καὶ τῆς ΕΜ , τὸ ἀπὸ ΛΜ πρὸς τὸ ὑπὸ ΛΜΡ . καὶ ἐναλλάξ , ὡς τὸ ὑπὸ συναμφοτέρου τῆς
ΜΕ πρὸς τὸ ὑπὸ ΛΜΡ . ἴσον δὲ τὸ ὑπὸ ΛΜΡ τῷ ὑπὸ τῆς ΜΕ καὶ συναμφοτέρου τῆς ΜΞ ,
7687294 ἐπιζευχθεισης
ΝΞ περὶ κέντρον τὸ Ζ ἴσος τῷ ΛΜ , καὶ ἐπιζευχθείσης τῆς διὰ τῶν κέντρων διαμέτρου τῆς ΝΛΜ εἰλήφθω ἐπ
μεσημβρίας κατὰ τὸ Ω σημεῖον τῆς ἀκριβοῦς τοῦ ἡλίου ἐποχῆς ἐπιζευχθείσης τῆς ΕΥΩ εὐθείας , ἡ δὲ ΦΩ τῆς παραλλάξεως
7685718 συναμφοτερου
ἑκάστου τῶν τμημάτων τῶν δα , αγ ἴσον τῷ ὑπὸ συναμφοτέρου τῆς δαγ καὶ τῆς αβ διὰ τὸ αʹ τοῦ
, οἱ δὲ ἐξ ὑποκειμένου ἢ τέλους ἢ ἐκ τοῦ συναμφοτέρου , ἐξ ὑποκειμένου καὶ τέλους , ταῖς ἐπιστήμαις καὶ
7408314 ἐκβληθεισης
ἐλλείψεων . Κείσθω πάλιν ἡ καταγραφὴ τοῦ κώνου , καὶ ἐκβληθείσης τῆς ΓΒ ἐπὶ θάτερα δέον ἔστω ἀπ ' ἀμφοτέρων
ζῳδιακοῦ ἐπεζεύχθωσαν αἱ ΑΔ καὶ ΒΔ καὶ ΓΔ , καὶ ἐκβληθείσης τῆς ΓΔΕ ἐπεζεύχθωσαν αἱ ΑΕ καὶ ΕΒ καὶ ΑΒ
7347419 ἡμισεια
ὑπὸ ΑΕΒ ὀρθή ἐστιν . καὶ ἐπεὶ ἡ ὑπὸ ΗΕΖ ἡμίσειά ἐστιν ὀρθῆς , ὀρθὴ δὲ ἡ ὑπὸ ΕΗΖ :
ΑΒΓ . διὰ τὰ αὐτὰ δὴ καὶ ἡ ὑπὸ ΒΑΔ ἡμίσειά ἐστιν ὀρθῆς . ὅλη ἄρα ἡ ὑπὸ ΔΑΓ γωνία
7143869 ΔΞ
κύκλος ὁ ΗΘ , καὶ διῃρήσθω ἑκατέρα τῶν ΒΞ , ΔΞ εἰς τρία ἴσα κατὰ τὰ Κ , Λ ,
. ἤχθω γὰρ διὰ τοῦ Δ τῇ ΑΕ παράλληλος ἡ ΔΞ . ἐπεὶ οὖν ὑπερβολή ἐστιν ἡ ΑΒ καὶ διάμετρος
6998034 ΦΥ
δὲ ἡ ΣΡ τῆς ΟΡ : διπλῆ ἄρα καὶ ἡ ΦΥ τῆς ΟΡ . ἴση δὲ ὑπόκειται ἡ ΟΡ τῇ
δύο τῶν διπλασίων τοῦ ἑνός . ἔστι δὲ καὶ ἡ ΦΥ . , ] παραλληλόγραμμον γάρ ἐστι τὸ ΡΣΦΥ χωρίον
6921172 ἐγκλισεως
, ἐξείπω . . Ἐμοί γε μὴν δοκεῖ τὰ τῆς ἐγκλίσεως ἐπιτεταράχθαι , ἐπεὶ σχεδὸν ἐγκλίσεις δύο συνωθοῦσιν εἰς μίαν
ὑποτακτικὸν ἄληται ὡς λάβηται . συστολῇ οὖν ἐγένετο ἢ μεταβολῇ ἐγκλίσεως , ὁμοίως τῷ ” ἐπεὶ ἄρ κεν ἀμείψεται ἕρκος
6870636 λαμβανομενης
τῶν ὅρων ὄντων καὶ τῆς μὲν ὑπάρχειν τῆς δὲ ἐνδέχεσθαι λαμβανομένης τῶν προτάσεων , ὅταν ἡ πρὸς τὸ ἔλαττον ἄκρον
δύο αὗται συζυγίαι τὸ ἀναγκαῖον συνάγουσιν οἵας δή ποτε ἀναγκαίας λαμβανομένης προτάσεως , κἂν τῆς μείζονος κἂν τῆς ἐλάττονος ,
6857184 μεριδος
Ὑδροχόου καὶ κύριος τοῦ βʹ ἐννατημορίου , τῆς δὲ τρίτης μερίδος ὁ Ζεὺς ὁ κύριος τῶν Ἰχθύων καὶ κύριος τοῦ
τὸ Κάσπιον πέλαγος . μῆκος δ ' ἐστὶ ταύτης τῆς μερίδος τὸ μέγιστον ἀπὸ τῆς Ὑρκανίας θαλάττης ἐπὶ τὸν ὠκεανὸν
6839899 μενης
μὲν ἐγχειρήσωσι ταῖς ἐπιβολαῖς : ὑπὸ γὰρ τῆς πεπρω - μένης αὐτοῖς κεκυρῶσθαι πατρίδα τὴν Ἔνναν , οὖσαν ἀκρόπολιν ὅλης
, τῆς ΕΗ ἄρα ἄκρον καὶ μέσον λόγον τεμνο - μένης τὸ μεῖζον τμῆμά ἐστιν ἡ ΕΖ . ἔστι δὲ
6753229 ἐλλειψεως
ἴσον ἐστὶ τοῖς ΗΔ , ΑΖ . ἐπὶ δὲ τῆς ἐλλείψεως καὶ τῆς τοῦ κύκλου περιφερείας ἐροῦμεν : ἐπεὶ οὖν
τοῦ κέντρου τῷ ὁμοίῳ τῷ ἀποτεμνομένῳ , ἐπὶ δὲ τῆς ἐλλείψεως καὶ τῆς τοῦ κύκλου περιφερείας μετὰ τοῦ ἀποτεμνο -
6748424 Διττης
ἧς μόνης γινώσκειν δυνατὸν ἀκριβῶς τῶν ὄντων τὴν φύσιν . Διττῆς γὰρ οὔσης τῆς τοῦ λόγου σχέσεως , καθὰ διώρισεν
εἰσαεὶ λαβόντα , μιμούμενα τὴν νοητὴν καθόσον δύναται φύσιν . Διττῆς δὲ φύσεως ταύτης οὔσης , νοητῆς , τῆς δὲ
6721725 ἐπιβολης
τῷ σκέλει , διελοῦμεν τὸν χορηγὸν κατ ' ἐπικόπου τῆς ἐπιβολῆς τοῦ τυφλαγκίστρου : ἔπειτα διπύρηνον διὰ τῆς διαιρέσεως καθήσομεν
Ἑλλάδα περί τε τοῦ ἄθλου καὶ τῆς κατὰ τὴν ναυπηγίαν ἐπιβολῆς , οὐκ ὀλίγους τῶν ἐν ὑπεροχαῖς νεανίσκων ἐπιθυμῆσαι μετασχεῖν
6708848 δειξεως
: τὸ δὲ λογικὸν αὐτὸν εἶναι καὶ μὴ ἄλογον χωρὶς δείξεως αἰτεῖταί τε καὶ τίθησιν . εἰ δέ ἐστιν ἀσθενὴς
τὸ ἐνδέχεσθαι καὶ αὐτὴ συνάγει διὰ τῆς ἐπ ' εὐθείας δείξεως : διὸ καὶ τέλειος ὁ συλλογισμός . ἐπειδὴ γὰρ
6686672 διχοτομιας
, ὀρθότατος ἔσται πρὸς ἡμᾶς : ὅταν δὲ ἐπὶ τῆς διχοτομίας τοῦ ὑπὸ γῆν τμήματος τοῦ θερινοῦ τροπικοῦ , ταπεινότατος
τυχὸν σημεῖον τὸ Γ . εἰ μὲν οὖν ἐπὶ τῆς διχοτομίας ἐστὶ τὸ Γ , φανερόν ἐστι τὸ ζητούμενον .
