ἴσας γωνίας : ὅμοιον ἄρα ἐστὶν τὸ ΑΓΗ τρίγωνον τῷ ΔΖΘ τριγώνῳ . ηʹ . Διὰ μὲν οὖν τοῦ συνημμένου
ἴσας γωνίας : ὅμοιον ἄρα ἐστὶν τὸ ΑΓΗ τρίγωνον τῷ ΔΖΘ τριγώνῳ . Ὁμοίως καὶ τὸ ΑΗΒ τῷ ΔΘΕ ,
5621006 ἐπιζευγνυμενῃ
εὐθεῖα ἴση ἐστὶ τῇ ἀπὸ τοῦ Β ἐπὶ τὸ Γ ἐπιζευγνυμένῃ εὐθείᾳ [ καί ἐστιν ἡ μὲν ἀπὸ τοῦ Α
εὐθεῖα ἴση ἐστὶ τῇ ἀπὸ τοῦ Κ ἐπὶ τὸ Δ ἐπιζευγνυμένῃ εὐθείᾳ : καὶ ἡ ΑΘ ἄρα περιφέρεια ἴση ἐστὶ
5606046 περιγεγραφθω
ΜΝ , καὶ ἔτι τὴν ΗΚ τῇ ΝΛ , καὶ περιγεγράφθω περὶ τὸ ΛΜΝ τρίγωνον κύκλος ὁ ΛΜΝ καὶ εἰλήφθω
οὗ ἔστω κέντρον τῆς βάσεως τὸ Α σημεῖον , καὶ περιγεγράφθω περὶ τὸ Α κύκλος ὁ ΒΓ , καὶ κείσθω
5234255 ἀναδιπλωσεως
καὶ τὸ βαρὺς βαρὺς σύνοικος . καὶ αὗται δὲ εἴδη ἀναδιπλώσεως : καὶ ἡ πλοκή , περιποιοῦσα μὲν τὴν διάνοιαν
ἀεὶ αὗται ὑπάρχουσιν αὐτῇ , ἀλλά ποτε , οἷον ἐξ ἀναδιπλώσεως . Μάλιστα δὲ ἐκ τοῦ τελειοῦν ἑαυτὴν τὴν ψυχὴν
5141840 συνεστατω
ἢ πολλαπλασία . Ἔστω γὰρ τρίγωνον τὸ ΑΒΓ , καὶ συνεστάτω τρίγωνον τὸ ΕΖΗ ἑκάστην πλευρὰν ἔχον ἑκάστης τῶν τοῦ
μείζων ἐστίν . ἔστω μείζων ἡ ὑπὸ ΑΒΓ . καὶ συνεστάτω πρὸς τῇ ΑΒ εὐθείᾳ καὶ τῷ πρὸς αὐτῇ σημείῳ
5083387 ἐκβληθεισαν
ἀπὸ τῶν Δ καὶ Ν σημείων - ἐπὶ τὴν ΑΘ ἐκβληθεῖσαν αἱ ΔΦ καὶ ΝΧ . ἐπεὶ τοίνυν ἡ ΞΕ
ἐσχατιὰς τῆς Ἀττικῆς . Ἀριστοφάνης Γήρᾳ ἔδει δέ γ ' ἐκβληθεῖσαν εἰς Ἁλμυρίδας τῇ θυγατρὶ τῇδε μὴ παρέχειν σε πράγματα
5014149 ΑΕΒ
ΚΝΡ ἴση τῇ ὑπὸ ΔΕΖ : ἐλάσσων ἄρα ἡ ὑπὸ ΑΕΒ τῆς ὑπὸ ΔΕΖ . ὥστε καὶ τὸ ΑΒ μέγεθος
μοίρας δ μϚ , ἃς ὑποθέμενος τοῦ μεγέθους τῆς ὑπὸ ΑΕΒ γωνίας ἐν τῷ θʹ θεωρήματι δείκνυσι διὰ τῶν ἀριθμῶν
4849389 καθετου
τοῦ ΑΒΓΔ κύκλου ἐπίπεδον μείζων ἐστὶ τῆς ἀπὸ τοῦ Ν καθέτου ἀγομένης ἐπὶ τὸ τοῦ ΕΖΗΘ κύκλου ἐπίπεδον . ἀλλ
Θ παράλληλος ὀρθὴν γωνίαν περιέξει μετὰ τῆς ἀπὸ τοῦ Ζ καθέτου . πάλιν ἐὰν ἐπιζεύξωμεν ἀπὸ τῶν Ζ , Η
4807714 ϲπονδυλου
. τοὺϲ δὲ ἐπὶ ῥάχεωϲ τραύματι ἢ πτώματι ἢ ὀλιϲθήματι ϲπονδύλου θανατικῶν ϲυνδρομῶν ϲυνεδρευουϲῶν ἀδύνατον ἰᾶϲθαι . εἰ δὲ καυλὸϲ
ἐν τοῖϲ διαλείμμαϲιν , εἶτα προϲβλητέον ϲικύαϲ ἀπὸ τοῦ πρώτου ϲπονδύλου μέχριϲ ὀϲφύοϲ προκαταπλαϲϲομένων τῶν μερῶν μετὰ τῶν ὑποχονδρίων ,
4790246 καθετοι
καὶ ἀπὸ τοῦ Ρ ἐπὶ μὲν τὰς ΘΟ , ΚΠ κάθετοι ἤχθωσαν αἱ ΡΝ , ΡΞ , ἐπὶ μὲν τὴν
, καὶ ἀπὸ τοῦ Ε ἐπὶ τὰς ΑΒ , ΓΔ κάθετοι ἤχθωσαν αἱ ΕΖ , ΕΗ , καὶ ἐπεζεύχθωσαν αἱ
4774573 ΔΗΑ
ΘΑ : ὁ ἄρα τοῦ ἀπὸ ΓΗ πρὸς τὸ ὑπὸ ΔΗΑ λόγος σύγκειται ἐκ τοῦ τῆς ΑΔ πρὸς ΔΝ καὶ
. ἔχει δὲ καὶ τὸ ἀπὸ ΖΗ πρὸς τὸ ὑπὸ ΔΗΑ τὸν συγκείμενον λόγον ἐκ τοῦ ὃν ἔχει ἡ ΖΗ
4766177 ἠχθωσαν
, καὶ διὰ τοῦ Η ταῖς ΕΔ , ΔΖ παράλληλοι ἤχθωσαν αἱ ΗΘ , ΗΚ . λέγω , ὅτι ἴσον
διάμετρος ἡ ΒΓ , καὶ ἀπὸ τῶν Β , Γ ἤχθωσαν πρὸς ὀρθὰς αἱ ΒΖ , ΓΛ , καὶ ἀπὸ
4750539 συννευουσαι
αὐτῶν τῶν γωνιῶν ἀνεγειρόμεναι καὶ εἰς ἓν καὶ τὸ αὐτὸ συννεύουσαι σημεῖον πυραμίδα ἀποκορυφοῦσιν ὀνομαζομένην ἀπὸ πενταγώνου βάσεως ἢ ἑξαγώνου
' ἄπειρον γενέσθαι , κατὰ τὰ λοιπὰ δὲ οὔ . συννεύουσαι γὰρ ἐπὶ τάδε τὰ μέρη πλέον ἀφίστανται ἀλλήλων κατὰ
