παραλληλεπίπεδον πρὸς τὸ ἀπὸ τῆς δευτέρας τὸ ὅμοιον καὶ ὁμοίως ἀναγραφόμενον , ἐπείπερ καὶ ἡ πρώτη πρὸς τὴν τετάρτην τριπλασίονα
πρώτης πρὸς τὸ ἀπὸ τῆς δευτέρας τὸ ὅμοιον καὶ ὁμοίως ἀναγραφόμενον . ἀλλ ' ὡς ἡ Α πρὸς τὴν Ζ
5445874 ΛΗΚ
πρὸς τὴν ΗΚ . ὅμοια ἄρα ἐστὶ τὰ ΑΖΒ , ΛΗΚ τρίγωνα , ὡς δέδεικται ἐν τῷ ἕκτῳ θεωρήματι τοῦ
ΒΜΘ , ἡ δὲ ΒΜΘ τῆς ΛΗΚ , ἡ δὲ ΛΗΚ τῆς ΓΕ , ἐν πλείονι ἄρα χρόνῳ τὸ Α
4953145 ΚΒΟΣ
καὶ παράλληλοί εἰσιν διὰ τὸ λγʹ τοῦ αʹ . τὸ ΚΒΟΣ ἄρα τετράπλευρον . , . ] τετράπλευρόν ἐστιν ,
κύκλος . Ἤχθω ἀπὸ τοῦ Α σημείου ἐπὶ τὸ τοῦ ΚΒΟΣ τετραπλεύρου ἐπίπεδον κάθετος ἡ ΑΨ καὶ συμβαλλέτω τῷ ἐπιπέδῳ
4945563 ἀναστησωμεν
τὴν ΔΑΓ καὶ διὰ τοῦ Α τῇ ΔΓ πρὸς ὀρθὴν ἀναστήσωμεν τὴν ΑΒ , δηλαδὴ ἴσης μενούσης τῆς μὲν ΔΑ
, ΓΔ , ΔΑ παραλληλόγραμμα , καὶ ἀπ ' αὐτῶν ἀναστήσωμεν στερεὰ παραλληλεπίπεδα ἰσοϋψῆ τῷ κυλίνδρῳ , ἑκάστου τῶν ἀνασταθέντων
4875504 ἑτερομηκει
, ἐὰν πρὸς πάσας τὰς ἐπιφανείας πᾶς ὁπλίτης παρατάσσηται ἐν ἑτερομήκει σχήματι : πλινθίον δέ , ἐὰν ἴσαις ταῖς φάλαγξι
τὸ γοῦν ἀπὸ ταύτης ἀναγραφὲν τετράγωνον ἴσον ἔσται τῷ προρρηθέντι ἑτερομήκει . δὶς γὰρ ηʹ ιϚʹ : οὕτω γὰρ ἐκείνῳ
4829269 διαγωνιον
πλευρῶν , καὶ τὸ ἐμβαδὸν εἰς ἴσα διαιρεῖται κατὰ τὴν διαγώνιον διὰ τὴν κοινὴν ἰδιότητα τῶν παραλληλογράμμων . ἐπὶ δὲ
βάσιν τέμῃ ἐκ τῆς κορυφῆς δίχα κατὰ τὴν τοῦ τετραγώνου διαγώνιον τὴν ἀπὸ τῆς ὀρθῆς , ἔσονται δύο στερεαὶ πυραμίδες
4707985 ἀναγραφομενοις
ὀρθὴν γωνίαν περιεχουσῶν πλευρῶν εἴδεσι τοῖς ὁμοίοις τε καὶ ὁμοίως ἀναγραφομένοις . Ἔστω τρίγωνον ὀρθογώνιον τὸ ΑΒΓ ὀρθὴν ἔχον τὴν
, γενήσονται τξε . ἐπεὶ οὖν τοῖς δυσὶ τετραγώνοις τοῖς ἀναγραφομένοις ἀπὸ τῶν ΓΒ , ΒΑ τῶν περιεχουσῶν τὴν πρὸς
4700060 ἐπιζευξαντες
ἐφ ' ἑαυτόν , οὑτωσὶ καὶ τὸ τρίγωνον , ἀλλαχόθεν ἐπιζεύξαντες ἐπὶ τὰ πέρατα τῆς εὐθείας συγκροτοῦμεν ἐκ τούτων ἓν
ὑφ ' ἣν ὑποτείνει ἡ τοῦ τετραγώνου πλευρά , καὶ ἐπιζεύξαντες καὶ τὰ αὐτὰ τοῖς πρότερον κατασκευάσαντες δείξομεν τὸν διὰ
4627328 ΛΥ
δοθὲν ἄρα καὶ τὸ ὑπὸ ΛΥΦ : καὶ δοθέντα τὰ ΛΥ : δοθὲν ἄρα τὸ Φ : ἀπῆκται οὖν εἰς
ΛΖ βάσις τῇ ΝΖ βάσει , ἴσον ἐστὶ καὶ τὸ ΛΥ στερεὸν τῷ ΝΥ στερεῷ , καὶ εἰ ὑπερέχει ἡ
4581253 νητης
ὁ παραστάτης πρότερός ἐστι τοῦ τριτοστάτου καὶ ἡ παρανήτη τῆς νήτης , ἐπειδὴ τὸ μὲν πλησιαίτερόν ἐστι τῷ κορυφαίῳ ,
βαρυτέρα τῆς νήτης διεζευγμένων . τοῦ δ ' ἀπὸ τῆς νήτης ἕως τῆς τελευτῆς τὸ ὄγδοον λαβόντες καὶ ὑπερβιβάσαντες ἕξομεν
4577893 κωνικην
τὴν ] ὀρθὴν γωνίαν εὐθείας περιστρεφόμενον τὸ τρίγωνον ποιεῖ τὴν κωνικὴν ἐπιφάνειαν ἡ ΘΛ [ ἀπὸ τοῦ ] Θ τῆς
ἄπειρον αὔξεται τῆς γραφούσης εὐθείας εἰς ἄπειρον προσεκβαλλομένης , καλῶ κωνικὴν ἐπιφάνειαν , κορυφὴν δὲ αὐτῆς τὸ μεμενηκὸς σημεῖον ,
4565018 ἑπτακαιδεκαποδος
οὖν τὸ κατὰ τὰς δυνάμεις , μουσικὸν δὲ τὸ τῆς ἑπτακαιδεκάποδος . οὗτος γὰρ ὁ ὅρος ἐνέχει ? [ -
τῆι ποδιαίαι καὶ οὕτω κατὰ μίαν ἑκάστην προαιρούμενος μέχρι τῆς ἑπτακαιδεκάποδος . ὅσαι μὲν γραμμαὶ τὸν ἰσόπλευρον καὶ ἐπίπεδον ἀριθμὸν
4555413 περιεχεσθω
καλουμένη ἐκ δύο μέσων δευτέρα . Χωρίον γὰρ τὸ ΑΒΓΔ περιεχέσθω ὑπὸ ῥητῆς τῆς ΑΒ καὶ τῆς ἐκ δύο ὀνομάτων
παραλληλόγραμμά ἐστιν . Στερεὸν γὰρ τὸ ΓΔΘΗ ὑπὸ παραλλήλων ἐπιπέδων περιεχέσθω τῶν ΑΓ , ΗΖ , ΑΘ , ΔΖ ,
4505083 ΙΕ
] ! ΟΤΙΠΑ ? ? ! φυσε [ ] ! ΙΕ [ ! ] ΕΙΑ ? [ ] ΤΑΥ !
