| , καὶ διήχθωσαν αἱ εὐθεῖαι τέμνουσαι τὰς τομάς , καὶ διῃρήσθωσαν , ὡς εἴρηται . λέγω , ὅτι ἡ διὰ | ||
| τρεῖς ἄρα αἱ ΖΗ ΗΘ ΘΚ σύμμετροι ἀλλήλαις εἰσίν . διῃρήσθωσαν οὖν εἰς τὰ μέτρα τοῖς Τ Υ Φ Χ |
| εὐθεῖαι ἐφάπτουσι τοῦ κύκλου , ἀπὸ δὲ τοῦ δ κέντρου ἐπιζευχθεῖσαί εἰσιν εἰς αὐτὰς εὐθεῖαι αἱ δα , δβ , | ||
| εὐθεῖαι ἐφάπτουσι τοῦ κύκλου , ἀπὸ δὲ τοῦ δ κέντρου ἐπιζευχθεῖσαί εἰσιν εἰς αὐτὰς εὐθεῖαι αἱ δα , δβ , |
| ἀπέχουσα ἐν ἀρχῇ τοῦ Σκορπίου ὥρας ἰσημερινὰς δ , καὶ ἐκβληθεῖσαι αἱ ΓΔ , ΑΒ περιφέρειαι τεμνέτωσαν ἀλλήλας μὲν κατὰ | ||
| καὶ ἐπιζευχθεῖσαι αἱ ΚΕ , ΚΖ , ΚΗ , ΚΘ ἐκβληθεῖσαι προσπιπτέτωσαν ἐπιπέδῳ τινὶ παραλλήλῳ ὄντι τῷ ΑΒΓΔ κατὰ τὰ |
| Ζ κύκλοι οἱ ΓΝ , ΘΒ , ΑΛΗ . καὶ ἐπεζεύχθωσαν αἱ ΘΒ , ΗΒ , ΗΛ , ΗΑ : | ||
| ΒΓ ΓΑ περιφερειῶν , καὶ ἔστω τὸ Δ , καὶ ἐπεζεύχθωσαν αἱ ΔΑ ΔΒ ΔΓ . ἐπεὶ οὖν στερεὰ γωνία |
| κῶνος ὀρθός : ἴση γὰρ ἡ ΖΒ τῇ ΖΞ . ἐκβεβλήσθωσαν δὴ αἱ ΒΖ , ΖΞ , ΜΖ , καὶ | ||
| τὴν ΑΒ , καὶ ἐπεζεύχθωσαν αἱ ΑΖ , ΕΖ καὶ ἐκβεβλήσθωσαν , καὶ εἰλήφθω τῶν ΔΕΖ μέση ἀνάλογον ἡ ΕΘ |
| , τὸ δὲ ὄμμα κείσθω ἐπὶ τοῦ Β , καὶ προσπιπτέτωσαν ἀκτῖνες αἱ ΚΒ , ΒΔ , ΒΓ , ΒΖ | ||
| . κείσθω δὴ ὄμμα τὸ Δ , ἀφ ' οὗ προσπιπτέτωσαν ἀκτῖνες αἱ ΔΒ , ΔΓ , καὶ ἀπὸ τοῦ |
| ' αὐτοῦ τὸ περὶ ταῦτα ἱλαρὸν αἱ ὑπ ' αὐτοῦ γραφεῖσαι σατυρικαὶ κωμῳδίαι τῇ πατρίῳ φωνῇ . : Νικόλαος δ | ||
| ' αὐτοῦ τὸ περὶ ταῦτα ἱλαρὸν αἱ ὑπ ' αὐτοῦ γραφεῖσαι σατυρικαὶ κωμῳδίαι τῇ πατρίῳ φωνῇ . Τιρυνθίους δέ φησι |
| δὲ τὸ Β , ὄψεις δὲ αἱ ΒΑ , ΒΓ ἀνακλώμεναι ἐπὶ τὰ Ε , Δ , ὁρώμενον δὲ ἔστω | ||
| δὲ τὸ Β , ὄψεις δὲ αἱ ΒΓ , ΒΔ ἀνακλώμεναι ἐπὶ τὰ Ε , Κ . οὐκοῦν φαίνεται ἐκβληθεισῶν |
| . ἐπεὶ ἴση ἡ ΑΜ τῇ ΔΖ , καὶ αἱ ἡμίσειαι ἄρα ἴσαι εἰσίν . ὥστε καὶ τὸ ἀπὸ τῆς | ||
| δὲ αὐτῶν ἴσαι περιφέρειαι ἀποληφθῶσι πρὸς τοῖς πέρασιν ἐλάττους ἢ ἡμίσειαι οὖσαι τῶν ὅλων τμημάτων , ἀπὸ δὲ τῶν κύκλων |
| λόγον ἔχει ἤπερ ἡ βάσις πρὸς τὴν βάσιν ἀντιπεπονθότως . καταγεγράφθωσαν οἱ κῶνοι , καὶ ἔστω , ὡς ὁ ΑΗΓΔ | ||
| σε τούτων διαλανθάνῃ καὶ ἵνα σαφέστερον ἡμῖν ὁ λόγος γένηται καταγεγράφθωσαν πρῶτον πάντα τὰ δεκαεπτὰ σύμφωνα : Β . Γ |
| ὅτι ἐν πλείστῳ μὲν χρόνῳ δύνουσιν αἱ ΑΗ , ΜΓ περιφέρειαι , ἐν ἐλάσσονι δὲ αἱ ΗΘ , ΛΜ , | ||
| τὰ ΑΗΓ , ΔΘΖ , καὶ ἀπ ' αὐτῶν ἴσαι περιφέρειαι ἀπειλήφθωσαν πρὸς τοῖς πέρασι τοῖς Α , Δ σημείοις |
| , καὶ διὰ τοῦ Η ταῖς ΕΔ , ΔΖ παράλληλοι ἤχθωσαν αἱ ΗΘ , ΗΚ . λέγω , ὅτι ἴσον | ||