6681430 σκεψεως
τισιν οἵ τε ἀπὸ τῆς Ἀκαδημίας καὶ οἱ ἀπὸ τῆς σκέψεως λέγουσι , πρόδηλος καὶ ἡ κατὰ τοῦτο διαφορὰ τῶν
ιʹ εἰ ἀναιρεῖ τὰ φαινόμενα ιαʹ περὶ τοῦ κριτηρίου τῆς σκέψεως ιβʹ περὶ τοῦ τέλους αὐτῆς ιγʹ περὶ τῶν ὁλοσχερῶν
6673511 ἀναπληρωσεως
καθάπερ καὶ τῇ ἐνδείᾳ ἡ λύπη : γινομένης μὲν γὰρ ἀναπληρώσεως ἡδόμεθα , τεμνόμενοι δὲ λυπούμεθα . δοκεῖ δὲ γενέσθαι
' οὐδὲ μετὰ γενέσεως πᾶσαι . αἱ μὲν γὰρ μετὰ ἀναπληρώσεως , εἰ καὶ μὴ γενέσεις , ἀλλὰ μετὰ γενέσεως
6600760 ΣΕ
διαμέτρου τῆς ἀπὸ τοῦ Σ τμῆμα κύκλου ὀρθὸν ἐφέστηκεν τὸ ΣΕ καὶ τὸ συνεχὲς αὐτῷ , καὶ διῄρηται ἡ τοῦ
τῇ ὑπὸ ΧΣΡ ἐστὶν ἴση : ὁ ἄρα τοῦ ἀπὸ ΣΕ πρὸς τὸ ἀπὸ ΣΡ λόγος ὁ αὐτός ἐστιν τῷ
6583524 ἀληθινης
ἁπανταχοῦ τιμᾷ καὶ τὰς ἐν τοῖς λόγοις συνουσίας ἀφορμὴν φιλίας ἀληθινῆς ὑπολαμβάνει , σαφέστερον κατίδωμεν τί ποτε ἦν ὅ σοι
καρτερεῖν τε καὶ ἀπερείδεσθαι , ὡς ἂν μὴ ἀθρόας τῆς ἀληθινῆς μαρμαρυγῆς ἐμπλησθέντες σκότου μᾶλλον ἢ αὐγῆς ἀπολαύσειαν . καὶ
6578645 πυραμιδος
οὕτως ἡ ΑΒΓΗ πυραμὶς ἤτοι πρὸς ἔλασσόν τι τῆς ΔΕΖΘ πυραμίδος στερεὸν ἢ πρὸς μεῖζον . ἔστω πρότερον πρὸς ἔλασσον
ἀπὸ δὲ τοῦ Θ ἐπὶ τὸ ΗΕΚΛ . Ἔστω βάσις πυραμίδος τρίγωνον τὸ ΑΒΓ , καὶ τετμήσθω ἡ μὲν ΑΒ
6573129 ΝΥ
Ν , Ο , Π τῇ ΑΒ παράλληλοι ἤχθωσαν αἱ ΝΥ , ΟΣ , ΤΠ : ἴσον ἄρα ἐστὶ τὸ
τῆς ΖΝ βάσεως , ὑπερέχει καὶ τὸ ΛΥ στερεὸν τοῦ ΝΥ [ στερεοῦ ] , καὶ εἰ ἴση , ἴσον
6571804 σχεσεως
καὶ τοῦ εἶναι τῷ υἱῷ ὡς ἀνθρώπῳ αἴτιος καὶ τῆς σχέσεως , ὁ δὲ υἱὸς τῆς σχέσεως μόνης τῷ πατρὶ
, ὡς δύνασθαι ῥᾷστά τινα , διὰ τῆς πρὸς ἄλληλα σχέσεως αὐτῶν , τὴν ὅλην οἰκουμένην μηδὲν εἰκόνος δεηθέντα τῷ
6565024 ἐσβολης
, οὐκ ἀγνοῶν μὲν αὐτοὺς πολεμησείοντας αὑτῷ καὶ τῆσδε τῆς ἐσβολῆς αἰτίους γεγονότας , ὑποκρινόμενος δὲ καὶ πλείονας ὁμοῦ καὶ
ναυσὶν ἐς τὴν Μυτιλήνην καταπλεούσαις ἐπιβοηθήσωσιν . ἡγεῖτο δὲ τῆς ἐσβολῆς ταύτης Κλεομένης ὑπὲρ Παυσανίου τοῦ Πλειστοάνακτος υἱέος βασιλέως ὄντος
6564583 ΥΦ
ΦϘΤ πεντάγωνον ἠγμένη , καὶ ἐπεζεύχθωσαν αἱ ΩΦ ΩϘ ΩΤ ΥΦ , ὀκταέδρου δὲ τρίγωνον τὸ ΣΡΠ ἔστω , καὶ
ἀγομένης ἐπὶ τὴν ΘΗ . ἀλλ ' ἡ ἴση τῇ ΥΦ καὶ πρὸς ἴσας γωνίας ἐπ ' αὐτὴν ἀγομένη κατὰ
6552703 μερικης
ἀσυλλόγιστον γίνεται τὸ σχῆμα ἐν πρώτῳ ἢ δευτέρῳ τῆς μείζονος μερικῆς οὔσης . καὶ δηλονότι , εἰ ἀποφατικὸν εἴη τὸ
καὶ τὸ ψεῦδος , τήν τε καθόλου κατάφασιν μετὰ τῆς μερικῆς ἀποφάσεως καὶ τὴν καθόλου ἀπόφασιν μετὰ τῆς μερικῆς καταφάσεως
6545551 ὑπεροχης
ὑπεροχῆς αὐτῶν τετράγωνος ἐλάσσων τοῦ συναμφοτέρου τοῦ τε τριπλασίονος τῆς ὑπεροχῆς καὶ τῶν μο , καὶ ἔστω ἡ τῶν Ϟῶν
γὰρ ὑπερέχει , ἴσμεν , ἄγνωστος δὲ ἡ ποσότης τῆς ὑπεροχῆς . καὶ ἐπὶ μὲν τῶν πλευρῶν τοῦ κ καὶ
6515434 νοησεως
οὐκ ἐνεργεῖ , οὐκ ἄρα οὐδὲ τῆς δόξης ἢ τῆς νοήσεώς εἰσι τὰ ἐνύπνια . Ἔτι παρὰ τὸ ἐνύπνιον πολλάκις
οὐδέποτε συντελέσει . οὐδέποτε οὖν ἔσται νενοηκώς : καίτοι πάσης νοήσεώς ἐστι πέρατα , καὶ τῆς πρακτικῆς καὶ τῆς θεωρητικῆς
