τρίγωνον ὀρθογώνιον ὄν : ὥστε καὶ ἡ τοῦ κώνου κορυφὴ ὀρθογώνιός ἐστιν . εἰ δὲ μείζων ἐστὶν ἡ ΒΓ τῆς
κύκλος , ἀλλὰ τεταρτημορίου σφαίρας ἐστὶν ἐπιφάνεια , εἴπερ γε ὀρθογώνιός ἐστιν ὁ τῆς ὄψεως κῶνος ὡς ἐδείξαμεν . ἐπιβάλλομεν
6956869 ΑΕΖΓ
νοήσωμεν μεσημβρινὸν κύκλον τὸν ΑΒΓΔ καὶ ζῳδιακοῦ μὲν ἡμικύκλιον τὸ ΑΕΖΓ , ὁρίζοντος δὲ τὸ ΒΕΔ περὶ πόλον τὸ Η
διαστήματι δὲ ὁποτερῳοῦν τῶν ΒΑ , ΒΓ γεγράφθω κύκλος ὁ ΑΕΖΓ , καὶ ἐκβεβλήσθωσαν αἱ ΑΒΕ , ΑΔΖ , ΑΗΘ
6656889 ΚΒΟΣ
καὶ παράλληλοί εἰσιν διὰ τὸ λγʹ τοῦ αʹ . τὸ ΚΒΟΣ ἄρα τετράπλευρον . , . ] τετράπλευρόν ἐστιν ,
κύκλος . Ἤχθω ἀπὸ τοῦ Α σημείου ἐπὶ τὸ τοῦ ΚΒΟΣ τετραπλεύρου ἐπίπεδον κάθετος ἡ ΑΨ καὶ συμβαλλέτω τῷ ἐπιπέδῳ
6609750 τετραγωνισαι
, ὡς ἐν τοῖς Ἀποδεικτικοῖς αὐτὸς ἡμᾶς ἐδίδαξε . καὶ τετραγωνίσαι παραλληλόγραμμον ὀρθογώνιον οὐδὲν ἦν ἄλλο ἢ τῆς μέσης εὕρεσις
ὅρος τοῦτο , ἀποδείξις δὲ ὁ αὐτὸς οὕτως : ὁ τετραγωνίσαι βουλόμενος μέσην ἀνάλογον ζητεῖ εὑρεῖν : ἡ μέση εὑρεθεῖσα
6329169 ΚΜΝ
τουτέστιν οἱ κινοῦντες ἔστωσαν ἄνθρωποι μʹ , ἡ δὲ ὑπὸ ΚΜΝ γωνία , τουτέστιν ἡ ὑπὸ ΕΘΛ , διμοίρου ὀρθῆς
, καὶ τῇ ὑπὸ ΑΘΔ γωνίᾳ ἴση συνεστάτω ἡ ὑπὸ ΚΜΝ , καὶ ἀπὸ τῶν Κ Λ κάθετοι αἱ ΛΟ
6280072 τομα
ἐργάζονται . ὁ μισθός : ὁ δοθησόμενος ὑμῖν . ἁ τομά : φησὶ δεῖν ἀπεστραμμένην τοῦ ἀνέμου κεῖσθαι ὑπὲρ τοῦ
: οὕτω γὰρ ἂν λιπαρὸς διαμένοι ὁ καρπός . ἁ τομά : παρατετηρημένως λέγει τοὺς τὰς ἀμάλας θημονοθετοῦντας οὕτω τιθέναι
6212793 περιλαβον
πλευρῶν ἕτερον ἐκ δὶς τοσούτων συνεστηκὸς ἐντὸς συνήρμοσται σχῆμα κύκλον περιλαβὸν μετεωρίζοντά που τὸν ὄροφον , τὸ διὰ πάντων ἤδη
: μέχρι μὲν οὖν ἂν ἁπλῶς τοιοῦτο λέγηται , πάντα περιλαβὸν ἐν ἑαυτῷ ἔχει : ἐπειδὰν δὲ τὸ εἰδοποιοῦν ἑκάστῳ
6200800 γεωμετρικῳ
εἰς τοσαῦτα μέρη διῃρημένης καλῶς ἔχειν ἐνόμισα τά τε λόγῳ γεωμετρικῷ θεωρούμενα [ καὶ ἀναγκαιότατα περὶ τὴν τῶν βαρῶν κίνησιν
γὰρ τῷ μουσικῷ , καθὸ μουσικός ἐστιν , οὐδὲ τῷ γεωμετρικῷ . οὐκοῦν ὠφελῆσαι θέλεις ; πρὸς τί ; εἰπὲ
6038352 σκιασματι
ἐν δὲ τῇ γῇ τὸν ΗΘΚ , ἐν δὲ τῷ σκιάσματι τὴν ΝΞ περιφέρειαν , ἐν δὲ τῷ κώνῳ εὐθείας
Ϙ . Ἡ ὑποτείνουσα εὐθεῖα ὑπὸ τὴν ἀπολαμβανομένην ἐν τῷ σκιάσματι τῆς γῆς περιφέρειαν τοῦ κύκλου , καθ ' οὗ
5965843 ἐγκεκλισθαι
, τὰ δὲ νότια μᾶλλον τῷ ὁρίζοντι πελάζειν διὰ τὸ ἐγκεκλίσθαι ἀπὸ τῶν βορείων ἐπὶ τὰ νότια τὸν κόσμον ἐν
Τούτου δ ' αἴτιόν ἐστι τὸ μὴ ἐπίσης παρὰ πᾶσιν ἐγκεκλίσθαι τὸν κόσμον , μηδὲ τὸν βόρειον τῶν πόλων τὰς
5956582 τετραγωνισμος
οὐδὲν κωλύει ἐπιστητὸν εἶναι , οἷον καὶ ὁ τοῦ κύκλου τετραγωνισμὸς εἴ γ ' ἔστιν ἐπιστητόν , ἐπιστήμη μὲν αὐτοῦ
ψευδογράφημα περὶ ἀληθές , οἷον τὸ Ἱπποκράτους [ ἢ ὁ τετραγωνισμὸς ὁ διὰ τῶν μηνίσκων ] . . Α .