| διάμετρος ἡ ΒΓ , καὶ ἀπὸ τῶν Β , Γ ἤχθωσαν πρὸς ὀρθὰς αἱ ΒΖ , ΓΛ , καὶ ἀπὸ |
| ὑπὸ ΖΗΘ , ἐκτὸς τοῦ Η , ὡς ἔχουσιν αἱ καταγραφαί . ἐπεὶ οὖν τὸ δὶς ὑπὸ ΡΗΘ ἢ ΡΗΖ | ||
| ͵Ϛχκʹ καὶ ὁ τῶν Μιγ ͵εσμʹ : ὡς ἔχουσιν αἱ καταγραφαί . Ἐπὶ δὲ τῶν ἀπύκνων γενῶν ἀκολούθου τοῖς προδιωρισμένοις |
| ἀδυνάτου δείξεως πᾶσαι : πλὴν οἱ μὲν διὰ τοῦ ἀδυνάτου δειχθήσονται , οἱ δὲ καὶ διὰ τῆς ἀντιστροφῆς : καὶ | ||
| ζʹ : ὁ γὰρ τῶν ΒΓ καὶ ΓΔ μετὰ ταῦτα δειχθήσονται . εὑρεθήσονται τοίνυν μεῖζον τόνου ποιοῦντες μέγεθος ἑκάτεροι οἵ |
| δέον μὴ ἀνάλωσεν . Εἰρῆσθαι δέ φησι πρότερον , ὅτι ὑπερβολαὶ καὶ ἐλλείψεις εἰσὶν ἡ ἀσωτία καὶ ἡ ἀνελευθερία : | ||
| γὰρ τῷ πλεονάζειν τοῖς δακτύλοις ἀτελὴς εἶναι : αἱ γὰρ ὑπερβολαὶ καὶ αἱ ἐλλείψεις κακίαι : ὅμοιον καὶ τοῦτο . |
| τὰς ΑΒ ΑΓ ΑΔ ἀπό τινος σημείου τοῦ Ε δύο διήχθωσαν αἱ ΕΖ ΕΒ , ἔστω δὲ ὡς ἡ ΕΖ | ||
| τῆς ὑπὸ ΓΑΒ . Ἔστω κύκλος ὁ ΑΓΒΔ , καὶ διήχθωσαν δύο διάμετροι αἱ ΑΒ , ΓΔ τέμνουσαι ἀλλήλας πρὸς |
| τοὺς πόρους ἐπιφανείαις προσπίπτον ποιεῖν . ἀλλ ' αἵ γε ἐπιφάνειαί εἰσιν ἀσώματοι , καὶ τὸ ἀσώματον οὔτε ποιεῖν οὔτε | ||
| ἐν ταῖς τραγῳδίαις , μετ ' ἄλλας ἐπιδείξεις πολλάς , ἐπιφάνειαί τινες ἐπὶ τέλει ἐκ μηχανῆς τινὸς θεῶν ἀναδείκνυνται . |
| , τὸ δὲ ὑπὸ ΑΔ ΓΒ τῷ ἀπὸ ΕΗ . Ἐπεζεύχθωσαν γὰρ αἱ ΗΓ ΗΔ ΑΖ ΖΒ . ἐπεὶ οὖν | ||
| σφαίρας διάμετρος δυνάμει τριπλασία ἐστὶ τῆς πλευρᾶς τοῦ κύβου . Ἐπεζεύχθωσαν γὰρ αἱ ΚΗ , ΕΗ . καὶ ἐπεὶ ὀρθή |
| νοήσωμεν μεσημβρινὸν κύκλον τὸν ΑΒΓΔ καὶ ζῳδιακοῦ μὲν ἡμικύκλιον τὸ ΑΕΖΓ , ὁρίζοντος δὲ τὸ ΒΕΔ περὶ πόλον τὸ Η | ||
| διαστήματι δὲ ὁποτερῳοῦν τῶν ΒΑ , ΒΓ γεγράφθω κύκλος ὁ ΑΕΖΓ , καὶ ἐκβεβλήσθωσαν αἱ ΑΒΕ , ΑΔΖ , ΑΗΘ |
| ΖΔ κατὰ τὸ Θ , αἱ δὲ ΓΔ , ΒΑ ἐκβαλλόμεναι κατὰ τὸ Κ , καὶ ἐπεζεύχθω ἡ ΕΘ . | ||
| αἱ ὑπὸ ΚΕΖ , ΕΖΚ ἐλάττονές εἰσι δύο ὀρθῶν , ἐκβαλλόμεναι ἄρα συμπεσοῦνται αἱ ΜΚ , ΛΚ . διὰ τὰ |
| ' οὐ πανταχοῦ , ἡ δύναμις δὲ ἁπανταχοῦ καὶ αἱ ἀκτῖνες , καὶ ἐν γῇ καὶ ἐν θαλάττῃ καὶ ἐν | ||
| τοῦ ἡλίου ὑφίστηται νέφος ὑφ ' οὗ ἐὰν σχίζωνται αἱ ἀκτῖνες χειμερινὸν τὸ σημεῖον . Καὶ ὅταν καυματίας δύηται καὶ |
| τῷ ποῦ τῆς θαλάττης συνοίσει προϊδεῖν . εἴτε γὰρ μὴ ἐποιήθησαν ἐξ ἀρχῆς αἱ τριήρεις , οὐδὲν ἂν ἦν ἄξιον | ||
| ἀναγκάσας θαλασσίους γενέσθαι Ἀθηναίους : αἱ δὲ ἐς τὸ μὲν ἐποιήθησαν οὐκ ἐχρήσθησαν , ἐς δέον δὲ οὕτω τῇ Ἑλλάδι |
| ἀναμένειν δεῖ καὶ ὅταν πλεονάϲῃ τὸ ὑγρὸν καὶ διαϲτῶϲιν αἱ ῥαφαὶ καὶ φανερὸν γένηται τὸ ὑγρόν , διαιρεῖν τὸν κορυφούμενον | ||
