρ προδέδεικται . ιγʹ . Ἀλλὰ δὴ μὴ ἔστωσαν αἱ ΑΒ
ΕΑ , ἐλαχίστη δὲ ἡ ΑΖ : ταῦτα γὰρ ἅπαντα προδέδεικται . ἡ ΕΑ ἄρα πρὸς τὴν ΑΖ μείζονα λόγον
4424609 κωνικῃ
, Ε , Α , Ο ἔν τε γὰρ τῇ κωνικῇ ἐπιφανείᾳ ἐστὶ καὶ ἐν τῷ διὰ τοῦ ἄξονος ἐπιπέδῳ
ἴσος ἐστὶν τῇ ὑπὸ τῆς ΑΒ ἐν τῇ στροφῇ γινομένῃ κωνικῇ ἐπιφανείᾳ διὰ τὸ ιεʹ πάλιν Ἀρχιμήδους θεώρημα [ παντὸς
4421667 λειπουσα
ἐκείνῳ ὑπεράνω ὄντι ἀφώτιστος ἂν εἴη τῷ ἑτέρῳ ἡμισφαιρίῳ , λείπουσα δὲ ἡμῖν ἐκείνῳ πλησίφως : ὥστε τὰ ἐναντία ποιεῖν
τῆς ΜΛ . τῆς ἄρα ὑπὸ ΜΚΛ γωνίας δοθείσης ἡ λείπουσα εἰς τὰς δύο ὀρθὰς ἡ κλίσις ἔσται τῶν ἐπιπέδων
4404375 ἀντιλαμβανομενης
παρυφισταμένων τὰ μὲν μετρίως τοῦτο πάσχει διακεκριμένων αὐτῶν τῆς ὄψεως ἀντιλαμβανομένης , τὰ δ ' αὖ ἐπιπλέον , ὡς ἤδη
ξηρῶν δᾴδων ἢ καὶ ἄλλης τινὸς ὕλης εὐπρήστου καὶ ταχέως ἀντιλαμβανομένης πυρός , ὁ δὲ ἥλιος ἐξ ἐναντίας αὐτὸν ταῖς
4387973 χαυνοτερα
ποιοῦσιν : ἡ δὲ κρόκη πλεῖον ἐγκαταμιγνυμένη διὰ τὸ εἶναι χαυνοτέρα τοῦ στήμονος ἀναδίδωσι κροκύδα δι ' ἧς πολλῆς οὔσης
λευκότεροι τῶν μελάνων . ἡ δὲ τῶν χλωρῶν κωβιῶν σὰρξ χαυνοτέρα ἐστὶν καὶ ἀλιπεστέρα : καὶ χυλὸν ἐλάττονα καὶ λεπτότερον
4381455 Ζ͵
σημείου δοθέντος τοῦ Ϡ , λαβεῖν δύο σημεῖα ὡς Ε͵ Ζ͵ , ὥστε εἶναι ὡς μὲν τὴν ΔΗ πρὸς τὴν
τῆς ΔϠ , κἂν τὸ Θ͵ μεταξὺ βούληται πίπτειν τῶν Ζ͵ Ϡ . οὐδὲν γὰρ ἕξει καὶ ὧδε λέγειν ἀνασκευαστικόν
4378000 πολυπλασιασωμεν
ἡμερῶν κβʹ δύο τρίτων , ταύτας ἐπὶ τὸν ζʹ ἥμισυ πολυπλασιάσωμεν : εὑρήσομεν ροʹ : τοσαύτας Ἀφροδίτη ἕξει ἐκ τῶν
πρὸς τέταρτον τὸ Γ . ἐὰν ἄρα τὸ ὑπὸ μέσων πολυπλασιάσωμεν , τουτέστι τὸν δέκα καὶ πέντε , καὶ παραβάλωμεν
4377347 ἑξηκοστων
