| , κἀκείνῃ χρησάμενος ἀναλάμβανε τὸ πλῆθος τῶν ἡμερῶν ἕως τῆς ἐπιζητουμένης ἡμέρας , ἐάνπερ ἐπιδέχηται . εἰ δ ' οὖν | ||
| Θηβαῖοι τοὺς τότε βοιωταρχήσαντας καταδικάσαντες , πολλοῖς χρήμασιν ἐζημίωσαν . ἐπιζητουμένης δὲ τῆς αἰτίας , πῶς ὁ τοιοῦτος ἀνὴρ ἰδιώτης |
| συνεγγίζων τῷ Ε σημείῳ κατὰ τὸ πλάτος ἀπὸ τῆς ΕΖ διαστάσεως φαίνηται πρώτως , ὁ τούτου πλέον ἀφεστὼς ἀπ ' | ||
| καὶ πρῶτον ἐπὶ τῆς ἐν ἀρχαῖς τοῦ Σκορπίου μεγίστης ἑσπερίας διαστάσεως . ἔστω γὰρ ἡ διὰ τοῦ Α ἀπογείου διάμετρος |
| ὑποκείμενον : εἰ τοῦτο , πρὸς τὸ ἔξω , ὥστε παραλελειμμένον ἂν εἴη τοῦτο . Εἰ δὲ οὐδὲν δέονται ἄλλου | ||
| περὶ τῆς λύσεως αὐτοῦ . . παρειμένον ] παροφθὲν , παραλελειμμένον . . γεγωνεῖν ] λέγειν . . εἴρηκας ] |
| , ἐὰν πρὸς πάσας τὰς ἐπιφανείας πᾶς ὁπλίτης παρατάσσηται ἐν ἑτερομήκει σχήματι : πλινθίον δέ , ἐὰν ἴσαις ταῖς φάλαγξι | ||
| τὸ γοῦν ἀπὸ ταύτης ἀναγραφὲν τετράγωνον ἴσον ἔσται τῷ προρρηθέντι ἑτερομήκει . δὶς γὰρ ηʹ ιϚʹ : οὕτω γὰρ ἐκείνῳ |
| θεωρήσομεν . Τοῦ μὲν οὖν πρώτου καὶ τοπικοῦ τὴν διάληψιν ποιησόμεθα τοιαύτην . κατὰ γὰρ τὰς γινομένας ἐκλειπτικὰς συζυγίας ἡλίου | ||
| ἐστιν αὐτόθι : πρὸς γὰρ αὐτὸν τὸν εἰπόντα τὸν λόγον ποιησόμεθα : σύ , ὦ Πιττακὲ Μιτυληναῖε , ἐρωτηθείς , |
| δὲ ΕΘ τῆς ΔΗ διπλῆ , καὶ ὅλην τὴν ΓΘ ἕξομεν τοιούτων ξα μθ , οἵων καὶ ἡ ΕΘ συνάγεται | ||
| ἑκάστου τοῦ τε μήκους καὶ τοῦ πλάτους καὶ τῆς ἀνωμαλίας ἕξομεν τὰς ἐν τῷ χρόνῳ τῆς φαινομένης συνόδου ἀκριβεῖς παρόδους |
| τῆς Α , ἴσον παρὰ τὴν ΒΓ παραβεβλήσθω ἐλλεῖπον εἴδει τετραγώ - νῳ , καὶ ἔστω τὸ ὑπὸ τῶν ΒΔ | ||
| τετραγώνισον τὸν κζ , εἶτα λαβὲ τὴν πλευρὰν τοῦ γεγονότος τετραγώ - νου ἀπὸ τοῦ κζ , εἶτα ἀναβίβασον αὐτὴν |
| φυτοῦ : τὸ ἀϊκὴ ἐν τόνῳ διαλλάξαν τὴν γραφὴν ἔσχεν ἀπαράλλακτον , ὀξύνε - ται γάρ : τὸ γραμματική : | ||
| ταῖς ὀφρύσι τρίχας διαμένειν καὶ τὴν ὅλην πρόσοψιν τοῦ σώματος ἀπαράλλακτον εἶναι καὶ τὸν τῆς μορφῆς τύπον γνωρίζεσθαι : διὸ |
| πλευρῶν , καὶ τὸ ἐμβαδὸν εἰς ἴσα διαιρεῖται κατὰ τὴν διαγώνιον διὰ τὴν κοινὴν ἰδιότητα τῶν παραλληλογράμμων . ἐπὶ δὲ | ||
| βάσιν τέμῃ ἐκ τῆς κορυφῆς δίχα κατὰ τὴν τοῦ τετραγώνου διαγώνιον τὴν ἀπὸ τῆς ὀρθῆς , ἔσονται δύο στερεαὶ πυραμίδες |
| ἡ μὲν φαινομένη μέση πάροδος καὶ τὸ πλεῖστον διάφορον τῆς ἀνωμαλίας ἔσται κατὰ τὰς σο μοίρας , ἡ δ ' | ||
| καὶ τῆς σελήνης ἀπεχούσης τοῦ ἀκριβοῦς ἀπογείου τὰς ὑποκειμένας τῆς ἀνωμαλίας μοίρας ρκ . Τὰ δὲ τοῦ ηʹ σελιδίου , |
| γένοιτ ' ἔτι , τῆς ἰδιότητος πρὸς ἑτέραν μεμιγμένης καὶ συμπλεκομένης οὐχὶ συμφώνους ἁφάς ; τὸ ταῦτα διορᾶν ἐστιν εὐψύχου | ||
| , ὥστε ἴδια μὲν οὐκ ἔχει , τοῖς δὲ τῆς συμπλεκομένης στάσεως ὡς καὶ ἄνω ἔφαμεν διαιρεθήσεται κεφαλαίοις . Ἔστι |
| . ἐκομίζοντο ἐπ ' οἴκου : ἐπεραιοῦντο . ὑπερενεγκόντες : ὑπερβιβάσαντες . ʃ τὸ ἔργον ἡρωϊκόν φ ὅπως μὴ περιπλέοντες | ||
| δὲ τοῦ ἀπὸ ταύτης ἕως τῆς τελευτῆς διαστήματος τὸ ὄγδοον ὑπερβιβάσαντες ἕξομεν τὴν τρίτην συνημμένων τόνῳ βαρυτέραν . τὸ δὲ |
| πρὸς τὴν ΗΚ . ὅμοια ἄρα ἐστὶ τὰ ΑΖΒ , ΛΗΚ τρίγωνα , ὡς δέδεικται ἐν τῷ ἕκτῳ θεωρήματι τοῦ | ||
| ΒΜΘ , ἡ δὲ ΒΜΘ τῆς ΛΗΚ , ἡ δὲ ΛΗΚ τῆς ΓΕ , ἐν πλείονι ἄρα χρόνῳ τὸ Α |