6505320 διαμετρου
, ΑΖ μιᾷ σεληνιακῇ διαμέτρῳ καὶ τῷ τετάρτῳ μέρει τῆς διαμέτρου . Ἑκατέρας δὲ τῶν ΑΓ καὶ ΑΕ δʹ μέρει
τουτέστιν οὔτε τῶν ἐπὶ τῆς διαμέτρου οὔτε τῶν ἐκτὸς τῆς διαμέτρου . ἔστω κοῖλον ἔνοπτρον τὸ ΑΓΔ , διάμετρος δὲ
6489976 καθετου
τοῦ ΑΒΓΔ κύκλου ἐπίπεδον μείζων ἐστὶ τῆς ἀπὸ τοῦ Ν καθέτου ἀγομένης ἐπὶ τὸ τοῦ ΕΖΗΘ κύκλου ἐπίπεδον . ἀλλ
Θ παράλληλος ὀρθὴν γωνίαν περιέξει μετὰ τῆς ἀπὸ τοῦ Ζ καθέτου . πάλιν ἐὰν ἐπιζεύξωμεν ἀπὸ τῶν Ζ , Η
6441143 ΗΔ
ἐστιν ἴση , λοιπὴ ἄρα ἡ ΓΗ περιφέρεια λοιπῇ τῇ ΗΔ ἐστιν ἴση . πενταγώνου δὲ ἡ ΓΔ : δεκαγώνου
ἐστὶν ἴση . ἐπεὶ οὖν ὑπόκειται ὡς ἡ ΑΗ πρὸς ΗΔ , ἡ ΔΘ πρὸς ΘΖ , ἴση δὲ ἡ
6431095 ΓΚΘ
ἔστω γὰρ ἡ ΓΖΘ . φανερόν , ὅτι τὸ ὑπὸ ΓΚΘ ἴσον τῷ ἀπὸ ΑΓ : τέτμηται γὰρ ἡ ΘΚ
ΚΘ , ἴση ἐστὶν ἡ μὲν ὑπὸ ΑΓΒ τῇ ὑπὸ ΓΚΘ , ἡ δὲ ὑπὸ ΚΓΒ τῇ ὑπὸ ΓΑΔ ,
6416816 ὑποτεινουσης
ʂ α Μο α , καὶ γίνεται συναμφοτέρου τῆς τε ὑποτεινούσης καὶ μιᾶς τῶν ὀρθῶν τὸ ἥμισυ ἐφ ' ἑαυτὸ
τῷ ἐμβαδῷ αὐτοῦ , λείψας τὸν ἐν συναμφοτέρῳ τῆς τε ὑποτεινούσης καὶ μιᾶς τῶν ὀρθῶν , ποιῇ δοθέντα ἀριθμόν .
6398064 περιαγωγης
ἐμβρύου καὶ τὰς ἀρχὰς ἀποδήσαντες πρὸς τὸν τύλον διὰ τῆς περιαγωγῆς τὴν ὁλκὴν ποιήσωνται , μὴ συνιέντες τὸ κοινόν ,
τοῦ ἐπικύκλου πρόσνευσιν ἴδιον τῆς μὲν τοῦ κέντρου τοῦ ἐπικύκλου περιαγωγῆς περὶ τὸ Ε κέντρον τοῦ διὰ μέσων τῶν ζῳδίων
6370005 βασεως
ἐπιθύουσι , παρ ' Ὁμήρῳ δὲ τέθειται καὶ ἐπὶ τῆς βάσεως , ἀπὸ τοῦ βεβηκέναι . Ἠὼς , λαμβάνεται παρ
: ὑψηλοῖς , μεγάλοις , παχυτάτοις , τοῖς λειπομένοις τῆς βάσεως . ὀψέ : μόλις , ἀργῶς . Πάντεσσιν :
6368057 λοιπης
καθόλου ἀποφαίνεται ὅτι παντὸς τριγώνου αἱ δύο πλευραὶ μείζονες τῆς λοιπῆς εἰσιν : ἀλλ ' ἐνταῦθα μὲν ἐπὶ τῶν τριγώνων
. Κοινὴ ἀφῃρήσθω ἡ ΝΑ : λοιπὴ ἄρα ἡ ΒΝ λοιπῆς τῆς ΑΛ μείζων ἐστίν . Ἐν πλείονι ἄρα χρόνῳ
6358805 ἀπολαμβανομενης
τὸ δὲ περιεχόμενον σχῆμα ὑπό τε τοῦ κύκλου καὶ τῆς ἀπολαμβανομένης ὑπὸ τοῦ τέμνοντος ἐπιπέδου κωνικῆς ἐπιφανείας πρὸς τῇ κορυφῇ
ἐστι τὸ περιεχόμενον σχῆμα ὑπό τε τῆς διαμέτρου καὶ τῆς ἀπολαμβανομένης ὑπ ' αὐτῆς περιφερείας . κέντρον δὲ τοῦ ἡμικυκλίου
6357475 τασεως
μία ἀγκύλη . Ἐπεὶ πολλάκις ἐκ τῶν εὐτόνων σωμάτων σφοδρᾶς τάσεως γινομένης ἀπὸ μέρους αἱ τοῦ βρόχου ῥήγνυνται ἀρχαί ,
τοῦτο πάλιν οὐχ οἷόν τε καλῶς ἐργάσασθαι χωρὶς ἀντι - τάσεως . χρὴ τοίνυν ἢ διὰ τῶν χειρῶν , εἰ
6357196 κατηγμενης
καὶ τοῦ κέντρου τῆς τομῆς , ἡ δὲ μεταξὺ τῆς κατηγμένης καὶ τῆς ἐφαπτομένης , ἕξει πρὸς αὐτὴν ἡ κατηγμένη
τῶν δύο εὐθειῶν , ὧν ἐστιν ἡ μὲν μεταξὺ τῆς κατηγμένης καὶ τοῦ κέντρου τῆς τομῆς , ἡ δὲ μεταξὺ
6313220 ἑπομενης
ποτε ληφθεὶς ἀπήγετο τὴν πρὸς θάνατον . τῆς δὲ μητρὸς ἑπομένης καὶ ὀλοφυρομένης ἐκεῖνος τῶν δημίων ἐδεῖτο βραχέα τινὰ τῇ
, ᾗ ταῦτα ἕπεται , ἡ δὲ αἰτία φανερὰ τῆς ἑπομένης ἀτοπίας ἐστίν . ἐπειδὴ γὰρ πᾶσα κίνησις ἐν χρόνῳ
