παραλληλεπίπεδον πρὸς τὸ ἀπὸ τῆς δευτέρας τὸ ὅμοιον καὶ ὁμοίως ἀναγραφόμενον , ἐπείπερ καὶ ἡ πρώτη πρὸς τὴν τετάρτην τριπλασίονα | ||
πρώτης πρὸς τὸ ἀπὸ τῆς δευτέρας τὸ ὅμοιον καὶ ὁμοίως ἀναγραφόμενον . ἀλλ ' ὡς ἡ Α πρὸς τὴν Ζ |
πρὸς τὴν ΗΚ . ὅμοια ἄρα ἐστὶ τὰ ΑΖΒ , ΛΗΚ τρίγωνα , ὡς δέδεικται ἐν τῷ ἕκτῳ θεωρήματι τοῦ | ||
ΒΜΘ , ἡ δὲ ΒΜΘ τῆς ΛΗΚ , ἡ δὲ ΛΗΚ τῆς ΓΕ , ἐν πλείονι ἄρα χρόνῳ τὸ Α |
καὶ παράλληλοί εἰσιν διὰ τὸ λγʹ τοῦ αʹ . τὸ ΚΒΟΣ ἄρα τετράπλευρον . , . ] τετράπλευρόν ἐστιν , | ||
κύκλος . Ἤχθω ἀπὸ τοῦ Α σημείου ἐπὶ τὸ τοῦ ΚΒΟΣ τετραπλεύρου ἐπίπεδον κάθετος ἡ ΑΨ καὶ συμβαλλέτω τῷ ἐπιπέδῳ |
τὴν ΔΑΓ καὶ διὰ τοῦ Α τῇ ΔΓ πρὸς ὀρθὴν ἀναστήσωμεν τὴν ΑΒ , δηλαδὴ ἴσης μενούσης τῆς μὲν ΔΑ | ||
, ΓΔ , ΔΑ παραλληλόγραμμα , καὶ ἀπ ' αὐτῶν ἀναστήσωμεν στερεὰ παραλληλεπίπεδα ἰσοϋψῆ τῷ κυλίνδρῳ , ἑκάστου τῶν ἀνασταθέντων |
, ἐὰν πρὸς πάσας τὰς ἐπιφανείας πᾶς ὁπλίτης παρατάσσηται ἐν ἑτερομήκει σχήματι : πλινθίον δέ , ἐὰν ἴσαις ταῖς φάλαγξι | ||
τὸ γοῦν ἀπὸ ταύτης ἀναγραφὲν τετράγωνον ἴσον ἔσται τῷ προρρηθέντι ἑτερομήκει . δὶς γὰρ ηʹ ιϚʹ : οὕτω γὰρ ἐκείνῳ |
πλευρῶν , καὶ τὸ ἐμβαδὸν εἰς ἴσα διαιρεῖται κατὰ τὴν διαγώνιον διὰ τὴν κοινὴν ἰδιότητα τῶν παραλληλογράμμων . ἐπὶ δὲ | ||
βάσιν τέμῃ ἐκ τῆς κορυφῆς δίχα κατὰ τὴν τοῦ τετραγώνου διαγώνιον τὴν ἀπὸ τῆς ὀρθῆς , ἔσονται δύο στερεαὶ πυραμίδες |
ὀρθὴν γωνίαν περιεχουσῶν πλευρῶν εἴδεσι τοῖς ὁμοίοις τε καὶ ὁμοίως ἀναγραφομένοις . Ἔστω τρίγωνον ὀρθογώνιον τὸ ΑΒΓ ὀρθὴν ἔχον τὴν | ||
, γενήσονται τξε . ἐπεὶ οὖν τοῖς δυσὶ τετραγώνοις τοῖς ἀναγραφομένοις ἀπὸ τῶν ΓΒ , ΒΑ τῶν περιεχουσῶν τὴν πρὸς |
ἐφ ' ἑαυτόν , οὑτωσὶ καὶ τὸ τρίγωνον , ἀλλαχόθεν ἐπιζεύξαντες ἐπὶ τὰ πέρατα τῆς εὐθείας συγκροτοῦμεν ἐκ τούτων ἓν | ||
ὑφ ' ἣν ὑποτείνει ἡ τοῦ τετραγώνου πλευρά , καὶ ἐπιζεύξαντες καὶ τὰ αὐτὰ τοῖς πρότερον κατασκευάσαντες δείξομεν τὸν διὰ |
δοθὲν ἄρα καὶ τὸ ὑπὸ ΛΥΦ : καὶ δοθέντα τὰ ΛΥ : δοθὲν ἄρα τὸ Φ : ἀπῆκται οὖν εἰς | ||
ΛΖ βάσις τῇ ΝΖ βάσει , ἴσον ἐστὶ καὶ τὸ ΛΥ στερεὸν τῷ ΝΥ στερεῷ , καὶ εἰ ὑπερέχει ἡ |
ὁ παραστάτης πρότερός ἐστι τοῦ τριτοστάτου καὶ ἡ παρανήτη τῆς νήτης , ἐπειδὴ τὸ μὲν πλησιαίτερόν ἐστι τῷ κορυφαίῳ , | ||
βαρυτέρα τῆς νήτης διεζευγμένων . τοῦ δ ' ἀπὸ τῆς νήτης ἕως τῆς τελευτῆς τὸ ὄγδοον λαβόντες καὶ ὑπερβιβάσαντες ἕξομεν |
τὴν ] ὀρθὴν γωνίαν εὐθείας περιστρεφόμενον τὸ τρίγωνον ποιεῖ τὴν κωνικὴν ἐπιφάνειαν ἡ ΘΛ [ ἀπὸ τοῦ ] Θ τῆς | ||
ἄπειρον αὔξεται τῆς γραφούσης εὐθείας εἰς ἄπειρον προσεκβαλλομένης , καλῶ κωνικὴν ἐπιφάνειαν , κορυφὴν δὲ αὐτῆς τὸ μεμενηκὸς σημεῖον , |
οὖν τὸ κατὰ τὰς δυνάμεις , μουσικὸν δὲ τὸ τῆς ἑπτακαιδεκάποδος . οὗτος γὰρ ὁ ὅρος ἐνέχει ? [ - | ||
τῆι ποδιαίαι καὶ οὕτω κατὰ μίαν ἑκάστην προαιρούμενος μέχρι τῆς ἑπτακαιδεκάποδος . ὅσαι μὲν γραμμαὶ τὸν ἰσόπλευρον καὶ ἐπίπεδον ἀριθμὸν |