4743442 ἀχθεισης
, τοὺς βουλευτὰς ᾐτησάμην . καὶ τοίνυν διοικήσεως νῦν πρῶτον ἀχθείσης πολλὰ ὑπὸ πολλῶν ἠδικημένος , ὥσπερ εἰκός ἐστι τὸν
τοῦ ἐκκέντρου πηλικότησιν . κατὰ ταὐτὰ δὲ καὶ ἐνθάδε καθέτου ἀχθείσης ἐπὶ τὴν ΔΒ τῆς ΑΛ , ἐάν τε τὴν
4716933 ἡμικυκλιον
, ὥστ ' εἰς δύο γενέσθαι . οὐκοῦν οὐδ ' ἡμικύκλιον ἔσται , ἀλλὰ τὸ κέντρον ἀεὶ θατέρῳ μέρει τοῦ
δὲ καὶ κύκλος καὶ ἡμικύκλιον ἔχουσιν : ὁριζόμενοι γὰρ τὸ ἡμικύκλιον κεχρήμεθα τῷ κύκλῳ , οὐκέτι ἀνάπαλιν . ὁμοίως καὶ
4716821 ἀχθωσιν
ἀπὸ τῶν ἴσων γωνιῶν ἐπὶ τὰς βάσεις κάθετοι εὐθεῖαι γραμμαὶ ἀχθῶσιν , ᾖ δέ , ὡς ἡ τοῦ πρώτου τριγώνου
τομῶν β σημεῖα ληφθῇ , καὶ ἀφ ' ἑκατέρου παράλληλοι ἀχθῶσιν , ὁμοίως ἴσα ἔσται τὰ γινόμενα ὑπ ' αὐτῶν
4651950 ΦΔ
ΝΤ , ΤΔ ἐπίπεδον καὶ τὸ διὰ τῶν ΝΦ , ΦΔ κοινὴν τομὴν ἕξει τὴν ΔΝ , ἐφ ' ἧς
. ἡ οὖν ΒΔ ὁ ιβ ἡμιόλιός ἐστι πρὸς τὴν ΦΔ τὸν η : ἀλλὰ καὶ τὸ ὑπὸ τῶν ΔΒ
4646843 ὀρθογωνιον
τρόπον γένοιτο ἂν τετραγωνισμός . ἀπεδίδου δὲ τοῦτο περὶ τρίγωνον ὀρθογώνιόν τε καὶ ἰσοσκελὲς ἡμικύκλιον περιγράψας καὶ περὶ τὴν βάσιν
θ : ὥστε τὸ δὶς ὑπὸ τῶν ΓΒ , ΒΔ ὀρθογώνιόν ἐστιν ρμ : πεντάκις γὰρ ιδ ο , καὶ
4641238 ἠχθω
ΔΓ , καὶ ἀπὸ τοῦ Δ ἐπὶ τὴν ΑΓ κάθετος ἤχθω ἡ ΔΖ . λέγω , ὅτι ἡ ΖΓ ἡμίσειά
δὲ τοῦ Θ ὁποτέρᾳ τῶν ΑΒ , ΕΖ παράλληλος πάλιν ἤχθω ἡ ΚΜ , καὶ πάλιν διὰ τοῦ Α ὁποτέρᾳ
4634804 γινομεναι
. χρησιμώτεραι δ ' εἰσὶ κινήσεις αἱ ἐξ ἡμῶν αὐτῶν γινόμεναι , τὴν ὁρμὴν ἐκ βάθους ἔχουσαι καὶ ἐνέργειαι ἡμέτεραι
αἱρετάς , οἷον τὰς καλάς . αὗται δέ εἰσιν αἱ γινόμεναι , ὅταν ἡ ψυχὴ ἐνεργῇ περὶ τὴν τῶν καλλίστων
4627533 ἀφαιρουμενην
λοιπὴ ἄρα ἡ ὑπὸ ΛΔΒ γωνία , ἥτις ὑποτείνει τὴν ἀφαιρουμένην τῆς μέσης κατὰ μῆκος παρόδου τοῦ διὰ μέσων τῶν
προθυμουμένῳ δήμαρχον ὄντα ἥρμοζε , καὶ μὴ αὑτοῦ τὴν ἀρχὴν ἀφαιρουμένην περιιδεῖν ἐπὶ καταγνώσει . καὶ τάδε λέγων καὶ θεοὺς
4601787 διακρατειται
ἐν ἑαυτῷ . καθάπερ γὰρ τῶν ἀποτιναττομένων ὅσα μὴ ἑνώσει διακρατεῖται πάντα ἐκπίπτει , τοῦτόν μοι δοκεῖ καὶ ἡ τοῦ
ἡμᾶς μερῶν εἰς τὰ ἀντικείμενα καὶ ὑπὸ τῆς εὐωνύμου χειρὸς διακρατεῖται . μετὰ δὲ τὴν τοῦ βρόχου πλοκὴν οἱ μὲν
4594834 προδεδειγμενων
τῶν ΓΒ ΒΖ . καὶ γὰρ τοῦτο φανερὸν ἐκ τῶν προδεδειγμένων . ιδʹ . Πάλιν ἔστωσαν δύο εὐθεῖαι αἱ ΑΒ
τοσαῦτα καὶ περὶ τὴν τοῦ κυλίνδρου τομὴν ἐκ τῶν ἐνταῦθα προδεδειγμένων εὑρήσει συμβαίνοντα . διόπερ τούτου μὲν ἀποστάς , ὀλίγα
4581226 μονοσυλλαβοι
οὐκ ἀναστρέφονται ] ? δὲ τῶν [ προθέσεων τούτων αἱ μονοσύλλαβοι . ] [ εἰσὶ δὲ αὗται ἕξ , ]
οἱ μὲν ὀξύνουσι , οἱ δὲ περισπῶσι . Αἱ μονοπρόσωποι μονοσύλλαβοι μὲν οὖσαι ὀξύνονται : μίν καὶ νίν . ὑπὲρ
4575326 ἐγκλιτικαι
αὐτῷ παράλογον : ἐδείχθησαν γὰρ ὡς παρὰ τόπον τεθεῖσαι αἱ ἐγκλιτικαί , τουτέστιν ἀρκτικαὶ γινόμεναι , ὀρθοτονοῦνται , ὡς ἐπὶ
διάκρισιν προσώπου ἐπινοηθεῖσαι ἐν μὲν ταῖς πλαγίαις πτώσεσιν ἦσαν καὶ ἐγκλιτικαί , αἵπερ εἰσὶν ἀπολύτων προσώπων παραστατικαί , παραλαμβάνονται δὲ