| εʹ Ἐπιδημιῶν φησιν : ἔκλεψαν δέ μου τὴν γνώμην αἱ ῥαφαὶ τοῦ βέλεος ἐν ἑαυταῖς τὸ σίνος ἔχουσαι . καμπυλεύεσθαι |
| δὴ παράλληλοι αἱ ΑΒ , ΔΕ , ἀλλ ' ἐκβαλλόμεναι συμπιπτέτωσαν κατὰ τὸ Π , καὶ ἡ ΓΟ ἤχθω παρὰ | ||
| μὴ ἔστωσαν δὴ παράλληλοι αἱ ΑΚ , ΕΖ , ἀλλὰ συμπιπτέτωσαν κατὰ τὸ Κ , καὶ ἡ ΓΔ παρὰ τὴν |
| ἐπαρώμενός τι φαῦλον , οἷον ἐπὶ μὲν τῶν Πρασιῶν ἰὼ Πρασιαὶ τρισάθλιαι καὶ πεντάκις καὶ πολλάκις , ὡς ἀπολεῖσθε τήμερον | ||
| σκελοῖν ] συμβολικὸν ἀπὸ τῶν διὰ δειλίαν ἀποτιλώντων . ἰὼ Πρασιαὶ : πόλις λακωνική . ἅμα δὲ πράσον ἐμβάλλων ταῦτά |
| , ἐὰν εὑρεθῶσιν ὁμοφωνοῦσαι ἀπὸ τῶν εἰς ΕΣ πληθυντικῶν εὐθειῶν γενικαὶ . . . γενικαῖς ἀρσενικῶν περισπωμέναις , οὐκ ἀναγκάζονται | ||
| βαρύνεται . Ἐπὶ μέντοι μετοχῶν καὶ αἱ εἰς ος δισύλλαβοι γενικαὶ βαρύνονται , βάντος στάντος φθάντος . Πᾶσα δοτικὴ ἰσοσυλλαβοῦσα |
| καὶ κείσθω τῇ μὲν ὑπὸ ΓΕΑ γωνίᾳ ἴση ἡ ὑπὸ ΘΝΚ , καὶ ἤχθω τῇ ΘΝ παράλληλος ἡ ΚΞ , | ||
| , τροπικοὶ δὲ οἱ περὶ διαμέτρους τὰς ΘΚ ΛΜ οἱ ΘΝΚ ΛΞΜ , ὁ δὲ τῶν ζῳδίων κύκλος θέσιν ἐχέτω |
| ἀπὸ τῶν Τ , Φ ἐπὶ τὴν κορυφὴν τὴν Δ ἐπιζευχθῶσιν εὐθεῖαι ὡς αἱ ΤΔ , ΦΔ , τὸ διὰ | ||
| ἐμπίπτωσιν εὐθεῖαί τινες αἱ ΑΔ ΑΖ ΒΓ ΒΖ , καὶ ἐπιζευχθῶσιν αἱ ΕΔ ΕΓ , [ ὅτι ] γίνεται εὐθεῖα |
| μὴ ϲτύφειν τὴν τίτανον θᾶττον ἀποπίπτουϲιν αἱ ἀπ ' αὐτῶν ἐϲχάραι . κάλλιον δὲ μένειν αὐτάϲ : φθάνει γὰρ ὑποϲαρκοῦϲθαι | ||
| ἵνα ἐϲχαρωθῇ , εἶτα μετὰ ῥοδίνου , ἵνα ἐκπέϲωϲιν αἱ ἐϲχάραι : φυλαϲϲέϲθω δὲ ἀκατούλωτα τὰ μέρη ἐπὶ ἡμέραϲ μβ |
| εἰσὶν οἱ Β , Γ , Δ τῷ πλήθει τοσοῦτοι εἰλήφθωσαν ἀπὸ τοῦ Ε οἱ Ε , ΘΚ , Λ | ||
| ὡς ἀρχὴ καὶ μὴ οὖσα ἀριθμός , οὐκοῦν ἀπὸ τριάδος εἰλήφθωσαν : γ , ε , ζ , θ , |
| καὶ ἀπὸ τοῦ Ρ ἐπὶ μὲν τὰς ΘΟ , ΚΠ κάθετοι ἤχθωσαν αἱ ΡΝ , ΡΞ , ἐπὶ μὲν τὴν | ||
| , καὶ ἀπὸ τοῦ Ε ἐπὶ τὰς ΑΒ , ΓΔ κάθετοι ἤχθωσαν αἱ ΕΖ , ΕΗ , καὶ ἐπεζεύχθωσαν αἱ |
| ΘΚ , τῇ δὲ ΡΛ ἴση ἑκατέρα τῶν ΡΜ , ΡΝ : ἑκάστη ἄρα τῶν ΑΒ , ΒΓ , ΔΕ | ||
| : ἐπ ' εὐθείας ἄρα [ ἐστὶ ] καὶ ἡ ΡΝ τῇ ΝΟ . καὶ συμπεπληρώσθω τὸ ΣΠ τετράγωνον : |
| : καὶ τῆς ὑπὸ ΓΗΑ ἄρα μείζων ἐστὶν ἡ ὑπὸ ΑΔΘ γωνία : ὥστε μεῖζόν ἐστιν τὸ ὑπὸ ΔΒΓ τοῦ | ||
| κοιναὶ τομαὶ ἡ ΑΒ καὶ ἡ ΗΖ , τοῦ δὲ ΑΔΘ κύκλου καὶ τοῦ ΑΗΒΖ κοινὴ τομὴ ἡ ΑΘ , |
| [ ὅπερ ἔδει δεῖξαι ] . Μὴ ἔστωσαν δὴ αἱ ἐφεστηκυῖαι αἱ ΖΕ , ΒΛ , ΗΑ , ΘΚ , | ||
| Οὐκοῦν καὶ τὰ ἀεὶ γιγνόμενα ἔκγονα παραλαμβάνουσαι αἱ ἐπὶ τούτων ἐφεστηκυῖαι ἀρχαὶ εἴτε ἀνδρῶν εἴτε γυναικῶν εἴτε ἀμφότερακοιναὶ μὲν γάρ |