| οὔσης τῆς διηγήσεως καὶ ψιλὴν τῶν πεπολιτευ - μένων ἐχούσης ἔκθεσιν : ἐν οὖν τῷ προκειμένῳ ζητήματι τρία κατὰ τὴν | ||
| ἐν τριάσι καὶ ἑξῆς ἀκολούθως , καὶ παρ ' ἑκάστην ἔκθεσιν ἄλλους τρεῖς ὅρους πλαστέον διὰ τριῶν προσταγμάτων ἀεὶ τῶν |
| μεσότητα ἐμβάλλω εἰς τοὺς προκειμένους ἀρτίους ὅρους , τὰ τῆς γεωμετρικῆς ἰδιώματα ἀνακύπτει , ἐξαπόλλυνται δὲ τὰ τῆς ἀριθμητικῆς : | ||
| . παραινεῖ τε πρῶτον μὲν ἔμπειρον γενέσθαι ἀριθμητικῆς , ἔπειτα γεωμετρικῆς , τρίτον δὲ στερεομετρίας , τέταρτον ἀστρονομίας , ἥν |
| ἀκριβοῦς σημείου , τὸν ἀγχίνουν χρεὼν σκοποῦντα ταῖς ἀποστάσεσι τούτων καταμετρεῖν τὰ νοσήματα . Καὶ πέψεσι μὲν οὖν ἀκριβέσι τῶν | ||
| ἐκκυλιόμενόν τε τῇ ἀνὰ μέρος ἄλλων καὶ ἄλλων εὐθειῶν θέσει καταμετρεῖν τὴν ἐπίπεδον . εἰ δὴ καὶ κατ ' εὐθεῖαν |
| αὐτὰ κατασειόμενος , οὐδὲ συγγραφὴν ἁπλῆν , ἀλλ ' ἔπαινον ἀκριβῆ τινα καὶ λαμπρὸν ἑαυτοῦ διέξεισιν αὐτοκέλευστος , καὶ πρὸς | ||
| τῷ ὅρῳ τῷ κατὰ ἀμφισβήτησιν , καὶ λεπτήν τινα καὶ ἀκριβῆ τὴν διαφορὰν ἔχει , ὡς καὶ τοὺς σφόδρα τεχνίτας |
| , καί ἐστιν ἡ ὑποτείνουσα ε . δείκνυται οὖν τὸ θεώρημα οὕτως ὡς ἐν τῷ διαγράμματι . Πυθαγόρας ἀπὸ τῶν | ||
| τέχνη : ὁ γὰρ μηδὲν ὅλως εἰδώς , εἰ ἓν θεώρημα διδαχθείη τέχνης , τεχνίτης ἂν οὕτω λέγοιτο εἶναι . |
| , τοῦτ ' αὐτὸ τὸ νῦν λεχθὲν ὂν τυγχάνει . μετρήσεως μὲν γὰρ δή τινα τρόπον πάνθ ' ὁπόσα ἔντεχνα | ||
| δὲ τὸν θεὸν λάβοι Τῆς τῶν μαρμάρων τε καὶ ξύλων μετρήσεως ἀναγκαίας οὔσης πρῶτον ὑποθέμενοι τὴν τῶν πηχῶν διαφορὰν ἑξῆς |
| ' ἀλλήλων , μᾶλλον δὲ ἀδυνάτως ἔχουσι κατὰ τὸ ἀκριβὲς ὁρισθῆναι αἱ τῶν ζῳδίων μοῖραι , ἀλλ ' εἰκός ἐστιν | ||
| εἰδέναι τὰς διαφοράς , ἃς ἔχει τὸ προκείμενον εἰς τὸ ὁρισθῆναι πρὸς ἕκαστον τῶν παρ ' αὐτὸ ὄντων ἄνευ τοῦ |
| τὴν προσβολὴν τῆς ἀναθεωρήσεως σύγκρισις γίνηται συνεθιζομένοις καὶ ἐπὶ τῆς σφαιρικῆς εἰκόνος γυμνῇ τῇ τῶν ἄστρων φαντασίᾳ . προσεντάξαντες οὖν | ||
| . τοσαῦτα περὶ μουσικῆς καὶ ἀριθμητικῆς , ἀλλὰ καὶ τῆς σφαιρικῆς πρώτη ἐστίν . εἰ μὲν γὰρ λάβῃς τὴν ἀκίνητον |
| πάντες , οἷς ἐπιμελές ἐστι τὸ κατορθοῦν ἐν μαντικῇ . κανονικῶς οὖν καὶ ὁρικῶς [ περὶ ] τῶν ζητουμένων ἕκαστά | ||
| τὴν παρ ' ἕκαστα χρῆσιν ἐνδέχεται φθάνειν , ἐκθησόμεθα ταύτας κανονικῶς πρὸς τὴν ἐπὶ τὰ λοιπὰ μέθοδον ἀρχόμενοι μὲν ἀπὸ |
| ἔστιν ἡ διπλῆ τῆς ΑΒ δοθεῖσα : τὸ ἄρα ὑπὸ δοθείσης καὶ τῆς ΖΔ ἴσον ἐστὶν τῷ ἀπὸ τῆς ΔΓ | ||
| καὶ τῶν ἄλλων διαμέτρων παραλαμβανομένων τὰ αὐτὰ συμβήσεται . Εὐθείας δοθείσης ἐν ἐπιπέδῳ καθ ' ἓν σημεῖον πεπερασμένης εὑρεῖν ἐν |
| εἰς τοσαῦτα μέρη διῃρημένης καλῶς ἔχειν ἐνόμισα τά τε λόγῳ γεωμετρικῷ θεωρούμενα [ καὶ ἀναγκαιότατα περὶ τὴν τῶν βαρῶν κίνησιν | ||
| γὰρ τῷ μουσικῷ , καθὸ μουσικός ἐστιν , οὐδὲ τῷ γεωμετρικῷ . οὐκοῦν ὠφελῆσαι θέλεις ; πρὸς τί ; εἰπὲ |
| συμφέρει τοὺς κροταφίτας ἐνεργήσαντας ἐπισπᾶσθαι πρὸς ἑαυτοὺς ὅλην αὐτήν : ἐνεργήσουσι δὲ προθυμηθέντος τοῦ κάμνοντος συναγαγεῖν τε καὶ κλεῖσαι τὸ | ||
| εἰσί , δι ' αὑτοὺς καὶ οὐδὲν ἄλλο δηλονότι ἱκανῶς ἐνεργήσουσι τὰ φιλικὰ φιλοῦντες ἀλλήλους . Ὁ δ ' Ἀριστοτέλης |
| ταῦτά εἰσι μετὰ μικρὸν μάθῃς . ὁ μὲν σκοπὸς τῆς προκειμένης πραγματείας ἐστίν , ὡς εἴπομεν , τὸ περὶ τῆς | ||