καλουμένη ἐκ δύο μέσων δευτέρα . Χωρίον γὰρ τὸ ΑΒΓΔ περιεχέσθω ὑπὸ ῥητῆς τῆς ΑΒ καὶ τῆς ἐκ δύο ὀνομάτων | ||
παραλληλόγραμμά ἐστιν . Στερεὸν γὰρ τὸ ΓΔΘΗ ὑπὸ παραλλήλων ἐπιπέδων περιεχέσθω τῶν ΑΓ , ΗΖ , ΑΘ , ΔΖ , |
] ! ΟΤΙΠΑ ? ? ! φυσε [ ] ! ΙΕ [ ! ] ΕΙΑ ? [ ] ΤΑΥ ! | ||
ἢ καταπαυομένοις ἢ τὸ ποθεινότατον ; ΑΘΗΝΑΙΟΥ ΝΑΥΚΡΑΤΙΤΟΥ ΔΕΙΠΝΟΣΟΦΙΣΤΩΝ ⋮ ΙΕ ⋮ Δωρίδος ἐκ μητρὸς Φοίβου κοινώμασι βλαστών . χαῖρε |
, τοὺς βουλευτὰς ᾐτησάμην . καὶ τοίνυν διοικήσεως νῦν πρῶτον ἀχθείσης πολλὰ ὑπὸ πολλῶν ἠδικημένος , ὥσπερ εἰκός ἐστι τὸν | ||
τοῦ ἐκκέντρου πηλικότησιν . κατὰ ταὐτὰ δὲ καὶ ἐνθάδε καθέτου ἀχθείσης ἐπὶ τὴν ΔΒ τῆς ΑΛ , ἐάν τε τὴν |
τῆς πρώτης κλίμακος ἐσχάτων δυοῖν βαθμῶν τοῖς τόποις τῶν τῆς δευτέρας ἵνα περονῶνται σιδηραῖς ἢ ξυλίναις περόναις : τὰ δὲ | ||
ἐπὶ Τυδέως καὶ Πολυνείκους τὸ σφωιτέρην ὀϊζύν καὶ διὰ τῆς δευτέρας ἐπὶ Ἐτεοκλέους καὶ Πολυνείκους τὸ σφωίτερον μῦθον , ἑαυτοῖς |
λεπτὰ μὲν πρῶτα ξ , δεύτερα δὲ κατ ' ἐπιδιαίρεσιν ͵γχ : εἶτα μείζονος ἀκριβείας δεηθέντες διὰ τὸ ἐν τοῖς | ||
παραδείγματος ἀστείου καὶ εἰσαγωγῆς ἕνεκεν ἕως δευτέρων λεπτῶν τουτέστιν ἕως ͵γχ διαιρεῖσθαι τὴν μονάδα ἤτοι τὸν πόδα : τοῦτο γὰρ |
μοίρας νγʹ ∠ ʹʹ νʹ γʹʹ ἡ δὲ πηγὴ ἡ ἀρκτικωτάτη τοῦ Βορυσθένους ποταμοῦ νβʹ νγʹ Καὶ τῶν ὑπὸ τὸν | ||
Σκῦρος νῆσος καὶ πόλις νδʹ λθʹ Τῆς Ἠπείρου ἡ μὲν ἀρκτικωτάτη πλευρὰ διορίζεται τῷ τῆς Μακεδονίας μέρει κατὰ τὴν εἰρημένην |
ἡ ΔΗ ١٠ ١٨ ٥ ٤٠ ἡ ΑΗ ١٣ ٤٥ ٥٥ ٤٠ ἡ ἡμίσεια τῆς ΑΗ ٦ ٥٢ ٥٨ ٥٠ | ||
١ τὸ δὶς ὑπὸ τῶν ΑΒ , ΒΓ ١٣ ١٩ ٥٥ ٢٣ ٨ τὸ ἀπὸ τῆς ΒΓ ٤ ٥٨ ٠ |
τὸ ΑΒ ١ ١٩ ٢١ ἡ ΑΖ ٦ ٥٣ ١١ ٣٤ ἡ ΖΗ ٣ ٥١ ٩ ٦ Ἠπορήθη τῷ πρὸς | ||
١٢ ١٥ τὸ ὑπὸ τῶν ΑΒ , ΒΖ ٢ ٤٧ ٣٤ ٤٣ ٣ ἡ ΔΒ ١ ٤ ١٦ ἡ ΒΕ |
μὲν πληγεὶς ἰαθήσεται , εἰς δὲ τὸν ὄνον ἡ ὀδύνη μεταπεσεῖται . ἔχει δὲ καὶ ἄλλας πράξεις . Ὄνοι οἱ | ||
ΑΔ . εἰ γὰρ μή , μένοντος τοῦ Α σημείου μεταπεσεῖται τῆς ΑΔ ἡ θέσις διατηροῦσα τῆς ὑπὸ ΑΔΓ γωνίας |
: ἀσπίς ῥανίς κρηπίς κνημίς ἁψίς . Εἰ δὲ εἰς ΙΝ ἔχουσι τὴν αἰτιατικὴν , περισπῶνται : Βενδῖς Μολῖς Τοτῖς | ||
λοιπὴ ἡ ΙΝ ἑνός : τριπλῆ ἄρα ἡ ΛΙ τῆς ΙΝ : λέγω οὖν ὅτι δώδεκα τὰ ἀπὸ ΟΝ μείζονά |
, ΑΖ μιᾷ σεληνιακῇ διαμέτρῳ καὶ τῷ τετάρτῳ μέρει τῆς διαμέτρου . Ἑκατέρας δὲ τῶν ΑΓ καὶ ΑΕ δʹ μέρει | ||
τουτέστιν οὔτε τῶν ἐπὶ τῆς διαμέτρου οὔτε τῶν ἐκτὸς τῆς διαμέτρου . ἔστω κοῖλον ἔνοπτρον τὸ ΑΓΔ , διάμετρος δὲ |
βασιλέως γενόμενον ἀσέβημα περὶ τὴν ἀκρόπολιν τῶν Ἀθηναίων μία γυνὴ πολῖτις τῶν ἀδικηθέντων ἐν παιδιᾷ πολλοῖς ὕστερον ἔτεσι μετῆλθε τοῖς | ||
τὸ παρασιωπώμενον , ὡς Δημοσθένης , ᾧ μήτηρ μὲν ὑπῆρχε πολῖτις , πατὴρ δὲ οὐκ ἐρῶ πόθεν . οὐδὲν γὰρ |
τὸ ἓν τῶν πολλῶν φύσει προέστηκεν καὶ τὸ ἁπλούστατον τῶν συνθετωτέρων ὁπωσοῦν , καὶ τὸ περιεκτικώτατον τῶν εἴσω περιεχομένων : | ||