5876660 ἀποκατασταθῃ
μενούσης τῆς ΒΔ τὸ ΑΒΓ τμῆμα περιενεχθὲν εἰς τὸ αὐτὸ ἀποκατασταθῇ , ἔσται σφαιρικὴ ἐπιφάνεια , πρὸς ἣν αἱ πρὸς
τὴν ὀρθὴν γωνίαν τὴν Κ περιενεχθὲν εἰς τὸ αὐτὸ πάλιν ἀποκατασταθῇ , ὅθεν ἤρξατο φέρεσθαι , ἡ μὲν ΒΓ καθ
5873102 ρπαʹ
, οὕτω καὶ νῦν εἰς τύχην ἀνάγει τὸν λόγον . ρπαʹ Τέχνῃ λαβεῖν Ἵνα τεχνικῶς τις διέλῃ πρῶτον εἰς δύο
ὁ λόγος ἐστὶ τῆς ΗΖ πρὸς τὴν ΖΘ ὁ τῶν ρπαʹ ∠ ʹʹγʹʹ πρὸς τὰ μϚʹ ∠ ʹʹ καὶ κʹʹ
5868817 εζη
Ὑδροχόον : ἅπερ οὐ φαίνεται . δῆλον οὖν ὅτι ὁ εζη κύκλος ἤτοι ἐπὶ τὰ αὐτὰ τῷ παντί , βραδύτερον
τὴν ξμ κίνησιν ἀποκαθεστακέτω τὸν χψ ἐπὶ τὸν ἐπίκυκλον τὸν εζη , καὶ αὐτὸς ὁ ἥλιος , ἐνεχθεὶς ὁμοίαν λοιπὴν
5834119 ΗΖΛ
τὴν ΖΛ . δύο δὴ τρίγωνά ἐστι τὰ ΒΑΕ , ΗΖΛ μίαν γωνίαν μιᾷ γωνίᾳ ἴσην ἔχοντα τὴν ὑπὸ ΒΑΕ
πάλιν ἀποκατασταθῇ ὅθεν ἤρξατο φέρεσθαι , τὰ μὲν ΚΓΔ , ΗΖΛ ἡμικύκλια ἐνεχθήσεται κατὰ τῶν σφαιρῶν , τὸ δὲ ΑΖ
5822337 ὀρθοτερα
ἐν πλείονι χρόνῳ ἀνατέλλει ἡ ΕΛ τῆς ΛΜ , καὶ ὀρθοτέρα ἡ ΛΜ περιφέρεια , ἥτις ἐστὶν τοῦ λέοντος ,
δὲ τὴν μὲν Ἰδαίαν τὴν δὲ παραλίαν : τούτων δὲ ὀρθοτέρα καὶ μακροτέρα καὶ τὸ φύλλον ἔχουσα παχύτερον ἡ Ἰδαία
5772620 ΕΘΛ
τὸ ΗΘ . καὶ ἔστιν ἰσογώνιον τὸ ΓΗΚ τρίγωνον τῷ ΕΘΛ , ὅτι καὶ ἡ ΓΚ παράλληλός ἐστι τῇ ΕΛ
ΚΘΛ ἴση . ἐπεὶ οὖν δύο αἱ ΚΘΛ δυσὶν ταῖς ΕΘΛ ἴσαι , καὶ γωνία γωνίᾳ , καὶ βάσις ἡ
5770005 ΕΒΓΖ
ΗΒΓ τρίγωνον : ὅλον ἄρα τὸ ΑΒΓΔ παραλληλόγραμμον ὅλῳ τῷ ΕΒΓΖ παραλληλογράμμῳ ἴσον ἐστίν . Τὰ ἄρα παραλληλόγραμμα τὰ ἐπὶ
ΒΓ : λέγω , ὅτι ἴσον ἐστὶ τὸ ΑΒΓΔ τῷ ΕΒΓΖ παραλληλογράμμῳ . Ἐπεὶ γὰρ παραλληλόγραμμόν ἐστι τὸ ΑΒΓΔ ,
5728697 μετρηθεισα
, ἑξάκις ἂν τόσση μιν ὑποδράμοι : αὐτὰρ ἑκάστη ἴση μετρηθεῖσα δύω περιτέλλεται ἄστρα οὐ γραμματικοῦ τοῦτο νοῆσαι , ὅτι
τοῦ λίθου δυνάμει . Ἀλλὰ οὖσα πρώτη φύσις καὶ οὐ μετρηθεῖσα οὐδὲ ὁρισθεῖσα ὁπόσον δεῖ εἶναιταύτῃ γὰρ αὖ ἡ ἑτέρα
5717861 ἐκβληθεντος
τροπῇ τοῦ δ εἰς ζ καὶ τοῦ ε εἰς η ἐκβληθέντος τοῦ ι , οἱονεὶ τὸ μὴ ἔχον διέχειαν ἢ
σὺ δὲ πετάσῃς ἵνα πλήξῃς ἐκεῖνον , εὐθὺς τεθνήξῃ , ἐκβληθέντος τοῦ κέντρου : ζωὴ γὰρ ἐν σοὶ ἐνυπάρχει τὸ
5692446 ΑΓΠ
τῶν ἄλλων ὑποκειμένων τῶν αὐτῶν : λέγω ὅτι ἡ ὑπὸ ΑΓΠ ὀξεῖά ἐστιν . Ἐπεὶ γάρ ἐστιν ὡς μὲν ἡ
τοῦ ΑΓΡ τριγώνου ἐλάσσων ἐστίν : ὀξεῖα ἄρα ἡ ὑπὸ ΑΓΠ γωνία : ἡ κλίσις ἄρα τῶν εἰρημένων ἐπιπέδων πρός
5671317 ἐπιζευχθεισων
τὸ Η , ἐπειδὴ περὶ τὸ περίγειόν ἐστιν , καὶ ἐπιζευχθεισῶν τῆς τε ΕΗ καὶ τῆς ΒΗ , ἵνα ἡ
Γ ση μείων ἐν τῇ περιφερείᾳ τοῦ ἐκκέντρου ὄντων . ἐπιζευχθεισῶν τοίνυν τῶ ΖΓ , ΖΑ , ἑκατέρα τῶν Α
5548915 ἐπιψαυουσαν
ποτ ' ἄλλαλα , ὃν τὰ τετράγωνα τὰ ἀπὸ τᾶν ἐπιψαυουσᾶν : ὁμόλογον δὲ ἐσσεῖται τὸ περιεχόμενον ὑπὸ τῶν τᾶς
ποτ ' ἄλλαλα , ὃν τὰ τετράγωνα τὰ ἀπὸ τᾶν ἐπιψαυουσᾶν : ὁμόλογον δὲ ἐσσεῖται τὸ περιεχόμενον ὑπὸ τῶν τᾶς
5527808 γλωσσοκομον
ἀρχαὶ πρὸς τὰς τάσεις . ἔχει δὲ καὶ πώματα τὸ γλωσσόκομον χάριν τοῦ κρύπτεσθαι τὰ ἐν αὐτῷ μηχανήματα : ἔχει
ἢ ὁτουοῦν ἄλλου . καλοῦσι δ ' αὐτὸ οἱ ἀμαθεῖς γλωσσόκομον . γλῶτται αὐλῶν καὶ γλῶτται ὑποδημάτων : ἃ γλωττίδας
5515385 γραφομενην
ἁπλᾶς , ἀλλὰ καὶ τρίτην ἄλλην τὴν περὶ κύλινδρον ἕλικα γραφομένην : καὶ αὕτη γάρ , φασίν , ὁμοιομερὴς ὥσπερ
ἀρχαὶ ἀπὸ φωνηέντων ἐγίνοντο , τὴν ου συλλαβὴν ἑνὶ στοιχείῳ γραφομένην . τοῦτο δ ' ἦν ὥσπερ γάμμα διτταῖς ἐπὶ
5499111 ἑτερομηκει
, ἐὰν πρὸς πάσας τὰς ἐπιφανείας πᾶς ὁπλίτης παρατάσσηται ἐν ἑτερομήκει σχήματι : πλινθίον δέ , ἐὰν ἴσαις ταῖς φάλαγξι