ἢ καταπαυομένοις ἢ τὸ ποθεινότατον ; ΑΘΗΝΑΙΟΥ ΝΑΥΚΡΑΤΙΤΟΥ ΔΕΙΠΝΟΣΟΦΙΣΤΩΝ ⋮ ΙΕ ⋮ Δωρίδος ἐκ μητρὸς Φοίβου κοινώμασι βλαστών . χαῖρε
4493311 ἀχθεισης
, τοὺς βουλευτὰς ᾐτησάμην . καὶ τοίνυν διοικήσεως νῦν πρῶτον ἀχθείσης πολλὰ ὑπὸ πολλῶν ἠδικημένος , ὥσπερ εἰκός ἐστι τὸν
τοῦ ἐκκέντρου πηλικότησιν . κατὰ ταὐτὰ δὲ καὶ ἐνθάδε καθέτου ἀχθείσης ἐπὶ τὴν ΔΒ τῆς ΑΛ , ἐάν τε τὴν
4483733 δευτερας
τῆς πρώτης κλίμακος ἐσχάτων δυοῖν βαθμῶν τοῖς τόποις τῶν τῆς δευτέρας ἵνα περονῶνται σιδηραῖς ἢ ξυλίναις περόναις : τὰ δὲ
ἐπὶ Τυδέως καὶ Πολυνείκους τὸ σφωιτέρην ὀϊζύν καὶ διὰ τῆς δευτέρας ἐπὶ Ἐτεοκλέους καὶ Πολυνείκους τὸ σφωίτερον μῦθον , ἑαυτοῖς
4475489 ͵γχ
λεπτὰ μὲν πρῶτα ξ , δεύτερα δὲ κατ ' ἐπιδιαίρεσιν ͵γχ : εἶτα μείζονος ἀκριβείας δεηθέντες διὰ τὸ ἐν τοῖς
παραδείγματος ἀστείου καὶ εἰσαγωγῆς ἕνεκεν ἕως δευτέρων λεπτῶν τουτέστιν ἕως ͵γχ διαιρεῖσθαι τὴν μονάδα ἤτοι τὸν πόδα : τοῦτο γὰρ
4454466 ἀρκτικωτατη
μοίρας νγʹ ∠ ʹʹ νʹ γʹʹ ἡ δὲ πηγὴ ἡ ἀρκτικωτάτη τοῦ Βορυσθένους ποταμοῦ νβʹ νγʹ Καὶ τῶν ὑπὸ τὸν
Σκῦρος νῆσος καὶ πόλις νδʹ λθʹ Τῆς Ἠπείρου ἡ μὲν ἀρκτικωτάτη πλευρὰ διορίζεται τῷ τῆς Μακεδονίας μέρει κατὰ τὴν εἰρημένην
4428525 ٥٥
ἡ ΔΗ ١٠ ١٨ ٥ ٤٠ ἡ ΑΗ ١٣ ٤٥ ٥٥ ٤٠ ἡ ἡμίσεια τῆς ΑΗ ٦ ٥٢ ٥٨ ٥٠
١ τὸ δὶς ὑπὸ τῶν ΑΒ , ΒΓ ١٣ ١٩ ٥٥ ٢٣ ٨ τὸ ἀπὸ τῆς ΒΓ ٤ ٥٨ ٠
4352876 ٣٤
τὸ ΑΒ ١ ١٩ ٢١ ἡ ΑΖ ٦ ٥٣ ١١ ٣٤ ἡ ΖΗ ٣ ٥١ ٩ ٦ Ἠπορήθη τῷ πρὸς
١٢ ١٥ τὸ ὑπὸ τῶν ΑΒ , ΒΖ ٢ ٤٧ ٣٤ ٤٣ ٣ ἡ ΔΒ ١ ٤ ١٦ ἡ ΒΕ
4344174 μεταπεσειται
μὲν πληγεὶς ἰαθήσεται , εἰς δὲ τὸν ὄνον ἡ ὀδύνη μεταπεσεῖται . ἔχει δὲ καὶ ἄλλας πράξεις . Ὄνοι οἱ
ΑΔ . εἰ γὰρ μή , μένοντος τοῦ Α σημείου μεταπεσεῖται τῆς ΑΔ ἡ θέσις διατηροῦσα τῆς ὑπὸ ΑΔΓ γωνίας
4335188 ΙΝ
: ἀσπίς ῥανίς κρηπίς κνημίς ἁψίς . Εἰ δὲ εἰς ΙΝ ἔχουσι τὴν αἰτιατικὴν , περισπῶνται : Βενδῖς Μολῖς Τοτῖς
λοιπὴ ἡ ΙΝ ἑνός : τριπλῆ ἄρα ἡ ΛΙ τῆς ΙΝ : λέγω οὖν ὅτι δώδεκα τὰ ἀπὸ ΟΝ μείζονά
4330701 διαμετρου
, ΑΖ μιᾷ σεληνιακῇ διαμέτρῳ καὶ τῷ τετάρτῳ μέρει τῆς διαμέτρου . Ἑκατέρας δὲ τῶν ΑΓ καὶ ΑΕ δʹ μέρει
τουτέστιν οὔτε τῶν ἐπὶ τῆς διαμέτρου οὔτε τῶν ἐκτὸς τῆς διαμέτρου . ἔστω κοῖλον ἔνοπτρον τὸ ΑΓΔ , διάμετρος δὲ
4313679 πολιτις
βασιλέως γενόμενον ἀσέβημα περὶ τὴν ἀκρόπολιν τῶν Ἀθηναίων μία γυνὴ πολῖτις τῶν ἀδικηθέντων ἐν παιδιᾷ πολλοῖς ὕστερον ἔτεσι μετῆλθε τοῖς
τὸ παρασιωπώμενον , ὡς Δημοσθένης , ᾧ μήτηρ μὲν ὑπῆρχε πολῖτις , πατὴρ δὲ οὐκ ἐρῶ πόθεν . οὐδὲν γὰρ
4283864 συνθετωτερων
τὸ ἓν τῶν πολλῶν φύσει προέστηκεν καὶ τὸ ἁπλούστατον τῶν συνθετωτέρων ὁπωσοῦν , καὶ τὸ περιεκτικώτατον τῶν εἴσω περιεχομένων :
ἐστιν αὐτῶν ἁπλούστερα τὰ δὲ συνθετώτερα : καὶ τῶν μὲν συνθετωτέρων οὐδὲν ἄνευ τῶν ἁπλουστέρων εἶναι δύναται , ὥσπερ οὐδὲ
4263049 ἡμιμοιριον
σμύρνα , σίδιον αὖον . Ἕτερον : ἄνθος χαλκοῦ ὀπτὸν ἡμιμοίριον , σμύρνης δύο ἡμιμοίρια , κρόκου τρεῖς μοῖραι ,
κατήντησεν . ἡ μεταφορὰ ἀπὸ τῶν καθορμιζομένων πλοίων εἴρηται . ἡμιμοίριον : τὸ ἥμισυ τῆς δραγμῆς . ἠρύγγη , πόλιον
4250340 μετρησεως
, τοῦτ ' αὐτὸ τὸ νῦν λεχθὲν ὂν τυγχάνει . μετρήσεως μὲν γὰρ δή τινα τρόπον πάνθ ' ὁπόσα ἔντεχνα