ἐστιν αὐτῶν ἁπλούστερα τὰ δὲ συνθετώτερα : καὶ τῶν μὲν συνθετωτέρων οὐδὲν ἄνευ τῶν ἁπλουστέρων εἶναι δύναται , ὥσπερ οὐδὲ |
σμύρνα , σίδιον αὖον . Ἕτερον : ἄνθος χαλκοῦ ὀπτὸν ἡμιμοίριον , σμύρνης δύο ἡμιμοίρια , κρόκου τρεῖς μοῖραι , | ||
κατήντησεν . ἡ μεταφορὰ ἀπὸ τῶν καθορμιζομένων πλοίων εἴρηται . ἡμιμοίριον : τὸ ἥμισυ τῆς δραγμῆς . ἠρύγγη , πόλιον |
, τοῦτ ' αὐτὸ τὸ νῦν λεχθὲν ὂν τυγχάνει . μετρήσεως μὲν γὰρ δή τινα τρόπον πάνθ ' ὁπόσα ἔντεχνα | ||
δὲ τὸν θεὸν λάβοι Τῆς τῶν μαρμάρων τε καὶ ξύλων μετρήσεως ἀναγκαίας οὔσης πρῶτον ὑποθέμενοι τὴν τῶν πηχῶν διαφορὰν ἑξῆς |
ἐστιν ἴση : ἔστιν ἄρα ὡς ἡ ΒΦ πρὸς τὴν ΦΑ , οὕτως ἡ ΚΧ πρὸς τὴν ΧΑ : παράλληλος | ||
ὡς δὲ τὸ ΜΘ πρὸς ΘΑ , ἡ ΜΦ πρὸς ΦΑ , τουτέστιν ἡ ΖΛ πρὸς ΛΑ : καὶ ὡς |
ἄγραφον , οἷον : καὶ ἐπὶ τὸ βυβλίον σου πάντες γραφήσονται : δῆλον , ὅτι ἄγραφον . βιβλίον δὲ τὸ | ||
τὸ ἄγραφον , οἷον καὶ ἐπὶ τὸ βυβλίον σου πάντες γραφήσονται : βιβλίον τὸ γεγραμμένον . βοτάνη ἡ βοσκομένη , |
λέγεται καὶ Οἰνειάς ἡ χώρα . ἔστι καὶ ἑτέρα τῆς Οἰταίας πόλις Οἰνειάδαι . Οἰνεών , Λοκρίδος λιμήν . Θουκυδίδης | ||
γῆν ἣν νῦν Θετταλίαν προσαγορεύομεν , προσλαβών τινα καὶ τῆς Οἰταίας καὶ τῆς Λοκρικῆς , ὡς δ ' αὕτως καὶ |
٢٠ τὸ ΛΜ ١١٧ ٣٥ ٤٧ ٢٠ τὸ ΝΞ ٣ ٣٦ ٣٥ ٢٠ ὑπὸ ῥητῆς . , ] ταύτης δηλονότι | ||
٤٢ Ἡ πλευρὰ τοῦ ΕΓ ٥ ٤٢ ١٤ τὸ ΒΓ ٣٦ ἡ ΖΗ ٤ τὸ ΕΓ ٣٢ ٣٢ ٩ ٥٢ |
τῆς ἀποδείξεως χρησόμεθα διὰ τὸ ταύτην μὲν ἄνευ τῆς πρώτης συμπεπλεγμένης γε αὐτῇ πάντοτε μηδαμῶς εὑρεθῆναι δύνασθαι , ἐκείνην δὲ | ||
ὡς δηλοῖ αὐτῶν ἡ κατὰ τόπον μετάβασις , ἀεὶ μέντοι συμπεπλεγμένης πρὸς τὴν ἐνέργειαν : ὅπερ γὰρ καὶ προσφυῶς ἀνεφθέγξατο |
Λέγω δή , ὅτι παρὰ τὰ εἰρημένα πέντε σχήματα οὐ συσταθήσεται ἕτερον σχῆμα περιεχόμενον ὑπὸ ἰσοπλεύρων τε καὶ ἰσογωνίων ἴσων | ||
ἐπὶ τῆς αὐτῆς εὐθείας δύο τμήματα κύκλων ὅμοια καὶ ἄνισα συσταθήσεται ἐπὶ τὰ αὐτὰ μέρη : ὅπερ ἔδει δεῖξαι . |
ὄλμου ἐμνημόνευσε : δεῖ γὰρ πρῶτον τῆς τροφῆς ἐπιμελεῖσθαι . ὄλμον : ὄλμος δὲ ἐκλήθη διὰ τὸ ὀλλύειν καὶ διαφθείρειν | ||
ἁψῖδος : ἐξ ὧν πλειόνων οὐσῶν ἡ ἁψὶς γέγονεν . ὄλμον : πρώτου τοῦ ὄλμου ἐμνημόνευσε : δεῖ γὰρ πρῶτον |
' ἀλλήλων , μᾶλλον δὲ ἀδυνάτως ἔχουσι κατὰ τὸ ἀκριβὲς ὁρισθῆναι αἱ τῶν ζῳδίων μοῖραι , ἀλλ ' εἰκός ἐστιν | ||
εἰδέναι τὰς διαφοράς , ἃς ἔχει τὸ προκείμενον εἰς τὸ ὁρισθῆναι πρὸς ἕκαστον τῶν παρ ' αὐτὸ ὄντων ἄνευ τοῦ |
ἐπὶ δὲ πλευρῶν καὶ στέρνου τὸ εἶδος τῆς διαιρέσεως ἐπικάρσιον ἐπιτηδευέσθω : ταύτῃ γὰρ καὶ αἱ πλευραὶ πεφύκασιν : ὁμοίως | ||
ὀσμῆς καὶ μὴ διεξιόντος τοῦ πταρμοῦ , ἀνάπαυσις τοῦ τραχήλου ἐπιτηδευέσθω καὶ συνεχὴς τῶν δριμειῶν ὀσμῶν πεῖρα καὶ ἄνεσις τῆς |
καὶ μέσον δυναμένη . Χωρίον γὰρ τὸ ΑΓ περιεχέσθω ὑπὸ ῥητῆς τῆς ΑΒ καὶ τῆς ἐκ δύο ὀνομάτων πέμπτης τῆς | ||
Ὅτι ἐπειδὴ ἀδύνατον ῥητὴν εἶναι τὴν διάμετρον τῆς πλευρᾶς οὔσης ῥητῆς , ἐπενόησαν οὕτω λέγειν οἱ Πυθαγόρειοι καὶ Πλάτων , |