τὸ γοῦν ἀπὸ ταύτης ἀναγραφὲν τετράγωνον ἴσον ἔσται τῷ προρρηθέντι ἑτερομήκει . δὶς γὰρ ηʹ ιϚʹ : οὕτω γὰρ ἐκείνῳ
5456762 κωνικην
τὴν ] ὀρθὴν γωνίαν εὐθείας περιστρεφόμενον τὸ τρίγωνον ποιεῖ τὴν κωνικὴν ἐπιφάνειαν ἡ ΘΛ [ ἀπὸ τοῦ ] Θ τῆς
ἄπειρον αὔξεται τῆς γραφούσης εὐθείας εἰς ἄπειρον προσεκβαλλομένης , καλῶ κωνικὴν ἐπιφάνειαν , κορυφὴν δὲ αὐτῆς τὸ μεμενηκὸς σημεῖον ,
5440853 ἀνατεινομενος
νῦν χρὴ νοῆσαι , ἐπειδὴ ὁ Ἰσσικὸς κόλπος πρὸς βορέαν ἀνατεινόμενος κατὰ τοῦτο τὸ μέρος ἐπικάμπτεται . Δνοφερῇ δὲ τῇ
ἐπὶ τῶν ὑπομνηστικῶν σημείων θεωρεῖται οὕτω γιγνόμενον : ὁ γὰρ ἀνατεινόμενος πυρσὸς τισὶ μὲν πολεμίων ἔφοδον σημαίνει , τισὶ δὲ
5422239 ΑΖΔ
τὸ Δ , καὶ ἐπὶ τῆς ΑΔ γεγράφθω ἡμικύκλιον τὸ ΑΖΔ , καὶ ἤχθω τις εἰς τὸ ἡμικύκλιον παράλληλος τῇ
, ΖΒ , ΖΕ . ἐπεὶ οὖν ἐλάττων ἡ ὑπὸ ΑΖΔ τῆς ὑπὸ ΒΖΕ γωνίας , ἔλαττον ἄρα τὸ ΑΔ
5420642 ἐπιζυγιδος
τε ἀγκῶνας πυκνὰ πονεῖν τῶν τοιούτων ὀργάνων . τῆς δὲ ἐπιζυγίδος τὸ μὲν πάχος ἀρκεῖν γενόμενον τοῦ πέμπτου μέρους τῆς
καὶ ἐυεργέστερον ἀντὶ τοῦ ὀρθοῦ ἄξονος ἀπὸ τῆς τῶν μεσοστατῶν ἐπιζυγίδος ἀρτήματι κρεμάσαι τὸν κάμακα τοῦτον ὡς κριὸν , οὕτως
5411701 διαγωνιον
πλευρῶν , καὶ τὸ ἐμβαδὸν εἰς ἴσα διαιρεῖται κατὰ τὴν διαγώνιον διὰ τὴν κοινὴν ἰδιότητα τῶν παραλληλογράμμων . ἐπὶ δὲ
βάσιν τέμῃ ἐκ τῆς κορυφῆς δίχα κατὰ τὴν τοῦ τετραγώνου διαγώνιον τὴν ἀπὸ τῆς ὀρθῆς , ἔσονται δύο στερεαὶ πυραμίδες
5399455 ἐπιζευξαι
ἀπὸ τοῦ τῆς συμβολῆς τῶν περιφερειῶν σημείου ἐπὶ τὰ κέντρα ἐπιζεῦξαι εὐθείας περιεχούσας τὴν λείπουσαν εἰς τὰς δύο ὀρθὰς τῆς
Θ , καθ ' ὃ τέμνει τὴν τετραγωνίζουσαν , καὶ ἐπιζεῦξαι τὴν ΘΗ , καὶ δίχα τεμόντα τὴν ΑΒ καὶ
5398469 τμηθεντος
| ἓν γὰρ τὸ ἐξ ἀμφοῖν τῶν ἐναντίων , οὗ τμηθέντος γνώριμα τὰ ἐναντία . οὐ τοῦτ ' ἐστίν ,
λοιπὸς ἄρα ὁ ΓΑ ἐστι μονάδων ι καὶ β . τμηθέντος δὲ τοῦ ΓΑ δίχα τοῦ ιβ κατὰ τὸ Δ
5394314 σταδιαια
ἡλίου τῆς ἐπιπροσθούσης αὐτῷ κορυφῆς : ὥστ ' ἂν αὕτη σταδιαία ᾖ , μείζονα δεήσει σταδιαίας εἶναι τὴν τοῦ ἡλίου
προαστείων : ἀπὸ δὲ τοῦ αὐχένος ἐπὶ τὰς κορυφὰς ἄλλη σταδιαία λείπεται πρόσβασις ὀξεῖα καὶ πάσης βίας κρείττων : ἔχει
5386124 μετεωροτερῳ
ἡ ἀπὸ τοῦ Ε ἐπὶ τὸ Ζ ἐπιζευγνυμένη εὐθεῖα ἐν μετεωροτέρῳ ἐστὶν ἐπιπέδῳ : ἐν τῷ διὰ τῶν ΑΒ ,
ὅπερ ἐστὶν ἀδύνατον . οὐκ ἄρα ἡ ΒΓ εὐθεῖα ἐν μετεωροτέρῳ ἐστὶν ἐπιπέδῳ : αἱ τρεῖς ἄρα εὐθεῖαι αἱ ΒΓ
5383090 ἀνακαμπτουσα
πεττεία πλοκή . ἀγωγῆς μὲν οὖν εἴδη γ , εὐθεῖα ἀνακάμπτουσα περιφερής : εὐθεῖα μὲν οὖν ἐστιν ἡ διὰ τῶν
πάλιν τοίνυν ἀπὸ τοῦ ἄκρου τοῦ Γ ἐπὶ τὸ Β ἀνακάμπτουσα ἀφίξεταί ποτε ἐπὶ τὸ Α , καὶ τοῦτο ἔσται
5372665 ὠδοντωμενον
ϘϠ , τῷ δὲ ἄξονι αὐτοῦ τύμπανον ἔστω συμφυὲς ΜαΜβ ὠδοντωμένον ὀδοῦσιν λοξοῖς , οὗ ἡ διάμετρος πρὸς τὴν τοῦ
τῷ δὲ ἄξονι τοῦ ΥΦ τυμπάνου συμφυὲς γενέσθαι τὸ ΧΨ ὠδοντωμένον , οὗ ἡ διάμετρος πρὸς τὴν τοῦ ΥΦ τυμπάνου
5367989 καταγομεναι
ἡ ΓΑ , ὀρθία δὲ ἡ ΓΛ , αἱ δὲ καταγόμεναι ἀπὸ τῶν τομῶν ἐπὶ τὴν ΓΑ καταχθήσονται ἐν τῇ
καὶ φανοῦνται παράλληλοι , αἱ δ ' ἐπὶ τὴν ΑΓ καταγόμεναι διαχθήσονται μὲν ἀπὸ τοῦ Κ , φανοῦνται δὲ τῇ
5354268 πενταπλη
διὰ πάντων εἴρηται αὕτη μόνη καὶ δοκεῖ εἶναι τριπλῆ καὶ πενταπλῆ μετάληψις , ἕκαστον γὰρ αὐτῶν δεῖ λυθῆναι τοῖς προειρημένοις
αἱ ΒΓ : ἡ μὲν γὰρ ΒΘ τῆς ΘΓ ἐστι πενταπλῆ , ἡ δὲ ΒΓ τῆς ΓΘ ἐστιν ἑξαπλῆ .