6299770 ἐφαπτομενης
ἠγμένῃ εὐθείᾳ , καὶ ποιηθῇ , ὡς τὸ τμῆμα τῆς ἐφαπτομένης τὸ μεταξὺ τῆς ἁφῆς καὶ τῆς ἀνηγμένης πρὸς τὸ
οὕτως τὸ περιεχόμενον ὑπὸ τῶν μεταξὺ τῆς τομῆς καὶ τῆς ἐφαπτομένης πρὸς τὸ ἀπὸ τῆς ἀπολαμβανομένης πρὸς τῇ ἁφῇ τετράγωνον
6299068 ἐλαχιστης
τὴν ἐνταῦθα ὑποκειμένην ἐπὶ τοῦ ἐπικύκλου μετάβασιν τὸν ἀπὸ τῆς ἐλαχίστης κινήσεως ἐπὶ τὴν μέσην χρόνον , μείζων ἐστὶν τῆς
δὴ ταῦτα ἀληθῆ λέγομεν , καὶ τὸ μέγεθος ὥρισται τῆς ἐλαχίστης σαρκός , ἀναγκαίως ἀδύνατον ἐν ἑκάστῳ πάντα μεμῖχθαι .
6276504 ΟΕ
πάλιν ἐπεὶ ἀπὸ τοῦ κέντρου ἐπὶ τὴν ἁφὴν ἐπέζευκται ἡ ΟΕ , ἡ ὑπὸ ΚΕΟ γωνία ὀρθή ἐστιν . καὶ
τοῦ κύκλου καὶ ἔστω τὸ Ο , καὶ ἐπεζεύχθω ἡ ΟΕ . καὶ ἐπεὶ ἐπὶ τεταρτημορίου βέβηκεν , ἡ ὑπὸ
6262250 καταστασεως
γίνεσθαι . εἰδέναι μέντοι χρή , ὅτι , ἐὰν μετὰ καταστάσεως εἰς ἀρχὴν ἀνάγῃς τὸν λόγον ὀρθώσας , κἂν ἀποστήσῃς
μέρος ἔχει , ἡ δὲ προβολὴ κεφαλαιωσαμένη πάντα τὰ τῆς καταστάσεως συντόμως ὁρίζεται τὸ ἀδίκημα : καὶ ἔστι προβολὴ κυρίως
6244249 ἁρμονικης
. εἴπωμεν λοιπὸν περὶ τῆς μουσικῆς ὅ ἐστι περὶ τῆς ἁρμονικῆς ἀναλογίας . ἰστέον ὅτι ἐν τῇ γεωμετρικῇ ἡ ὑπεροχὴ
. Εἶτα διὰ τριῶν παραδειγμάτων , ἰατρικῆς , ποιητικῆς , ἁρμονικῆς , βούλεται ἀναιρεῖν τὰ λεγόμενα καὶ δεῖξαι ὅτι τὰ
6241379 ϚΛ
δὲ αβ τῇ ϚΛ , καὶ ἡ ΟΚ ἄρα τῆς ϚΛ μείζων ἐστὶν ἢ ὁμοία , τῆς δὲ ΛΡ ἐλάσσων
κοινὴ ἀφῃρήσθω ἡ γϚ : λοιπὴ ἄρα ἡ Ργ τῇ ϚΛ ἐστιν ἴση . ἡ δὲ ΟΚ τῆς ϚΛ μείζων
6239498 ΕΒΓ
δέδοται καὶ οὐχὶ ἡ ΕΖ καὶ τῶν γωνιῶν ἡ ὑπὸ ΕΒΓ καὶ οὐχὶ ἡ ὑπὸ ΕΖΓ . ἔνθεν καὶ πρὸς
τὰ τρίγωνα , καὶ ἡγούμενα μὲν εἶναι τὰ ΑΒΕ , ΕΒΓ , ΕΓΔ , ἑπόμενα δὲ αὐτῶν τὰ ΖΗΛ ,
6231427 ΠΑ
καὶ Δωρικῶς : ἄλλη ἀλλαχοῦ . . ΠΑΡΑΚΛΙΝΟΥΣΙ . Τὸ ΠΑ μακρὸν ἐδέξατο , καὶ τὸ ΚΛΙ βραχύ : ὢ
! [ ] [ ἀναγκ ] [ ] [ ] ΠΑ ? ? [ ] [ ] ΟΞΩ ! [
6230283 ΖΒ
τμημάτων ριζ λα , καὶ πάλιν ἡ μὲν διπλῆ τῆς ΖΒ μοιρῶν ξ καὶ ἡ ὑπὸ αὐτὴν εὐθεῖα τμημάτων ξ
τῇ Ν . καὶ ἐπεὶ σύμμετρός ἐστιν ἡ ΚΖ τῇ ΖΒ , καὶ συνθέντι σύμμετρός ἐστιν ἡ ΚΒ τῇ ΖΒ
6210155 ΘΓ
τοῦ Θ ἐπὶ τὸ Ζ ἐπιζευγνυμένη εὐθεῖα ἐκβαλλομένη συμπεσεῖται τῇ ΘΓ . δυεῖν ἄρα εὐθειῶν τὰ αὐτὰ πέρατα ἔσται :
ἀπὸ ΘΓ τοῦ ἀπὸ ΕΗ : μείζων ἄρα καὶ ἡ ΘΓ τῆς ΕΗ . καί εἰσι παράλληλοι : ἡ ΕΖ
6195936 ὑποστασεως
ὡς ἂν ἔχωμεν μνήμης , οὕτω περὶ τῆς τῶν πραγμάτων ὑποστάσεως φερόμεθα . Ἀλλ ' εἴπερ οὔτε αἰσθητόν ἐστι τὸ
ἢ τοὐναντίον δυστυχῆσαι ; ἀλλὰ καθολικῶς μὲν τῆς ἐξ ἀρχῆς ὑποστάσεως [ ὁ ] τῶν ἐπισήμων καὶ μέσων καὶ ταπεινῶν
6192194 διαστασεως
συνεγγίζων τῷ Ε σημείῳ κατὰ τὸ πλάτος ἀπὸ τῆς ΕΖ διαστάσεως φαίνηται πρώτως , ὁ τούτου πλέον ἀφεστὼς ἀπ '
καὶ πρῶτον ἐπὶ τῆς ἐν ἀρχαῖς τοῦ Σκορπίου μεγίστης ἑσπερίας διαστάσεως . ἔστω γὰρ ἡ διὰ τοῦ Α ἀπογείου διάμετρος
6185254 τονιαιος
δέ ἐστιν ὁ σύμπας τόπος , ἐν ᾧ κινεῖται , τονιαῖος , ὁ δὲ τῆς παρυπάτης τόπος διέσεως ἐλαχίστης .