] τὴν ΑΔ οὖσαν μοῖραν α , ἐπὶ τὸ ἓν ξον , λέγω δὴ τὴν ΑΞ , ἔσται τὸ πρῶτον | ||
, ΣΥ ξξα πρῶτα : ἐὰν δὴ πολλαπλασιάσω τὸ πρῶτον ξον τὸ ΑΞ ἐπὶ τὸ πρῶτον τὸ ΑΣ , ἔσται |
. ἐκομίζοντο ἐπ ' οἴκου : ἐπεραιοῦντο . ὑπερενεγκόντες : ὑπερβιβάσαντες . ʃ τὸ ἔργον ἡρωϊκόν φ ὅπως μὴ περιπλέοντες | ||
δὲ τοῦ ἀπὸ ταύτης ἕως τῆς τελευτῆς διαστήματος τὸ ὄγδοον ὑπερβιβάσαντες ἕξομεν τὴν τρίτην συνημμένων τόνῳ βαρυτέραν . τὸ δὲ |
τὸ ἔλασσον ἢ ἐν λόγῳ δοθέντι . Ὁ αὐτὸς αὐτῷ γεγονέτω . , ] σχόλιον εἰς τὸ ιαʹ θεώρημα ̅ | ||
, ΕΒ ἄρα μέσαι εἰσὶ δυνάμει μόνον σύμμετροι . καὶ γεγονέτω ὡς ἡ ΑΒ πρὸς ΓΔ , ἡ ΑΕ πρὸς |
, ἐξείπω . . Ἐμοί γε μὴν δοκεῖ τὰ τῆς ἐγκλίσεως ἐπιτεταράχθαι , ἐπεὶ σχεδὸν ἐγκλίσεις δύο συνωθοῦσιν εἰς μίαν | ||
ὑποτακτικὸν ἄληται ὡς λάβηται . συστολῇ οὖν ἐγένετο ἢ μεταβολῇ ἐγκλίσεως , ὁμοίως τῷ ” ἐπεὶ ἄρ κεν ἀμείψεται ἕρκος |
μεῖζόν ἐστιν : ὅπερ ἔδει δεῖξαι . Ϛʹ , λʹ ΑΛΛΩΣ Ἔστω ἡ δοθεῖσα εὐθεῖα ἡ ΑΒ . δεῖ δὴ | ||
ΚΟΤΕΕΙ . Ζηλοῖ , ὀργίζεται , φθονεῖ , βασκαίνει . ΑΛΛΩΣ . Προτρέπεται πρὸς γεωργίαν διὰ τοῦτο . Ἐν γὰρ |
οὕτως ἡ ΑΒΓΗ πυραμὶς ἤτοι πρὸς ἔλασσόν τι τῆς ΔΕΖΘ πυραμίδος στερεὸν ἢ πρὸς μεῖζον . ἔστω πρότερον πρὸς ἔλασσον | ||
ἀπὸ δὲ τοῦ Θ ἐπὶ τὸ ΗΕΚΛ . Ἔστω βάσις πυραμίδος τρίγωνον τὸ ΑΒΓ , καὶ τετμήσθω ἡ μὲν ΑΒ |
, ὡς ἐν τοῖς Ἀποδεικτικοῖς αὐτὸς ἡμᾶς ἐδίδαξε . καὶ τετραγωνίσαι παραλληλόγραμμον ὀρθογώνιον οὐδὲν ἦν ἄλλο ἢ τῆς μέσης εὕρεσις | ||
ὅρος τοῦτο , ἀποδείξις δὲ ὁ αὐτὸς οὕτως : ὁ τετραγωνίσαι βουλόμενος μέσην ἀνάλογον ζητεῖ εὑρεῖν : ἡ μέση εὑρεθεῖσα |
τὰ οὖν ΗΘ ΘΙ τμήματα ἐλάττω ἐστὶ τοῦ περὶ τὴν ΗΙ τμήματος τοῖς τμήμασι [ καὶ ] τοῖς ὑπὸ τοῦ | ||
τμήμασιν ἀπὸ τοῦ ἐντὸς κύκλου . τὸ γὰρ ἐπὶ τῆς ΗΙ τμῆμα ἴσον ἦν τοῖς τε ΗΘ ΘΙ τμήμασι καὶ |
ἐπικύκλου ε ιγ ἔγγιστα . ἤχθω δὴ ἐπὶ τῆς ὁμοίας καταγραφῆς ἀπὸ τοῦ Κ κέντρου κάθετος ἐπὶ τὴν ΒΕ ἡ | ||
ὕστερόν ἐστι βραχυτέρα . Ἔστω γὰρ ὡς ἐπὶ τῆς δευτέρας καταγραφῆς , καὶ τῶν αὐτῶν ὑποκειμένων ὁ ἥλιος ἔν τινι |
τῶι δὲ τετράγωνον , τῶι δὲ ἄλλο καὶ ἄλλο τῶν εὐθυγράμμων [ τῶν ] σχημάτων , ὣς δὲ καὶ μικτῶν | ||
κατασκευὴν τοῦ μζʹ . ἰστέον δέ , ὅτι τῶν ἀρίστων εὐθυγράμμων δύο τοῦ ἰσοπλεύρου τριγώνου καὶ ἰσοπλεύρου τετραγώνου γενέσεις παραδέδωκεν |
πολυχρόνιον . εἰ τύχῃ δὲ ἀπολειπόμενός τις τῶν ἀστέρων τῆς προσφόρου μαρτυρίας τὸ ἐνδεὲς περὶ τὴν πόλιν ἐσόμενον ἐντεῦθεν συνοραθήσεται | ||
. ἢν τύχῃ δ ' ἀπολειπόμενός τις τῶν ἀστέρων τῆς προσφόρου μαρτυρίας , τὸ ἐνδεὲς περὶ τὴν πόλιν ἐσόμενον ἐντεῦθεν |
ὡς μὲν τὴν ΔΗ πρὸς τὴν ΗΕ͵ , οὕτως τὴν ΗΕ͵ πρὸς ΗΖ͵ , καὶ τὴν ΗΖ͵ πρὸς τὴν ΗϠ | ||
Ζ͵ , ὥστε εἶναι ὡς μὲν τὴν ΔΗ πρὸς τὴν ΗΕ͵ , οὕτως τὴν ΗΕ͵ πρὸς ΗΖ͵ , καὶ τὴν |
δὲ λοξὴ , ὡς τὰ ὀνόματα σημαίνει : ἄλλη δὲ στεφανιαία , ἡ δὲ μετωπιαία , ἡ δὲ παρείας , | ||