τήρησιν παραλλάξεως διὰ τοῦ παραλλακτικοῦ ὀργάνου δοθείσης μοίρας α καὶ ἑξηκοστῶν ζ , τὸ κατ ' αὐτὴν τὴν τήρησιν τῆς
καὶ ἐπεὶ ταῖς τοσαύταις ὥραις ἐπιβάλλει κατὰ μῆκος παραλλάξεως ἕως ἑξηκοστῶν μη ἔγγιστα δῆλον ὡς ἂν μηδὲν μὲν διαλαμ -
4376970 σταδιαια
ἡλίου τῆς ἐπιπροσθούσης αὐτῷ κορυφῆς : ὥστ ' ἂν αὕτη σταδιαία ᾖ , μείζονα δεήσει σταδιαίας εἶναι τὴν τοῦ ἡλίου
προαστείων : ἀπὸ δὲ τοῦ αὐχένος ἐπὶ τὰς κορυφὰς ἄλλη σταδιαία λείπεται πρόσβασις ὀξεῖα καὶ πάσης βίας κρείττων : ἔχει
4376735 ἀνυπερβατως
βαλανείοις καὶ αἰώραις καὶ γυμνασίαις ταῖς διὰ τῶν χειρῶν : ἀνυπερβάτως γὰρ σώζονται . τινὲς δὲ ἐπὶ αὐτῆς τῆς □
σοι φανήσεται ἢ τὸ τῆς μήνιγγος ἀποθέμενοι , σώζονται οὗτοι ἀνυπερβάτως . ἐὰν δὲ ἀπὸ τῆς ☍ ἐπὶ τὸ μεῖζον
4372962 σκε
τῶν ΑΔ , ΔΒ τετράγωνα , τουτέστι ιε , γίνονται σκε καὶ τρὶς γ θ , ὁμοῦ σλδ , διπλάσιά
τῆς ΖΒ τὰ λοιπὰ τῶν υ τῶν ἀπὸ τῆς ΑΒ σκε , ἡ δὲ ΒΖ ιε , ἥτις ἐστὶ σύμμετρος
4372620 Ἰουϲτου
τὰϲ δυνάμειϲ δίδου πάλιν τὴν ἱερὰν Ῥούφου ἢ Ἀρχιγένουϲ ἢ Ἰούϲτου . πλῆθοϲ δὲ ἔϲτω τὸ ξηρίον διδόμενον ὡϲ ⋖
προδιαιτήϲαϲ τὸν πάϲχοντα κάθαιρε τῇ ἱερᾷ Ῥούφου ἢ Ἀρχιγένουϲ ἢ Ἰούϲτου . εἰ δ ' ἄμφω πλεονάζοι , προφλεβοτομήϲαϲ κάθαιρε
4368498 ξξα
εἰς ξ , ὧν δύο ἔστω τὰ ΑΣ , ΣΥ ξξα πρῶτα : ἐὰν δὴ πολλαπλασιάσω τὸ πρῶτον ξον τὸ
β λεπτὰ τὰ ΑΞ , ΞΖ , ἔσται λεπτὰ ἤτοι ξξα β καὶ τὰ ἑξῆς : ὁμοίως οὖν καὶ μοῖρα
4367967 αγδβʹ
τοῦ δʹ ἢ οὔ . Ἐρχέσθω πρότερον καὶ ἔστω τὸ αγδβʹ , καὶ ἐν τῇ περιφορᾷ τῆς σφαίρας μετακεκινήσθω τὸ
καὶ διὰ τῶν πόλων αὐτῶν μέγιστοι κύκλοι γεγραμμένοι εἰσὶν οἱ αγδβʹ αεζβʹ , ὁμοία ἄρα ἐστὶν ἡ γεʹ περιφέρεια τῇ
4353739 τξα
κθ : τὰ γὰρ ἀπ ' αὐτῶν τετρά - γωνα τξα καὶ υμα κατ ' οὐδὲν χωρίον κοινῷ μέτρῳ μετροῦνται