5345268 καταλαμβανον
δὲ κινούμενον ἄλογον ἔσται , τοιοῦτον δὲ ὂν οὐκ ἔσται καταλαμβάνον ἀλλὰ καταλαμβανόμενον . ὅπερ πάλιν ἦν ἄτοπον . Διὰ
εἰς τήνδε τὴν ἀρτηρίαν αἵματος : ἐνοχλεῖ δὲ τῷ πνεύματι καταλαμβάνον αὐτοῦ τὰς ὁδούς , καὶ οὕτως ἤδη βήττει μὲν
5342826 αγδβʹ
τοῦ δʹ ἢ οὔ . Ἐρχέσθω πρότερον καὶ ἔστω τὸ αγδβʹ , καὶ ἐν τῇ περιφορᾷ τῆς σφαίρας μετακεκινήσθω τὸ
καὶ διὰ τῶν πόλων αὐτῶν μέγιστοι κύκλοι γεγραμμένοι εἰσὶν οἱ αγδβʹ αεζβʹ , ὁμοία ἄρα ἐστὶν ἡ γεʹ περιφέρεια τῇ
5333133 ΠΔΡ
δὲ καὶ ἑτέρῳ ἐπιπέδῳ τῷ ὑποκειμένῳ κατ ' εὐθεῖαν τὴν ΠΔΡ πρὸς ὀρθὰς τῇ ΗΔΘ , ἡ δὲ κοινὴ τομὴ
τὸ ΖΗΘ : καὶ ἡ κοινὴ ἄρα αὐτῶν τομὴ ἡ ΠΔΡ ὀρθή ἐστι πρὸς τὸ ΖΗΘ : καὶ πρὸς πάσας
5319181 λειπετω
ὁ Ε : καὶ ὁ μὲν ΓΔ τὸν ΒΖ μετρῶν λειπέτω ἑαυτοῦ ἐλάσσονα τὸν ΖΑ , ὁ δὲ ΑΖ τὸν
ἐλάσσονα τὸν ΗΓ , ὁ δὲ ΗΓ τὸν ΖΘ μετρῶν λειπέτω μονάδα τὴν ΘΑ . Ἐπεὶ οὖν ὁ Ε τὸν
5296201 Ἀμελους
τυχεῖν : ἐπὶ τῶν ἐκ κακῶν εἰς ἀγαθὰ μεταβαινόντων . Ἀμελοῦς γωνία : ἐπὶ τῶν ῥᾳθύμως καὶ ἀργῶς καθημένων .
ἀργῶς καὶ ῥαθύμως καθημένων . Ἔστι δὲ καὶ χωρίον Λιβύης Ἀμελοῦς γωνία καλούμενον . Ἀμουσότερος Λειβηθρίων : ἐπὶ τῶν ἀμούσων
5295915 συμπιπτουσι
ἄρα ΑΒ , ΓΔ ἐκβαλλόμεναι εἰς ἄπειρον συμπεσοῦνται : οὐ συμπίπτουσι δὲ διὰ τὸ παραλλήλους αὐτὰς ὑποκεῖσθαι : οὐκ ἄρα
πρὸς ἀλλήλας αἱ ἑκατέρωθεν ἀκταί : προϊοῦσαι δὲ πλέον τελέως συμπίπτουσι κατὰ τὸ Ῥίον καὶ τὸ Ἀντίρριον , ὅσον δὴ
5295312 τετραγω
τῆς Α , ἴσον παρὰ τὴν ΒΓ παραβεβλήσθω ἐλλεῖπον εἴδει τετραγώ - νῳ , καὶ ἔστω τὸ ὑπὸ τῶν ΒΔ
τετραγώνισον τὸν κζ , εἶτα λαβὲ τὴν πλευρὰν τοῦ γεγονότος τετραγώ - νου ἀπὸ τοῦ κζ , εἶτα ἀναβίβασον αὐτὴν
5292782 περιγραψει
τούτου εὕρεσις . εἰ δέ τις ταῦτα καλῶς τῷ λόγῳ περιγράψει , ἤδη παντὸς ἂν εἴη τοῦ βουλομένου πλατῦναι αὐτά
γραμμῆι κατά τι σημεῖον : ἅμα δὲ καὶ τὸ Β περιγράψει ἡμικύκλιον ἐν τῆι τοῦ κώνου ἐπιφανείαι . ἐχέτω δὴ
5273244 ἐπιφανειαι
τοὺς πόρους ἐπιφανείαις προσπίπτον ποιεῖν . ἀλλ ' αἵ γε ἐπιφάνειαί εἰσιν ἀσώματοι , καὶ τὸ ἀσώματον οὔτε ποιεῖν οὔτε
ἐν ταῖς τραγῳδίαις , μετ ' ἄλλας ἐπιδείξεις πολλάς , ἐπιφάνειαί τινες ἐπὶ τέλει ἐκ μηχανῆς τινὸς θεῶν ἀναδείκνυνται .