ὀστᾶ . ῥαφαὶ δὲ εὑρίσκονται ἐπὶ τῶν πλείστων πέντε . στεφανιαία ἡ διὰ τοῦ βρέγματος . ὀβολιαία ἡ διὰ τῆς |
, τῇ δὲ τούτων θεωρίᾳ συνεισφέρει καὶ τὴν περὶ τῶν τραπεζίων διδασκαλίαν : διῄρηται γὰρ τὸ τετράπλευρον εἴς τε τὸ | ||
τὸ δὲ ῥομβοειδὲς πάντων ἔλαττον . πρῶτον δὲ ἐνταῦθα τῶν τραπεζίων ἐμνημόνευσε . περὶ τούτων δὲ ἐν ταῖς ὑποθέσεσιν ἐδίδαξεν |
ἁπλᾶς , ἀλλὰ καὶ τρίτην ἄλλην τὴν περὶ κύλινδρον ἕλικα γραφομένην : καὶ αὕτη γάρ , φασίν , ὁμοιομερὴς ὥσπερ | ||
ἀρχαὶ ἀπὸ φωνηέντων ἐγίνοντο , τὴν ου συλλαβὴν ἑνὶ στοιχείῳ γραφομένην . τοῦτο δ ' ἦν ὥσπερ γάμμα διτταῖς ἐπὶ |
٣ ١٩ ٥٨ ٥٠ ٣٢ τὸ συναμφότερον τῶν ἀπό ٣٢ ١٢ ٤٣ ٥٦ ٥٠ ἡ ΕΜ ٨ ٣ ٤٠ ٥٩ | ||
٤ ἡ ΑΒ ٢ ٥٩ ٢٨ ἡ ΓΖ ٢ ١٤ ١٢ ٤ ١٢ ἡ ΒΗ ٢ ١٣ ٤٣ ἡ ΑΗ |
χαίρειν , περὶ οὗ τῆς συντάξεως καὶ ὅλως τὰ τῆς συνεπείας κατὰ τὸ δέον εἰρήσεται . Ἀλλ ' ὡς πάλιν | ||
' ἔρεθε σχετλίη . αἰρομένων δὲ αὐτῶν , καὶ τῆς συνεπείας γινομένης οὕτως : ὣς φάτο , τῇ δ ' |
τουτέστι τὸ διὰ τοῦ ἄξονος ἰσοσκελὲς τοῦ διὰ τῆς ΑΖ ἰσοσκελοῦς : οὐκ ἄρα τὸ διὰ τοῦ ἄξονος ἰσοσκελὲς μέγιστόν | ||
διὰ τὸ ιεʹ πάλιν Ἀρχιμήδους θεώρημα [ παντὸς γὰρ κώνου ἰσοσκελοῦς ἡ ἐπιφάνεια , χωρὶς τῆς βάσεως , ἴση ἐστὶν |
διὰ πάντων εἴρηται αὕτη μόνη καὶ δοκεῖ εἶναι τριπλῆ καὶ πενταπλῆ μετάληψις , ἕκαστον γὰρ αὐτῶν δεῖ λυθῆναι τοῖς προειρημένοις | ||
αἱ ΒΓ : ἡ μὲν γὰρ ΒΘ τῆς ΘΓ ἐστι πενταπλῆ , ἡ δὲ ΒΓ τῆς ΓΘ ἐστιν ἑξαπλῆ . |
προσλαβὼν τὸν ἕτερον , ποιεῖ τετράγωνον . ταῦτα δὲ λήμματα προεδείχθη καὶ ἔστιν τὸ ὀρθογώνιον γ , δ , ε | ||
ἔχει ὃν ⃞ος ἀριθμὸς πρὸς ⃞ον ἀριθμόν . Τοῦτο δὲ προεδείχθη , καί εἰσιν αἱ πλ . τῶν κύβων , |
ΒΓ τῇ ΣΛ , καὶ ὅμοιον τὸ ΘΓΒ τρίγωνον τῷ ΘΛΖ , καί ἐστιν , ὡς ἡ ΘΒ πρὸς ΓΒ | ||
ἡ ΣΥ . λέγω , ὅτι τὸ ΣΛΥ τρίγωνον τοῦ ΘΛΖ τριγώνου μεῖζόν ἐστι τῷ ΘΓΒ . ἤχθω γὰρ διὰ |
ΑΠ [ ] [ ] ΤΩΙΨΗΙΚ [ ] [ ] ΩϹ καὶ Μ [ ] [ ] θανάτω ? [ | ||
: ΕΥΦ ! [ ! ] ! ! [ ] ΩϹ ! ! [ ] # ΚΑΡΝΕΙϹΚΟΥ # ΦΙΛΙϹΤΑ Β |
κεφαλαίων αὕτη . Ἐστὶ δὲ πραγματικὴ ἁπλῆ καὶ διπλῆ καὶ τριπλῆ : καὶ ἁπλῆ μὲν , οἷον συμβουλεύει τις βοηθεῖν | ||
ΓΖ . ἐπεὶ οὖν ἡ ΑΓ τῆς μὲν ΒΓ δυνάμει τριπλῆ ἐστιν , τῆς δὲ ΗΖ πενταπλῆ , οἵων ἄρα |
τρίγωνον ὀρθογώνιον ὄν : ὥστε καὶ ἡ τοῦ κώνου κορυφὴ ὀρθογώνιός ἐστιν . εἰ δὲ μείζων ἐστὶν ἡ ΒΓ τῆς | ||
κύκλος , ἀλλὰ τεταρτημορίου σφαίρας ἐστὶν ἐπιφάνεια , εἴπερ γε ὀρθογώνιός ἐστιν ὁ τῆς ὄψεως κῶνος ὡς ἐδείξαμεν . ἐπιβάλλομεν |
, οὕτω καὶ νῦν εἰς τύχην ἀνάγει τὸν λόγον . ρπαʹ Τέχνῃ λαβεῖν Ἵνα τεχνικῶς τις διέλῃ πρῶτον εἰς δύο | ||
ὁ λόγος ἐστὶ τῆς ΗΖ πρὸς τὴν ΖΘ ὁ τῶν ρπαʹ ∠ ʹʹγʹʹ πρὸς τὰ μϚʹ ∠ ʹʹ καὶ κʹʹ |
, κἀκείνῃ χρησάμενος ἀναλάμβανε τὸ πλῆθος τῶν ἡμερῶν ἕως τῆς ἐπιζητουμένης ἡμέρας , ἐάνπερ ἐπιδέχηται . εἰ δ ' οὖν | ||
Θηβαῖοι τοὺς τότε βοιωταρχήσαντας καταδικάσαντες , πολλοῖς χρήμασιν ἐζημίωσαν . ἐπιζητουμένης δὲ τῆς αἰτίας , πῶς ὁ τοιοῦτος ἀνὴρ ἰδιώτης |