δὲ τὸν θεὸν λάβοι Τῆς τῶν μαρμάρων τε καὶ ξύλων μετρήσεως ἀναγκαίας οὔσης πρῶτον ὑποθέμενοι τὴν τῶν πηχῶν διαφορὰν ἑξῆς
4194710 ΦΑ
ἐστιν ἴση : ἔστιν ἄρα ὡς ἡ ΒΦ πρὸς τὴν ΦΑ , οὕτως ἡ ΚΧ πρὸς τὴν ΧΑ : παράλληλος
ὡς δὲ τὸ ΜΘ πρὸς ΘΑ , ἡ ΜΦ πρὸς ΦΑ , τουτέστιν ἡ ΖΛ πρὸς ΛΑ : καὶ ὡς
4171801 γραφησονται
ἄγραφον , οἷον : καὶ ἐπὶ τὸ βυβλίον σου πάντες γραφήσονται : δῆλον , ὅτι ἄγραφον . βιβλίον δὲ τὸ
τὸ ἄγραφον , οἷον καὶ ἐπὶ τὸ βυβλίον σου πάντες γραφήσονται : βιβλίον τὸ γεγραμμένον . βοτάνη ἡ βοσκομένη ,
4142756 Οἰταιας
λέγεται καὶ Οἰνειάς ἡ χώρα . ἔστι καὶ ἑτέρα τῆς Οἰταίας πόλις Οἰνειάδαι . Οἰνεών , Λοκρίδος λιμήν . Θουκυδίδης
γῆν ἣν νῦν Θετταλίαν προσαγορεύομεν , προσλαβών τινα καὶ τῆς Οἰταίας καὶ τῆς Λοκρικῆς , ὡς δ ' αὕτως καὶ
4140735 ٣٦
٢٠ τὸ ΛΜ ١١٧ ٣٥ ٤٧ ٢٠ τὸ ΝΞ ٣ ٣٦ ٣٥ ٢٠ ὑπὸ ῥητῆς . , ] ταύτης δηλονότι
٤٢ Ἡ πλευρὰ τοῦ ΕΓ ٥ ٤٢ ١٤ τὸ ΒΓ ٣٦ ἡ ΖΗ ٤ τὸ ΕΓ ٣٢ ٣٢ ٩ ٥٢
4135572 συμπεπλεγμενης
τῆς ἀποδείξεως χρησόμεθα διὰ τὸ ταύτην μὲν ἄνευ τῆς πρώτης συμπεπλεγμένης γε αὐτῇ πάντοτε μηδαμῶς εὑρεθῆναι δύνασθαι , ἐκείνην δὲ
ὡς δηλοῖ αὐτῶν ἡ κατὰ τόπον μετάβασις , ἀεὶ μέντοι συμπεπλεγμένης πρὸς τὴν ἐνέργειαν : ὅπερ γὰρ καὶ προσφυῶς ἀνεφθέγξατο
4134151 συσταθησεται
Λέγω δή , ὅτι παρὰ τὰ εἰρημένα πέντε σχήματα οὐ συσταθήσεται ἕτερον σχῆμα περιεχόμενον ὑπὸ ἰσοπλεύρων τε καὶ ἰσογωνίων ἴσων
ἐπὶ τῆς αὐτῆς εὐθείας δύο τμήματα κύκλων ὅμοια καὶ ἄνισα συσταθήσεται ἐπὶ τὰ αὐτὰ μέρη : ὅπερ ἔδει δεῖξαι .
4124799 ὀλμον
ὄλμου ἐμνημόνευσε : δεῖ γὰρ πρῶτον τῆς τροφῆς ἐπιμελεῖσθαι . ὄλμον : ὄλμος δὲ ἐκλήθη διὰ τὸ ὀλλύειν καὶ διαφθείρειν
ἁψῖδος : ἐξ ὧν πλειόνων οὐσῶν ἡ ἁψὶς γέγονεν . ὄλμον : πρώτου τοῦ ὄλμου ἐμνημόνευσε : δεῖ γὰρ πρῶτον
4101679 ὁρισθηναι
' ἀλλήλων , μᾶλλον δὲ ἀδυνάτως ἔχουσι κατὰ τὸ ἀκριβὲς ὁρισθῆναι αἱ τῶν ζῳδίων μοῖραι , ἀλλ ' εἰκός ἐστιν
εἰδέναι τὰς διαφοράς , ἃς ἔχει τὸ προκείμενον εἰς τὸ ὁρισθῆναι πρὸς ἕκαστον τῶν παρ ' αὐτὸ ὄντων ἄνευ τοῦ
4099702 ἐπιτηδευεσθω
ἐπὶ δὲ πλευρῶν καὶ στέρνου τὸ εἶδος τῆς διαιρέσεως ἐπικάρσιον ἐπιτηδευέσθω : ταύτῃ γὰρ καὶ αἱ πλευραὶ πεφύκασιν : ὁμοίως
ὀσμῆς καὶ μὴ διεξιόντος τοῦ πταρμοῦ , ἀνάπαυσις τοῦ τραχήλου ἐπιτηδευέσθω καὶ συνεχὴς τῶν δριμειῶν ὀσμῶν πεῖρα καὶ ἄνεσις τῆς
4089038 ῥητης
καὶ μέσον δυναμένη . Χωρίον γὰρ τὸ ΑΓ περιεχέσθω ὑπὸ ῥητῆς τῆς ΑΒ καὶ τῆς ἐκ δύο ὀνομάτων πέμπτης τῆς
Ὅτι ἐπειδὴ ἀδύνατον ῥητὴν εἶναι τὴν διάμετρον τῆς πλευρᾶς οὔσης ῥητῆς , ἐπενόησαν οὕτω λέγειν οἱ Πυθαγόρειοι καὶ Πλάτων ,
4086493 ξον
] τὴν ΑΔ οὖσαν μοῖραν α , ἐπὶ τὸ ἓν ξον , λέγω δὴ τὴν ΑΞ , ἔσται τὸ πρῶτον
, ΣΥ ξξα πρῶτα : ἐὰν δὴ πολλαπλασιάσω τὸ πρῶτον ξον τὸ ΑΞ ἐπὶ τὸ πρῶτον τὸ ΑΣ , ἔσται
4072446 ὑπερβιβασαντες
. ἐκομίζοντο ἐπ ' οἴκου : ἐπεραιοῦντο . ὑπερενεγκόντες : ὑπερβιβάσαντες . ʃ τὸ ἔργον ἡρωϊκόν φ ὅπως μὴ περιπλέοντες
δὲ τοῦ ἀπὸ ταύτης ἕως τῆς τελευτῆς διαστήματος τὸ ὄγδοον ὑπερβιβάσαντες ἕξομεν τὴν τρίτην συνημμένων τόνῳ βαρυτέραν . τὸ δὲ