4570972 διηκται
καὶ διάμετρος ἐκβληθεῖσα ἡ ΑΓΔ , καὶ ἀπὸ τοῦ Δ διῆκται πρὸς τὴν κοίλην περιφέρειαν ἡ ΔΛΞ , περιφέρεια ἄρα
καὶ ἀπὸ τῆς κατὰ τὸ Α ἐπαφῆς εἰς τὸν κύκλον διῆκται εὐθεῖα ἡ ΑΓ , ἡ ἄρα ὑπὸ ΘΑΓ ἴση
4568212 πρυμναι
κατά τινα λόγον Μαντοῦς τῆς Μόψου μητρός , ὅτε αἱ πρύμναι τῶν ἰδίων νηῶν συνέβαλον καὶ συνεθραύσθησαν κατὰ Χελιδονίας τῶν
κατά τινα λόγον Μαντοῦς τῆς Μόψου μητρός , ὅτε αἱ πρύμναι τῶν ἰδίων νηῶν συνέβαλον καὶ συνεθραύσθησαν κατὰ Χελιδονίας τῶν
4553583 ΒΩ
[ τῶν ] ΔΩ , ΩΒ , ἀναγραφομένου ἀπὸ τῆς ΒΩ τετραγώνου καὶ συμπληρουμένου τοῦ ἐπὶ τῆς ΩΔ παραλληλογράμμου καὶ
Ω ἀρξάμενον ἀπὸ τοῦ Ξ τὴν ΞΩ διέρχεται , ἡ ΒΩ δύνει : ἐν ᾧ δὲ τὸ Ψ τὴν ΟΨ
4542683 ΔΩ
τῷ Ο περισπᾶται : σποδῶ οἰδῶ ἀοιδῶ . Τὰ εἰς ΔΩ παραληγόμενα τῷ Ω , εἰ παρ ' ὄνομα εἴη
καὶ ἰάχω . τὸ δὲ διδάχω βαρύνεται . Τὰ εἰς ΔΩ δισύλλαβα παραληγόμενα τῷ Η βαρύνεται : ἥδω κήδω .
4531104 ΓΔΕΖΗ
εἰκοσάεδρον , καὶ ἔστω ἓν μὲν τοῦ δωδεκαέδρου πεντάγωνον τὸ ΓΔΕΖΗ , τοῦ εἰκοσαέδρου δὲ τρίγωνον τὸ ΚΛΘ . λέγω
δεκαπέντε τοῖς ἀπὸ τῆς ἐκ τοῦ κέντρου τοῦ περὶ τὸ ΓΔΕΖΗ κύκλου : ὥστε καὶ τὸ ἓν τῷ ἑνὶ ἴσον
4524770 φερεια
ἐπὶ τὸ Ψ . ὥστε καὶ ἡ ΩΞ περι - φέρεια ἴση ἐστὶ τῇ ΟΨ . ἐν ᾧ ἄρα τὸ
. ὥστε καὶ ἡ μὲν ἐπὶ τῆς ΕΖ περι - φέρεια τοιούτων ἐστὶν Ϙα νε , οἵων ὁ περὶ τὸ
4491510 λυττωντοϲ
ϲπληνικοὺϲ ὠφελεῖ ϲὺν ὄξει πινομένη . Ἧπαρ τὸ μὲν τοῦ λυττῶντοϲ κυνὸϲ ὀπτηθέν , εἰ βρωθείη , τοῖϲ ὑπ '
τῇ ἀμετρίᾳ τῆϲ ξηρότητοϲ . φιλόϲοφοϲ γάρ τιϲ δηχθεὶϲ ὑπὸ λυττῶντοϲ κυνὸϲ καὶ γενναίῳ φρονήματι πρὸϲ τὸ πάθοϲ ἀντιϲχὼν καὶ
4487413 κεισθω
, ὡς ἐπὶ τἀγαθὸν καὶ τὴν ἀρχὴν τὴν πρώτην , κείσθω διωμολογημένον καὶ διὰ πολλῶν δεδειγμένον : καὶ δὴ καὶ
. Καὶ ὁ μὲν κατὰ τὰς ἡλικίας λόγος ὧδέ πη κείσθω ἱκανῶς ῥηθείς νῦν δὲ καὶ περὶ τῶν λοιπῶν ῥητέον
4486765 συμπιπτετωσαν
δὴ παράλληλοι αἱ ΑΒ , ΔΕ , ἀλλ ' ἐκβαλλόμεναι συμπιπτέτωσαν κατὰ τὸ Π , καὶ ἡ ΓΟ ἤχθω παρὰ
μὴ ἔστωσαν δὴ παράλληλοι αἱ ΑΚ , ΕΖ , ἀλλὰ συμπιπτέτωσαν κατὰ τὸ Κ , καὶ ἡ ΓΔ παρὰ τὴν
4452701 ἐπιζευχθεισαι
εὐθεῖαι ἐφάπτουσι τοῦ κύκλου , ἀπὸ δὲ τοῦ δ κέντρου ἐπιζευχθεῖσαί εἰσιν εἰς αὐτὰς εὐθεῖαι αἱ δα , δβ ,
εὐθεῖαι ἐφάπτουσι τοῦ κύκλου , ἀπὸ δὲ τοῦ δ κέντρου ἐπιζευχθεῖσαί εἰσιν εἰς αὐτὰς εὐθεῖαι αἱ δα , δβ ,
4450856 γραφομενη
, ὡς τύπῳ εἰπεῖν , ἡ διὰ δύο σημείων ἑστηκότων γραφομένη εὐθεῖα τετάχθαι λέγεται τῷ μὴ ἄλλως καὶ ἀστάτως ἄγεσθαι
κύκλου περιφερείας τὸ γʹ ἀποτέμνει μέρος ἡ τοῦ - τον γραφομένη τὸν τρόπον ὑπερβολὴ συνιδεῖν ῥᾴδιον τῶν Α Γ σημείων
4446248 ἀτμητου
ὑπὸ τῶν δύο εὐθειῶν ἴσον ἐστὶ τοῖς ὑπό τε τῆς ἀτμήτου καὶ ἑκάστου τῶν τμημάτων περιεχομένοις ὀρθογωνίοις : ὅπερ ἔδει
δὲ κατὰ τὸ α , γίνεται τὸ ὑπό τε τῆς ἀτμήτου τῆς βα καὶ ἑκάστου τῶν τμημάτων τῶν δα ,
4442851 ΘΑΕ
ἦν ἐν τῇ γʹ ἀκρωνύκτῳ , καὶ ἐπεζεύχθωσαν αἵ τε ΘΑΕ καὶ ΘΒΖ καὶ ΘΗΓ καὶ ΝΚΑ καὶ ΝΛΒ καὶ