5267481 ΝΗΞ
περιφέρειαν . γεγράφθω γὰρ διὰ τοῦ Η παράλληλος κύκλος ὁ ΝΗΞ , καὶ ἔστωσαν κοιναὶ τομαὶ τῶν ἐπιπέδων αἱ ΑΚ
ὁ ΑΒΓ κύκλος ὀρθός ἐστι πρὸς ἕκαστον τῶν ΔΛΜ , ΝΗΞ , ΒΕΓ κύκλων . ἐπεὶ οὖν ἐν σφαίρᾳ παράλληλοι
5234997 ἀνιουσης
' ἀμφοτέρως ἐκέρδαινον , σοί τε συνὼν καὶ τῆς νῦν ἀνιούσης ἡμῖν πόλεως ἀπολαύων τὰ γιγνόμενα . ἐπεὶ δ '
ἡ μὲν ὀρθὴ γωνία σύμβολον εἶναι ζωῆς κατ ' ἀρετὴν ἀνιούσης καὶ εἰς ὕψος αἰρομένης καὶ μενούσης ἀκλίτου πρὸς τὰ
5206186 ἐπιζευξας
τὴν ΑΖ , τῇ δὲ Δ τὴν ΖΗ , καὶ ἐπιζεύξας τὴν ΒΗ ταύτῃ παράλληλον ἤγαγον τὴν ΖΘ . ἐπεὶ
. εἰ δ ' ἀρεταί : ὅτι ἀρεταὶ κατάκειται εἴρηκεν ἐπιζεύξας πληθυντικῷ ἑνικὸν ῥῆμα τὸ κατάκειται . καὶ ὅτι ὀργὰν
5199373 ἐνηρμοσθω
ἐναρμοσθῇ , μεταξὺ πεσεῖται τῶν Β καὶ Ε σημείων . ἐνηρμόσθω ἡ ΑΖ ἴση τῇ ἐκ τοῦ κέντρου , καὶ
εὐθειῶν ἐναρμόσαι τῷ ΑΚΓΗ κύκλῳ εὐθεῖαν ἴσην τῇ ΔΖ . ἐνηρμόσθω ἡ ΑΛΜ , καὶ ἐπεζεύχθω ἡ ΑΗ : ἴση
5177094 κυκλικη
καὶ πλείονας ὥρας μένων συσχηματίζεται αὐτῇ . ἔστι γὰρ κἀκείνη κυκλικὴ καὶ περιφερής : ἀλλὰ τοῦτο οὐκ ἂν πάθοι ,
, τεταγμένη τε καὶ ὁμαλή . τῶν δὲ ἄλλων πλανωμένων κυκλικὴ μέν , οὐ μὴν ἁπλῆ δοκεῖ καὶ μία ,
5157764 παραλαμβανωμεν
λίθος ἐστίν , ἵνα μὴ ἐπὶ ἀναιρέσεως τὸν καταφατικὸν προσδιορισμὸν παραλαμβάνωμεν . Τὰς ἀντιθέσεις ἁπάσας τῶν προσδιωρισμένων προτάσεων ἐν τούτοις
δὲ ἕνεκεν , μήτε τὸν Ἑρμῆν ? ? ? ? παραλαμβάνωμεν ? εἰς διδασκαλίαν , ὥς φασίν τινες , μήτε
5157232 συννευσις
γωνίαν : ὀρθῶς δὲ ὁ Εὐκλείδης : πᾶσα γὰρ γωνία σύννευσίς ἐστι μεγεθῶν πρὸς ἑνὶ σημείῳ . Οἷον εἰ στερεὸν
γωνίαν : ὀρθῶς δὲ ὁ Εὐκλείδης : πᾶσα γὰρ γωνία σύννευσίς ἐστι μεγεθῶν πρὸς ἑνὶ σημείῳ . Οἷον εἰ στερεὸν
5133031 παραπληρωματα
ἔψαλλε . . , : Βλίτυρι καὶ σκινδαψός : ταῦτα παραπληρώματα λόγων , εἰσὶ δὲ καὶ παροιμιώδη . Ἰόβας δὲ
ΡΖ . ἀλλὰ τὸ ΜΠ τῷ ΠΛ ἐστιν ἴσον : παραπληρώματα γὰρ τοῦ ΜΛ παραλληλογράμμου : καὶ τὸ ΑΗ ἄρα
5102867 τριγωνιζεται
μηροὺς τούτῳ ἀνέθεσαν , ἔστι δὲ οἶκος τοῦ Διὸς καὶ τριγωνίζεται τῷ τε Λέοντι καὶ τῷ Κριῷ καθὰ δὴ καὶ
, ἐν καλῷ τόπῳ ἕστηκεν ἰδιοθρονῶν καὶ ὑπὸ τῆς Ἀφροδίτης τριγωνίζεται , τοῦ Ἄρεως ἀποστρόφου ὄντος , βίον καλὸν ἕξει
5101003 ἀνακλασεων
δύνασθαι ποιεῖν τὸ ἀποπαλλόμενον φῶς , ὅπερ ἐπὶ τῶν ἄλλων ἀνακλάσεων οὐ συμβαίνει . οὕτως οὖν καὶ ἠχὼ πανταχόθεν μὲν
τῆς ΓΚ , ἐάν τε ἴση , ἡ σύμπτωσις τῶν ἀνακλάσεων οὔτε ἐπὶ τῆς περιφερείας τοῦ κύκλου οὔτε ἐκτὸς οὐ
5100909 ͵γχ
λεπτὰ μὲν πρῶτα ξ , δεύτερα δὲ κατ ' ἐπιδιαίρεσιν ͵γχ : εἶτα μείζονος ἀκριβείας δεηθέντες διὰ τὸ ἐν τοῖς
παραδείγματος ἀστείου καὶ εἰσαγωγῆς ἕνεκεν ἕως δευτέρων λεπτῶν τουτέστιν ἕως ͵γχ διαιρεῖσθαι τὴν μονάδα ἤτοι τὸν πόδα : τοῦτο γὰρ
5089977 δυναμοδυναμις
, τετράγωνον ὄντα , ποιήσει τὸν ξδ κύβον . . δυναμοδύναμις . Οἷον ὁ ιϚ : τετράκις γὰρ τὰ δ
πολλαπλασιασθῇ , ποιήσει τὸν ιϚ , καὶ λέγεται ὁ ιϚ δυναμοδύναμις ἐπειδὴ ἐκ τετραγώνου ἐγένετο τοῦ δ ἐφ ' ἑαυτὸν
5053444 μεταβαινοι
σταίη , ἀλλ ' ὡς τὰ πολλὰ εἰς τὸ ἕτερον μεταβαίνοι τοῖν ὄπισθεν σκελοῖντὸ δὲ ἰσχίον μέγιστον καὶ πλατύ ,
ἔχει ὁμοίωμα ἐκείνου αὑτόν , καὶ εἰ ἀφ ' αὑτοῦ μεταβαίνοι ὡς εἰκὼν πρὸς ἀρχέτυπον , τέλος ἂν ἔχοι τῆς
5041580 πολυγωνοτερον
γωνίας τεταγμένων πολυγώνων , τὴν δὲ περίμετρον ἴσην , τὸ πολυγωνότερον ἀεὶ καὶ μεῖζόν ἐστιν . αʹ . Ἔστω δύο
ὁπότε τὰς περιμέτρους ἴσας εἶχεν , ἀεὶ μεῖζον ἀπεδείκνυτο τὸ πολυγωνότερον , καὶ πάντων ὁ κύκλος μείζων , ὥσπερ ἐδείχθη
5015953 γραμμικοις
ἕξει ἡ ἰσότης πρὸς τὴν ἀνισότητα , καθάπερ καὶ ἐν γραμμικοῖς ἡ ὀρθὴ γωνία πρὸς ἀμβλεῖαν καὶ ὀξεῖαν , καὶ
ἰσοδιάστατοι , καθ ' ὁμοιότητα καὶ αὐτοὶ λαμβανόμενοι τῶν ἐν γραμμικοῖς : καλοῦνται δ ' οὗτοι κύβοι καὶ τετράεδροι πυραμίδες
5014880 νοησαις
θερμοτέρου καὶ ψυχροτέρου πέρι πρῶτον ὅρα πέρας εἴ ποτέ τι νοήσαις ἄν , ἢ τὸ μᾶλλόν τε καὶ ἧττον ἐν
δὲ διηνεκέως ὑπένερθε χελείου Καρκίνον , ἧχι μάλιστα διχαιόμενόν κε νοήσαις ὀρθόν , ἵν ' ὀφθαλμοὶ κύκλου ἑκάτερθεν ἴοιεν .