4065031 γεγονετω
τὸ ἔλασσον ἢ ἐν λόγῳ δοθέντι . Ὁ αὐτὸς αὐτῷ γεγονέτω . , ] σχόλιον εἰς τὸ ιαʹ θεώρημα ̅
, ΕΒ ἄρα μέσαι εἰσὶ δυνάμει μόνον σύμμετροι . καὶ γεγονέτω ὡς ἡ ΑΒ πρὸς ΓΔ , ἡ ΑΕ πρὸς
4056284 ἐγκλισεως
, ἐξείπω . . Ἐμοί γε μὴν δοκεῖ τὰ τῆς ἐγκλίσεως ἐπιτεταράχθαι , ἐπεὶ σχεδὸν ἐγκλίσεις δύο συνωθοῦσιν εἰς μίαν
ὑποτακτικὸν ἄληται ὡς λάβηται . συστολῇ οὖν ἐγένετο ἢ μεταβολῇ ἐγκλίσεως , ὁμοίως τῷ ” ἐπεὶ ἄρ κεν ἀμείψεται ἕρκος
4045654 ΑΛΛΩΣ
μεῖζόν ἐστιν : ὅπερ ἔδει δεῖξαι . Ϛʹ , λʹ ΑΛΛΩΣ Ἔστω ἡ δοθεῖσα εὐθεῖα ἡ ΑΒ . δεῖ δὴ
ΚΟΤΕΕΙ . Ζηλοῖ , ὀργίζεται , φθονεῖ , βασκαίνει . ΑΛΛΩΣ . Προτρέπεται πρὸς γεωργίαν διὰ τοῦτο . Ἐν γὰρ
4030943 πυραμιδος
οὕτως ἡ ΑΒΓΗ πυραμὶς ἤτοι πρὸς ἔλασσόν τι τῆς ΔΕΖΘ πυραμίδος στερεὸν ἢ πρὸς μεῖζον . ἔστω πρότερον πρὸς ἔλασσον
ἀπὸ δὲ τοῦ Θ ἐπὶ τὸ ΗΕΚΛ . Ἔστω βάσις πυραμίδος τρίγωνον τὸ ΑΒΓ , καὶ τετμήσθω ἡ μὲν ΑΒ
4014614 τετραγωνισαι
, ὡς ἐν τοῖς Ἀποδεικτικοῖς αὐτὸς ἡμᾶς ἐδίδαξε . καὶ τετραγωνίσαι παραλληλόγραμμον ὀρθογώνιον οὐδὲν ἦν ἄλλο ἢ τῆς μέσης εὕρεσις
ὅρος τοῦτο , ἀποδείξις δὲ ὁ αὐτὸς οὕτως : ὁ τετραγωνίσαι βουλόμενος μέσην ἀνάλογον ζητεῖ εὑρεῖν : ἡ μέση εὑρεθεῖσα
4011305 ΗΙ
τὰ οὖν ΗΘ ΘΙ τμήματα ἐλάττω ἐστὶ τοῦ περὶ τὴν ΗΙ τμήματος τοῖς τμήμασι [ καὶ ] τοῖς ὑπὸ τοῦ
τμήμασιν ἀπὸ τοῦ ἐντὸς κύκλου . τὸ γὰρ ἐπὶ τῆς ΗΙ τμῆμα ἴσον ἦν τοῖς τε ΗΘ ΘΙ τμήμασι καὶ
3995991 καταγραφης
ἐπικύκλου ε ιγ ἔγγιστα . ἤχθω δὴ ἐπὶ τῆς ὁμοίας καταγραφῆς ἀπὸ τοῦ Κ κέντρου κάθετος ἐπὶ τὴν ΒΕ ἡ
ὕστερόν ἐστι βραχυτέρα . Ἔστω γὰρ ὡς ἐπὶ τῆς δευτέρας καταγραφῆς , καὶ τῶν αὐτῶν ὑποκειμένων ὁ ἥλιος ἔν τινι
3994750 εὐθυγραμμων
τῶι δὲ τετράγωνον , τῶι δὲ ἄλλο καὶ ἄλλο τῶν εὐθυγράμμων [ τῶν ] σχημάτων , ὣς δὲ καὶ μικτῶν
κατασκευὴν τοῦ μζʹ . ἰστέον δέ , ὅτι τῶν ἀρίστων εὐθυγράμμων δύο τοῦ ἰσοπλεύρου τριγώνου καὶ ἰσοπλεύρου τετραγώνου γενέσεις παραδέδωκεν
3980864 προσφορου
πολυχρόνιον . εἰ τύχῃ δὲ ἀπολειπόμενός τις τῶν ἀστέρων τῆς προσφόρου μαρτυρίας τὸ ἐνδεὲς περὶ τὴν πόλιν ἐσόμενον ἐντεῦθεν συνοραθήσεται
. ἢν τύχῃ δ ' ἀπολειπόμενός τις τῶν ἀστέρων τῆς προσφόρου μαρτυρίας , τὸ ἐνδεὲς περὶ τὴν πόλιν ἐσόμενον ἐντεῦθεν
3973586 ΗΕ͵
ὡς μὲν τὴν ΔΗ πρὸς τὴν ΗΕ͵ , οὕτως τὴν ΗΕ͵ πρὸς ΗΖ͵ , καὶ τὴν ΗΖ͵ πρὸς τὴν ΗϠ
Ζ͵ , ὥστε εἶναι ὡς μὲν τὴν ΔΗ πρὸς τὴν ΗΕ͵ , οὕτως τὴν ΗΕ͵ πρὸς ΗΖ͵ , καὶ τὴν
3964379 στεφανιαια
δὲ λοξὴ , ὡς τὰ ὀνόματα σημαίνει : ἄλλη δὲ στεφανιαία , ἡ δὲ μετωπιαία , ἡ δὲ παρείας ,
ὀστᾶ . ῥαφαὶ δὲ εὑρίσκονται ἐπὶ τῶν πλείστων πέντε . στεφανιαία ἡ διὰ τοῦ βρέγματος . ὀβολιαία ἡ διὰ τῆς
3959563 τραπεζιων
, τῇ δὲ τούτων θεωρίᾳ συνεισφέρει καὶ τὴν περὶ τῶν τραπεζίων διδασκαλίαν : διῄρηται γὰρ τὸ τετράπλευρον εἴς τε τὸ
τὸ δὲ ῥομβοειδὲς πάντων ἔλαττον . πρῶτον δὲ ἐνταῦθα τῶν τραπεζίων ἐμνημόνευσε . περὶ τούτων δὲ ἐν ταῖς ὑποθέσεσιν ἐδίδαξεν
3953743 γραφομενην
ἁπλᾶς , ἀλλὰ καὶ τρίτην ἄλλην τὴν περὶ κύλινδρον ἕλικα γραφομένην : καὶ αὕτη γάρ , φασίν , ὁμοιομερὴς ὥσπερ