περιφερείας τῆς ΓΒ ἐστι διπλῆ : ἴση ἄρα ἡ ὑπὸ ΘΑΕ γωνία τῇ ὑπὸ ΑΘΕ : ὥστε καὶ ἡ ΘΕ
4434568 ηκις
ΘΜ ἐπὶ τὸν ἀπὸ τοῦ ΚΒ ⃞ον , μετὰ τοῦ ηκις ὑπὸ ΗΘ . ΚΒ , καὶ ὁ ἀπὸ τοῦ
ΒΔ , τῷ ἴσῳ ἀλλήλων ὑπερεχέτωσαν : δεικτέον ὅτι ὁ ηκις ὑπὸ ΑΒ . ΒΓ , προσλαβὼν τὸν ἀπὸ τοῦ
4433453 ἡμιμοιριον
σμύρνα , σίδιον αὖον . Ἕτερον : ἄνθος χαλκοῦ ὀπτὸν ἡμιμοίριον , σμύρνης δύο ἡμιμοίρια , κρόκου τρεῖς μοῖραι ,
κατήντησεν . ἡ μεταφορὰ ἀπὸ τῶν καθορμιζομένων πλοίων εἴρηται . ἡμιμοίριον : τὸ ἥμισυ τῆς δραγμῆς . ἠρύγγη , πόλιον
4432791 περιαγομενη
, κωνικὴν ποιήσει ἐπιφάνειαν τῇ ΑΠ εὐθείᾳ , ἣ δὴ περιαγομένη συμβαλεῖ τῇ κυλινδρικῇ γραμμῇ κατά τι σημεῖον . ἅμα
, κωνικὴν ποιήσει ἐπιφάνειαν τῆι ΑΠ εὐθείαι , ἣ δὴ περιαγομένη συμβαλεῖ τῆι κυλινδρικῆι γραμμῆι κατά τι σημεῖον : ἅμα
4431957 διηκουσιν
δὲ ἐπὶ πλειόνων καὶ γνοὺς ὅτι οὐ μόνον ἐπὶ πλειόνων διήκουσιν αἱ ἰδιότητες τοῦ κοινοῦ , λέγω δὲ τοῦ ἁπλῶς
∠ ʹʹδʹʹ νʹ ∠ ʹʹδʹʹ Ὑπὸ δὲ τοὺς εἰρημένους πάντας διήκουσιν ἀπὸ τοῦ Λίγειρος ποταμοῦ ἐπὶ τὸν Σηκοάναν Αὐλίρκιοι οἱ
4424145 ἐφεστατω
ἀλλήλας κατὰ τὸ Ε σημεῖον ἀπὸ τοῦ Ε πρὸς ὀρθὰς ἐφεστάτω : λέγω , ὅτι ἡ ΕΖ καὶ τῷ διὰ
ΑΕΒΤΓΥΔΦ πολύγωνον , κορυφὴ δὲ τὸ Λ σημεῖον , τρίγωνον ἐφεστάτω τὸ ΛΣΒ , τῶν δὲ περιεχόντων τὴν πυραμίδα ,
4421181 ΕΓΗ
τῇ ὑπὸ ΕΓΖ , τὴν δὲ ὑπὸ ΒΑΚ τῇ ὑπὸ ΕΓΗ , τὴν δὲ ὑπὸ ΚΑΘ τῇ ὑπὸ ΗΓΖ :
περὶ τὸ ΓΕΗ ὀρθογώνιον κύκλος τξ , ἡ δὲ ὑπὸ ΕΓΗ γωνία , οἵων μέν εἰσιν αἱ β ὀρθαὶ τξ
4413329 ΖΑΒ
ὑπὸ ΕΑΒ . ἐπεὶ οὖν δύο τρίγωνα τὰ ΖΕΒ , ΖΑΒ ἐπὶ μιᾶς βάσεως συνέστηκε , καὶ ἡ ἀπὸ τοῦ
ΕΑΒ τομεὺς πρὸς τὸν ΒΑΗ τομέα , οὕτως ἡ ὑπὸ ΖΑΒ πρὸς τὴν ὑπὸ ΒΑΓ : καὶ ἡ ὑπὸ ΖΑΒ
4388237 περιεξουσι
' ὃ συμβάλλουσιν ἀλλήλαις , ἐπὶ τὰ κέντρα ἐπιζευγνύμεναι ὁμοίως περιέξουσι τὴν λείπουσαν εἰς τὰς δύο ὀρθὰς τῆς κλίσεως τῶν
αἱ ἀπὸ τῆς κοινῆς τομῆς ἐπὶ τὰ κέντρα ἐπιζευγνύμεναι εὐθεῖαι περιέξουσι τὴν λείπουσαν εἰς τὰς δύο ὀρθὰς τῆς ἐπιζητουμένης κλίσεως
4364598 καταχθησονται
πλευρὰ ἡ ΔΖ , αἱ δὲ καταγόμεναι ἀπὸ τῶν τομῶν καταχθήσονται ἐπὶ τὴν ΔΕ ἐν τῇ δοθείσῃ γωνίᾳ : ἔσται
ἡ ΕΚ , αἱ δὲ καταγόμεναι ἀπὸ τῆς τομῆς τεταγμένως καταχθήσονται ἐν τῇ ἐφεξῆς γωνίᾳ τῇ Η . φανερὸν δή
4364240 τραπεζιων
, τῇ δὲ τούτων θεωρίᾳ συνεισφέρει καὶ τὴν περὶ τῶν τραπεζίων διδασκαλίαν : διῄρηται γὰρ τὸ τετράπλευρον εἴς τε τὸ
τὸ δὲ ῥομβοειδὲς πάντων ἔλαττον . πρῶτον δὲ ἐνταῦθα τῶν τραπεζίων ἐμνημόνευσε . περὶ τούτων δὲ ἐν ταῖς ὑποθέσεσιν ἐδίδαξεν
4355826 ΚΙ
τὸ ὀρθὸν ἑστάναι τὸν κύλινδρον . πιπτέτω καὶ ἔστω ἡ ΚΙ , καὶ ἡ ἀπὸ τοῦ Ι ἐπὶ τὸ Α
. ὑπερπιπτέτω οὖν , εἰ δύνατον , καὶ ἔστω ἡ ΚΙ , καὶ τετμήσθω ἡ ΖΗ τῇ ΒΓ ὁμοίως κατὰ
4346044 ἀρχομεναι
ΤΗ ἴσαι εἰσίν , ἄνισοι ἄρα εἰσὶν αἱ ΡΩ ΩΟ ἀρχόμεναι ἀπὸ μεγίστης τῆς ΡΩ . πάλιν ἐπεὶ αἱ ΘΨΚ
αἱ ΖΛ , ΛΞ , ΞΓ ἄρα μείζους εἰσὶν ἀλλήλων ἀρχόμεναι ἀπὸ μεγίστης τῆς ΖΛ . διὰ τὰ αὐτὰ δὴ
4313163 ἐκβληθεισαι