| ἐπικαίοντας πάλιν , ἐὰν οὕτω τύχῃ : παρελθούσης δὲ τῆς προκειμένης προθεσμίας , ἀφετέον μὲν ἀπουλωθῆναι τοῖς ἕλκεσιν : ἐμπλάστρῳ |
| συμμαχίαν , ἵνα συνερχόμενοι καθ ' ἕκαστον ἐνιαυτὸν εἰς τὸν ἀποδειχθέντα τόπον πανηγυρίζωσι καὶ συνεστιῶνται καὶ κοινῶν ἱερῶν μεταλαμβάνωσιν . | ||
| τὸν λόγον κατ ' ἐλπίδα προδοσίας καὶ συνελθόντος εἰς τὸν ἀποδειχθέντα τόπον , προελθοῦσα εἰς ἐφικτὸν ἡ παρθένος ἐξεληλυθέναι μὲν |
| δὲ σῶμα τιθέασιν οἱ μὲν ἰδίους ἔχοντες τάφους ἐν ταῖς ἀποδεδειγμέναις θήκαις , οἷς δ ' οὐχ ὑπάρχουσι τάφων κτήσεις | ||
| : ἃς ἐὰν προσθῶμεν ταῖς κατὰ τὴν ὑποκειμένην γʹ ἀκρώνυκτον ἀποδεδειγμέναις ἐποχαῖς , ἕξομεν καὶ ἐν τῷ χρόνῳ ταύτης τῆς |
| : ἦμεν γὰρ ἐν τῷ μεσομφάλῳ τῆς Γερμανίας καὶ τοῖς ὅροις αὐτῶν . Ἅμα δὲ τῷ τούτους ῥίψαι ἐπὶ τὴν | ||
| ταύτης παράδοσιν . ἔστιν οὖν ἡ μουσικὴ καλουμένη ἀναλογία ἐν ὅροις τέσσαρσι , δύο μὲν ἄκροις δύο δὲ μέσοις , |
| οἱ παλαιοὶ οἱ περί τε Πυθαγόραν καὶ τοὺς ἐκείνου διαδόχους πυθμενικῶς ἐν τῇ δυάδι ἐθεώρουν , ταυτὸν δὲ καὶ ταυτότητα | ||
| ἐστι . πρὸς δὲ τούτοις καὶ τῶν τὴν ἁρμονικὴν ἐπιδειξαμένων πυθμενικῶς θεωρίαν τῶν τῶν συμφωνιῶν σχέσεων ἁπασῶν , τοῦ Ϛʹ |
| τὸ Γ , καὶ εἰλήφθω τι σημεῖον ἐπὶ τῆς ΑΒ τομῆς τὸ Δ , καὶ δι ' αὐτοῦ ἤχθω παρὰ | ||
| ἡ ἀπὸ τῆς συμπτώσεως ἐπὶ τὸ Δ ἐφάψεται τῆς ἀντικειμένης τομῆς . ἔστω γὰρ τὰ αὐτὰ , καὶ τὸ Δ |
| Νοιόμαγον εἰπὼν νοτιωτέραν μιλίοις νθʹ , βορειοτέραν αὐτὴν διὰ τῶν κλιμάτων ἀποφαίνει . Καὶ τὸν Ἄθω δὲ τάξας ἐπὶ τοῦ | ||
| οὕτως πραγματευσόμεθα . πάντοτε δεῖ πρῶτον εἰσέρχεσθαι εἰς τὸ τῶν κλιμάτων κανόνιον , ἔχοντα δὲ διαβήτην κεχηνότα καὶ κατὰ τὴν |
| ἐτελειώθη ὁ τῶν β μο ἐπὶ Ϟοὺς . Λοιπόν ἐστι πολυπλασιάσαι μο β λείψεως ἐπὶ μο β ὑπάρξεως καὶ ποιεῖν | ||
| τὰς σχέσεις : ὥσπερ ἐνταῦθα πέντε οὐσῶν τῶν φωνῶν δεῖ πολυπλασιάσαι ἐπὶ τὸν μονάδι ἐλάττονα , φημὶ τὸν τέσσαρα , |
| ΘΑ τοῦ ἀπὸ τῆς ΑΕ , τουτέστιν β β , ἑξηκοστοῖς μ , ἅ ἐστιν τοῦ δὶς ὑπὸ ΚΘ , | ||
| ὥστε καὶ ἐνθάδε τὸ παρὰ τὴν ἀνωμαλίαν τῆς σελήνης διήνεγκεν ἑξηκοστοῖς δ , ἅπερ οὐδ ' αὐτὰ ποιεῖ τινα ἀξιόλογον |
| τὴν τῶν Ε Ζ ὑπεροχήν , ὅπερ ἐστὶ κατὰ τὴν μεσότητα τὴν τῇ ἁρμονικῇ ὑπεναντίαν . δῆλον δ ' ὅτι | ||
| τὸν ἠδικημένον , καὶ προστεθὲν τῷ ἠδικημένῳ , ἰσότητα καὶ μεσότητα ἐποίησε . καὶ διὰ τοῦτο καὶ δίκαιον καλεῖται , |
| προηγωνισμένων ἀνέσεως . οὗ δὴ καὶ μίαν ἄλλην ἡμέραν προσδιατρίψαντες τομῶς ὑπέστρεψαν , ἐπισπεύδοντες τὰ πρὸς τὸν πλοῦν , καλοῦντος | ||
| διανοίαις ὑπέβαλεν : εἰ γὰρ ἅμα τῷ πρὸς ἡμᾶς γενέσθαι τομῶς τῆς διαβάσεως κατετόλμησαν , οὐδὲν ἧττον καὶ ἡμεῖς τῶν |
| πάροδος τῆς σελήνης περὶ τὸν καταβιβάζοντα σύνδεσμον ἐν ἑκατέρᾳ τῶν ἐκλείψεων : τὸ γὰρ τοιοῦτον καὶ ἐκ τῶν ὁλοσχερεστέρων ὑποθέσεων | ||
| ∠ ʹ γʹ . Ἐπεὶ οὖν ἡ μὲν τῶν δύο ἐκλείψεων ὑπεροχὴ τὸ τρίτον περιέχει τῆς σεληνιακῆς διαμέτρου , ἡ |
| καὶ ἦθος καὶ γένος , οὕτω δὴ κἀπὶ τῶν ἵππων εὑρήσομεν , ἀλλ ' ἐγὼ , καίτοι χαλεπὸν ὂν καὶ | ||
| . ἡ δὲ γῆρυς ὅτι ἐπὶ τῆς φωνῆς εἴρηται , εὑρήσομεν καὶ παρ ' Ὁμήρῳ : οὐ γὰρ πάντων ἦεν |
| , ὡς ἐν τοῖς Ἀποδεικτικοῖς αὐτὸς ἡμᾶς ἐδίδαξε . καὶ τετραγωνίσαι παραλληλόγραμμον ὀρθογώνιον οὐδὲν ἦν ἄλλο ἢ τῆς μέσης εὕρεσις | ||