οὖν ἐπὶ τοσοῦτον ἀρκείτω : ὁ δὴ τῆς λιχανοῦ τόπος τονιαῖος ὑποκείσθω , ὁ δὲ τῆς παρυπάτης διέσεως ἐλαχίστης .
6180323 διαταξεως
, συναγωνιζομένων αὐτῷ τῶν μεγίστων σκαφῶν . τοιαύτης δὲ τῆς διατάξεως γενομένης εὐχὰς ἑκάτεροι τοῖς θεοῖς ἐποιοῦντο , καθάπερ ἦν
πρὸς τὴν ἐξάρχουσαν αἰτίαν καὶ αὐτῆς τῆς ἐν τῷ κόσμῳ διατάξεως : καὶ τὰ μὲν ὡς ἐστερημένα τῆς γνώσεως παραφέρεται
6170948 ὑποληψεως
ποιεῖ τὰ ζῶα ἀλλ ' οἱ ἄνθρωποι ἐκ τῆς ἰδίας ὑπολήψεως ταύτην αὐτοῖς περιῆψαν τὴν αἰτίαν παντὶ δῆλον . Πόθεν
ἕστηκεν ἀτρεμοῦντα , αἱ δὲ ὀχλήσεις ἐκ μόνης τῆς ἔνδον ὑπολήψεως : ἕτερον δέ , ὅτι πάντα ταῦτα , ὅσα
6165807 εὐδοκιμησεως
εἰ ἄρα μετριότητος ἤθους κέχρηται , μὴ βουλόμενος ἑαυτῷ τῆς εὐδοκιμήσεως καὶ τῆς παρὰ τῶν πολλῶν ἐπαίνου εἶναι μαρτυρία .
ἐλέγχων , ὅσοι λόγου χάριν καὶ τῆς παρὰ τοῖς πολλοῖς εὐδοκιμήσεως προΐστανται ταύτης τῆς θέσεως , πρὸς οὓς καὶ ἤδη
6164884 ΕΡ
? [ ] [ ] ΧΕ [ ] [ ] ΕΡ ? ? ! [ ] [ ] ΓΟ [
. τίς ἄρα ὁ τῆς ΕΠ πρὸς ΠΤ τῷ τῆς ΕΡ πρὸς ΡΤ ; ἀλλ ' ὁ τῆς ΕΡ πρὸς
6145800 Ηα
βΞ ἄρα μείζονές εἰσιν ἀλλήλων , ἀρχόμεναι ἀπὸ μεγίστης τῆς Ηα . ἐπεὶ οὖν μείζων ἐστὶν ἡ Ηα τῆς αβ
ἡ δὲ αβ τῆς βΞ , μείζων ἔσται καὶ ἡ Ηα τῆς βΞ : κοινῆς προσκειμένης τῆς αβ μείζων ἐστὶν
6140274 μητρης
παραδέξεται ὁ στόμαχος : προστιθέναι δὲ πρὸς τὸ στόμα τῆς μήτρης καὶ ὦσαι ὅκως ἂν περήσῃ ἐς τὸ εἴσω τῆς
ὡς φάρμακον τρίβεται , εἶτα τούτῳ ἐναλείφειν τὸ στόμα τῆς μήτρης . Ἕτερον προσθετὸν μαλθακόν : χηνὸς μυελὸν ὅσον κάρυον
6135706 συνισταμενης
ἡ μάλιστα καὶ κυρίως λεγομένη οὐκ ἄλλη τίς ἐστι τῆς συνισταμένης κατ ' εὔνοιαν ἀντίστροφον : αὕτη δὲ ὑφίσταται ,
διαμένειν χρόνους . ὅτε αὐτοῖς χρῆσις . νεφέλης γὰρ πρῶτον συνισταμένης ἔπειθ ' ὑετὸς ἀπ ' αὐτῆς γίνεται . κόπῳ
6133732 συνεχειας
ταῦτα δὲ καὶ πεπονθότα διά τινα δυσκρασίαν ἢ ἔμφραξιν ἢ συνεχείας λύσιν , τοῦ μὴ ὁρᾷν ἢ κακῶς ἡμᾶς ὁρᾷν
ἐν τῇ καταγματικῇ ἀγωγῇ πρώτως δύο , ἅτινα λύσεώς εἰσιν συνεχείας . ἢ γὰρ ἐγκαρσίως τέμνεται ἢ ἐπ ' εὐθείας
6125128 ΗΓ
ΚΗ ἴση ἐστίν : λοιπὴ ἄρα ἡ ΒΕ λοιπῇ τῇ ΗΓ ἐστὶν ἴση , ὅπερ : ∼ Φανερὸν δὴ ὅτι
, ΗΖ . Ἐπεὶ οὖν ἡ ΑΓ μείζων ἐστὶν τῆς ΗΓ [ ηʹ τοῦ τρίτου ] , ἡ δὲ ΓΕ
6124259 ΤΜ
ΚΛ δύνει ἤπερ ἡ ΛΞ . πάλιν , ἐπεὶ ἡ ΤΜ τῆς ΗΞ μείζων ἐστὶν ἢ ὁμοία , ἔστω τῇ
μείζων ἐστὶν ἡ μὲν ΛΤ τῆς ΝΧ , ἡ δὲ ΤΜ τῆς ΧΞ , ὅλη ἄρα ἡ ΛΜ ὅλης τῆς
6119961 ἑξεως
αὐτὴν ἀναδοθῆναι ἢ πρὸ τροφῆς . πρὸς ἀναλογίαν δὲ τῆς ἕξεως καὶ ἡ διὰ τῆς αἰώρας κίνησις ἐπιτηδευέσθω , τὸ
ἀρχάς , τὰ τέλη δηλονότι , οὐ γινώσκομεν ἄνευ τῆς ἕξεως τῆς ἠθικῆς ἀρετῆς : πονηρὸν γὰρ τιθέμεθα τέλος ὑπὸ
6106766 οἰκοδομικης
οὖν . Καὶ συμπάσης γε ὡς ἔπος εἰπεῖν ἔοικεν τῆς οἰκοδομικῆς πέρι τήν γε δὴ νέαν καὶ ἀοίκητον ἐν τῷ
τεχνῶν τῶν μὴ λογικῶν , οἷον τῆς τεκτονικῆς , τῆς οἰκοδομικῆς , τῆς λιθοξοϊκῆς καὶ τῶν τοιούτων : αὗται γὰρ
6099498 φαινομενης
καὶ ἡμέρας ο καὶ ὥρας κβ , μοίρας δὲ τῆς φαινομένης τοῦ ἀστέρος παρόδου ξη κζ , ἡ δ '