τῆς καλουμένης ⋖ ν , ἐλαίου # Ϛ . ὄξει λειούσθω τὰ ξηρὰ ἐν ἡμέραις πολλαῖς , καὶ οὕτως ἐπιχείσθω | ||
δὲ ποιεῖ ὀμ - φάκινον μετὰ κόμμεως : ἕκαστον δὲ λειούσθω ἀφεψήματι ῥόδων ἢ τῷ χυλῷ ἢ τινὶ παραπλησίῳ , |
τὸ Δ , καὶ ἐπὶ τῆς ΑΔ γεγράφθω ἡμικύκλιον τὸ ΑΖΔ , καὶ ἤχθω τις εἰς τὸ ἡμικύκλιον παράλληλος τῇ | ||
, ΖΒ , ΖΕ . ἐπεὶ οὖν ἐλάττων ἡ ὑπὸ ΑΖΔ τῆς ὑπὸ ΒΖΕ γωνίας , ἔλαττον ἄρα τὸ ΑΔ |
τὸ Η , ἐπειδὴ περὶ τὸ περίγειόν ἐστιν , καὶ ἐπιζευχθεισῶν τῆς τε ΕΗ καὶ τῆς ΒΗ , ἵνα ἡ | ||
Γ ση μείων ἐν τῇ περιφερείᾳ τοῦ ἐκκέντρου ὄντων . ἐπιζευχθεισῶν τοίνυν τῶ ΖΓ , ΖΑ , ἑκατέρα τῶν Α |
ἔλαττον ἡμισφαιρίου . Κυλίνδρου ὁπωσδηποτοῦν ὑπὸ ἑνὸς ὄμματος ὁρωμένου ἔλαττον ἡμικυλινδρίου ὀφθήσεται . ἔστω κύλινδρος , οὗ ἔστω κέντρον τῆς | ||
, ἐπὶ δὲ τῆς ΑΔ ἡμικύκλιον ὀρθὸν ἐν τῷ τοῦ ἡμικυλινδρίου παραλληλογράμμῳ κείμενον : τοῦτο δὴ τὸ ἡμικύκλιον περιαγόμενον ὡς |
τὴν ΔΗ πρὸς τὴν ΗΕ͵ , οὕτως τὴν ΗΕ͵ πρὸς ΗΖ͵ , καὶ τὴν ΗΖ͵ πρὸς τὴν ΗϠ . μὴ | ||
οὕτως ΗΕ͵ πρὸς ΗΖ͵ , ὡς δὲ ἡ Ε͵Η πρὸς ΗΖ͵ , οὕτως ἡ Ζ͵Η πρὸς ΗΘ͵ , καὶ ἐπεζεύχθω |
εἰς τοσαῦτα μέρη διῃρημένης καλῶς ἔχειν ἐνόμισα τά τε λόγῳ γεωμετρικῷ θεωρούμενα [ καὶ ἀναγκαιότατα περὶ τὴν τῶν βαρῶν κίνησιν | ||
γὰρ τῷ μουσικῷ , καθὸ μουσικός ἐστιν , οὐδὲ τῷ γεωμετρικῷ . οὐκοῦν ὠφελῆσαι θέλεις ; πρὸς τί ; εἰπὲ |
λοιπὴ ἄρα ἡ ΤΞ λοιπῇ τῇ ΨϘ ἐστὶν ἴση . Διπλῆ δὲ ἡ ΤΞ τῆς ΨΦ : διπλῆ ἄρα καὶ | ||
: λοιπὴ ἄρα ἡ ͵ΑΨ ἴση ἐστὶν τῇ ΟΡ . Διπλῆ δὲ ἡ ΟΡ τῆς ΩΨ : διπλῆ ἄρα καὶ |
σημείου δοθέντος τοῦ Ϡ , λαβεῖν δύο σημεῖα ὡς Ε͵ Ζ͵ , ὥστε εἶναι ὡς μὲν τὴν ΔΗ πρὸς τὴν | ||
τῆς ΔϠ , κἂν τὸ Θ͵ μεταξὺ βούληται πίπτειν τῶν Ζ͵ Ϡ . οὐδὲν γὰρ ἕξει καὶ ὧδε λέγειν ἀνασκευαστικόν |
, καὶ ἐπεζεύχθω ἡ ΑΒ , καὶ ἀπὸ τῆς ΑΒ ἀναγεγράφθω πολύγωνον ἰσόπλευρόν τε καὶ ἰσογώνιον δύο πλευρὰς πλείους ἔχον | ||
μὴ ἔστω δὴ ὅμοιον τὸ Α τῷ Β , καὶ ἀναγεγράφθω ἀπὸ τῆς ΕΖ τῷ Α ὅμοιον καὶ ὁμοίως κείμενον |
τοῦ ΑΒΓΔ κύκλου ἐπίπεδον μείζων ἐστὶ τῆς ἀπὸ τοῦ Ν καθέτου ἀγομένης ἐπὶ τὸ τοῦ ΕΖΗΘ κύκλου ἐπίπεδον . ἀλλ | ||
Θ παράλληλος ὀρθὴν γωνίαν περιέξει μετὰ τῆς ἀπὸ τοῦ Ζ καθέτου . πάλιν ἐὰν ἐπιζεύξωμεν ἀπὸ τῶν Ζ , Η |
, τοιοῦτον συνάγεται καὶ τὸ συμπέρασμα : ἀντιστρεφομένης οὖν τῆς στερητικῆς καὶ τὸ Β οὐδενὶ τῷ Γ ὑπαρχόντως , ὅπερ | ||
καὶ οὐδείς ἀντιφάσεως οὐδὲ ἐνδέχεται δεῖξαι τὴν ἁπλῆν κατάφασιν τῆς στερητικῆς ἀποφάσεως ἢ ἐπὶ πλέον ἢ ἐπ ' ἔλαττον οὖσαν |
ἀπὸ τῶν ἴσων γωνιῶν ἐπὶ τὰς βάσεις κάθετοι εὐθεῖαι γραμμαὶ ἀχθῶσιν , ᾖ δέ , ὡς ἡ τοῦ πρώτου τριγώνου | ||
τομῶν β σημεῖα ληφθῇ , καὶ ἀφ ' ἑκατέρου παράλληλοι ἀχθῶσιν , ὁμοίως ἴσα ἔσται τὰ γινόμενα ὑπ ' αὐτῶν |
προσλαβὸν τὴν ἡμίσειαν τῆς ὅλης πενταπλάσιον δύναται τοῦ ἀπὸ τῆς ἡμισείας τετραγώνου : ὅπερ ἔδει δεῖξαι . Ἐὰν εὐθεῖα γραμμὴ | ||