ἀρχαὶ ἀπὸ φωνηέντων ἐγίνοντο , τὴν ου συλλαβὴν ἑνὶ στοιχείῳ γραφομένην . τοῦτο δ ' ἦν ὥσπερ γάμμα διτταῖς ἐπὶ
3950040 ١٢
٣ ١٩ ٥٨ ٥٠ ٣٢ τὸ συναμφότερον τῶν ἀπό ٣٢ ١٢ ٤٣ ٥٦ ٥٠ ἡ ΕΜ ٨ ٣ ٤٠ ٥٩
٤ ἡ ΑΒ ٢ ٥٩ ٢٨ ἡ ΓΖ ٢ ١٤ ١٢ ٤ ١٢ ἡ ΒΗ ٢ ١٣ ٤٣ ἡ ΑΗ
3948505 συνεπειας
χαίρειν , περὶ οὗ τῆς συντάξεως καὶ ὅλως τὰ τῆς συνεπείας κατὰ τὸ δέον εἰρήσεται . Ἀλλ ' ὡς πάλιν
' ἔρεθε σχετλίη . αἰρομένων δὲ αὐτῶν , καὶ τῆς συνεπείας γινομένης οὕτως : ὣς φάτο , τῇ δ '
3947637 ἰσοσκελους
τουτέστι τὸ διὰ τοῦ ἄξονος ἰσοσκελὲς τοῦ διὰ τῆς ΑΖ ἰσοσκελοῦς : οὐκ ἄρα τὸ διὰ τοῦ ἄξονος ἰσοσκελὲς μέγιστόν
διὰ τὸ ιεʹ πάλιν Ἀρχιμήδους θεώρημα [ παντὸς γὰρ κώνου ἰσοσκελοῦς ἡ ἐπιφάνεια , χωρὶς τῆς βάσεως , ἴση ἐστὶν
3940358 πενταπλη
διὰ πάντων εἴρηται αὕτη μόνη καὶ δοκεῖ εἶναι τριπλῆ καὶ πενταπλῆ μετάληψις , ἕκαστον γὰρ αὐτῶν δεῖ λυθῆναι τοῖς προειρημένοις
αἱ ΒΓ : ἡ μὲν γὰρ ΒΘ τῆς ΘΓ ἐστι πενταπλῆ , ἡ δὲ ΒΓ τῆς ΓΘ ἐστιν ἑξαπλῆ .
3935918 προεδειχθη
προσλαβὼν τὸν ἕτερον , ποιεῖ τετράγωνον . ταῦτα δὲ λήμματα προεδείχθη καὶ ἔστιν τὸ ὀρθογώνιον γ , δ , ε
ἔχει ὃν ⃞ος ἀριθμὸς πρὸς ⃞ον ἀριθμόν . Τοῦτο δὲ προεδείχθη , καί εἰσιν αἱ πλ . τῶν κύβων ,
3916616 ΘΛΖ
ΒΓ τῇ ΣΛ , καὶ ὅμοιον τὸ ΘΓΒ τρίγωνον τῷ ΘΛΖ , καί ἐστιν , ὡς ἡ ΘΒ πρὸς ΓΒ
ἡ ΣΥ . λέγω , ὅτι τὸ ΣΛΥ τρίγωνον τοῦ ΘΛΖ τριγώνου μεῖζόν ἐστι τῷ ΘΓΒ . ἤχθω γὰρ διὰ
3915189 ΩϹ
ΑΠ [ ] [ ] ΤΩΙΨΗΙΚ [ ] [ ] ΩϹ καὶ Μ [ ] [ ] θανάτω ? [
: ΕΥΦ ! [ ! ] ! ! [ ] ΩϹ ! ! [ ] # ΚΑΡΝΕΙϹΚΟΥ # ΦΙΛΙϹΤΑ Β
3912901 τριπλη
κεφαλαίων αὕτη . Ἐστὶ δὲ πραγματικὴ ἁπλῆ καὶ διπλῆ καὶ τριπλῆ : καὶ ἁπλῆ μὲν , οἷον συμβουλεύει τις βοηθεῖν
ΓΖ . ἐπεὶ οὖν ἡ ΑΓ τῆς μὲν ΒΓ δυνάμει τριπλῆ ἐστιν , τῆς δὲ ΗΖ πενταπλῆ , οἵων ἄρα
3910978 ὀρθογωνιος
τρίγωνον ὀρθογώνιον ὄν : ὥστε καὶ ἡ τοῦ κώνου κορυφὴ ὀρθογώνιός ἐστιν . εἰ δὲ μείζων ἐστὶν ἡ ΒΓ τῆς
κύκλος , ἀλλὰ τεταρτημορίου σφαίρας ἐστὶν ἐπιφάνεια , εἴπερ γε ὀρθογώνιός ἐστιν ὁ τῆς ὄψεως κῶνος ὡς ἐδείξαμεν . ἐπιβάλλομεν
3907366 ρπαʹ
, οὕτω καὶ νῦν εἰς τύχην ἀνάγει τὸν λόγον . ρπαʹ Τέχνῃ λαβεῖν Ἵνα τεχνικῶς τις διέλῃ πρῶτον εἰς δύο
ὁ λόγος ἐστὶ τῆς ΗΖ πρὸς τὴν ΖΘ ὁ τῶν ρπαʹ ∠ ʹʹγʹʹ πρὸς τὰ μϚʹ ∠ ʹʹ καὶ κʹʹ
3902249 ἐπιζητουμενης
, κἀκείνῃ χρησάμενος ἀναλάμβανε τὸ πλῆθος τῶν ἡμερῶν ἕως τῆς ἐπιζητουμένης ἡμέρας , ἐάνπερ ἐπιδέχηται . εἰ δ ' οὖν
Θηβαῖοι τοὺς τότε βοιωταρχήσαντας καταδικάσαντες , πολλοῖς χρήμασιν ἐζημίωσαν . ἐπιζητουμένης δὲ τῆς αἰτίας , πῶς ὁ τοιοῦτος ἀνὴρ ἰδιώτης
3886918 λειουσθω
τῆς καλουμένης ⋖ ν , ἐλαίου # Ϛ . ὄξει λειούσθω τὰ ξηρὰ ἐν ἡμέραις πολλαῖς , καὶ οὕτως ἐπιχείσθω
δὲ ποιεῖ ὀμ - φάκινον μετὰ κόμμεως : ἕκαστον δὲ λειούσθω ἀφεψήματι ῥόδων ἢ τῷ χυλῷ ἢ τινὶ παραπλησίῳ ,
3876675 ΑΖΔ
τὸ Δ , καὶ ἐπὶ τῆς ΑΔ γεγράφθω ἡμικύκλιον τὸ ΑΖΔ , καὶ ἤχθω τις εἰς τὸ ἡμικύκλιον παράλληλος τῇ
, ΖΒ , ΖΕ . ἐπεὶ οὖν ἐλάττων ἡ ὑπὸ ΑΖΔ τῆς ὑπὸ ΒΖΕ γωνίας , ἔλαττον ἄρα τὸ ΑΔ
3868415 ἐπιζευχθεισων
τὸ Η , ἐπειδὴ περὶ τὸ περίγειόν ἐστιν , καὶ ἐπιζευχθεισῶν τῆς τε ΕΗ καὶ τῆς ΒΗ , ἵνα ἡ
Γ ση μείων ἐν τῇ περιφερείᾳ τοῦ ἐκκέντρου ὄντων . ἐπιζευχθεισῶν τοίνυν τῶ ΖΓ , ΖΑ , ἑκατέρα τῶν Α