| συμπεσεῖται ἑκατέρᾳ τῶν ΑΒ , ΓΔ ἐκτὸς τῆς τομῆς . κατήχθωσαν γὰρ ἀπὸ τῶν Ε , Ζ τεταγμένως ἐπὶ μὲν | ||
| ὅτι ἡ ΕΖ συμπεσεῖται ἑκατέρᾳ τῶν ΑΒ , ΓΔ . κατήχθωσαν ἀπὸ τοῦ Η ἐπὶ τὰς ΑΒ , ΓΔ τεταγμένως |
| μέσους δρόμους ὦσιν , ὅπου μείζους εἰσὶν αἱ τῶν παραυξήσεων ὑπεροχαί , τήν γε μέχρι τῶν τοσούτων ὡρῶν πάροδον , | ||
| λϚ , τετραπλάσιος τοῦ θ , ἀπλανῶν . Αἱ δὲ ὑπεροχαί : λϚ ὑπερέχει δ , λβ η , κδ |
| ἴσα τμήματα ἴσων κύκλων τὰ ΑΒΓ , ΔΕΖ , καὶ ἀπειλήφθωσαν ἴσαι περιφέρειαι αἱ ΑΒ , ΔΕ , καὶ κάθετοι | ||
| δὲ τῶν ζῳδίων κύκλος θέσιν ἐχέτω τὴν ΑΕΓΔ , καὶ ἀπειλήφθωσαν ἴσαι περιφέρειαι αἱ ΑΔ , ΓΕ : κατὰ διάμετρον |
| μετὰ τοῦτον ἐγκολπίζουσα ᾐὼν εἰς βάθος , ἐν ᾗ αἱ Βαῖαι καὶ τὰ θερμὰ ὕδατα τὰ καὶ πρὸς τρυφὴν καὶ | ||
| νήσους καὶ πόλεις παρὰ τὴν κατ ' Ἰταλίαν Ἄορνιν . Βαῖαι αἱ ἐν Ἰταλίᾳ , ἀπὸ Βαίου τοῦ Ὀδυσσέως κυβερνήτου |
| ἔπεστι κολοσσὸς λίθινος κατήμενος ἐν θρόνῳ . Οὕτω αἱ μὲν πυραμίδες εἰσὶ ἑκατὸν ὀργυιέων , αἱ δ ' ἑκατὸν ὀργυιαὶ | ||
| . , ] αἱ γὰρ ὑπὸ τὸ αὐτὸ ὕψος οὖσαι πυραμίδες πρὸς ἀλλήλας εἰσὶν ὡς αἱ βάσεις : ἴσαι δὲ |
| τετράγωνος , τουτέστιν ὁ ε , ἴσος τοῖς ἀπὸ τῶν βδ , δγ τετραγώνοις μετὰ τοῦ δὶς ἐκ τῶν βδ | ||
| οὕτως ἔχει , καθὼς εἴρηται , φανερόν : ἡ γὰρ βδ ὑπερέχει τῆς γα τῇ γδ : ἡ δὲ γα |
| κοινὸν ἐγένετο τὸ ἀτύχημα , καὶ μᾶλλον αὐτῆς , ὅσῳ μαλακώτεραί πως αἱ γυναῖκες πρὸς τὰ πάθη . ὁμοίως δὲ | ||
| διὰ τὴν ὑποκειμένην φύσιν , περὶ ἧς πραγματεύεται , ἐπεὶ μαλακώτεραί γε αἱ ἀποδείξεις ἀστρονομίας : τῷ γὰρ ἔγγιστα χρῆται |
| τῆς γενέσεως πῆξιν ὁπόταν ἔχωσι τὰ χρονικὰ ἢ καὶ αἱ ἀναφοραὶ τῶν ζῳδίων κατὰ τὸν αὐτὸν χρόνον συμπληρούμενοι τύχοιεν . | ||
| εἰσὶν αἱ τῶν ηζ ζε εδ δγ γβ βα περιφερειῶν ἀναφοραὶ ἐν ἴσῃ ὑπεροχῇ , ἑξῆς ἀλλήλοις κείμενοι , ἀρχόμενοι |
| λε ιε τοῖς λείπουσι πάλιν εἰς τοὺς καὶ τούτου τοῦ τεταρτημορίου χρόνους ρη με . καὶ φανερόν , ὅτι τὸν | ||
| μοίραις χρονικαῖς οεʹ : ὑπερέχει ἄρα ὁ τοῦ ηζ εδ τεταρτημορίου ἀναφορᾶς χρόνος τοῦ τῆς τοῦ δγ βα τεταρτημορίου ἀναφορᾶς |
| περιφέρειαν . γεγράφθω γὰρ διὰ τοῦ Η παράλληλος κύκλος ὁ ΝΗΞ , καὶ ἔστωσαν κοιναὶ τομαὶ τῶν ἐπιπέδων αἱ ΑΚ | ||
| ὁ ΑΒΓ κύκλος ὀρθός ἐστι πρὸς ἕκαστον τῶν ΔΛΜ , ΝΗΞ , ΒΕΓ κύκλων . ἐπεὶ οὖν ἐν σφαίρᾳ παράλληλοι |
| Βαβυλῶνι χρόνων ἐστὶν ιβ : αἱ ἄρα ε ∠ ʹ καιρικαὶ ὧραι ποιοῦσιν ἰσημερινὰς δ καὶ δύο πέμπτα . ἡ | ||
| ἡμικύκλιον ἑτέρου σημείου τὴν μοῖραν περιαγαγούσης , αἱ αὐταὶ ἔγγιστα καιρικαὶ ὧραι γενήσονται τῆς ἀπὸ τοῦ μεσημβρινοῦ ἀποστάσεως . ὥσπερ |