5000614 ἐκβληθεισαι
ἀπέχουσα ἐν ἀρχῇ τοῦ Σκορπίου ὥρας ἰσημερινὰς δ , καὶ ἐκβληθεῖσαι αἱ ΓΔ , ΑΒ περιφέρειαι τεμνέτωσαν ἀλλήλας μὲν κατὰ
καὶ ἐπιζευχθεῖσαι αἱ ΚΕ , ΚΖ , ΚΗ , ΚΘ ἐκβληθεῖσαι προσπιπτέτωσαν ἐπιπέδῳ τινὶ παραλλήλῳ ὄντι τῷ ΑΒΓΔ κατὰ τὰ
4984472 ἀναστησωμεν
τὴν ΔΑΓ καὶ διὰ τοῦ Α τῇ ΔΓ πρὸς ὀρθὴν ἀναστήσωμεν τὴν ΑΒ , δηλαδὴ ἴσης μενούσης τῆς μὲν ΔΑ
, ΓΔ , ΔΑ παραλληλόγραμμα , καὶ ἀπ ' αὐτῶν ἀναστήσωμεν στερεὰ παραλληλεπίπεδα ἰσοϋψῆ τῷ κυλίνδρῳ , ἑκάστου τῶν ἀνασταθέντων
4983049 ὑπομενετεων
εἶτα ἀπεχόμενος . καρτερία δέ ἐστιν ἐπιστήμη ὑπομενετέων καὶ οὐχ ὑπομενετέων , ἢ ἀρετὴ ὑπεράνω ποιοῦσα ἡμᾶς τῶν δοκούντων εἶναι
ἀρετῆς τιθέμενοι : τὴν γὰρ ἀνδρείαν ᾔδεισαν φευκτέων τε καὶ ὑπομενετέων ἐπιστήμην , ὡς ἂν ὁ ὀρθὸς ὑπαγορεύῃ λόγος .
4978886 καταμετρησει
κατὰ πάντων φέρεται , ὅλον τὸ ἐντὸς τῆς περιφερείας πλάτος καταμετρήσει , πλάτος δὲ καταμετροῦν ἕξει πλάτος : τὸ γὰρ
ὁ πῆχυς τὸ μῆκος τῷ λαβεῖν τι μῆκος , ὃ καταμετρήσει τὸ ὅλον . ἡ γὰρ ὥρα τί ἐστιν ἄλλο
4965184 συσταθησεται
Λέγω δή , ὅτι παρὰ τὰ εἰρημένα πέντε σχήματα οὐ συσταθήσεται ἕτερον σχῆμα περιεχόμενον ὑπὸ ἰσοπλεύρων τε καὶ ἰσογωνίων ἴσων
ἐπὶ τῆς αὐτῆς εὐθείας δύο τμήματα κύκλων ὅμοια καὶ ἄνισα συσταθήσεται ἐπὶ τὰ αὐτὰ μέρη : ὅπερ ἔδει δεῖξαι .
4963133 γραμμη
ὅταν διιστῆται , ποτὲ μὲν μία ἡ ἐπιφάνεια καὶ ἡ γραμμὴ καὶ τὸ σημεῖόν ἐστιν ἀθρόως : ὅταν γὰρ ἅπτωνται
σημείου τοῦ Ν ἐπὶ θέσει δεδομένην εὐθεῖαν τὴν ΓΔ εὐθεῖα γραμμὴ ἦκται ἡ ΝΜ δεδομένην ποιοῦσα γωνίαν τὴν ὑπὸ ΝΜΔ
4955283 ἀρκτικωτατον
τὸν Ἀραβῶνα ποταμὸν ἡ κατὰ Κούρταν καμπή μβʹ μζʹ τὸ ἀρκτικώτατον τοῦ Δανουβίου ποταμοῦ μβʹ ∠ ʹʹ μηʹ τὸ κατὰ
στρέφεσθαι καὶ ἀμοιρεῖν τοῦ ὠκεανοῦ οἶδεν ὅτι κατὰ σημεῖον τὸ ἀρκτικώτατον τοῦ ὁρίζοντος γίνεται ὁ ἀρκτικός . ἀκολούθως δὴ τούτῳ
4952358 ἀθιγες
ἀδυνάτων ἐστίν : τὸ γὰρ ἀφαιρούμενον ἀπό τινος οὐκ ἔστιν ἀθιγές , τὸ δὲ ἀσώματον ἀθιγὲς ὂν οὐ παρέχει αὑτὸ
: εἰς αὐτὸ γὰρ χέονται αἱ τροφαί . ἄχραντον : ἀθιγές , οὗ χεὶρ οὐχ ἥψατο . ἤ : ὃ
4942045 ΘΛΖ
ΒΓ τῇ ΣΛ , καὶ ὅμοιον τὸ ΘΓΒ τρίγωνον τῷ ΘΛΖ , καί ἐστιν , ὡς ἡ ΘΒ πρὸς ΓΒ
ἡ ΣΥ . λέγω , ὅτι τὸ ΣΛΥ τρίγωνον τοῦ ΘΛΖ τριγώνου μεῖζόν ἐστι τῷ ΘΓΒ . ἤχθω γὰρ διὰ
4938683 πληρωθωσιν
, καὶ οὕτως τῷ μετ ' ἐκεῖνον ὄντι ἄχρι οὗ πληρωθῶσιν αἱ περίοδοι ἐκεῖναι καὶ καταντᾷ ὁ ἀριθμὸς πρὸς τὰς
ὄντος : ἕως δ ' ἂν αἱ ἑβδομήκοντα καὶ δύο πληρωθῶσιν ἡμέραι , τότε ὅλος ἀποθνήσκει . γράμματα δέ ,
4924315 θκ
κέντρου τοῦ θ , καὶ τῆς μεταξὺ τῶν κέντρων τῆς θκ ἐκβληθείσης ἐφ ' ἑκάτερα , ἐὰν κέντρῳ τῷ θ
κέντρῳ μὲν τῷ θ τοῦ παντός , διαστήματι δὲ τῷ θκ , γεγράφθαι νοήσωμεν κύκλον τὸν κπρ , ἔπειτα τοῦτον
4919964 ὁρισθηναι
' ἀλλήλων , μᾶλλον δὲ ἀδυνάτως ἔχουσι κατὰ τὸ ἀκριβὲς ὁρισθῆναι αἱ τῶν ζῳδίων μοῖραι , ἀλλ ' εἰκός ἐστιν
εἰδέναι τὰς διαφοράς , ἃς ἔχει τὸ προκείμενον εἰς τὸ ὁρισθῆναι πρὸς ἕκαστον τῶν παρ ' αὐτὸ ὄντων ἄνευ τοῦ
4914199 Ζ͵
σημείου δοθέντος τοῦ Ϡ , λαβεῖν δύο σημεῖα ὡς Ε͵ Ζ͵ , ὥστε εἶναι ὡς μὲν τὴν ΔΗ πρὸς τὴν