ἀπέχουσα ἐν ἀρχῇ τοῦ Σκορπίου ὥρας ἰσημερινὰς δ , καὶ ἐκβληθεῖσαι αἱ ΓΔ , ΑΒ περιφέρειαι τεμνέτωσαν ἀλλήλας μὲν κατὰ
καὶ ἐπιζευχθεῖσαι αἱ ΚΕ , ΚΖ , ΚΗ , ΚΘ ἐκβληθεῖσαι προσπιπτέτωσαν ἐπιπέδῳ τινὶ παραλλήλῳ ὄντι τῷ ΑΒΓΔ κατὰ τὰ
4304647 ΚΗΛ
ἐν ᾧ δὲ τὸ Ν ἀρξάμενον ἀπὸ τοῦ Κ τὴν ΚΗΛ περιφέρειαν διαπορεύεται , ἐν τούτῳ καὶ τὸ κατὰ διάμετρον
ἴσον ἐστὶν τῷ ἀπὸ ΚΗ διὰ τὸ ἰσογώνια εἶναι τὰ ΚΗΛ ΚΗΔ τρίγωνα , ἔστιν ἄρα ὡς τὸ ὑπὸ ΔΗΘ
4294509 ἐκβληθεισης
ἐλλείψεων . Κείσθω πάλιν ἡ καταγραφὴ τοῦ κώνου , καὶ ἐκβληθείσης τῆς ΓΒ ἐπὶ θάτερα δέον ἔστω ἀπ ' ἀμφοτέρων
ζῳδιακοῦ ἐπεζεύχθωσαν αἱ ΑΔ καὶ ΒΔ καὶ ΓΔ , καὶ ἐκβληθείσης τῆς ΓΔΕ ἐπεζεύχθωσαν αἱ ΑΕ καὶ ΕΒ καὶ ΑΒ
4289637 διηχθωσαν
τὰς ΑΒ ΑΓ ΑΔ ἀπό τινος σημείου τοῦ Ε δύο διήχθωσαν αἱ ΕΖ ΕΒ , ἔστω δὲ ὡς ἡ ΕΖ
τῆς ὑπὸ ΓΑΒ . Ἔστω κύκλος ὁ ΑΓΒΔ , καὶ διήχθωσαν δύο διάμετροι αἱ ΑΒ , ΓΔ τέμνουσαι ἀλλήλας πρὸς
4282240 ἐπιζευχθεισων
τὸ Η , ἐπειδὴ περὶ τὸ περίγειόν ἐστιν , καὶ ἐπιζευχθεισῶν τῆς τε ΕΗ καὶ τῆς ΒΗ , ἵνα ἡ
Γ ση μείων ἐν τῇ περιφερείᾳ τοῦ ἐκκέντρου ὄντων . ἐπιζευχθεισῶν τοίνυν τῶ ΖΓ , ΖΑ , ἑκατέρα τῶν Α
4278832 καταγομεναι
ἡ ΓΑ , ὀρθία δὲ ἡ ΓΛ , αἱ δὲ καταγόμεναι ἀπὸ τῶν τομῶν ἐπὶ τὴν ΓΑ καταχθήσονται ἐν τῇ
καὶ φανοῦνται παράλληλοι , αἱ δ ' ἐπὶ τὴν ΑΓ καταγόμεναι διαχθήσονται μὲν ἀπὸ τοῦ Κ , φανοῦνται δὲ τῇ
4275088 ἀνθερεων
παρὰ τὸ ἔναρθρον ἔχειν τὴν ὄπα . . . . ἀνθερεών : ὁ ἐπὶ τοῦ γενείου τόπος : εἴρηται δὲ
οἱ δὲ ἀναρρῶγας ἀντὶ τοῦ ἀνὰ τοὺς στενοὺς τόπους . ἀνθερεών ὁ ὑπὸ τὸ γένειον τόπος , ἀφ ' οὗ
4274398 διηχθω
ἡ ΖΗ , καὶ προσαναπεπληρώσθω ὁ ΔΕΖΚ κύκλος , καὶ διήχθω ἡ ΕΒΚ , καὶ ἀπὸ τοῦ Η ἐπ '
πρὸς ὀρθὰς ἀλλήλαις διαμέτρων καὶ τοῦ ΕΖ ἄξονος , καὶ διήχθω τινὸς τῶν νοτιωτέρων τοῦ ἰσημερινοῦ μηνιαίων παραλλήλων διάμετρος ἡ
4269081 ΖΘΔ
. ἴσον ἄρα καὶ ὅμοιόν ἐστι τὸ ΑΕΖ τρίγωνον τῷ ΖΘΔ τριγώνῳ . διὰ τὰ αὐτὰ δὴ καὶ τὸ ΑΖΘ
: ὁ δὲ χρόνος , ἐν ᾧ τὸ Ζ τὴν ΖΘΔ διαπορεύεται , ὁ χρόνος ἐστίν , ἐν ᾧ ἡ
4260148 ἐπεζευχθωσαν
Ζ κύκλοι οἱ ΓΝ , ΘΒ , ΑΛΗ . καὶ ἐπεζεύχθωσαν αἱ ΘΒ , ΗΒ , ΗΛ , ΗΑ :
ΒΓ ΓΑ περιφερειῶν , καὶ ἔστω τὸ Δ , καὶ ἐπεζεύχθωσαν αἱ ΔΑ ΔΒ ΔΓ . ἐπεὶ οὖν στερεὰ γωνία
4254250 προσπιπτετω
ὄμμα ἐγγυτέρω καὶ ἔστω τὸ Η , ἀφ ' οὗ προσπιπτέτω ἀκτὶς διὰ τοῦ Γ ἡ ΗΘ . ἐπεὶ οὖν
ἐπιγνῶναι ὕψος , πόσον ἐστί , τὸ ΒΓ , καὶ προσπιπτέτω ἀκτὶς ἡλίου διὰ τοῦ Β ἡ ΒΔ . οὐκοῦν
4253243 ΖΣ
τῆς Δ τὸ ΝΖΛ : μεῖζον δὲ τὸ ΝΖΛ τοῦ ΖΣ ἐστιν . φαίνεται δὲ ἔλαττον : μείζων γάρ ἐστιν
δὲ τὴν ΓΚ ἡ ΖΣ . οὐκοῦν αἱ ΖΝ , ΖΣ τῆς τοῦ κώνου ἐπιφανείας κατὰ τὰ Ν , Σ
4250649 ἐπιζευγνυμεναι
γραφεισῶν περιφερειῶν αἱ ἀπὸ τῆς κοινῆς τομῆς ἐπὶ τὰ κέντρα ἐπιζευγνύμεναι περιέξουσι τὴν λείπουσαν ὁμοίως εἰς τὰς δύο ὀρθὰς τῆς
καὶ ἡ ὑπὸ ΓΗΔ ὀρθή . Τῶν αὐτῶν ὄντων αἱ ἐπιζευγνύμεναι ἴσας ποιοῦσι γωνίας πρὸς ταῖς ἐφαπτομέναις . τῶν γὰρ
4246579 ἀρτηριης