| , ἀπὸ τῶν ἀρχῶν τῆϲ δοθείϲηϲ ἄνω ἐγκαρϲίαϲ διαιρέϲεωϲ : καταφερόμεναι δὲ ἄνωθεν ἐπὶ τοὺϲ κροτάφουϲ , μέχριϲ ἡμίϲουϲ τοῦ | ||
| ἁμάξας . γνώμην δὲ πεποίηντο ὅτι ὅσῳ πυκνοτέρᾳ τῇ φάλαγγι καταφερόμεναι συμμίξουσιν αἱ ἅμαξαι , τοσῷδε μᾶλλόν τι διασκεδάσουσιν αὐτὴν |
| . ἐπεὶ γὰρ αἱ ΑΓ , ΒΔ ἐφαπτόμεναι τῶν τομῶν παράλληλοί εἰσι , διάμετρος μὲν ἡ ΑΒ , τεταγμένως δὲ | ||
| κατὰ πᾶσαν θέσιν ἀσύμπτωτοί εἰσιν ἀλλήλαις καὶ οὐ διὰ τοῦτο παράλληλοί εἰσιν . ἓν οὖν ἔστω τὸ ἐπίπεδον , καὶ |
| ΑΒΘ τρίγωνον τῷ ΔΕΖ τριγώνῳ ἴσον ἐστίν , καὶ αἱ λοιπαὶ γωνίαι ταῖς λοιπαῖς γωνίαις ἴσαι ἔσονται , ὑφ ' | ||
| , ἀνακήρυξις , ἀνάρρησις , ἀναγγελία καὶ μὴν καὶ αἱ λοιπαὶ τιμαί , δωρεαί , γέρα , προτιμήσεις , χάριτες |
| καὶ δέρρεις περικρεμάσθωσαν αὐτοῦ κατὰ μέτωπον , καὶ κλίμακες ἔνδοθεν προσκείσθωσαν τοὺς κάμακας ἑαυτῶν πεπερονημένους ἔχουσαι κατὰ τὰ ἄκρα ἑκάτερα | ||
| α # Μο ξ ἐλάσσων ἐστὶν ʂ η , κοιναὶ προσκείσθωσαν Μο ξ : ὥστε ΔΥ α ἴση ἐστὶν ʂ |
| ὁμοίως διῃρήσθωσαν , καὶ τοῦτο ἀεὶ γινέσθω , ἕως οὗ λειφθῶσί τινες πυραμίδες ἀπὸ τῆς ΔΕΖΘ πυραμίδος , αἵ εἰσιν | ||
| ὁμοίως διῃρήσθωσαν , καὶ τοῦτο ἀεὶ γινέσθω , ἕως οὗ λειφθῶσί τινες πυραμίδες ἀπὸ τῆς ΔΕΖΘ πυραμίδος , αἵ εἰσιν |
| μέσην πάροδον τοῦ ἡλίου κατὰ μιᾶς καὶ τῆς αὐτῆς εὐθείας συμπίπτουσιν ἀμφό - τεραι , ἐπὶ δὲ τῶν ἄλλων πασῶν | ||
| . προσήκει μέντοι μηδὲ τοῦτ ' ἀγνοεῖν , ὅτι καιροὶ συμπίπτουσιν ἀβούλητοι πολλάκις , ἐν οἷς ἀνδροφονεῖ τις οὐκ ἐπὶ |
| . Πρὸς γὰρ τοῦτο τὸ ἓν κλίμα καὶ αἱ κρικωταὶ σφαῖραι κατασκευάζονται καὶ αἱ στερεαί , τῶν ἀρκτικῶν μόνων μεταπιπτόντων | ||
| μὴ , ἐπίδεσις μὲν οὐκ ἐπιτήδειον , διάτασις δὲ , σφαῖραι ποιηθεῖσαι , οἷαι πέδαις , ἡ μὲν παρὰ σφυρὸν |
| ἀεὶ ἀσύμπτωτοί εἰσι καὶ συννεύουσι μὲν ἀλλήλαις , οὐδέποτε δὲ συννεύουσιν παντελῶς , ὃ καὶ παραδοξότατόν ἐστιν ἐν γεωμετρίᾳ θεώρημα | ||
| νῆστιν πονηρευομένοις , καὶ ὅσαι συν - τήξεις ἐπὶ γαστέρα συννεύουσιν , ἑψῶντα διδόναι τοῦ γάλακτος : ἑψεῖν δὲ τὸ |
| τῶν ἰγνύων καὶ ἀπὸ τῶν σφυρῶν ἔσωθεν . Αἱ δὲ τρίται φλέβες ἐκ τῶν κροτάφων διὰ τοῦ αὐχένος ἐπὶ τὰς | ||
| [ οὐδὲ ] προσεχῶς ἀπὸ τῆς Νυκτός εἰσιν , ἀλλὰ τρίται καὶ πολλοσταὶ ἀπ ' ἐκείνης . Πρὸς δὴ τοῦτο |
| . : σφαγαῖσι ] Τοῖς τόποις τοῦ σώματος ἐν αἷς καίριαι καὶ θανάσιμοι πληγαὶ γίνονται . : τοιάδ ' ἐπ | ||
| . : σφαγαῖσι ] Τοῖς τόποις τοῦ σώματος ἐν αἷς καίριαι καὶ θανάσιμοι πληγαὶ γίνονται . : τοιάδ ' ἐπ |