καὶ τῆς τοῦ ἀστέρος , ὥστε ἐν ὅλοις πρώτοις νυχθημέροις τξα πρὸς Αἰγυπτιακοῖς ἔτεσιν Ϙε ἀποκαταστάσεις ποιεῖσθαι να ἔγγιστα :
4347470 μετρησεως
, τοῦτ ' αὐτὸ τὸ νῦν λεχθὲν ὂν τυγχάνει . μετρήσεως μὲν γὰρ δή τινα τρόπον πάνθ ' ὁπόσα ἔντεχνα
δὲ τὸν θεὸν λάβοι Τῆς τῶν μαρμάρων τε καὶ ξύλων μετρήσεως ἀναγκαίας οὔσης πρῶτον ὑποθέμενοι τὴν τῶν πηχῶν διαφορὰν ἑξῆς
4345564 τμηματων
εἰς μέρη ιβ , καὶ καλεῖται κοινῶς μὲν ἕκαστον τῶν τμημάτων δωδεκατημόριον , ἰδίως δὲ ἀπὸ τῶν ἐμπεριεχομένων ἀστέρων ὑφ
ἐστιν ριε νϚ , καὶ ἡ ὑπ ' αὐτὴν εὐθεῖα τμημάτων ρα μγ μδ : ἡ δὲ διπλῆ τῆς ΔΖ
4338083 ἐπιφανειαι
τοὺς πόρους ἐπιφανείαις προσπίπτον ποιεῖν . ἀλλ ' αἵ γε ἐπιφάνειαί εἰσιν ἀσώματοι , καὶ τὸ ἀσώματον οὔτε ποιεῖν οὔτε
ἐν ταῖς τραγῳδίαις , μετ ' ἄλλας ἐπιδείξεις πολλάς , ἐπιφάνειαί τινες ἐπὶ τέλει ἐκ μηχανῆς τινὸς θεῶν ἀναδείκνυνται .
4336209 ἐπεχω
μικρῷ πρόσθεν εἶπον , ἵνα μὴ πολλάκις τὰ αὐτὰ λέγων ἐπέχω σε ἤδη ῥήτορα εἶναι δυνάμενον . πλὴν τό γε
ὁμοίως δὲ καὶ ἐπὶ τῶν λοιπῶν ἔχει . Τὸ δὲ ἐπέχω παραλαμβάνομεν ἀντὶ τοῦ οὐκ ἔχω εἰπεῖν τίνι χρὴ τῶν
4336007 ἀρκουσα
τὰς ἄλλας χορηγίας τὰς πολεμικὰς ἐπιτελεσθησομένην συμμετρησάμενος , ὁπόση τις ἀρκοῦσα ἔσται , διαιρῶν τὸν αὐτὸν τρόπον εἰς τοὺς ἑκατὸν
: μήτε δὲ ἀπειλῆς εἶναι φόβον , ᾧ ζῶντι μὲν ἀρκοῦσα εἴη τροφὸς ἡ Ἰνδικὴ , ἀποθανόντι δὲ ἀπαλλάξαιτο τῆς
4320901 τετραγωνα
δὲ ἐπισημαντέον , ὅτι ἴσα μὲν λέγομεν καὶ τρίγωνα καὶ τετράγωνα καὶ ἐπὶ πάντων σχημάτων , ἐπιπέδων τε καὶ στερεῶν
δυνάμει σύμμετροι ῥηταὶ μὲν διὰ τὸ τὰ ἀπ ' αὐτῶν τετράγωνα σύμμετρα εἶναι , οὐ μὴν καὶ μήκει σύμμετροι .