ἐνδεχομένου καὶ ἀναγκαίου , ὅτι πάντες ἀτελεῖς καὶ τὸ ἐξ ἡμισείας ἐνδεχόμενον συνάγουσι . Καὶ τελειοῦνται διὰ τῶν πρώτων σχημάτων |
ΒΣ , ΣΦ , τουτέστι τὸ ἀπὸ τῆς ΒΦ , τετρα - πλάσιόν ἐστι τοῦ ἀπὸ τῆς ΝΒ : διπλῆ | ||
τοῦ κόσμου τάχος τοῦ τοῦ ἡλίου τάχους μεῖζόν ἐστιν ἢ τετρα - πλάσιον , καὶ ὁ μὲν κόσμος διὰ τοῦ |
Θ τοῦ ἀστέρος μετὰ τὸ Η ἀπόγειον τοῦ ἐπικύκλου , ἐπιζευγνυμένων μὲν ὁμοίως πάντοτε τῆς τε ΖΒΗ καὶ τῆς ΔΒ | ||
καὶ τὸ ΒΛ παραλληλόγραμμον τῷ ΗΒ τετραγώνῳ . ὁμοίως δὴ ἐπιζευγνυμένων τῶν ΑΕ , ΒΚ δειχθήσεται καὶ τὸ ΓΛ παραλληλόγραμμον |
λοιπὰ ὁμοίως ἀναγράφει : τὴν δὲ κεφαλὴν τοῦ Ὀφιούχου γράφει ἀνατέλλουσαν καὶ τὴν ἀριστερὰν μόνον χεῖρα : . . . | ||
τοῦ Καρκίνου , ὁ Ἄρατος θεωρῶν τὴν κεφαλὴν τοῦ Λέοντος ἀνατέλλουσαν καὶ ὑπολαμβάνων τὸ κατὰ τὸν Λέοντα δωδεκατημόριον ἀναφέρεσθαι , |
, εὔδηλον . Τῆς δὲ ὁμοίας χάριτος ἔχεται καὶ ἡ παρονομασία , ὅταν παρὰ τὸ προκείμενον ἕτερον ὄνομα ἐμφερὲς τεθῇ | ||
ταῦτα : ἀλληγορία , μετάθεσις , ἀναστροφή , μετάληψις , παρονομασία , κλῖμαξ , ἐπαναφορά , ἀντιστροφή , ἐπιμονή , |
ἐπιθύουσι , παρ ' Ὁμήρῳ δὲ τέθειται καὶ ἐπὶ τῆς βάσεως , ἀπὸ τοῦ βεβηκέναι . Ἠὼς , λαμβάνεται παρ | ||
: ὑψηλοῖς , μεγάλοις , παχυτάτοις , τοῖς λειπομένοις τῆς βάσεως . ὀψέ : μόλις , ἀργῶς . Πάντεσσιν : |
καὶ τῆς ΕΜ , τὸ ἀπὸ ΛΜ πρὸς τὸ ὑπὸ ΛΜΡ . καὶ ἐναλλάξ , ὡς τὸ ὑπὸ συναμφοτέρου τῆς | ||
ΜΕ πρὸς τὸ ὑπὸ ΛΜΡ . ἴσον δὲ τὸ ὑπὸ ΛΜΡ τῷ ὑπὸ τῆς ΜΕ καὶ συναμφοτέρου τῆς ΜΞ , |
ἐστὶν ἡ διὰ τῶν Η Μ Κ : τοῦτο γὰρ προδέδεικται . ιγʹ . Ἀλλὰ δὴ μὴ ἔστωσαν αἱ ΑΒ | ||
ΕΑ , ἐλαχίστη δὲ ἡ ΑΖ : ταῦτα γὰρ ἅπαντα προδέδεικται . ἡ ΕΑ ἄρα πρὸς τὴν ΑΖ μείζονα λόγον |
καὶ ἐὰν μὲν ὁ λόγος ᾖ ἴσος πρὸς ἴσον , παραβολῆς , ἐὰν δὲ ἐλάσσων πρὸς μείζονα , ἐλλείψεως , | ||
ΓΔ τῇ ΔΕ . δεῖξαι , ὅτι τὸ Δ ἅπτεται παραβολῆς . ἤχθω κάθετος ἡ ΓΖ : θέσει ἄρα ἐστί |
τὴν τρίτην ἡμέραν ϲπληνίῳ ἀπὸ τοῦ μεϲοφρύου ἄχρι τοῦ μήλου κατειλήφθω τοῦτο τῆϲ ῥινὸϲ τὸ ἐμπεφραγμένον μέροϲ τῶν διαφορεῖν ἐπαγγελλομένων | ||
τῇ τῶν πραγμάτων κρίσει , τῇ μηδέπω κατειλημμένῃ . ἀλλὰ κατειλήφθω ἡ διάνοια , καὶ ὡμολογήσθω τὸ εἶναι ταύτην καθ |
σε πρῶτον , οὐχὶ καὶ οἱ ἀστέρες ἄρτιοί εἰσιν ; ἠρώτηκα δὲ τί σε πρῶτον : οὐκ ἄρα οἱ ἀστέρες | ||
ἐρωτηθῆναι τὸ ἀποφατικὸν τῆς συμπλοκῆς , τῆς προσλήψεως ἀληθοῦς γενομένης ἠρώτηκα δέ τί σε πρῶτον , διὰ τὸ ἠρωτῆσθαι πρὸ |
[ τῶν ] ΔΩ , ΩΒ , ἀναγραφομένου ἀπὸ τῆς ΒΩ τετραγώνου καὶ συμπληρουμένου τοῦ ἐπὶ τῆς ΩΔ παραλληλογράμμου καὶ | ||
Ω ἀρξάμενον ἀπὸ τοῦ Ξ τὴν ΞΩ διέρχεται , ἡ ΒΩ δύνει : ἐν ᾧ δὲ τὸ Ψ τὴν ΟΨ |
νοήσωμεν μεσημβρινὸν κύκλον τὸν ΑΒΓΔ καὶ ζῳδιακοῦ μὲν ἡμικύκλιον τὸ ΑΕΖΓ , ὁρίζοντος δὲ τὸ ΒΕΔ περὶ πόλον τὸ Η | ||
διαστήματι δὲ ὁποτερῳοῦν τῶν ΒΑ , ΒΓ γεγράφθω κύκλος ὁ ΑΕΖΓ , καὶ ἐκβεβλήσθωσαν αἱ ΑΒΕ , ΑΔΖ , ΑΗΘ |