| ὅρος τοῦτο , ἀποδείξις δὲ ὁ αὐτὸς οὕτως : ὁ τετραγωνίσαι βουλόμενος μέσην ἀνάλογον ζητεῖ εὑρεῖν : ἡ μέση εὑρεθεῖσα |
| σημανέων τὸ πρὸς θάλασσαν αὐτῆς , τῆς Σκυθικῆς χώρης ἐς μέτρησιν . Ἀπὸ Ἴστρου αὕτη ἤδη ἡ ἀκταίη Σκυθική ἐστι | ||
| οὔσης πρῶτον ὑποθέμενοι τὴν τῶν πηχῶν διαφορὰν ἑξῆς καὶ τὴν μέτρησιν αὐτῶν ὑποτάξομεν : τὰ γὰρ γεγραμμένα ἡμῖν εἴτε ἐπὶ |
| σημεῖον ἔσται τῆς μέσης συζυγίας , τὸ δὲ Λ τῆς ἀκριβοῦς , καὶ ἡ ΘΛ μοιρῶν γ , αἷς τὸ | ||
| κ , ὥστε καὶ τὴν τῆς ὁμαλῆς σελήνης ἀπὸ τοῦ ἀκριβοῦς ἡλίου διάστασιν συνάγεσθαι μοιρῶν μϚ μ , ἀνωμαλίας δ |
| . καὶ ἐπειδὴ μὲν ὀνομάζεται , ἔχει ἐκ τοῦ ὀνόματος ὅρον τὸν λέγοντα φιλοσοφία ἐστὶ φιλία σοφίας , ἐπειδὴ δὲ | ||
| μόνων ἄν τις παραδειγμάτων θηράσειεν : λύσεις οὖν οὕτως τὸν ὅρον , ὅτι τὸ νεῦσαι οὐκ ἐξειπεῖν ἐστι : τί |
| εἶδος χωρίζεσθαι κατὰ τὴν ὑπόστασιν . οἷον ἐπεὶ εἶδος τῆς σεληνιακῆς ἐκλείψεως τὸ ἐν μέσῳ αὐτῆς καὶ τοῦ ἡλίου γεγονέναι | ||
| τὴν σεληνιακήν . καὶ ἐπειδὴ τὸ ἀπ ' αὐτῆς τῆς σεληνιακῆς ἕως ἐπὶ τὴν μέλλουσαν σύνοδον διάστημά ἐστι μοιρῶν λβʹ |
| [ καὶ καθ ' ὃ πίπτει σημεῖον ] καὶ τὴν ἐλαχίστην ἀποτεμνομένην ἀπὸ τῆς καθέτου μεταξὺ τῶν δύο σημείων τοῦ | ||
| . τροφὴν δὲ τῷ σώματι παρέχουσιν αἱ μὲν ῥοιαὶ παντάπασιν ἐλαχίστην , αἱ δ ' ἄπιοι , καὶ μάλιστα αἱ |
| μεγίστας τῶν βασιλικῶν πράξεων , καὶ τοῖς μὲν στρατοπέδοις ἔπαρχον ἐπιστῆσαι ὀρχηστήν τινα γεγονότα καὶ δημοσίᾳ ἐν τῷ Ῥωμαίων θεάτρῳ | ||
| ἐνεργητικῶς ἢ παθητικῶς ἢ καὶ ἔτι μέσως . Ἔστιν οὖν ἐπιστῆσαι τὸ πρῶτον , εἰ ἐν ἅπασι τοῖς ῥήμασι σύνεστιν |
| τῷ καί συνδέσμῳ : κοινὸν μὲν παρελάμβανεν τὸ ὄνομα τὸ προκείμενον , συμπλέκων δὲ ἕτερον λόγον πάντως καὶ ἕτερον ῥῆμα | ||
| ε γαμήσεις καὶ λύσεις τὸν γάμον ζηλοτυπήσας Ϛ ἀγοράσεις τὸ προκείμενον ἐν τάχει ζ εὐτυχήσεις ἐξ ἰδίων κόπων η οὐ |
| τοῦ ἐπικύκλου : τότε γὰρ τὸ πλεῖστον γίνεται διάφορον τῆς ὁμαλῆς κινήσεως παρὰ τὴν ἀνώ - μαλον . ἐπεὶ γὰρ | ||
| μὲν τοῦ ζῳδιακοῦ κέντρον τὸ Γ , τὸ δὲ τῆς ὁμαλῆς τοῦ ἐπικύκλου κινήσεως τὸ Β , καὶ ἐκβληθείσης τῆς |
| τριακοντάδα καὶ κατὰ τὴν τοῦ ἰσημερινοῦ πρόσθεσιν ἢ ἀφαίρεσιν σεληνιακὸν γνώμονα , ὃν ἐπισυνθέντας τῷ ἡλιακῷ καὶ τὴν ἡμίσειαν τῶν | ||
| αὐτὸ πρὸς ἀστρολογίαν οἰόμενος , ὀνομάζει δὲ τὴν κάθετον ἀρχαϊκῶς γνώμονα , διότι καὶ ὁ γνώμων πρὸς ὀρθάς ἐστι τῷ |
| ὀστοῦ πώρωσιν ἐπιδεχομένου . πωρωθῆναι γὰρ δεῖ τοῦτο κατὰ τὴν ἀποκατάστασιν . οἱ δὲ οὕτως . προγεγονότα δ ' ἐσομένων | ||
| πάλιν ἐλλείπῃ περὶ τὸ τρίτον τετράγωνον ἢ καὶ τὴν τούτων ἀποκατάστασιν τὴν τελείαν τοῦ κύκλου . ὁ δὲ Ἥλιος τούτων |
| καὶ θεωρία ἐκεῖνο . Ἡ ἄρα πρᾶξις ἕνεκα θεωρίας καὶ θεωρήματος : ὥστε καὶ τοῖς πράττουσιν ἡ θεωρία τέλος , | ||
| ἀνεκλείπτου περιφερείας δεδειγμέναις μοίραις ρνζ , ὡς ἐπὶ τοῦ προκειμένου θεωρήματος σελήνης , ἑκατέρα τῶν ΕΓΗ , ΖΑΘ περιφερειῶν [ |
| , ὄρθιον δὲ ὅ τι περ ἂν τὸ βάθος τοῦ μήκους . λοξὴ δὲ ὀνομάζεται φάλαγξ ἡ τὸ μὲν ἕτερον | ||
| εἰς ἀσάφειαν προάγομεν τὸν λόγον ἢ διὰ τὸ σαφῶς εἰπεῖν μήκους δεόμεθα . χρὴ τοίνυν τὴν συντομίαν σκοπεῖν , εἰ |