4320112 διερχεσθω
δύνει : ἐν δὲ τῷ τῆς ἡμέρας χρόνῳ ὁ ἥλιος διερχέσθω περιφέρειαν τὴν οπʹ , καὶ τῇ ποʹ ἴση ἔστω
πεποιήσθω κατὰ τὸ Η , τὴν δὲ λοιπὴν τὴν ΗΕ διερχέσθω ἐν τετάρτῳ μέρει περιφορᾶς . Λέγω , ὅτι διὰ
4318192 ἐξαρματος
χρόνῳ ἀναφέρεται τοῦ λέοντος , μετὰ δὲ μοίρας ιϚʹ κζʹ ἐξάρματος πόλου τοῦ δευτέρου κλίματος ἕως τοῦ γʹ κλίματος ἐν
ἐν αὐτῷ τὰς καθ ' ἕκαστον κλῖμα διαστάσεις τῶν τοῦ ἐξάρματος μοιρῶν καταγράψομεν τὰς ἴσας καὶ ἐπὶ τῶν λοιπῶν τριῶν
4310281 συμμετρα
πλευρὰ ἔσται μονάδων πέντε : τότε οὔτε τὰ τμήματα μήκει σύμμετρα ἔσται οὔτε ἡ κάθετος . εἰ δὲ ἡ ὑποτείνουσα
εὐθεῖαι ἀσύμμετροι ὦσι , τὰ δὲ ἀπ ' αὐτῶν χωρία σύμμετρα ἀλλήλοις , ἑτέρας δὲ ὅταν καὶ [ τὰ ἀπ
4309478 ρθ
με ιβ πρὸς τὰ ρκ . μέσου δὲ τασσομένου τούτων ρθ μζ ια , γίνεται ὁ συγκείμενος λόγος μδ ιθ
τῶν μη κϚ ιδ πρὸς τὰ ρκ . τὰ γὰρ ρθ με ιβ ἐπὶ τὰ μη κζ κϚ γίνεται ͵ετιη
4308763 προεδειχθη
προσλαβὼν τὸν ἕτερον , ποιεῖ τετράγωνον . ταῦτα δὲ λήμματα προεδείχθη καὶ ἔστιν τὸ ὀρθογώνιον γ , δ , ε
ἔχει ὃν ⃞ος ἀριθμὸς πρὸς ⃞ον ἀριθμόν . Τοῦτο δὲ προεδείχθη , καί εἰσιν αἱ πλ . τῶν κύβων ,
4302426 πενταπλη
διὰ πάντων εἴρηται αὕτη μόνη καὶ δοκεῖ εἶναι τριπλῆ καὶ πενταπλῆ μετάληψις , ἕκαστον γὰρ αὐτῶν δεῖ λυθῆναι τοῖς προειρημένοις
αἱ ΒΓ : ἡ μὲν γὰρ ΒΘ τῆς ΘΓ ἐστι πενταπλῆ , ἡ δὲ ΒΓ τῆς ΓΘ ἐστιν ἑξαπλῆ .
4298754 ὀρθοτερα
ἐν πλείονι χρόνῳ ἀνατέλλει ἡ ΕΛ τῆς ΛΜ , καὶ ὀρθοτέρα ἡ ΛΜ περιφέρεια , ἥτις ἐστὶν τοῦ λέοντος ,
δὲ τὴν μὲν Ἰδαίαν τὴν δὲ παραλίαν : τούτων δὲ ὀρθοτέρα καὶ μακροτέρα καὶ τὸ φύλλον ἔχουσα παχύτερον ἡ Ἰδαία
4297182 πληρουσθω
γλῶττα , τηκέσθωσαν οἱ ὀφθαλμοί , ἐκλυέσθω ἡ ἀκοή , πληρούσθω ἡ γαστήρ , ὑβριζέτω τὰ ὑβρίζειν πεφυκότα . Εὗρες
βλάβης . ἀλλ ' ἀγαθῇ γε τύχῃ μενέτω τε καὶ πληρούσθω λόγων ἀρχαίων ἡγεμόνι τῷ γονεῖ χρώμενος . Ἔμελλές ποτε
4292078 ὡσ
: ἡ μὲν κερατῖτις καλουμένη μέλαινα : ταύτης τὸ φύλλον ὥσ - περ φλόμου τῆς μελαίνης ἧττον δὲ μέλαν ,
ἀπήγαγε τὸ στρατόπεδον . Δεῖ τὸν στρατηγὸν ἐν ταῖς πράξεσιν ὥσ περ ἀγαθὸν παλαιστὴν δεικνύειν μὲν ἕτερα καὶ τούτοις πειρᾶσθαι
4287425 ΝΖΘ
ΒΔ διπλάσιον τοῦ δὶς ἀπὸ ΒΕ : τὰ ἄρα ἀπὸ ΝΖΘ τετράγωνα προσλαβόντα τὰ ἀπὸ ΚΖΜ εἴδη ὅμοια τῷ πρὸς
ΒΘ τῶν αὐτῶν Ϙθ θ , καὶ ὅλη μὲν ἡ ΝΖΘ ἔσται ση μγ , ἡ δ ' ἡμίσεια αὐτῆς

Back