3865191 ἡμικυλινδριου
ἔλαττον ἡμισφαιρίου . Κυλίνδρου ὁπωσδηποτοῦν ὑπὸ ἑνὸς ὄμματος ὁρωμένου ἔλαττον ἡμικυλινδρίου ὀφθήσεται . ἔστω κύλινδρος , οὗ ἔστω κέντρον τῆς
, ἐπὶ δὲ τῆς ΑΔ ἡμικύκλιον ὀρθὸν ἐν τῷ τοῦ ἡμικυλινδρίου παραλληλογράμμῳ κείμενον : τοῦτο δὴ τὸ ἡμικύκλιον περιαγόμενον ὡς
3858829 ΗΖ͵
τὴν ΔΗ πρὸς τὴν ΗΕ͵ , οὕτως τὴν ΗΕ͵ πρὸς ΗΖ͵ , καὶ τὴν ΗΖ͵ πρὸς τὴν ΗϠ . μὴ
οὕτως ΗΕ͵ πρὸς ΗΖ͵ , ὡς δὲ ἡ Ε͵Η πρὸς ΗΖ͵ , οὕτως ἡ Ζ͵Η πρὸς ΗΘ͵ , καὶ ἐπεζεύχθω
3848254 γεωμετρικῳ
εἰς τοσαῦτα μέρη διῃρημένης καλῶς ἔχειν ἐνόμισα τά τε λόγῳ γεωμετρικῷ θεωρούμενα [ καὶ ἀναγκαιότατα περὶ τὴν τῶν βαρῶν κίνησιν
γὰρ τῷ μουσικῷ , καθὸ μουσικός ἐστιν , οὐδὲ τῷ γεωμετρικῷ . οὐκοῦν ὠφελῆσαι θέλεις ; πρὸς τί ; εἰπὲ
3843753 Διπλη
λοιπὴ ἄρα ἡ ΤΞ λοιπῇ τῇ ΨϘ ἐστὶν ἴση . Διπλῆ δὲ ἡ ΤΞ τῆς ΨΦ : διπλῆ ἄρα καὶ
: λοιπὴ ἄρα ἡ ͵ΑΨ ἴση ἐστὶν τῇ ΟΡ . Διπλῆ δὲ ἡ ΟΡ τῆς ΩΨ : διπλῆ ἄρα καὶ
3841780 Ζ͵
σημείου δοθέντος τοῦ Ϡ , λαβεῖν δύο σημεῖα ὡς Ε͵ Ζ͵ , ὥστε εἶναι ὡς μὲν τὴν ΔΗ πρὸς τὴν
τῆς ΔϠ , κἂν τὸ Θ͵ μεταξὺ βούληται πίπτειν τῶν Ζ͵ Ϡ . οὐδὲν γὰρ ἕξει καὶ ὧδε λέγειν ἀνασκευαστικόν
3841457 ἀναγεγραφθω
, καὶ ἐπεζεύχθω ἡ ΑΒ , καὶ ἀπὸ τῆς ΑΒ ἀναγεγράφθω πολύγωνον ἰσόπλευρόν τε καὶ ἰσογώνιον δύο πλευρὰς πλείους ἔχον
μὴ ἔστω δὴ ὅμοιον τὸ Α τῷ Β , καὶ ἀναγεγράφθω ἀπὸ τῆς ΕΖ τῷ Α ὅμοιον καὶ ὁμοίως κείμενον
3837797 καθετου
τοῦ ΑΒΓΔ κύκλου ἐπίπεδον μείζων ἐστὶ τῆς ἀπὸ τοῦ Ν καθέτου ἀγομένης ἐπὶ τὸ τοῦ ΕΖΗΘ κύκλου ἐπίπεδον . ἀλλ
Θ παράλληλος ὀρθὴν γωνίαν περιέξει μετὰ τῆς ἀπὸ τοῦ Ζ καθέτου . πάλιν ἐὰν ἐπιζεύξωμεν ἀπὸ τῶν Ζ , Η
3832217 στερητικης
, τοιοῦτον συνάγεται καὶ τὸ συμπέρασμα : ἀντιστρεφομένης οὖν τῆς στερητικῆς καὶ τὸ Β οὐδενὶ τῷ Γ ὑπαρχόντως , ὅπερ
καὶ οὐδείς ἀντιφάσεως οὐδὲ ἐνδέχεται δεῖξαι τὴν ἁπλῆν κατάφασιν τῆς στερητικῆς ἀποφάσεως ἢ ἐπὶ πλέον ἢ ἐπ ' ἔλαττον οὖσαν
3826159 ἀχθωσιν
ἀπὸ τῶν ἴσων γωνιῶν ἐπὶ τὰς βάσεις κάθετοι εὐθεῖαι γραμμαὶ ἀχθῶσιν , ᾖ δέ , ὡς ἡ τοῦ πρώτου τριγώνου
τομῶν β σημεῖα ληφθῇ , καὶ ἀφ ' ἑκατέρου παράλληλοι ἀχθῶσιν , ὁμοίως ἴσα ἔσται τὰ γινόμενα ὑπ ' αὐτῶν
3822564 ἡμισειας
προσλαβὸν τὴν ἡμίσειαν τῆς ὅλης πενταπλάσιον δύναται τοῦ ἀπὸ τῆς ἡμισείας τετραγώνου : ὅπερ ἔδει δεῖξαι . Ἐὰν εὐθεῖα γραμμὴ
ἐνδεχομένου καὶ ἀναγκαίου , ὅτι πάντες ἀτελεῖς καὶ τὸ ἐξ ἡμισείας ἐνδεχόμενον συνάγουσι . Καὶ τελειοῦνται διὰ τῶν πρώτων σχημάτων
3822275 τετρα
ΒΣ , ΣΦ , τουτέστι τὸ ἀπὸ τῆς ΒΦ , τετρα - πλάσιόν ἐστι τοῦ ἀπὸ τῆς ΝΒ : διπλῆ
τοῦ κόσμου τάχος τοῦ τοῦ ἡλίου τάχους μεῖζόν ἐστιν ἢ τετρα - πλάσιον , καὶ ὁ μὲν κόσμος διὰ τοῦ
3816176 ἐπιζευγνυμενων
Θ τοῦ ἀστέρος μετὰ τὸ Η ἀπόγειον τοῦ ἐπικύκλου , ἐπιζευγνυμένων μὲν ὁμοίως πάντοτε τῆς τε ΖΒΗ καὶ τῆς ΔΒ
καὶ τὸ ΒΛ παραλληλόγραμμον τῷ ΗΒ τετραγώνῳ . ὁμοίως δὴ ἐπιζευγνυμένων τῶν ΑΕ , ΒΚ δειχθήσεται καὶ τὸ ΓΛ παραλληλόγραμμον
3814324 ἀνατελλουσαν
λοιπὰ ὁμοίως ἀναγράφει : τὴν δὲ κεφαλὴν τοῦ Ὀφιούχου γράφει ἀνατέλλουσαν καὶ τὴν ἀριστερὰν μόνον χεῖρα : . . .