τῆς ΔϠ , κἂν τὸ Θ͵ μεταξὺ βούληται πίπτειν τῶν Ζ͵ Ϡ . οὐδὲν γὰρ ἕξει καὶ ὧδε λέγειν ἀνασκευαστικόν
4904673 σφαιροειδους
ἐχούσης τὰ μέσα τοῦ κόσμου , τοῦ δὲ πόλου ὄντος σφαιροειδοῦς , οὗ τὸ μὲν ἕτερον ἡμισφαίριον θεοὶ ἔλαχον οἱ
καὶ τῶν πέντε ἀστέρων . λέγει δὲ καὶ τὴν γῆν σφαιροειδοῦς σημείου τάξιν ἐπέχειν πρὸς τὸν ὅλον κόσμον , ἀκινητόν
4897734 ἑπταστερος
, λαμπάδα νυκτιχόρευτον ἐπικλίνων ὑπὸ γαῖαν . Καὶ δρόμος ἀζαλέης ἑπτάστερός ἐστιν Ἁμάξης , ἥτε πόλον κάμπτουσα καὶ ἄξονα ,
, λαμπάδα νυκτιχόρευτον ἐπικλίνων ὑπὸ γαῖαν . Καὶ δρόμος ἀζαλέης ἑπτάστερός ἐστιν Ἁμάξης , ἥτε πόλον κάμπτουσα καὶ ἄξονα ,
4889941 παρηλλακται
τέλειος καὶ αὐτάρκης ἀπόδειξις , παρ ' ὅσον τῇ θέσει παρήλλακται . ἄλλως γὰρ ὑφ ' ἑνὸς ὁ ὅρος συνείρεται
ἐστι μόρια , καὶ [ οὐ ] πάντως τῷ δηλουμένῳ παρήλλακται , ὡς ἔχει τὰ ἀντωνυμικά , ἐμοῦ ἥρπασεν ,
4878985 κινου
οὔτε ἐμειδίασεν ἄλλος σὺν Ἀφροδίτῃ τοσαύτῃ οὔτε μὴν ἔστησεν ἐρυθήματι κινού - μενον ἤδη τὸν γέλωτα . οὐ τοίνυν οὔτε
ὃν φέρεται . πευσόμεθα γὰρ αὐτῶν , πότε φέρεται τὸ κινού - μενον ἀπὸ τοῦ ἐν ᾧ ἔστι τόπου εἰς
4831481 μεσημβρινη
. . . . . μζ κε : ἡ δὲ μεσημβρινὴ τῇ ἐπιζευγνυούσῃ τὰ ἐκτεθειμένα δύο πέρατα γραμμῇ παρὰ τὴν
παραλλήλου λαμβάνεται , οὔθ ' ἡ διορίζουσα εὐθεῖα τὰς σφραγῖδας μεσημβρινὴ εἴρηται : ὥστ ' οὐδὲν εἴρηται πρὸς αὐτόν .
4830604 μεταβατικον
αἱ ἁπλαῖ τὰς ἰδίας ἑκάστη φαντασίας , ἐν ᾗ τὸ μεταβατικὸν ἀφ ' ἑτέρου εἰς ἕτερον οἷον σχήματος καὶ κινήσεως
θείων ψυχῶν δηλοῖ : πλεονάκις δὲ ταυτὸ λέγων καὶ τὸ μεταβατικὸν ἐνδείκνυται καὶ τὸ μεμερισμένον τῆς ψυχικῆς νοήσεως : οὐχ
4830594 δαπανωμενου
κατὰ τὸ καρτερώτατον , οὔτε χρόνου φειδόμενος εἰς οὐδὲν δέον δαπανωμένου οὔτε δόξης ἀμείνονος ἐπιστροφήν τινα ποιησάμενος . ἤκουσε γὰρ
διπλασιάζων τὸ ἐγγραφόμενον πολύγωνον καὶ τοῦτο ἀεὶ ποιῶν ὥστε ποτὲ δαπανωμένου τοῦ ἐπιπέδου ἐγγραφήσεσθαί τι πολύγωνον τούτῳ τῷ τρόπῳ ἐν
4807942 τοσση
Φερεκύδης δὲ ἐν τῇ ιʹ ἱστορεῖ ὑπὸ Μουσῶν . δὶς τόσση δέ : διπλῆ ὡς πρὸς ἣν ἐβάσταζεν ὁ Ζῆθος
γάρ οἱ ζωή γ ' ἦν ἄσπετος : οὔ τινι τόσση ἀνδρῶν ἡρώων , οὔτ ' ἠπείροιο μελαίνης οὔτ '
4801799 ζωδιακου
μαθηματικοῦ , γραμμικῶς αὐτὸ ἀποδεικνύντος , ὅτι τὸ ἕκτον τοῦ ζωδιακοῦ κύκλου μέρος ἀπὸ τῆς μέχρι τῆς ἀνατολῆς ἐκβαλλομένης εὐθείας
ὡς καὶ ὁ Ἄρατος πρῶτον ἀναγράφει τὰ βορειότερα ἄστρα τοῦ ζωδιακοῦ , ἔπειθ ' οὕτως τὰ νοτιώτερα . Καὶ τὰς
4801291 πλημνη
τροχοῦ : ὥσπερ γὰρ ἐν τῶι τροχῶι κοίλη ἐστὶν ἡ πλήμνη , ἔχει δὲ ἀπ ' αὐτῆς ἀνατεταμένας τὰς κνημῖδας
Σηστὸν καὶ Ἄβυδον πλατύς ἐστιν Ἑλλήσποντος . πλεῖαι πλήρεις . πλήμνη ἡ χοινικὶς τοῦ τροχοῦ , ἀπὸ τοῦ πληροῦσθαι ὑπὸ
4795392 ἐπιστητη
αἰσθητὴ οὖσα ἡ καθ ' ἕκαστα ἔκλειψις ἡ αὐτὴ καὶ ἐπιστητή ἐστιν , ἀλλ ' ὅτι ἡ μὲν αἴσθησις τοῦ
' ἐπιστήμην αὐτῆς ἔχομεν : δοξαστὴ γάρ ἐστι καὶ οὐκ ἐπιστητή , καὶ ὡς ὁ Πλάτων φησί , νόθῳ λογισμῷ
4776335 περιενεχθεν
, ΕΘΚ τριγώνων ] . ἐὰν δὴ μενούσης τῆς ΚΛ περιενεχθὲν τὸ ἡμικύκλιον εἰς τὸ αὐτὸ πάλιν ἀποκατασταθῇ , ὅθεν