| τοῦ ἄρα δʹ ἄστρου ἐστὶν ἡ ἑῴα ἀληθινὴ ἐπιτολή : ὕστεραι δέ εἰσιν αἱ φαινόμεναι τῶν ἀληθινῶν . Ἔστω δὴ | ||
| τῷ τὴν ἐαρινὴν ἰσημερίαν περιέχοντι τῶν εἰρημένων ἡμισφαιρίων ἀπολαμβανομένων αἱ ὕστεραι κατὰ πλάτος πρὸς τὸν ἰσημερινὸν σχέσεις βορειότεραι πᾶσαι τῶν |
| ἐπεί ἐστιν , ὡς ἡ ΓΞ πρὸς ΞΑ , ἡ ΓΠ πρὸς ΑΟ , καί ἐστιν ἡ μὲν ΓΠ τῆς | ||
| δευτέρας καταγραφῆς , καὶ ἐπεζεύχθωσαν αἱ ΒΞ , ΞΓ , ΓΠ . ἐπεὶ οὖν αἱ ΒΞΓ τῆς ΒΓ μείζους εἰσίν |
| ἄρα αὐτῶν τομαὶ παράλληλοί εἰσιν : παράλληλος ἄρα ἐστὶν ἡ ΗΠ τῇ ΘΟ . ἐπεὶ οὖν δύο εὐθεῖαι ἁπτόμεναι ἀλλήλων | ||
| ἔστω τὸ ἐπιταχθὲν μέρος τοῦ ΑΒΓ τριγώνου τὸ ὑπὸ ΚΜ ΗΠ [ τοῦτο γὰρ προδέδεικται ] , καὶ τῇ ΚΜ |
| ٤٢ ٢٠ ١٥ τοῦ ι ἡ πλευρά ٣ ٩ ٤٧ ٣٧ ١٨ Ἐντεῦθεν δῆλον , ὅτι τὰ ῥητὰ καὶ σύμμετρα | ||
| ἀπὸ ταύτης [ ἤτοι τῆς ΒΓ ] τετράγωνον ٦ ٥٥ ٣٧ ٤٠ ٩ τὸ ἀπὸ ταύτης [ ἤτοι τῆς ΒΑ |
| ἐπιπαρουσίας ἐπιχρησιμεύουσιν οἵδε : πάντα τὰ κέντρα καὶ αἱ τούτων ἐπαναφοραὶ καὶ τὸ ἕκτον ἀπὸ ὡροσκόπου , προκεκριμένου μέντοι γε | ||
| τι καὶ μὴ ἀκμαῖον εἶναι μηδὲ λαμπρόν . αἱ μέντοι ἐπαναφοραὶ εἰ κατὰ κόμμα γίνοιντο , γοργὸν ποιοῦσι τὸν λόγον |
| ἀπὸ τῶν ἴσων γωνιῶν ἐπὶ τὰς βάσεις κάθετοι εὐθεῖαι γραμμαὶ ἀχθῶσιν , ᾖ δέ , ὡς ἡ τοῦ πρώτου τριγώνου | ||
| τομῶν β σημεῖα ληφθῇ , καὶ ἀφ ' ἑκατέρου παράλληλοι ἀχθῶσιν , ὁμοίως ἴσα ἔσται τὰ γινόμενα ὑπ ' αὐτῶν |
| θαλασσίας . ἦν δὲ λέβης χαλκοῦς , εἰς ὃν αἱ ψῆφοι κατήγοντο : καὶ κυλιόμεναι ἦχον ἀπετέλουν ἐοικότα βροντῇ . | ||
| , καθαιροῦσι τὸ κρέσσον : ἐν ἀναισθήτοισι γάρ εἰσιν αἱ ψῆφοι : οὔτε δ ' οἱ πάσχοντες συνομολογέειν ἐθέλουσιν , |
| διήχθω γὰρ λόγου χάριν ἡ ΛΚ , καὶ κάθετος ἡ ΛΟ , καὶ ἐκβεβλήσθω ἐπὶ τὸ Ρ , καὶ ἐπεζεύχθωσαν | ||
| ΧΕΤ . καὶ ἐπεὶ ζητῶ τίς ἡ ΖΘ περιφέρεια τῇ ΛΟ , τουτέστιν ἡ ΕΗ τῇ ΚΦ , ζητήσω ἄρα |
| δυνάμει δὲ μόνον σύμμετροι , καὶ διὰ τοῦτο πάλιν λέγονται ῥηταὶ καὶ σύμμετροι πρὸς ἀλλήλας , καθ ' ὃ ῥηταί | ||
| καὶ η καὶ ἀπὸ τοῦ η . ὡσαύτως καὶ εὐθεῖαι ῥηταὶ αἱ ἀπὸ ἀριθμῶν παρονομασθεῖσαι καλοῦνται εἴτε τετραγώνων εἴτε οἱωνδή |
| ΩΒ τῇ ΒΨ . καί ἐστι μέγιστος τῶν παραλλήλων ὁ ΒΗΔ , καὶ παράλληλοι κύκλοι οἱ ΩΚ , ΨΛ : | ||
| ΓΔ . ὁμοίως δὴ τοῖς πρὸ τούτου ὅτι ἡ ὑπὸ ΒΗΔ γωνία ἡ λείπουσά ἐστιν εἰς τὰς δύο ὀρθὰς τῆς |
| ΛΜ , ΝΞ διαμέτρους αἱ ΔΟ , ΕΠ τεταγμένως καὶ προσεκβεβλήσθωσαν ἐπὶ θάτερον μέρος τῆς ἐπιφανείας κατὰ τὸ Ρ καὶ | ||