τοῦ Καρκίνου , ὁ Ἄρατος θεωρῶν τὴν κεφαλὴν τοῦ Λέοντος ἀνατέλλουσαν καὶ ὑπολαμβάνων τὸ κατὰ τὸν Λέοντα δωδεκατημόριον ἀναφέρεσθαι ,
3807868 παρονομασια
, εὔδηλον . Τῆς δὲ ὁμοίας χάριτος ἔχεται καὶ ἡ παρονομασία , ὅταν παρὰ τὸ προκείμενον ἕτερον ὄνομα ἐμφερὲς τεθῇ
ταῦτα : ἀλληγορία , μετάθεσις , ἀναστροφή , μετάληψις , παρονομασία , κλῖμαξ , ἐπαναφορά , ἀντιστροφή , ἐπιμονή ,
3805298 βασεως
ἐπιθύουσι , παρ ' Ὁμήρῳ δὲ τέθειται καὶ ἐπὶ τῆς βάσεως , ἀπὸ τοῦ βεβηκέναι . Ἠὼς , λαμβάνεται παρ
: ὑψηλοῖς , μεγάλοις , παχυτάτοις , τοῖς λειπομένοις τῆς βάσεως . ὀψέ : μόλις , ἀργῶς . Πάντεσσιν :
3799193 ΛΜΡ
καὶ τῆς ΕΜ , τὸ ἀπὸ ΛΜ πρὸς τὸ ὑπὸ ΛΜΡ . καὶ ἐναλλάξ , ὡς τὸ ὑπὸ συναμφοτέρου τῆς
ΜΕ πρὸς τὸ ὑπὸ ΛΜΡ . ἴσον δὲ τὸ ὑπὸ ΛΜΡ τῷ ὑπὸ τῆς ΜΕ καὶ συναμφοτέρου τῆς ΜΞ ,
3786606 προδεδεικται
ἐστὶν ἡ διὰ τῶν Η Μ Κ : τοῦτο γὰρ προδέδεικται . ιγʹ . Ἀλλὰ δὴ μὴ ἔστωσαν αἱ ΑΒ
ΕΑ , ἐλαχίστη δὲ ἡ ΑΖ : ταῦτα γὰρ ἅπαντα προδέδεικται . ἡ ΕΑ ἄρα πρὸς τὴν ΑΖ μείζονα λόγον
3784625 παραβολης
καὶ ἐὰν μὲν ὁ λόγος ᾖ ἴσος πρὸς ἴσον , παραβολῆς , ἐὰν δὲ ἐλάσσων πρὸς μείζονα , ἐλλείψεως ,
ΓΔ τῇ ΔΕ . δεῖξαι , ὅτι τὸ Δ ἅπτεται παραβολῆς . ἤχθω κάθετος ἡ ΓΖ : θέσει ἄρα ἐστί
3772998 κατειληφθω
τὴν τρίτην ἡμέραν ϲπληνίῳ ἀπὸ τοῦ μεϲοφρύου ἄχρι τοῦ μήλου κατειλήφθω τοῦτο τῆϲ ῥινὸϲ τὸ ἐμπεφραγμένον μέροϲ τῶν διαφορεῖν ἐπαγγελλομένων
τῇ τῶν πραγμάτων κρίσει , τῇ μηδέπω κατειλημμένῃ . ἀλλὰ κατειλήφθω ἡ διάνοια , καὶ ὡμολογήσθω τὸ εἶναι ταύτην καθ
3765062 ἠρωτηκα
σε πρῶτον , οὐχὶ καὶ οἱ ἀστέρες ἄρτιοί εἰσιν ; ἠρώτηκα δὲ τί σε πρῶτον : οὐκ ἄρα οἱ ἀστέρες
ἐρωτηθῆναι τὸ ἀποφατικὸν τῆς συμπλοκῆς , τῆς προσλήψεως ἀληθοῦς γενομένης ἠρώτηκα δέ τί σε πρῶτον , διὰ τὸ ἠρωτῆσθαι πρὸ
3757457 ΒΩ
[ τῶν ] ΔΩ , ΩΒ , ἀναγραφομένου ἀπὸ τῆς ΒΩ τετραγώνου καὶ συμπληρουμένου τοῦ ἐπὶ τῆς ΩΔ παραλληλογράμμου καὶ
Ω ἀρξάμενον ἀπὸ τοῦ Ξ τὴν ΞΩ διέρχεται , ἡ ΒΩ δύνει : ἐν ᾧ δὲ τὸ Ψ τὴν ΟΨ
3755618 ΑΕΖΓ
νοήσωμεν μεσημβρινὸν κύκλον τὸν ΑΒΓΔ καὶ ζῳδιακοῦ μὲν ἡμικύκλιον τὸ ΑΕΖΓ , ὁρίζοντος δὲ τὸ ΒΕΔ περὶ πόλον τὸ Η
διαστήματι δὲ ὁποτερῳοῦν τῶν ΒΑ , ΒΓ γεγράφθω κύκλος ὁ ΑΕΖΓ , καὶ ἐκβεβλήσθωσαν αἱ ΑΒΕ , ΑΔΖ , ΑΗΘ
3743984 παραλαβουσαι
ἔχουσαι τὴν πιναράν τε καὶ ἄκοσμον ἐσθῆτα καὶ τὰς ἄλλας παραλαβοῦσαι γυναῖκας καὶ τὰ τέκνα ἐπαγόμεναι βαδίζωμεν ἐπὶ τὴν Οὐετουρίας
ἄγουσαι τὰ παιδία μετὰ λαμπάδων ἧκον ἐπὶ τὴν οἰκίαν καὶ παραλαβοῦσαι τὴν Οὐετουρίαν προῆγον ἐπὶ τὰς πύλας : οἱ δ
3737783 ἀνεστραμμενον
καλεομένου καὶ Κοινύρων , ἀντίον δὲ Σαμοθρηίκης , ὄρος μέγα ἀνεστραμμένον ἐν τῇ ζητήσι . Τοῦτο μέν νύν ἐστι τοιοῦτο