καὶ κατὰ τύχην : ἢ ὡς τῆς ἀληθείας ἐν ὑστέρῳ φαινομένης : ὡς καὶ Ἡσίοδός φησι [ . ] :
6097033 ἀκροασεως
δοκούσης καταγεγράφθαι διηγήσεως . βασιλεὺς οὖν Δαρεῖος Ὑστάσπου βούλεται σῆς ἀκροάσεως μεταλαβεῖν καὶ παιδείας λογικῆς . ἔρχου δὴ συντόμως πρὸς
σημείων Πυθαγορικά Καθολικά περὶ λέξεων προβλημάτων Ὁμηρικῶν πέντε περὶ ποιητικῆς ἀκροάσεως ἔστι δ ' αὐτοῦ καὶ Τέχνη καὶ Λύσεις καὶ
6093718 βασανου
ἀβασάνιστος . ἀγύμναστος ἢ ἀνεξέταστος . εἴρεται δὲ ἀπὸ τῆς βασάνου τῆς χρυσοχοικῆς λίθου , ἐν ᾗ δοκιμάζουσι τὸ χρυσίον
μὲν γὰρ αὐτῷ ἐξουσία ἦν σαφῶς εἰδέναι , παρὰ τῆς βασάνου , οὐκ ἠθέλησεν : ἐν οἷς δ ' οὐκ
6093553 διαθεσεως
ἀποτελέσματος ἀστέρων πρὸς τὰ ἑῷα καὶ τὰ ἑσπέρια κέντρα ἀεὶ διαθέσεως . Ἑξῆς δὲ τούτοις ὄντος τοῦ περὶ συναρμογῶν λόγου
σοι σώματος ; γεύσῃ ποτὲ ἆρα τῆς φιλητικῆς καὶ στερκτικῆς διαθέσεως ; ἔσῃ ποτὲ ἆρα πλήρης καὶ ἀνενδεὴς καὶ οὐδὲν
6079603 δημωδους
ὅπως οἱ δυνάμενοι μόνοι προσίοιεν αὐτῶι καὶ μὴ ἐκ τοῦ δημώδους εὐκαταφρόνητον ἦι . τοῦτον δὲ καὶ ὁ Τίμων [
τοῦτο τῆς παροιμίας ἐμνήσθη , ὅτι εἶπον ἂν οἱ τῆς δημώδους ῥητορικῆς προστάται πρὸς τὸ πλῆθος τῶν εἰρημένων λόγων :
6078598 φιλαργυριας
εἶναι καὶ Βάτωνα καλεῖσθαι . ἀτηρότερον δ ' αἰτῶν ὑπὸ φιλαργυρίας ἴσχυσε Θηβαῖος γενέσθαι . Φέρει μὲν οὖν σπουδαῖον οὐδέν
οὖν , τέκνα μου , ἀπὸ τῆς πορνείας καὶ τῆς φιλαργυρίας , ἀκούσατε Ἰούδα τοῦ πατρὸς ὑμῶν , ὅτι ταῦτα
6075058 ΑΨ
καὶ ἐπεζεύχθωσαν αἱ ΨΒ , ΨΚ . καὶ ἐπεὶ ἡ ΑΨ ὀρθή ἐστι πρὸς τὸ τοῦ ΚΒΟΣ τετραπλεύρου ἐπίπεδον ,
τῆς ΑΨ : καὶ ἡ ΑΗ ἄρα ἐλάττων ἐστὶ τῆς ΑΨ . Ἐν ἄλλοις ἀντιγράφοις οὐκ ἔστιν ΗΛ , ἀλλὰ
6071777 συναφης
κυρτὸν εἶναι . νζʹ . Τετραγώνου ὑπάρχοντος ἐὰν ἀπὸ τῆς συναφῆς τῶν διαμέτρων πρὸς ὀρθάς τις ἀναχθῇ τῷ τοῦ τετραγώνου
ΚΠ , καὶ ἴσον ἀπέχουσιν αἱ ΔΜ , ΚΠ τῆς συναφῆς τοῦ θερινοῦ τροπικοῦ : ἐν ᾧ ἄρα χρόνῳ ἡ
6062972 ΚΖ
δὴ ὑποκείσθω τὸ αὐτὸ σχῆμα , καὶ ἔστω τετραγώνου ἡ ΚΖ , καὶ ἴσαι ἀπειλήφθωσαν ἐπὶ τὰ Ζ Δ μέρη
ΔΖ πρὸς τὴν ΘΖ , οὕτως ἡ ΓΚ πρὸς τὴν ΚΖ . Ὡς γὰρ αἱ γωνίαι , δι ' ὧν
6053925 ΖΔ
πρὸς ΕΒ μείζονα λόγον ἔχειν ἤπερ τὸ ΓΖ πρὸς τὸ ΖΔ . λέγω , ὅτι τῶν ΑΕ , ΕΒ ,
ἡ ΒΕ τῇ ΔΖ : διπλῆ ἄρα ἡ ΒΓ τῆς ΖΔ : ὥστε καὶ τὸ ὑπὸ τῶν ΑΒ , ΒΓ
6053527 ἀφαιρουμενης
εὐλόγως , φανερὸν δὲ μάλιστα ἐκ τῶν ἀμυγδαλῶν , εἴπερ ἀφαιρουμένης τῆς ὑγρότητος καὶ τῆς εὐτροφίας μεταβάλλουσι . Τὰ δ
τελῶν δοκεῖ προσφέρεσθαι νῦν ἢ ὁ φόρος δύναται συντελεῖν , ἀφαιρουμένης τῆς εἰς τὸ στρατιωτικὸν δαπάνης τὸ φρουρῆσον καὶ φορολογῆσον
6051214 ΘΡ
ΘΚ , σύμμετρος δὲ τῇ ΗΘ , καὶ κείσθω τῇ ΘΡ ἴση ἡ ΣΗ , καὶ διὰ τῶν Σ ,
ΞΖ , ΖΟ , ΟΗ , ΗΠ , ΠΘ , ΘΡ , ΡΕ τριγώνων πυραμὶς ἰσοϋψὴς τῷ κώνῳ . ἑκάστη
6047406 ἐποχης
παράλυσιν , ἢ διὰ λιθίασιν : αἱ δὲ ὀνομασίαι τῆς ἐποχῆς τοῦ οὔρου εἰσὶ τρεῖς : πρώτη ἰσχουρία , ὅταν
: καὶ γὰρ ἐκ πληγῆς καὶ ἐκ τῆς τῶν ἐμμήνων ἐποχῆς , καὶ μάλιστα ἐξ ἀμβλώσεως : καὶ ψυγεῖσα δ
6047023 ἀποδοσεως
; καὶ διὰ τί ἐστι κύκλος ; τῆς τοῦ ὁρισμοῦ ἀποδόσεως μηδετέραν δυναμένης ἱστᾶν τουτωνὶ τῶν ζητήσεων . ἐπεὶ οὖν