Εὐθεῖα δὲ ἀπὸ τῆς καρδίης πρὸς κληῗδας τείνουσα ἄνωθεν τῆς ἀρτηρίης ἐστὶ , καὶ ἀπὸ ταύτης , ὥσπερ καὶ παρ
ἀμφιβεβηκυῖαι . Ἀρτηρίαι μὲν ἐκ τουτέου ἐκπεφύκασιν ἔνθεν καὶ ἔνθεν ἀρτηρίης τόνον ἔχουσαι . Ταύτῃ δέ πη παλινδρομήσασα ἀπὸ καρδίης
4246101 φυλαττουσαι
, κόθουροι δὲ οἱ ἄκεντροι καὶ κολόβουροι , ἢ αἱ φυλάττουσαι τὴν τῶν μέσων ἔξοδον : οὖροι γὰρ οἱ φύλακες
εἰς ως μετοχαὶ ἀπὸ περισπωμένων κατὰ πάθος γενόμεναι , καὶ φυλάττουσαι τὸ ω ἐπὶ τῆς γενικῆς τοῦ ἀρσενικοῦ , ἔχουσαι
4245776 τετμησθω
συνεχὲς εὑρεῖν , καὶ συμπεπληρώσθω τὸ ΑΒΓΛ παραλληλόγραμμον , καὶ τετμήσθω δίχα ἑκατέρα τῶν ΑΒ ΒΓ τοῖς Δ Ε σημείοις
πλευρά . Ἑξαγώνου γὰρ ἡ ΔΒ ἄκρον καὶ μέσον λόγον τετμήσθω κατὰ τὸ Γ , καὶ ἔστω μείζων ἡ ΔΓ
4244662 ΞΦ
πρὸς μεῖζον τοῦ ἀπὸ ΞΥ . ἔστω πρὸς τὸ ἀπὸ ΞΦ . ἐπεὶ οὖν ἐστιν , ὡς ἡ ΗΚ πρὸς
πρὸς ΞΜ , καὶ πρὸς ὀρθάς εἰσιν αἱ ΚΖ , ΞΦ , καί ἐστιν , ὡς τὸ ὑπὸ ΗΚΕ πρὸς
4244508 ΣΕ
διαμέτρου τῆς ἀπὸ τοῦ Σ τμῆμα κύκλου ὀρθὸν ἐφέστηκεν τὸ ΣΕ καὶ τὸ συνεχὲς αὐτῷ , καὶ διῄρηται ἡ τοῦ
τῇ ὑπὸ ΧΣΡ ἐστὶν ἴση : ὁ ἄρα τοῦ ἀπὸ ΣΕ πρὸς τὸ ἀπὸ ΣΡ λόγος ὁ αὐτός ἐστιν τῷ
4235374 ἐκβαλλονται
ἀνδρὶ τυπέντι : τοῦ δηχθέντος ἀνδρός * ῥαίονται : φθείρονται ἐκβάλλονται * βλεφάρων . . . λάχνη : ἡ ἀνατρίχωσις
τῶν ἀγαθοποιῶν μαρτυροῦντος καὶ ὑπὸ γονέων καὶ συγγενῶν οἱ τοιοῦτοι ἐκβάλλονται καὶ μετὰ τῶν τετραπόδων ζῶσιν , εἰ δὲ οἱ
4220215 ΧΦΨ
κέντρου τῆς σφαίρας ἤπερ ὁ ΠΗΡ , μείζων ἄρα ὁ ΧΦΨ κύκλος τοῦ ΠΗΡ κύκλου . ἐπεὶ οὖν δύο κύκλοι
Ε , Β μέρη . παράλληλος δὲ ὁ ΒΖ τῷ ΧΦΨ : καὶ ὁ ΧΦΨ ἄρα πρὸς τὸν ΞΚΟ κέκλιται
4217437 ἐπιδεϲιϲ
καὶ μαλάγματα καὶ ϲιναπιϲμοὶ καὶ κατάχριϲιϲ θαψίαϲ , ἰδίωϲ δὲ ἐπίδεϲιϲ ἡ εἰϲ τὰ ἀντικείμενα παράγουϲα καὶ ἀφαίρεϲιϲ ἐκ τῶν
Θεοδοτίῳ . παραλαμβανέϲθω δὲ ἐπ ' αὐτῶν καὶ ἡ προϲήκουϲα ἐπίδεϲιϲ . καταπλαττέϲθω δὲ τὰ φλεγμαίνοντα τῷ διὰ κωδιῶν καταπλάϲματι
4204826 χαλασματος
πάσχοντος διεκβάλλονται χεῖρες , διὰ δὲ τοῦ λοιποῦ τῆς καιρίας χαλάσματος ἀσφαλίζεται τὸ σῶμα . Ἕνεκα τῆς πλοκῆς τῶν ὤτων
παρειμένη ἐᾶται . καὶ ἀπὸ μὲν τοῦ ἀντικειμένου τῆς καιρίας χαλάσματος μικρὸν πλέκεται ἀγκύλιον καὶ κατὰ τῆς ἀριστερᾶς τίθεται χειρός
4203394 ἐπιζευξαι
ἀπὸ τοῦ τῆς συμβολῆς τῶν περιφερειῶν σημείου ἐπὶ τὰ κέντρα ἐπιζεῦξαι εὐθείας περιεχούσας τὴν λείπουσαν εἰς τὰς δύο ὀρθὰς τῆς
Θ , καθ ' ὃ τέμνει τὴν τετραγωνίζουσαν , καὶ ἐπιζεῦξαι τὴν ΘΗ , καὶ δίχα τεμόντα τὴν ΑΒ καὶ
4203329 ΔΓΚ
δείξομεν , καὶ γωνία ἡ ὑπὸ ΑΒΘ γωνίᾳ τῇ ὑπὸ ΔΓΚ ἐστιν ἴση , καὶ βάσις ἄρα ἡ ἀπὸ τοῦ
β ὀρθαὶ τξ . ἔστι δὲ καὶ ἡ μὲν ὑπὸ ΔΓΚ τῶν αὐτῶν ο , ἡ δὲ ὑπὸ ΛΓΚ ὀρθή
4202686 ΗΙ
τὰ οὖν ΗΘ ΘΙ τμήματα ἐλάττω ἐστὶ τοῦ περὶ τὴν ΗΙ τμήματος τοῖς τμήμασι [ καὶ ] τοῖς ὑπὸ τοῦ
τμήμασιν ἀπὸ τοῦ ἐντὸς κύκλου . τὸ γὰρ ἐπὶ τῆς ΗΙ τμῆμα ἴσον ἦν τοῖς τε ΗΘ ΘΙ τμήμασι καὶ
4194063 ἐκβεβλησθω
τῆς σκιᾶς καὶ οἱ τῆς σελήνης κύκλοι μέγιστοι . καὶ ἐκβεβλήσθω ἡ ΕΓ ἐπὶ τὴν περιφέρειαν τοῦ τῆς σκιᾶς κύκλου