τρίτη ὑπερβολαίων : υ κάτω νεῦον καὶ ἡμίαλφα ⋏ ἀριστερὸν ἀνεστραμμένον # ὑπερβολαίων διάτονος : μῦ καὶ πῖ καθειλκυ -
3734482 ٥١
ἡ ΖΝ ١ ٢٦ ٤١ ٤٠ ٣٢ Τὸ ΓΕ ٥ ٥١ ١٨ ١٢ ἡ ΒΗ ١ ٤٤ ٣٠ ἡ ΑΒ
. ٥ ٢٨ ٣٨ ἡ πλευρὰ τοῦ ΕΓ ٢ ٥٤ ٥١ τὸ ΒΓ τὸ καὶ μέσον ٢٤ ٢٩ ٣٧ ٤٨
3729557 λειπετω
ὁ Ε : καὶ ὁ μὲν ΓΔ τὸν ΒΖ μετρῶν λειπέτω ἑαυτοῦ ἐλάσσονα τὸν ΖΑ , ὁ δὲ ΑΖ τὸν
ἐλάσσονα τὸν ΗΓ , ὁ δὲ ΗΓ τὸν ΖΘ μετρῶν λειπέτω μονάδα τὴν ΘΑ . Ἐπεὶ οὖν ὁ Ε τὸν
3728260 ΔΖΘ
ἴσας γωνίας : ὅμοιον ἄρα ἐστὶν τὸ ΑΓΗ τρίγωνον τῷ ΔΖΘ τριγώνῳ . ηʹ . Διὰ μὲν οὖν τοῦ συνημμένου
ἴσας γωνίας : ὅμοιον ἄρα ἐστὶν τὸ ΑΓΗ τρίγωνον τῷ ΔΖΘ τριγώνῳ . Ὁμοίως καὶ τὸ ΑΗΒ τῷ ΔΘΕ ,
3727338 καθετῳ
εὐθείας κέντροις τοῖς πέρασιν αὐτῆς , διαστήματι δὲ τῇ ἀγομένῃ καθέτῳ ἀπὸ τῆς διχοτομίας αὐτῆς ἐπὶ τὴν παράλληλον αὐτῇ πλευρὰν
ὅπερ ἄτοπον . Ἐδείχθη γὰρ ἡ ΘΚ κάθετος τῇ ΜΝ καθέτῳ ἴση , αἵτινες κάθετοι ἤχθησαν ἀπὸ τῶν ἐπισταθεισῶν μετεώρων
3722913 γραμμης
, ἐνεργείᾳ δὲ λίθον εἶναι , καὶ τὸ ἥμισυ τῆς γραμμῆς δυνάμει τελείαν γραμμήν , καὶ σῖτον δυνάμει ἁδρὸν τὸν
καὶ ἐπὶ τῶν γεγονότων : ὡς γὰρ ἡ στιγμὴ πέρας γραμμῆς , οὕτω τὸ γεγονὸς πέρας ἐστὶ τῆς γενέσεως .
3721635 συμπληρουμενου
συμπληροῖ ἑαυτό : τὸ γάρ τινος συμπληρωτικὸν ἔλασσόν ἐστι τοῦ συμπληρουμένου . οὐ πάνυ δὲ ταῦτα πιθανά : οὐκ ἄρα
μοιρῶν τῆς ἀναφορᾶς πληρουμένης ἢ καὶ ἕως ἑτέρου τετραγώνου ἢ συμπληρουμένου παντὸς τοῦ κύκλου , εἰ δὲ καὶ ἀκάκωτα τύχῃ
3720793 ἐκβληθεισης
ἐλλείψεων . Κείσθω πάλιν ἡ καταγραφὴ τοῦ κώνου , καὶ ἐκβληθείσης τῆς ΓΒ ἐπὶ θάτερα δέον ἔστω ἀπ ' ἀμφοτέρων
ζῳδιακοῦ ἐπεζεύχθωσαν αἱ ΑΔ καὶ ΒΔ καὶ ΓΔ , καὶ ἐκβληθείσης τῆς ΓΔΕ ἐπεζεύχθωσαν αἱ ΑΕ καὶ ΕΒ καὶ ΑΒ
3716392 Παραλληλογραμμον
ὅλη ἄρα ἡ ὑπὸ ΛΘΚ μείζων τῆς ὑπὸ ΓΒΔ . Παραλληλόγραμμόν ἐστι . , ] ἀλλὰ καὶ ἴσον τῷ ΓΖ
ὅλη ἄρα ἡ ὑπὸ ΛΘΚ μείζων τῆς ὑπὸ ΓΒΔ . Παραλληλόγραμμόν ἐστι . , ] ἀλλὰ καὶ ἴσον τῷ ΓΖ
3716280 ἐπιζευξας
τὴν ΑΖ , τῇ δὲ Δ τὴν ΖΗ , καὶ ἐπιζεύξας τὴν ΒΗ ταύτῃ παράλληλον ἤγαγον τὴν ΖΘ . ἐπεὶ
. εἰ δ ' ἀρεταί : ὅτι ἀρεταὶ κατάκειται εἴρηκεν ἐπιζεύξας πληθυντικῷ ἑνικὸν ῥῆμα τὸ κατάκειται . καὶ ὅτι ὀργὰν
3715567 τετραγω
τῆς Α , ἴσον παρὰ τὴν ΒΓ παραβεβλήσθω ἐλλεῖπον εἴδει τετραγώ - νῳ , καὶ ἔστω τὸ ὑπὸ τῶν ΒΔ
τετραγώνισον τὸν κζ , εἶτα λαβὲ τὴν πλευρὰν τοῦ γεγονότος τετραγώ - νου ἀπὸ τοῦ κζ , εἶτα ἀναβίβασον αὐτὴν
3707770 παραβολικως
, οὐκ αὐτόθεν τοῦτο προτείνομεν , ἀλλὰ πλαγίως οὕτω καὶ παραβολικῶς ἐρωτῶμεν , καὶ οὐ δι ' αὐτὸ ἀλλ '
ἄκρον τὸ ἐντεθει - μένον τῇ χοινικίδι χνόη καλεῖται . παραβολικῶς οὖν τὸ συνεχὲς κίνημα τῶν ποδῶν χνόην εἴρηκεν .

Back