συζύγως ἀμειβόμενος καὶ ὡς ἀφορίζονται οἱ Πυθαγορικοὶ δικαιοσύνην λέγοντες δύναμιν ἀποδόσεως τοῦ ἴσου καὶ προσήκοντος ἐμπεριεχομένην ἀριθμοῦ τετραγώνου περισσοῦ μεσότητι
6045766 ΑΘ
τῶν ΑΕ καὶ ΕΓ ὑπόκειται Ϛ , ἑκατέρα δὲ τῶν ΑΘ καὶ ΘΓ τῶν αὐτῶν Ϛ ι , καὶ ὀρθή
ἴση . ἔστω πρότερον μείζων : μείζων ἄρα καὶ ἡ ΑΘ τῆς ΘΔ . τετμήσθω ἡ ΑΔ δίχα κατὰ τὸ
6038451 ΡΥ
, καὶ ἡ ΤΩ # μβ . ἀλλὰ καὶ ἡ ΡΥ τῶν αὐτῶν # μβ . καὶ λοιπὴ ἡ ὑπὸ
ἡ μὲν ΖΡ τῇ ΡΣ , ἡ δὲ ΡΝ τῇ ΡΥ , δύο αἱ ΖΡΝ δυσὶ ταῖς ΣΡΥ ἴσαι εἰσίν
6038301 δοσεως
περὶ μὲν τῆς θυσίας σαφῶς λέγει , περὶ δὲ τῆς δόσεως τῶν δώρων ἐσιώπησεν , ἀρκεσθεὶς τῷ ἄνω κεφαλαιωδῶς εἰρημένῳ
ἐπιπνοίας ἢ ἀνενέργητον ποιήσῃς ἀλλὰ ἔχεσθαί με τῆς παρὰ σοῦ δόσεως καὶ ἀγαθότητος . Ϙεʹ Δίδου δ ' ἔτι μᾶλλον
6031782 βαρυτατης
μάλιστ ' ἐπόθει καὶ τῆς ἐπ ' αὐτῷ χαλεπῆς καὶ βαρυτάτης ἀνίας ἀπαλλαγῆναι . καὶ ἐπειδὴ παρεγένετο καὶ τὸν ἀδελφὸν
τόποι τῶν λιχανῶν ἑκάστης : ἥ τε γὰρ βαρυτέρα τῆς βαρυτάτης χρωματικῆς πᾶσά ἐστιν ἐναρμόνιος λιχανὸς ἥ τε τῆς βαρυτάτης
6028300 ῥησεως
μοῖραν τὴν τιμιωτάτην . τοῦτο δὲ καὶ ἐξ ἐκείνης τῆς ῥήσεως δῆλον ἧς μικρῷ πρόσθεν ἐμνημονεύσαμεν , περὶ δὲ τοῦ
ὢν μειράκιον : τοῦτό φησιν , ἵνα τὸ προπετὲς τῆς ῥήσεως ἐπὶ τὴν ἡλικίαν ἀνενέγκῃ καὶ ἐπὶ τὸ ἐξημμένον ,
6024317 κλησεως
οὐκ ἔστιν , οἷον ἄλλε : ἡ γὰρ φύσις τῆς κλήσεως μάχεται τῷ σημαινομένῳ τοῦ ὀνόματος : ἡ μὲν γὰρ
ἑπομένως τῷ τῆς ἀκολουθίας εἱρμῷ τὰ πρέποντα καὶ περὶ τῆς κλήσεως εὐθὺς παρήγγειλε : πολύτροποι γὰρ καὶ πολυειδεῖς αἱ περὶ
6018836 ΣΟ
ἡ ΧΦ τῇ ΣΟ , μείζων ἄρα ἡ ΚΒ τῆς ΣΟ . ἴση δὲ ἡ ΚΒ ἑκατέρᾳ τῶν ΚΣ ,
ἐστι διάμετρος ἡ ΞΗ τῇ ΒΤ , καὶ ὅτι ἡ ΣΟ παράλληλος οὖσα τῇ ΒΤ κατῆκται τεταγμένως ἐπὶ τὴν ΘΗΟ
6017864 Ὀπωρας
δὲ τῆς θεοῦ πᾶσιν ὀφθείσης καὶ παρ ' αὐτὴν εὐθέως Ὀπώρας τε καὶ Θεωρίας ἀναφανεισῶν συμπαρὼν ὁ Ἑρμῆς ἀνιστορούσης τι
αἰδοῖον λέγει : ἅμα δὲ καὶ πρὸς τὸ ὄνομα τῆς Ὀπώρας τὸ “ σῦκον ” λέγει . . ὑμὴν ὑμέναι
5989324 καταληξεως
εἰς μαι λήγοντος ἐνεργητικὸν ἔστιν παραδέξασθαι , ἐὰν μετὰ τῆς καταλήξεως συντρέχῃ καὶ τὰ τῆς συντάξεως , ἵσταμαι ὑπὸ σοῦ
ἦν τὸ ἐντελὲς ἠόαΑἱ . ἀποκοπαί , ἐὰν τύχωσι πτωτικῆς καταλήξεως , κλίνονται , μάκαρ , μάρτυρ , γηράντεσσι τοκεῦσιν
5983224 ΖΘΡΟ
τῶν ὁμολόγων πλευρῶν . τὸ ΒΔΜΛ ἄρα στερεὸν πρὸς τὸ ΖΘΡΟ στερεὸν τριπλασίονα λόγον ἔχει ἤπερ ἡ ΒΓ πρὸς τὴν
ἑξαπλάσιον τὸ ΒΔΜΛ στερεόν , τῆς δὲ ΕΖΗΘ ἑξαπλάσιον τὸ ΖΘΡΟ στερεόν , ἴσον ἄρα ἐστὶ τὸ ΒΔΜΛ στερεὸν τῷ
5976924 ΜΞ
, καλεῖται δὲ ἐκ δύο μέσων πρώτη . Ἡ ἄρα ΜΞ ἐκ δύο μέσων ἐστὶ πρώτη : ὅπερ ἔδει δεῖξαι
μέσον λόγον , καί εἰσι μείζονα τμήματα αἱ ΗΓ , ΜΞ , ὡς ἄρα ἡ ΔΗ πρὸς τὴν ΗΓ ,
5972149 περιφερειας
τῶν ἄλλων μενόντων τῶν αὐτῶν τὴν μὲν διπλῆν τῆς ΖΗ περιφερείας γίνεσθαι μοιρῶν ρλη νθ μβ καὶ τὴν ὑπ '
κύκλῳ εὐθειῶν . ιβʹ . περὶ τῆς μεταξὺ τῶν τροπικῶν περιφερείας . ιγʹ . προλαμβανόμενα εἰς τὰς σφαιρικὰς δείξεις .