| περιγεγράφθω περὶ τὸ ΑΕΔ τρίγωνον κύκλος ὁ ΑΕΔ . καὶ προσεκβεβλήσθωσαν ταῖς ΕΒ , ΕΓ εὐθείαις εὐθεῖαι αἱ ΒΖ , |
| συζυγίαν ἀντικειμένων εὐθεῖαι ἐπιψαύουσαι συμπίπτωσι , καὶ διὰ τῶν ἁφῶν διάμετροι ἀχθῶσι , ληφθῇ δέ τι σημεῖον ἐφ ' ὁποτέρας | ||
| αἱ δὲ διὰ τῶν ἁφῶν καὶ τοῦ κέντρου συζυγεῖς ἔσονται διάμετροι τῶν ἀντικειμένων . ἔστωσαν κατὰ συζυγίαν ἀντικείμεναι , ὧν |
| σὴν ὑπόστασιν ἐξ ἀιδίου καὶ τὴν τούτου σύμβασιν . Εἴτε ἄτομοι εἴτε φύσις , πρῶτον κείσθω ὅτι μέρος εἰμὶ τοῦ | ||
| ὅλον [ ] ἰσοταχεῖς [ εἰσιν ] [ ] αἱ ἄτομοι λέγειν [ ] δ ' [ ἔστιν ] ε |
| , τουτέστι τετράγωνα , διάμετρα : χαλεπώταται γὰρ αἱ τοιαῦται καταρχαὶ τοῖς πλέουσιν . ἐπὰν ἡ Σελήνη μὲν κακοποιηθῇ , | ||
| , τουτέστι διάμετρα καὶ τετράγωνα : χαλεπώταται γὰρ αἱ τοιαῦται καταρχαὶ ταῖς ναυσὶ καὶ τοῖς πλέουσιν . ἐπὰν δὲ ἡ |
| , καὶ αὐτῆμαρ δέ : τὸ δὲ πλῆθοϲ δηλώϲουϲιν αἱ δυνάμιεϲ : μεϲηγὺ δὲ ἁδροτέρωϲ διαιτᾶν ἐϲ ἄλληϲ κενώϲιοϲ ὑπομονήν | ||
| ἴϲηϲ ἀρχῆϲ ἀναπνεῖ . οὐ γὰρ ἐν τοῖϲι ὀργάνοιϲι αἱ δυνάμιεϲ , ἀλλ ' ἔνθα ἡ ἀρχὴ ζωῆϲ ἦν καὶ |
| ΦϘΤ πεντάγωνον ἠγμένη , καὶ ἐπεζεύχθωσαν αἱ ΩΦ ΩϘ ΩΤ ΥΦ , ὀκταέδρου δὲ τρίγωνον τὸ ΣΡΠ ἔστω , καὶ | ||
| ἀγομένης ἐπὶ τὴν ΘΗ . ἀλλ ' ἡ ἴση τῇ ΥΦ καὶ πρὸς ἴσας γωνίας ἐπ ' αὐτὴν ἀγομένη κατὰ |
| , διὰ δὲ τοῦ Κ τῇ ΑΒ παράλληλος ἤχθω ἡ ΚΝ , καὶ ἐκβεβλήσθω ἡ ΔΘ ἐπὶ τὸ Ν . | ||
| τὸ Α ὄμμα ἐπὶ τὸ Ν , καὶ περὶ τὴν ΚΝ κύκλος γεγράφθω , καὶ ἐπεζεύχθωσαν αἱ ΝΡ , ΡΚ |
| ἀρχομένων ὑπ ' αὐτῶν ἤτοι τῶν σχολῶν , ἐν αἷς ἀναφέρονται . εἰ δὲ συμβῇ τινας αὐτῶν μαχομένους γενέσθαι πληγάτους | ||
| τεκνοποιοῦνται . Τὸ δὲ τοῦ Τοξότου δωδεκατημόριον , εἰς ὃ ἀναφέρονται οἱ μηροί , οἶκος τοῦ Διός , δίσωμον , |
| ΗΘ εὐθεῖαι οὐδὲ ἐπὶ τὰ Ε , Η μέρη ἐκβαλλόμεναι συμπεσοῦνται . αἱ δὲ ἐπὶ μηδέτερα τὰ μέρη συμπίπτουσαι παράλληλοί | ||
| ἀγομένη ΗΘ ἴσην ἀποτέμνει τῇ ζητουμένῃ τὴν ΘΒ . [ συμπεσοῦνται γὰρ αἱ ΓΔ ΒΖ ὡς ἐπὶ τὸ Η ἠγμέναι |
| διπλῆ καὶ τριὰς μεσῳδική , ἧς αἱ μὲν ἑκατέρωθέν εἰσι δίκωλοι διπλῶν δοχμίων , ἡ δὲ μέση δίστιχος ἰαμβικὴ τρίμετρος | ||
| φησίν , μηχαναὶ γίνονται αἱ μὲν μονόκωλοι , αἱ δὲ δίκωλοι , αἱ δὲ τρίκωλοι , αἱ δὲ τετράκωλοι . |
| ٣ ١٩ ٥٨ ٥٠ ٣٢ τὸ συναμφότερον τῶν ἀπό ٣٢ ١٢ ٤٣ ٥٦ ٥٠ ἡ ΕΜ ٨ ٣ ٤٠ ٥٩ | ||
| ٤ ἡ ΑΒ ٢ ٥٩ ٢٨ ἡ ΓΖ ٢ ١٤ ١٢ ٤ ١٢ ἡ ΒΗ ٢ ١٣ ٤٣ ἡ ΑΗ |
| μʹʹ . πάλιν ἐπεὶ αἱ τῶν ἐν τῷ αβ δωδεκατημορίῳ τριακοστημορίων περιφερειῶν ἀναφοραὶ ἐν ἴσῃ εἰσὶν ὑπεροχῇ , ἀρχόμεναι ἀπὸ | ||