| λίθος ἐστίν , ἵνα μὴ ἐπὶ ἀναιρέσεως τὸν καταφατικὸν προσδιορισμὸν παραλαμβάνωμεν . Τὰς ἀντιθέσεις ἁπάσας τῶν προσδιωρισμένων προτάσεων ἐν τούτοις | ||
| δὲ ἕνεκεν , μήτε τὸν Ἑρμῆν ? ? ? ? παραλαμβάνωμεν ? εἰς διδασκαλίαν , ὥς φασίν τινες , μήτε |
| τοῦ παντὶ λόγῳ λόγον ἴσον ἀντικεῖσθαι κηʹ παραπήγματα περὶ τῶν σκεπτικῶν φωνῶν κθʹ εἰ ἡ σκεπτικὴ ὁδός ἐστιν ἐπὶ τὴν | ||
| τῶν δογματικῶν ἐνστάσεως σύντομός ἐστι καὶ ἡ πρὸς ταύτην τῶν σκεπτικῶν ἀπάντησις . λέξουσι γάρ : εἰ μὲν οὐκ ἐνδέχεται |
| τοῦ μεσαιτάτου , ἵνα μὴ περαιτέρω τοῦ ἡμίσους ὁ τῆς κρούσεως κραδασμὸς χωρήσῃ , διὰ πασῶν εὑρήσει τὸν ἀπὸ τῆς | ||
| ἔσται τῶν κακῶν . ἐπὶ δὲ νυκτὸς ἐξ ἀπο - κρούσεως φερομένης τῆς Σελήνης εἰς πάντα ἀγαθὸς καὶ ὠφέλιμος ἔσται |
| πραγματείας μετὰ ψιλῶν τῶν ποιητικῶν δυνάμεων , ὡς ἔφαμεν , ἐκτιθέμενοι , καὶ τὰ μὲν περιέργως ὑπὸ τῶν πολλῶν φλυαρούμενα | ||
| καὶ τοῖς κεφαλαίοις κεχρήμεθα : πῆ μὲν ἕκαστον κεφάλαιον διπλοῦν ἐκτιθέμενοι , ὥσπερ ἐν τοῖς ἀντεγκληματικοῖς στοχασμοῖς καὶ διπλοῖς ὅροις |
| Συλλήβδην δ ' εἰπεῖν , τῆς καθ ' ἡμᾶς θαλάττης νοτιώτατον μέν ἐστι σημεῖον ὁ τῆς μεγάλης Σύρτεως μυχός , | ||
| ἄκρα τῆς Τρῳάδος : καὶ σχεδὸν τοῦτ ' ἔστι τὸ νοτιώτατον ἄκρον τῆς Χερρονήσου , σταδίους μικρῷ πλείους τῶν τετρακοσίων |
| τῶν ἄλλων ἀρχαιότητι καὶ σεβασμῷ , πολλῶν ἐν αὐτῷ παραδόξων παραδεδομένων . πρῶτον μὲν γὰρ κρατῆρές εἰσι τῷ μεγέθει μὲν | ||
| , σκότου δὲ πλῆρες καὶ δυσοσμίας διὰ τὸ πλῆθος τῶν παραδεδομένων εἰς τοῦτον τὸν τόπον ἀνδρῶν τῶν ἐπὶ θανατικοῖς ἐγκλήμασι |
| σμύρνα , σίδιον αὖον . Ἕτερον : ἄνθος χαλκοῦ ὀπτὸν ἡμιμοίριον , σμύρνης δύο ἡμιμοίρια , κρόκου τρεῖς μοῖραι , | ||
| κατήντησεν . ἡ μεταφορὰ ἀπὸ τῶν καθορμιζομένων πλοίων εἴρηται . ἡμιμοίριον : τὸ ἥμισυ τῆς δραγμῆς . ἠρύγγη , πόλιον |
| πρὸ αὐτῆς ὁ δύο πλείων [ τοῦ αʹ ] τοῦ ὑπόπροσθεν ὑπάρχει , καὶ ῥίζα γε τῆς πυθμενικῆς τοῦ μείζονος | ||
| δὲ μεταξὺ ἀμφοῖν ἴση [ τῷ αʹ βʹ ] τοῖς ὑπόπροσθεν [ ἤγουν ἐστὶ γʹ ] : εἰδοποιὸς ἄρα μεσότητος |
| ἢ μαθηματικῆς πρόκειται ζητῆσαι οὔτε τῆς τελείου ἐξ ἀριθμητικῆς καὶ γεωμετρίας συνεστώσης οὔτε τῆς παρὰ τοῖς περὶ Εὔδοξον καὶ Ἵππαρχον | ||
| περὶ τούτων λόγος ἀστρονομίᾳ ἂν προσήκοι . Ἔκ γε μὴν γεωμετρίας γεωμέτρης , γεωμετρική γεωμετρεῖν , γεωμετρικός γεωμετρικῶς , γεωμετρικώτατα |
| φαίνεται . Ἀκμάσαντος δὲ τοῦ θέρους μείω μὲν τῷ ἐξ ἀναλογίας ποσῷ τὰ χύματα καὶ πρὸς τὸ πυρρὸν ἤδη καὶ | ||
| σοφῶν ἀνδρῶν παντέλεια , περιέχει δ ' ἐν αὑτῇ τὰς ἀναλογίας πάσας , τήν τε ἀριθμητικὴν καὶ τὴν ἁρμονικὴν καὶ |
| διδάσκει , ὅτι παντὶ καὶ ἰδιώτῃ καὶ τῷ φιλομαθοῦντι τῆς γεωγραφικῆς ἱστορίας προσηκούσης , ἀδύνατον [ αὐτὴν ] λαβεῖν ἄνευ | ||
| ὅτι παντί , καὶ ἰδιώτῃ καὶ τῷ φιλομαθοῦντι , τῆς γεωγραφικῆς ἱστορίας προσηκούσης ἀδύνατον μεταλαβεῖν ἄνευ τῆς τῶν οὐρανίων καὶ |
| ἀπό τινος σημείου ἐπὶ θέσει δεδομένας παραλλήλους καταχθῶσιν εὐθεῖαι ἐν δεδομέναις γωνίαις ἤτοι ἀποτεμνοῦσαι πρὸς τοῖς ἐπ ' αὐτῶν δοθεῖσι | ||
| , ἤτοι ἐν ἴσαις γωνίαις ἢ ἐν ἀνίσοις μέν , δεδομέναις δέ , ἔσται ὡς ἡ τοῦ πρώτου πλευρὰ πρὸς |
| πλείονας ἔχει : ἔχει γὰρ καὶ ἄλλο τέταρτον ἡμέρας καὶ ἑκατοστὸν μέρος , καθ ' ἣν καὶ τὸ βίσεξτον ἀπαντᾷ | ||