5962213 ΤΗ
σοι μοιχείας ἔχειν γραφὴν , ἀλλὰ καὶ φόνου κρίνεσθαι . ΤΗ ΜΕΤΑΘΕΣΕΙ ΤΗΣ ΑΙΤΙΑΣ , Ο ΚΑΛΕΙΤΑΙ ΧΡΩΜΑ . Ἀλλ
Βατή τὸ τοῦ δήμου . . . . Τὰ εἰς ΤΗ παραληγόμενα τῷ Ε κύρια ὄντα βαρύνεται : Βρεμέτη Ὠκυπέτη
5961302 ΖΘ
οὕτως τὸ ἀπὸ τῆς ΒΔ τετράγωνον πρὸς τὸ ἀπὸ τῆς ΖΘ , ἔσται ὡς τὸ ἀπὸ τῆς ΒΔ πρὸς τὸ
στερεὸν πρὸς τὸν ΑΒΓΔΛ κῶνον τριπλασίονα λόγον ἔχει ἤπερ ἡ ΖΘ πρὸς τὴν ΒΔ . ὡς δὲ τὸ Ξ στερεὸν
5961113 ΜΗ
Λ , καὶ κείσθω τῇ ΛΖ περιφερείᾳ ἴση περιφέρεια ἡ ΜΗ . Ἐπεὶ οὖν ὁ ἥλιος ἀνατείλας κατὰ τὸ Ζ
ἀπὸ ΜΗ . κοινὸς προσκείσθω λόγος ὁ τῆς ΑΜ πρὸς ΜΗ . ὁ ἄρα συγκείμενος ἔκ τε τοῦ τῆς ΓΜ
5959678 ΚΘ
ῥηταί εἰσι δυνάμει μόνον σύμμετροι : ἀποτομὴ ἄρα ἐστὶν ἡ ΚΘ , προσαρμόζουσα δὲ ταύτῃ ἡ ΖΚ . ἤτοι δὴ
ΞΔ πρὸς ΔΜ . ἀλλ ' ὡς ἡ ΛΚ πρὸς ΚΘ , οὕτως ἡ ΕΚ πρὸς ΚΒ : καὶ ὡς
5949299 κατακλισεως
ἐγκέφαλον διάπυρος καὶ προσβολαὶ πᾶσαι , κἀν ταῖς νυξὶν ἀμηχανία κατακλίσεως , ἀλλ ' ἔδει μετεωρίσαντα αὑτὸν καρτερεῖν προκεκυφότα ,
νοσήσει . Καὶ ἄλλως δέ φησιν : σκόπει τὴν τῆς κατακλίσεως Σελήνην . ἐὰν γὰρ τύχῃ ἢ ἐν τῷ δʹ
5935957 ΣΠ
Π , καὶ γεγράφθωσαν μεγίστων κύκλων περιφέρειαι αἱ ΡΠ , ΣΠ . Λέγω , ὅτι ἐλάσσων ἐστὶν ἡ ΡΠ τῆς
ἡ δὲ ΥΚ τῇ ΜΞ : μείζων ἄρα καὶ ἡ ΣΠ τῆς ΜΞ , ὅπερ : ∼ ζʹ . Ἔστω
5926487 καταγραφης
ἐπικύκλου ε ιγ ἔγγιστα . ἤχθω δὴ ἐπὶ τῆς ὁμοίας καταγραφῆς ἀπὸ τοῦ Κ κέντρου κάθετος ἐπὶ τὴν ΒΕ ἡ
ὕστερόν ἐστι βραχυτέρα . Ἔστω γὰρ ὡς ἐπὶ τῆς δευτέρας καταγραφῆς , καὶ τῶν αὐτῶν ὑποκειμένων ὁ ἥλιος ἔν τινι
5925519 ΜΠ
ἔχει λόγον ἔκ τε τοῦ ὃν ἔχει ἡ ΘΒ πρὸς ΜΠ καὶ ἡ ΠΜ πρὸς ΒΓ , ἀλλ ' ὡς
τῷ ὑπὸ ΤΒ , ΜΝ , καὶ τὸ μὲν ὑπὸ ΜΠ , ΒΘ τέταρτον τοῦ ὑπὸ ΤΒ , ΜΝ ,
5915919 διαμαρτυριας
Ἐγὼ δ ' εἰ μὲν ἑώρων ὑμᾶς μᾶλλον ἀποδεχομένους τὰς διαμαρτυρίας ἢ τὰς εὐθυδικίας , κἂν μάρτυρας προὐβαλόμην μὴ ἐπίδικον
προϊόντος τοῦ λόγου σαφέστερον ἀκούσεσθε : ὑπὲρ αὐτῆς δὲ τῆς διαμαρτυρίας καὶ τοῦ ἀγῶνος ἤδη νομίζω δεῖν διδάσκειν . εἰ
5908023 ΑΥ
. ἤχθω γὰρ ἀπὸ τοῦ Α παρὰ τὴν ΒΖ ἡ ΑΥ . ἐπεὶ οὖν διὰ τὰ αὐτὰ τοῖς πρότερον τῆς
ἐπὶ τοῦ λοξοῦ τὰς ΓΔ , ΓΚ , ΑΠ , ΑΥ . καὶ γεγράφθωσαν μέγιστοι κύκλοι διὰ τῶν Δ ,

Back