παράλληλος ἤχθω ἡ ΒΗ , καὶ ἐπεζεύχθω ἡ ΗΓ καὶ ἐκβεβλήσθω ἐπὶ τὸ Θ : ἴση ἄρα ἐστὶν ἡ ὑπὸ
4190451 διῃρησθωσαν
, καὶ διήχθωσαν αἱ εὐθεῖαι τέμνουσαι τὰς τομάς , καὶ διῃρήσθωσαν , ὡς εἴρηται . λέγω , ὅτι ἡ διὰ
τρεῖς ἄρα αἱ ΖΗ ΗΘ ΘΚ σύμμετροι ἀλλήλαις εἰσίν . διῃρήσθωσαν οὖν εἰς τὰ μέτρα τοῖς Τ Υ Φ Χ
4189829 γραφεντων
γὰρ ἔγωγε τῶν Ἁρπάλου φίλων φανήσομαι γεγονώς , τῶν τε γραφέντων περὶ Ἁρπάλου μόνα τὰ ἐμοὶ πεπραγμέν ' ἀνέγκλητον πεποίηκε
πόλις μὴ ἐθέλοι ἀκολουθεῖν , ἐπὶ ταύτην πρῶτον ἰέναι . γραφέντων δὲ τούτων καὶ ἀναγνωσθέντων τοῖς πρέσβεσιν , εἶπεν ὁ
4178600 ἐνηρμοσθω
ἐναρμοσθῇ , μεταξὺ πεσεῖται τῶν Β καὶ Ε σημείων . ἐνηρμόσθω ἡ ΑΖ ἴση τῇ ἐκ τοῦ κέντρου , καὶ
εὐθειῶν ἐναρμόσαι τῷ ΑΚΓΗ κύκλῳ εὐθεῖαν ἴσην τῇ ΔΖ . ἐνηρμόσθω ἡ ΑΛΜ , καὶ ἐπεζεύχθω ἡ ΑΗ : ἴση
4174056 ΒΗΓ
ὑπὸ ΒΗΓ γωνία τῇ ὑπὸ ΓΘΖ , ἀλλὰ ἡ ὑπὸ ΒΗΓ ἴση ἐστὶν τῇ ὑπὸ ΒΑΓ ἐν κύκλῳ , ἡ
τῶν ΒΓ , ΕΖ , δύο δὲ γωνιῶν τῶν ὑπὸ ΒΗΓ , ΕΘΖ , εἴληπται τῆς μὲν ΒΓ περιφερείας καὶ
4158996 εὐθειαι
: ὅπερ ἄτοπον . οὐκ ἄρα αἱ ΔΕΒ , ΔΖΒ εὐθεῖαί εἰσιν . ὁμοίως δὴ δείξομεν , ὅτι οὐδὲ ἄλλη
ἐγκεφάλου γνωρίϲματα περιττώματα πλείω κατὰ τὰϲ οἰκείαϲ ἐκροὰϲ καὶ τρίχεϲ εὐθεῖαί τε καὶ πυρραὶ καὶ μόνιμοι : καὶ ῥᾳδίωϲ ὑπὸ
4157387 γεγραφθω
τῶν ζῳδίων κύκλου τὸ Ε , καὶ κέντρῳ τῷ Β γεγράφθω ὁ ἐπίκυκλος τῆς σελήνης ὁ ΖΗΘ , περιαγέσθω δ
πάλιν κέντρῳ τῷ Γ , διαστήματι δὲ τῷ ΓΒ κύκλος γεγράφθω ὁ ΔΚΒ , καὶ πάλιν κέντρῳ τῷ Α ,
4147497 ΔΑΗ
ἡ μὲν ΔΗ ἔσται δ μζ , ἡ δὲ ὑπὸ ΔΑΗ γωνία τῆς μεγίστης κατὰ πλάτος παραχωρήσεως , οἵων μέν
ΔΖ ἔσται κα α . πάλιν , ἐπεὶ ἡ ὑπὸ ΔΑΗ γωνία τοιούτων ὑπόκειται ε , οἵων εἰσὶν αἱ β
4134481 ἀναγονται
τῶν ὑποθετικῶν οἱ δι ' ἀδυνάτου εἰς τὰ τρία σχήματα ἀνάγονται ἀλλὰ καὶ καθόλου πάντες οἱ ὑποθετικοί : καὶ γὰρ
κατηγορίαις . οὕτως οὖν καὶ τὰ συνώνυμα οὐχ ὡς εἶδος ἀνάγονται ὑπὸ τὰς δέκα κατηγορίας , ἀλλ ' ὡς ὕλῃ
4125684 ἰσοσθενειαν
τὴν τῆς ἐναργείας καὶ διὰ τὴν τῶν ἀντικειμένων αὐτῇ λόγων ἰσοσθένειαν . Τῆς κινήσεως τριῶν οὐσιῶν , ὡς προεῖπον ,
διὰ τὴν ἰσοσθένειαν τῶν ἀντικειμένων πραγμάτων εἰς ἀρρεψίαν καταλήγομεν , ἰσοσθένειαν μὲν λεγόντων ἡμῶν τὴν ἰσότητα τὴν κατὰ τὸ φαινόμενον
4123790 ῥευματοϲ
δὲ ϲυμβαίνει μονιμωτέραν γενέϲθαι τὴν εἰρημένην διάθεϲιν καὶ τὴν τοῦ ῥεύματοϲ οὐϲίαν ἐπὶ τὸ ψυχρότερον ἀχθῆναι μᾶλλον , τὸ τηνικαῦτα
Ἱκεϲίου καὶ ἡ δι ' αἰρῶν . εἰ δὲ φόβοϲ ῥεύματοϲ εἴη , καὶ ἡ Θραϲέα ἐπιτήδειοϲ . ἐγὼ δὲ
4118656 κατειληφθω
τὴν τρίτην ἡμέραν ϲπληνίῳ ἀπὸ τοῦ μεϲοφρύου ἄχρι τοῦ μήλου κατειλήφθω τοῦτο τῆϲ ῥινὸϲ τὸ ἐμπεφραγμένον μέροϲ τῶν διαφορεῖν ἐπαγγελλομένων
τῇ τῶν πραγμάτων κρίσει , τῇ μηδέπω κατειλημμένῃ . ἀλλὰ κατειλήφθω ἡ διάνοια , καὶ ὡμολογήσθω τὸ εἶναι ταύτην καθ
4118574 ἐμπλαϲτροι
τὸ διὰ τῶν πικρῶν ἀμυγδάλων καὶ λιβάνου καὶ ϲμύρνηϲ . ἔμπλαϲτροι δὲ αἱ δι ' ἀγαρικοῦ καὶ αἱ διὰ ϲκίλληϲ