| ἄχρι τοῦ τὸ εἰκοστὸν μέρος αὐτοῦ ἀφεψηθῆναι , γύψου τὸ ἑκατοστὸν προσεμβάλλοντες . Λακεδαιμόνιοι δὲ ἕως τοσούτου εἰς τὸ πῦρ |
| ἁπλᾶς , ἀλλὰ καὶ τρίτην ἄλλην τὴν περὶ κύλινδρον ἕλικα γραφομένην : καὶ αὕτη γάρ , φασίν , ὁμοιομερὴς ὥσπερ | ||
| ἀρχαὶ ἀπὸ φωνηέντων ἐγίνοντο , τὴν ου συλλαβὴν ἑνὶ στοιχείῳ γραφομένην . τοῦτο δ ' ἦν ὥσπερ γάμμα διτταῖς ἐπὶ |
| . πρύμνηθεν ] ἀπὸ τῆς πρύμνης . μηχανὴν σωτηρίας ] μέθοδον τοῦ πῶς δεῖ σεσῶσθαι . . καμούσης ] χειμαζομένης | ||
| καὶ συμβεβηκὸς τῶν ζητημάτων ἁπάντων , ὅπως τοῦτο ἐπιγνωσόμεθα τὴν μέθοδον ἐνταυθοῖ προθεὶς ποιήσομαι τὴν ἀρχὴν τῆς διαιρέσεως τῶν κεφαλαίων |
| ἐρημίαν τε καὶ καταφρόνησιν , πρὸς δὲ τούτοις ὑπογραψαμένη τὴν διόρθωσιν τοῦ νόμου , ὥστε ἀντὶ τῆς ἐκτίσεως τῶν πεντακοσίων | ||
| πολιτείας ἀνυποθέτους τε καὶ ἐξ ὑποθέσεως , καὶ αὖ πρὸς διόρθωσιν ἑτέρους ὁρῶντας , καὶ ἀνάκεινταί σοι κύρβεις αἱ μὲν |
| κύκλον ἐν ἄλλῳ χρόνῳ περίεισι , τὴν δὲ κατὰ πλάτος παραχώρησιν ἐν ἄλλῳ τῳ ποιεῖται , ἀνάγκη καὶ τρίτην προσλαβεῖν | ||
| τὸ ὑπὸ γῆν τοῦ οὐρανοῦ κατ ' ἄλλην καὶ ἄλλην παραχώρησιν καὶ πρὸς ἑαυτὰ καὶ πρὸς ἄλληλα , ἐπὶ μὲν |
| κατὰ συζυγίαν πολλαπλάσιός ἐστι κατὰ τὸν ἥμισυν τοῦ πλήθους τῶν ἐκκειμένων ὅρων . ἐπεὶ γὰρ ἡ τῶν αβ βγ ὑπεροχὴ | ||
| γδ , τουτέστιν ὅσον ἐστὶ τὸ ἥμισυ τοῦ πλήθους τῶν ἐκκειμένων ὅρων : ὥστε ὁ αη δύο τῶν κατὰ συζυγίαν |
| ἀπὸ τοῦ τῆς συμβολῆς τῶν περιφερειῶν σημείου ἐπὶ τὰ κέντρα ἐπιζεῦξαι εὐθείας περιεχούσας τὴν λείπουσαν εἰς τὰς δύο ὀρθὰς τῆς | ||
| Θ , καθ ' ὃ τέμνει τὴν τετραγωνίζουσαν , καὶ ἐπιζεῦξαι τὴν ΘΗ , καὶ δίχα τεμόντα τὴν ΑΒ καὶ |
| δυνάμει πεφυκυῖα , δύο μεσότητας ἔχει , ἀριθμητικήν τε καὶ ἁρμονικήν , φαίνεταί τε τὰ μέρη αὐτῆς καὶ τὰ μεγέθη | ||
| δεύτερος πρὸς τὸν τρίτον , οἷον δʹ Ϛʹ θʹ , ἁρμονικήν δὲ ὅταν τριῶν ἀριθμῶν ἀνίσων , εἰ ὡς ὁ |
| μεταξὺ τῶν Ρ Θ , πάντες δὲ οἱ μείζους τοῦ πενταπλασίου ποιοῦσι τὸ σημεῖον τῆς τομῆς μεταξὺ τῶν Ρ Τ | ||
| τοῦ εἰκοσαέδρου καθέτου τὸ δυνάμει δωδεκαπλάσιον μεῖζόν ἐστιν τοῦ δυνάμει πενταπλασίου τῆς πλευρᾶς τοῦ εἰκοσαέδρου . Ἐκκείσθω κύκλος ὁ ΑΒΓ |
| τὴν ἐνταῦθα ὑποκειμένην ἐπὶ τοῦ ἐπικύκλου μετάβασιν τὸν ἀπὸ τῆς ἐλαχίστης κινήσεως ἐπὶ τὴν μέσην χρόνον , μείζων ἐστὶν τῆς | ||
| δὴ ταῦτα ἀληθῆ λέγομεν , καὶ τὸ μέγεθος ὥρισται τῆς ἐλαχίστης σαρκός , ἀναγκαίως ἀδύνατον ἐν ἑκάστῳ πάντα μεμῖχθαι . |
| δον μέρος τῆς ἀποκαταστάσεως , ἐπὶ τὰς ἡμέρας Ϛ νγʹ κʹʹ , ἀποτελοῦνται μοῖραι β δʹ : ταῦτα προσέθηκα τῇ | ||
| # λαʹ κʹʹ , κατὰ δὲ τὸ ἐλάχιστον # λεʹ κʹʹ , ἡ δὲ διάμετρος τοῦ κύκλου τῆς σκιᾶς κατὰ |
| τῆς ἀποδείξεως χρησόμεθα διὰ τὸ ταύτην μὲν ἄνευ τῆς πρώτης συμπεπλεγμένης γε αὐτῇ πάντοτε μηδαμῶς εὑρεθῆναι δύνασθαι , ἐκείνην δὲ | ||
| ὡς δηλοῖ αὐτῶν ἡ κατὰ τόπον μετάβασις , ἀεὶ μέντοι συμπεπλεγμένης πρὸς τὴν ἐνέργειαν : ὅπερ γὰρ καὶ προσφυῶς ἀνεφθέγξατο |
| αὐτῶν ἐπίπεδα καλεῖσθαι , τὰ δὲ στερεά , τὰ δὲ γραμμικά . τὰ μὲν οὖν δι ' εὐθείας καὶ κύκλου | ||
| ἐπ ' αὐτῶν τῶν ἑξηκοστῶν αἰσθητὴν διαφορὰν γίνεσθαι παρὰ τὰ γραμμικά , ὡς ἐξέσται πειρωμένῳ σκοπεῖν . Οἷον ὡς ἐπὶ |