ἔχουσαι τὴν πιναράν τε καὶ ἄκοσμον ἐσθῆτα καὶ τὰς ἄλλας παραλαβοῦσαι γυναῖκας καὶ τὰ τέκνα ἐπαγόμεναι βαδίζωμεν ἐπὶ τὴν Οὐετουρίας | ||
ἄγουσαι τὰ παιδία μετὰ λαμπάδων ἧκον ἐπὶ τὴν οἰκίαν καὶ παραλαβοῦσαι τὴν Οὐετουρίαν προῆγον ἐπὶ τὰς πύλας : οἱ δ |
καλεομένου καὶ Κοινύρων , ἀντίον δὲ Σαμοθρηίκης , ὄρος μέγα ἀνεστραμμένον ἐν τῇ ζητήσι . Τοῦτο μέν νύν ἐστι τοιοῦτο | ||
τρίτη ὑπερβολαίων : υ κάτω νεῦον καὶ ἡμίαλφα ⋏ ἀριστερὸν ἀνεστραμμένον # ὑπερβολαίων διάτονος : μῦ καὶ πῖ καθειλκυ - |
ἡ ΖΝ ١ ٢٦ ٤١ ٤٠ ٣٢ Τὸ ΓΕ ٥ ٥١ ١٨ ١٢ ἡ ΒΗ ١ ٤٤ ٣٠ ἡ ΑΒ | ||
. ٥ ٢٨ ٣٨ ἡ πλευρὰ τοῦ ΕΓ ٢ ٥٤ ٥١ τὸ ΒΓ τὸ καὶ μέσον ٢٤ ٢٩ ٣٧ ٤٨ |
ὁ Ε : καὶ ὁ μὲν ΓΔ τὸν ΒΖ μετρῶν λειπέτω ἑαυτοῦ ἐλάσσονα τὸν ΖΑ , ὁ δὲ ΑΖ τὸν | ||
ἐλάσσονα τὸν ΗΓ , ὁ δὲ ΗΓ τὸν ΖΘ μετρῶν λειπέτω μονάδα τὴν ΘΑ . Ἐπεὶ οὖν ὁ Ε τὸν |
ἴσας γωνίας : ὅμοιον ἄρα ἐστὶν τὸ ΑΓΗ τρίγωνον τῷ ΔΖΘ τριγώνῳ . ηʹ . Διὰ μὲν οὖν τοῦ συνημμένου | ||
ἴσας γωνίας : ὅμοιον ἄρα ἐστὶν τὸ ΑΓΗ τρίγωνον τῷ ΔΖΘ τριγώνῳ . Ὁμοίως καὶ τὸ ΑΗΒ τῷ ΔΘΕ , |
εὐθείας κέντροις τοῖς πέρασιν αὐτῆς , διαστήματι δὲ τῇ ἀγομένῃ καθέτῳ ἀπὸ τῆς διχοτομίας αὐτῆς ἐπὶ τὴν παράλληλον αὐτῇ πλευρὰν | ||
ὅπερ ἄτοπον . Ἐδείχθη γὰρ ἡ ΘΚ κάθετος τῇ ΜΝ καθέτῳ ἴση , αἵτινες κάθετοι ἤχθησαν ἀπὸ τῶν ἐπισταθεισῶν μετεώρων |
, ἐνεργείᾳ δὲ λίθον εἶναι , καὶ τὸ ἥμισυ τῆς γραμμῆς δυνάμει τελείαν γραμμήν , καὶ σῖτον δυνάμει ἁδρὸν τὸν | ||
καὶ ἐπὶ τῶν γεγονότων : ὡς γὰρ ἡ στιγμὴ πέρας γραμμῆς , οὕτω τὸ γεγονὸς πέρας ἐστὶ τῆς γενέσεως . |
συμπληροῖ ἑαυτό : τὸ γάρ τινος συμπληρωτικὸν ἔλασσόν ἐστι τοῦ συμπληρουμένου . οὐ πάνυ δὲ ταῦτα πιθανά : οὐκ ἄρα | ||
μοιρῶν τῆς ἀναφορᾶς πληρουμένης ἢ καὶ ἕως ἑτέρου τετραγώνου ἢ συμπληρουμένου παντὸς τοῦ κύκλου , εἰ δὲ καὶ ἀκάκωτα τύχῃ |
ἐλλείψεων . Κείσθω πάλιν ἡ καταγραφὴ τοῦ κώνου , καὶ ἐκβληθείσης τῆς ΓΒ ἐπὶ θάτερα δέον ἔστω ἀπ ' ἀμφοτέρων | ||
ζῳδιακοῦ ἐπεζεύχθωσαν αἱ ΑΔ καὶ ΒΔ καὶ ΓΔ , καὶ ἐκβληθείσης τῆς ΓΔΕ ἐπεζεύχθωσαν αἱ ΑΕ καὶ ΕΒ καὶ ΑΒ |
ὅλη ἄρα ἡ ὑπὸ ΛΘΚ μείζων τῆς ὑπὸ ΓΒΔ . Παραλληλόγραμμόν ἐστι . , ] ἀλλὰ καὶ ἴσον τῷ ΓΖ | ||
ὅλη ἄρα ἡ ὑπὸ ΛΘΚ μείζων τῆς ὑπὸ ΓΒΔ . Παραλληλόγραμμόν ἐστι . , ] ἀλλὰ καὶ ἴσον τῷ ΓΖ |
τὴν ΑΖ , τῇ δὲ Δ τὴν ΖΗ , καὶ ἐπιζεύξας τὴν ΒΗ ταύτῃ παράλληλον ἤγαγον τὴν ΖΘ . ἐπεὶ | ||
. εἰ δ ' ἀρεταί : ὅτι ἀρεταὶ κατάκειται εἴρηκεν ἐπιζεύξας πληθυντικῷ ἑνικὸν ῥῆμα τὸ κατάκειται . καὶ ὅτι ὀργὰν |
τῆς Α , ἴσον παρὰ τὴν ΒΓ παραβεβλήσθω ἐλλεῖπον εἴδει τετραγώ - νῳ , καὶ ἔστω τὸ ὑπὸ τῶν ΒΔ | ||
τετραγώνισον τὸν κζ , εἶτα λαβὲ τὴν πλευρὰν τοῦ γεγονότος τετραγώ - νου ἀπὸ τοῦ κζ , εἶτα ἀναβίβασον αὐτὴν |
, οὐκ αὐτόθεν τοῦτο προτείνομεν , ἀλλὰ πλαγίως οὕτω καὶ παραβολικῶς ἐρωτῶμεν , καὶ οὐ δι ' αὐτὸ ἀλλ ' | ||
ἄκρον τὸ ἐντεθει - μένον τῇ χοινικίδι χνόη καλεῖται . παραβολικῶς οὖν τὸ συνεχὲς κίνημα τῶν ποδῶν χνόην εἴρηκεν . |