κατὰ φύϲιν εὔχροιαν ἀποκαθίϲταται . κατὰ δὲ τῶν εἱλκωμένων ἁρμόζουϲιν ἔμπλαϲτροι ἥ τε διὰ τοῦ διφρυγοῦϲ καὶ ἡ διὰ οἴνου
4116180 ΑΒΜ
ἀλλ ' ὡς ἡ ΑΜ πρὸς ΜΓ , οὕτως τὸ ΑΒΜ [ τρίγωνον ] πρὸς τὸ ΜΒΓ , καὶ τὸ
ὑπὸ ΗΒΕ τῇ Δ ἐστιν ἴση , καὶ ἡ ὑπὸ ΑΒΜ ἄρα τῇ Δ γωνίᾳ ἐστὶν ἴση . Παρὰ τὴν
4116114 τεμνετω
ΚΟ δίχα τε καὶ πρὸς ὀρθὰς τεμεῖ τὴν ΖΡ . τεμνέτω κατὰ τὸ Σ . καὶ ἐπεὶ ἡμίσους ὀρθῆς ἐστιν
τινα τῶν ἐν τῇ σφαίρᾳ κύκλων τὸν γδβʹ αἰεὶ δίχα τεμνέτω , μηδέτερος δὲ αὐτῶν μήτε πρὸς ὀρθὰς ἔστω τῷ
4111432 ΦΑ
ἐστιν ἴση : ἔστιν ἄρα ὡς ἡ ΒΦ πρὸς τὴν ΦΑ , οὕτως ἡ ΚΧ πρὸς τὴν ΧΑ : παράλληλος
ὡς δὲ τὸ ΜΘ πρὸς ΘΑ , ἡ ΜΦ πρὸς ΦΑ , τουτέστιν ἡ ΖΛ πρὸς ΛΑ : καὶ ὡς
4110536 διαχθεισα
ΑΒΓ , καὶ τῇ ΒΓ παράλληλος ἡ ΑΔ , καὶ διαχθεῖσα ἡ ΔΕ τῇ ΒΓ συμπιπτέτω κατὰ τὸ Ε σημεῖον
γὰρ διὰ τοῦ Γ τῇ ΔΑ παράλληλος ἡ ΓΕ καὶ διαχθεῖσα ἡ ΒΑ συμπιπτέτω αὐτῇ κατὰ τὸ Ε . Καὶ
4110290 λειφθεν
ὁμοίως κα α , τὸ δ ' ἀπὸ τῆς ΔΗ λειφθὲν ὑπὸ τῶν ἀπὸ ἑκατέρας τῶν ΔΑ καὶ ΔΖ ποιεῖ
λικμῶντες ὧν οὐδὲν προσδέονται . τὸ δὲ ἐν τῇ γῇ λειφθὲν ἡγοῦμαι καὶ κατακαυθὲν συνωφελεῖν ἂν τὴν γῆν καὶ εἰς
4100639 ἀμυχων
τῇ δὲ τρίτῃ σικυαστέον ὑποχόνδριά τε καὶ μετάφρενον μετ ' ἀμυχῶν , εἶτα διαστήσαντας ἱκανὰς ἡμέρας καὶ ἀναλαμβάνοντας τὸ σωμάτιον
τοῦ πολλὴν ἐπιφέρειν συνολκήν : ὕστερον δὲ καὶ μετ ' ἀμυχῶν ἐπιπολαίων , ἐν ἀκμῇ μὲν τοῦ πάθους , ἐν
4089095 ἐπιζευχθωσιν
ἀπὸ τῶν Τ , Φ ἐπὶ τὴν κορυφὴν τὴν Δ ἐπιζευχθῶσιν εὐθεῖαι ὡς αἱ ΤΔ , ΦΔ , τὸ διὰ
ἐμπίπτωσιν εὐθεῖαί τινες αἱ ΑΔ ΑΖ ΒΓ ΒΖ , καὶ ἐπιζευχθῶσιν αἱ ΕΔ ΕΓ , [ ὅτι ] γίνεται εὐθεῖα
4079354 ὑπερβολης
ἀτεχνῶς τὸν κολοφῶνα ἐπιθεῖναι . τῆς τοίνυν διὰ τῶν κυνηγετῶν ὑπερβολῆς ἐν σοὶ τὸ πλεῖστον . τρέφει γὰρ ἡ Φοινίκη
τοιαῦτα νοσήματα πάντα παρέσχετο . τὸ μὲν οὖν ἐκ πυρὸς ὑπερβολῆς μάλιστα νοσῆσαν σῶμα συνεχῆ καύματα καὶ πυρετοὺς ἀπεργάζεται ,
4077329 ΧΦ
ΧΚ καὶ ἡ ΧΦ , καὶ ἀπὸ τοῦ Σ τῇ ΧΦ παράλληλος ἡ ΣΨ , ἀπὸ δὲ τοῦ Ψ τῇ
ἡ ΚΧ πρὸς τὴν ΧΑ : παράλληλος ἄρα ἐστὶν ἡ ΧΦ τῇ ΚΒ . καὶ ἐπεὶ ἑκατέρα τῶν ΟΦ ,
4073113 ΩϹ
ΑΠ [ ] [ ] ΤΩΙΨΗΙΚ [ ] [ ] ΩϹ καὶ Μ [ ] [ ] θανάτω ? [
: ΕΥΦ ! [ ! ] ! ! [ ] ΩϹ ! ! [ ] # ΚΑΡΝΕΙϹΚΟΥ # ΦΙΛΙϹΤΑ Β
4070701 γωνιαν
ἐστὶ δοθεὶς διὰ τὸ δοθεῖσαν εἶναι τὴν ὑπὸ τῶν ΒΑΓ γωνίαν : καὶ τοῦ Δ ἄρα χωρίου πρὸς τὸ ὑπὸ
πλευραὶ ἄνισοι , καὶ ἡ μείζων ὑποτείνει τὴν δεδομένην μείζονα γωνίαν . εἰ γὰρ μή ἐστιν ἡ τὴν μείζονα γωνίαν
4069346 ὑποδεροντεϲ
δέρμα μέχρι τοῦ ἐϲκεπάϲθαι τὴν καλουμένην βάλανον , ἐνίοτε δὲ ὑποδέροντεϲ ϲμίλῃ κατὰ τὸ ἔνδον ἀπὸ τῆϲ κατὰ τὴν βάλανον
χερϲὶ κατέχοντεϲ τὴν τρίχα διακινοῦμεν ἄνω τε καὶ κάτω , ὑποδέροντεϲ τὸ πτερύγιον , ἀρχόμενοι ἀπὸ τοῦ μέλανοϲ , μέχρι
4061104 συστησονται
καὶ ὁμοίως πλαττομένων οἱ ἐπιμόριοι λόγοι καὶ αἱ ἐν τούτοις συστήσονται ἀναλογίαι , ἐκ μὲν τῶν διπλασίων ἡμιόλιοι , ἐκ
κατὰ αὐθάδειαν δρᾶν ἕκαστα , ἀλλὰ συνέθεντο ἐφ ' οἷς συστήσονται τὸν ἀγῶνα . δηλοῖ δὲ καὶ τοῦτο ἐν τῷ

Back