| ὑπὸ τῶν δύο εὐθειῶν ἴσον ἐστὶ τοῖς ὑπό τε τῆς ἀτμήτου καὶ ἑκάστου τῶν τμημάτων περιεχομένοις ὀρθογωνίοις : ὅπερ ἔδει | ||
| δὲ κατὰ τὸ α , γίνεται τὸ ὑπό τε τῆς ἀτμήτου τῆς βα καὶ ἑκάστου τῶν τμημάτων τῶν δα , |
| ἡ ὑγρότης περὶ τὸ βάθος καὶ τίκτονται πνεύματα , ὧνπερ πολυπλασιαζομένων καὶ βουλομένων τὴν ἔξω φορὰν διῶξαι , ποιοῦσί τινας | ||
| τοῦ χρόνου γίνονται ιβ προτάσεις . εἶτα τούτων τῶν ιβ πολυπλασιαζομένων ἐπὶ τὴν τριμέρειαν τῆς ὕλης γίνονται λϚ . αὗται |
| ὁ πλοῦς ἐπιλογισάμενοι διὰ τὴν τῶν πνευμάτων ἐπὶ τοσοῦτον χρόνον ἀνωμαλίαν καὶ παραλλαγὴν , οὔθ ' ὅτι πρὸς ἄρκτους ἢ | ||
| τούτοις παραπλησίων . Διοκλῆς τὰς πλείστας τῶν νόσων δι ' ἀνωμαλίαν ἔλεγε τίκτεσθαι . Ἐρασίστρατος ἔλεγε πλῆθος καὶ διαφθορὰ τἀνωτάτω |
| ἄρα φλεγμονῆς οὔσης ἐν τοῖς ὑποχονδρίοις μεγάλης ἢ σήψεώς τινος ἐμφαινομένης ἐν ταῖς φλεψὶν ἢ ὠμοτέρων χυμῶν ὁ ἑκτικὸς συνέστη | ||
| αὐτῷ , αἰὼν δὲ τὸ ὑποκείμενον μετὰ τῆς τοιαύτης καταστάσεως ἐμφαινομένης . Ὅθεν σεμνὸν ὁ αἰών , καὶ ταὐτὸν τῷ |
| σφαῖραι Πτολεμαίωι μέν , ὡς εἰκός , ἔν τισιν , Ἀράτωι δὲ κατὰ τὸ πλεῖστον οὐ συμφωνοῦσιν , ὥστε τῶν | ||
| συγκαταδύσεων : οἳ μὲν γὰρ ἔφασαν τὴν πραγματείαν εἶναι τῶι Ἀράτωι ἄρχοντος ἀνατέλλειν τοῦ ζωιδιακοῦ , οἳ δὲ μεσοῦντος , |
| ἡ ὑπὸ ΑΕΒ γωνία τὰς διπλασίονας ἔγγιστα περιέχῃ μόνης τῆς ἡλιακῆς ἀνωμαλίας μοίρας δ μϚ , καὶ ἐπιζευχθείσης ἐπὶ τῆς | ||
| φοῖνιξ καὶ τοῖς πατρῴοις ἔθεσι χρῆται , ὥστε ὑπὸ τῆς ἡλιακῆς μόνης αὐγῆς , πατρός τε καὶ μητρὸς χωρίς , |
| οὐδὲν κωλύει ἐπιστητὸν εἶναι , οἷον καὶ ὁ τοῦ κύκλου τετραγωνισμὸς εἴ γ ' ἔστιν ἐπιστητόν , ἐπιστήμη μὲν αὐτοῦ | ||
| ψευδογράφημα περὶ ἀληθές , οἷον τὸ Ἱπποκράτους [ ἢ ὁ τετραγωνισμὸς ὁ διὰ τῶν μηνίσκων ] . . Α . |
| ἐνδεχόμενον , βούλεται διὰ τούτων σαφέστερον ἡμῖν παραδοῦναι μετὰ πλείονος ἐπεξεργασίας προάγων τὸν λόγον . διὸ ὥσπερ ἀπ ' ἄλλης | ||
| διὰ τοῦ νος κλίνεται . Σαφῆ τὰ τοῦ κανόνος καὶ ἐπεξεργασίας μὴ δεόμενα : ἰστέον δὲ ὅτι πάντα μακρὸν ἔχουσι |
| ἐσώθη . πόσης οἴεσθε χαρᾶς ἐμπλήσομεν τὴν ὅλην Σικελίαν ; πόσας ληψόμεθα δωρεάς ; ἅμα δὲ καὶ πρὸς ἀνθρώπους δίκαια | ||
| αὐτῷ κύκλου διαίρεσιν γινομένης τοῦ ἐντὸς κύκλου τομῆς , καὶ πόσας αὐτοῦ μοίρας ἀφέστηκεν ἤτοι πρὸς ἄρκτους ἢ πρὸς μεσημβρίαν |
| δυνήσονται . καὶ μὴν οὐδὲ κατὰ ἀναλογίαν παρῆλθεν ἡ τοῦ ἀπλατοῦς μήκους νόησις . τὰ γὰρ κατὰ ἀναλογίαν νοούμενα ἔχει | ||
| νύκτα ἡμικύκλιον ἀνατέλλει καὶ δύνει , τοῦ ἡλίου ἐπὶ τοῦ ἀπλατοῦς καὶ διὰ μέσων τῶν ζῳδίων φερομένου : ἐπὶ γὰρ |
| Περὶ παραλύσεως ὧδέ πως ἔγραψεν : δεῖ δὲ πολλὴν πάνυ ἐπίσκεψιν ποιήσασθαι περὶ συνηθείας καὶ ἀσυνηθείας τὸν μέλλοντα κατὰ τρόπον | ||
| καὶ σελήνης καὶ σκιᾶς . Τῶν δὴ πρὸς τὴν τοιαύτην ἐπίσκεψιν ἐφόδων τὰς μὲν ἄλλας , ὅσαι δι ' ὑδρομετριῶν |
| Φιλόνομος καὶ Καλλίας οἱ Καταναῖοι τοὺς ἑαυτῶν πατέρας ἀράμενοι διὰ μέσης τῆς φλογὸς ἐκόμισαν , τῶν ἄλλων κτημάτων καταφρονήσαντες . | ||
| Ὑδροχόου μοίρας ι . καὶ ἐνθάδε ἄρα ἡ μεγίστη τῆς μέσης ἀπόστασις ἑῴα τῶν ἴσων γέγονεν κϚ ∠ ʹ μοιρῶν |
| νικᾷ . ὡς ἂν δὲ καὶ κατ ' ἐπιστημονικὴν ἔφοδον διαιρετικῶς τὰ τῶν ὄντων γένη ληφθείη , ὧδ ' ἂν | ||