, καὶ διήχθω τις ἡ ΒΕ , καὶ μενούσης αὐτῆς περιενεχθὲν τὸ τετράπλευρον εἰς τὸ αὐτὸ ἀποκαθεστάτω : ὅτι τὸ
4773648 πρωτοπαθουντων
ψυχρότητα τίκτει , ἔστι δ ' ὅτε ἐξ ἑτέρων μορίων πρωτοπαθούντων εἰς αὐτὴν συρρεῖ τὰ περιττώματα , οἷον ἥπατος ἢ
τὴν ὀδύνην ἐργάζεται : οὐδὲ γὰρ τῶν προαιρετικῶν νεύρων ἐϲτὶ πρωτοπαθούντων ἡ φλεγμονή , ἐπεὶ ἂν ἔδει κἀν τοῖϲ μεταξὺ
4765103 σφαιρικης
τὴν προσβολὴν τῆς ἀναθεωρήσεως σύγκρισις γίνηται συνεθιζομένοις καὶ ἐπὶ τῆς σφαιρικῆς εἰκόνος γυμνῇ τῇ τῶν ἄστρων φαντασίᾳ . προσεντάξαντες οὖν
. τοσαῦτα περὶ μουσικῆς καὶ ἀριθμητικῆς , ἀλλὰ καὶ τῆς σφαιρικῆς πρώτη ἐστίν . εἰ μὲν γὰρ λάβῃς τὴν ἀκίνητον
4762608 ΓΝΔ
δὴ τομὰς κύκλους . ποιείτω , ὧν ἡμικύκλια ἔστω τὰ ΓΝΔ , ΜΝΞ . καὶ ἐπεὶ ἴσοι εἰσὶν οἱ ΒΓΔ
διὰ τῆς ΝΑ ἐπιπέδων ἐστὶν ἡ ΓΝΔ κύκλος . ὁ ΓΝΔ ἄρα κύκλος ὀρθός ἐστι πρὸς τὸν ΒΓΔ κύκλον .
4760026 ὀφιωδης
πόαν , ἧς ὁ καυλὸς ἥ τε ῥίζα πάντως ἐστὶν ὀφιώδης τῷ ποικίλῳ ταῖς κεφαλαῖς : ὁπόσας γὰρ ἄν τις
ἔφαμεν , ἡ προνομαία χαμόθεν ἐπὶ τὸ ὕψος διακομίζει , ὀφιώδης τις οὖσα καὶ ὑγροτέρα τὴν φύσιν . Ὅτι ἡ
4749724 κερατοειδει
δ ' ἐν ὀφθαλμοῖς ἑλκῶν , τὸ μὲν ἐν τῷ κερατοειδεῖ κοῖλον καὶ στενὸν καὶ καθαρὸν ἕλκος , βόθριον ἐπονομάζεται
, ὅταν χρονίσαν τὸ σταφύλωμα ὑποσκληρυνθῇ καὶ περιουλώσῃ ἐν τῷ κερατοειδεῖ κατὰ πάντα ἐοικὼς ἥλου κεφαλῇ . Περὶ μυδριάσεως .
4740755 ἐσοπτρων
ἀκτῖνα ἐκπέμπει , ὡς τοῦτο πάρεστιν ὁρᾶν ἐπί τε τῶν ἐσόπτρων γινόμενον καὶ πάντων ἁπλῶς τῶν κατὰ ἀνάκλασιν φωτιζόντων .
προσαγαγεῖν καὶ ἑτέρας διαφόρους ἀκτῖνας ἀπὸ ἐπιπέδων ὁμοίων καὶ ἴσων ἐσόπτρων , ὥστε τὰς ἀνακλάσεις ὑφ ' ἓν ἐκείνων ἁπάσας
4735717 περιγραψωμεν
τοῦ κυλίνδρου , ἐπειδήπερ κἂν περὶ τὸν ΑΒΓΔ κύκλον τετράγωνον περιγράψωμεν , τὸ ἐγγεγραμμένον εἰς τὸν ΑΒΓΔ κύκλον τετράγωνον ἥμισύ
μείζων ἐστὶν ἢ τὸ ἥμισυ τοῦ κώνου , ἐπειδήπερ ἐὰν περιγράψωμεν περὶ τὸν κύκλον τετράγωνον , καὶ ἀπ ' αὐτοῦ
4735333 κεκινησθω
ἥλιος εἰς τὰ ἐναντία τῶν ζῳδίων κινούμενος πέντε ζῳδίων περιφέρειαν κεκινήσθω καὶ ἔστω ἐπὶ τοῦ πʹ τόπου : ἀπὸ μὲν
, τὸ δὲ Δ τὸ κέντρον τοῦ ζῳδιακοῦ , καὶ κεκινήσθω περὶ μὲν τὸ Γ σημεῖον τὸ Ζ κέντρον τοῦ
4718983 ἀξων
, οὗ βάσεις μὲν οἱ Α , Β κύκλοι , ἄξων δὲ ἡ ΑΒ εὐθεῖα , καὶ εἰλήφθω τι σημεῖον
. ἔστω ἡ δοθεῖσα κώνου τομὴ πρότερον παραβολή , ἧς ἄξων ὁ ΑΒ , ἡ δὲ δοθεῖσα γωνία ἡ Θ
4716581 ὑποπροσθεν
πρὸ αὐτῆς ὁ δύο πλείων [ τοῦ αʹ ] τοῦ ὑπόπροσθεν ὑπάρχει , καὶ ῥίζα γε τῆς πυθμενικῆς τοῦ μείζονος
δὲ μεταξὺ ἀμφοῖν ἴση [ τῷ αʹ βʹ ] τοῖς ὑπόπροσθεν [ ἤγουν ἐστὶ γʹ ] : εἰδοποιὸς ἄρα μεσότητος
4711005 ΛΥ
δοθὲν ἄρα καὶ τὸ ὑπὸ ΛΥΦ : καὶ δοθέντα τὰ ΛΥ : δοθὲν ἄρα τὸ Φ : ἀπῆκται οὖν εἰς
ΛΖ βάσις τῇ ΝΖ βάσει , ἴσον ἐστὶ καὶ τὸ ΛΥ στερεὸν τῷ ΝΥ στερεῷ , καὶ εἰ ὑπερέχει ἡ
4708335 ἀπλατη
μᾶλλον καὶ ἧττον : οἷον τὸ τρίγωνον καὶ τὸ τετράγωνον ἀπλατῆ εἰσι , διὰ τοῦτο οὐκ ἐπιδέχονται τὸ μᾶλλον καὶ
ὀφθαλμοῦ εὐθεῖά ἐστι καὶ αὕτη ἑξάκι καταμετρεῖ τὸν μέγιστον καὶ ἀπλατῆ κύκλον , ἀλλ ' οὐχὶ τὸν πλάτος ἔχοντα :

Back