| ἄρα ἄνθρωπος δίπους . λαμβάνεται δὲ καὶ τὸ δίπουν τοῖς διαιρετικῶς μετιοῦσιν ἀσυλλογίστως . Τὸ γάρ ἐνταῦθα ἀντὶ τοῦ δέ |
| μοίρας νγʹ ∠ ʹʹ νʹ γʹʹ ἡ δὲ πηγὴ ἡ ἀρκτικωτάτη τοῦ Βορυσθένους ποταμοῦ νβʹ νγʹ Καὶ τῶν ὑπὸ τὸν | ||
| Σκῦρος νῆσος καὶ πόλις νδʹ λθʹ Τῆς Ἠπείρου ἡ μὲν ἀρκτικωτάτη πλευρὰ διορίζεται τῷ τῆς Μακεδονίας μέρει κατὰ τὴν εἰρημένην |
| ἐν τῷ γʹ καὶ δʹ σελιδίῳ κατὰ τὸ τῶν προσνεύσεων κανόνιον . ἐὰν μὲν οὖν βορειότερον ᾖ τὸ κέντρον τῆς | ||
| τῶν τῆς διαμέτρου δωδεκάτων εἰσενεχθέντων εἰς τὸ ἐπὶ πᾶσι βραχὺ κανόνιον καὶ τὰ ιβʹ τῶν ὅλων ἐμβαδῶν εὑρήσομεν ἐκ τῶν |
| εἰδέναι χρὴ ὅτι τὰ σχήματα τῶν διαιρέσεων διδασκόμεθα ἐκ τῆς ἐπιβλέψεως τῆς πρόσθεν πρὸς τὸ ἀσφαλὲς καὶ τὸ εὔμορφον : | ||
| διὰ τῆς εἰς ἀδύνατον ἀπαγωγῆς δεικνύμενον δι ' ἧς πεποιήμεθα ἐπιβλέψεως δείκνυται καὶ διὰ τῶν αὐτῶν ὅρων , δι ' |
| σκέψεως ἐμπεφανίκαμεν , ἀκόλουθον ἡγούμεθα εἶναι καὶ τῶν παρακειμένων αὐτῇ φιλοσοφιῶν τὴν πρὸς αὐτὴν διάκρισιν συντόμως ἐπελθεῖν , ἵνα σαφέστερον | ||
| , καὶ τὴν διάκρισιν τῆς σκέψεως ἀπὸ τῶν παρακειμένων αὐτῇ φιλοσοφιῶν : εἰδικὸς δὲ ἐν ᾧ πρὸς ἕκαστον μέρος τῆς |
| λοιπὰ ὁμοίως ἀναγράφει : τὴν δὲ κεφαλὴν τοῦ Ὀφιούχου γράφει ἀνατέλλουσαν καὶ τὴν ἀριστερὰν μόνον χεῖρα : . . . | ||
| τοῦ Καρκίνου , ὁ Ἄρατος θεωρῶν τὴν κεφαλὴν τοῦ Λέοντος ἀνατέλλουσαν καὶ ὑπολαμβάνων τὸ κατὰ τὸν Λέοντα δωδεκατημόριον ἀναφέρεσθαι , |
| καὶ τεσσάρων καὶ πέντε συμπληροῦσιν ἀριθμὸν τὸν δώδεκα , τοῦ ζῳοφόρου κύκλου παράδειγμα , διπλασιασθείσης . . . . . | ||
| τόπῳ αὐτῆς περὶ τὸ αὐτὸ στρεφομένης , ἐνεργούσης δὲ τὴν ζῳοφόρου κύκλου . . . , παραδιδοῦσα τὸ πᾶν τοῦτο |
| λβ καὶ τοῦτο δι ' ὅλου : ἐν δὲ περισσαῖς ἐκθέσεσιν ἶσον τὸ ἅπαξ ξδ τῷ δὶς λβ καὶ τοῦτο | ||
| διὰ τετάρτης ἀπαντᾶν ἡμέρας , ὡς ἐν ταῖς αὐτῶν ἀνάλογον ἐκθέσεσιν εἰς τὰς τετάρτας πάντως οἱ κύβοι ἀποτελοῦνται χώρας : |
| θείῳ Πτολεμαίῳ λογικῶς ἐπελθεῖν τὰ καθόλου γινόμενα χώραις ἢ πόλεσι συμπτώ - ματα . ταῦτα δὲ μάλιστα συμβαίνει παρὰ τὰς | ||
| γενήσεται , πλὴν δι ' ἐκείνην τὴν πρᾶξιν ὑποστήσεται δεινὰ συμπτώ - ματα , καὶ φοβηθήσεται ἀπὸ ὕδατος καὶ εἰς |
| ἀπὸ δὲ τῶν ἄκρων τούτων καταιγίζοντα σκαιὸν τὸν ἀργέστην σκείρωνα προσηγορεύκασιν Ἀθηναῖοι . μετὰ δὲ τὰς Σκειρωνίδας πέτρας ἄκρα πρόκειται | ||
| λέγειν τι περὶ τούτων ἀκριβῶς ὥστε καὶ τὸν ποταμὸν Ἀστάπουν προσηγορεύκασιν , ὅπερ ἐστὶ μεθερμηνευόμενον εἰς τὴν Ἑλλήνων διάλεκτον ἐκ |
| . Διὰ μαχαιρῶν καὶ πυρὸς ῥίπτειν δεῖ : ἐπὶ τῶν παραβαλλομένων καὶ ῥιψοκίνδυνα ποιούντων . Δίκην ὑφέξει κἂν ὄνος δάκῃ | ||
| ἐστὶ διάνοια . ἀπὸ μεταφορᾶς τῶν στρα - τιωτῶν τῶν παραβαλλομένων ἔμπροσθεν ἐν τῷ πολέμῳ . ἐν ἀκαρεῖ χρόνῳ : |
| διὰ τὸ πρὸς τὰς ἐσομένας ἐν τοῖς ἑξῆς ἀποδείξεις τῶν ἐκλειπτικῶν αὐτοῦ φάσεων προχειρότερον εὑρεῖν , πόσον τὸ πλεῖστον ὁ | ||
| φώτων δάκτυλοι ιβ , ὥσπερ καὶ ἐπ ' αὐτῶν τῶν ἐκλειπτικῶν κανονίων ὡς τοῦ ἑνὸς δακτύλου περιέχοντος τὸ ιβʹ τῆς |
| τε τῶν λόγων καὶ τῶν παρὰ τοῖς δογματικοῖς κειμένων τὴν ἐποχὴν συνάγοντες . Εἰ μέντοι καὶ δοίημεν καθ ' ὑπόθεσιν | ||
| οἱ μὲν οὖν παλαιότεροι τελευτᾶν αὐτὴν εἰς ἐποχὴν ὑπολαμβάνουσιν , ἐποχὴν καλοῦντες τὴν ὡς ἂν εἴποι τις ἀοριστίαν , ὅπερ |