| δωδεκατημορίων τοῦ ζῳδιακοῦ ἀναφοραί , καὶ τῶν ἐν τοῖς δωδεκατημορίοις τριακοστημορίων τῶν ἑξῆς ἀλλήλοις κειμένων γνωσθήσονται αἱ ἀναφοραί , ἐν |
| τῶν δ ' ἀμφισβητούντων πρὸς ταύτας τὰς ζημίας αἱ κρίσεις ἔστωσαν ἐπὶ τοῦ δήμου . τοῦτον τὸν νόμον ἐπιψηφίσαντες οἱ | ||
| στερεὰ παραλληλεπίπεδα ἀνάλογον ᾖ , καὶ αὗται ἀνάλογον ἔσονται . ἔστωσαν ὁσαιδηποτοῦν εὐθεῖαι ἀνάλογον ἡ ΑΒ , ΓΔ , ΕΖ |
| διατί καὶ ἐνταῦθα ἡ Ἀφροδίτη εὑρίσκεται συμπροπέμπουσα τὸν Ἀπόλλωνα καὶ ἐφαπτομένη τοῦ δίφρου . καὶ ἤτοι ὅτι μετέρχεται τὰ γαμήλια | ||
| , καὶ ἤχθω διάμετρος τῶν τομῶν ἡ ΑΗ , καὶ ἐφαπτομένη τῆς τομῆς ἤχθω ἡ ΘΚ : ἡ ΘΚ ἄρα |
| , ἐστάλθαι , ἠμφιέσθαι , ἐνδεδυκέναι . ἀλλὰ καὶ αἱ μετοχαὶ ἠσθημένος , ἀμπεχόμενος , ἐσταλμένος , ἠμφιεσμένος , ἐνδεδυμένος | ||
| τετυπώς : πεποιηκώς : νενοηκώς . Αἱ εἰς ως ἀπαθεῖς μετοχαὶ τὸ θηλυκὸν ἔχουσιν εἰς α καθαρὸν λῆγον τῇ υι |
| ἡ ΓΑ , ὀρθία δὲ ἡ ΓΛ , αἱ δὲ καταγόμεναι ἀπὸ τῶν τομῶν ἐπὶ τὴν ΓΑ καταχθήσονται ἐν τῇ | ||
| καὶ φανοῦνται παράλληλοι , αἱ δ ' ἐπὶ τὴν ΑΓ καταγόμεναι διαχθήσονται μὲν ἀπὸ τοῦ Κ , φανοῦνται δὲ τῇ |
| Κ κέντρου ἐπὶ τὰ Α , Β , Γ σημεῖα ἐπεζευγμέναι εἰσὶν αἱ ΚΑ , ΚΒ , ΚΓ , ὀρθαὶ | ||
| ΛΕ . καὶ εἰσὶν παράλληλοι αἱ ΑΒ ΔΕ , καὶ ἐπεζευγμέναι αἱ ΑΔ ΒΕ τέμνουσιν ἀλλήλας κατὰ τὸ Ζ : |
| δὲ ἐπὶ πλειόνων καὶ γνοὺς ὅτι οὐ μόνον ἐπὶ πλειόνων διήκουσιν αἱ ἰδιότητες τοῦ κοινοῦ , λέγω δὲ τοῦ ἁπλῶς | ||
| ∠ ʹʹδʹʹ νʹ ∠ ʹʹδʹʹ Ὑπὸ δὲ τοὺς εἰρημένους πάντας διήκουσιν ἀπὸ τοῦ Λίγειρος ποταμοῦ ἐπὶ τὸν Σηκοάναν Αὐλίρκιοι οἱ |
| Τὸ δ ' ὅλον , αἱ μὲν αἰσθήσεις καὶ αἱ φαντασίαι καθαπερεὶ κάτοπτρα καὶ εἰκόνες ἐοίκασι τῶν πραγμάτων εἶναι : | ||
| ? [ σκέψιν ποιεῖσθαι ] . αἱ μὲν [ γὰρ φαντασίαι ] τῶν ? ἀπόντων [ ἀπὸ τῆς ὄψεως ] |
| τῶν ΑΗ , ΓΛ ἴσων οὐσῶν καὶ κοινῆς ἀφαιρεθείσης τῆς ΓΗ , λοιπὴ ἡ ΑΓ τῇ ΗΛ ἴση ἐστίν . | ||
| τὰ ια λ , ὁ δὲ τῆς ΓΔ πρὸς τὴν ΓΗ ὁ τῶν οα λ πρὸς τὰ μη λ , |
| Ἀναγεγράφθω γὰρ ἀπὸ τῆς ΓΒ τετράγωνον τὸ ΓΕΖΒ , καὶ ἐπεζεύχθω ἡ ΒΕ , καὶ διὰ μὲν τοῦ Δ ὁποτέρᾳ | ||
| τῆς τομῆς τῇ ΑΒ παράλληλος ἤχθω ἡ ΕΖ , καὶ ἐπεζεύχθω ἡ ΕΒ . δεικτέον , ὅτι ἡ ΖΕ πρὸς |
| ἐστιν ἴση , λοιπὴ ἄρα ἡ ΓΗ περιφέρεια λοιπῇ τῇ ΗΔ ἐστιν ἴση . πενταγώνου δὲ ἡ ΓΔ : δεκαγώνου | ||
| ἐστὶν ἴση . ἐπεὶ οὖν ὑπόκειται ὡς ἡ ΑΗ πρὸς ΗΔ , ἡ ΔΘ πρὸς ΘΖ , ἴση δὲ ἡ |
| ἐπειδὴ διὰ τοῦ λόγου τῶν μέσων κινήσεων ἐπιβάλλουσιν περιοδικοῦ μήκους μοῖραι κ νη κα , ταύταις μὲν ἀντὶ τῶν κα | ||
| καὶ τὰς τοῦ ὡροσκόπου μοίρας ια . ὁμοῦ αἱ πᾶσαι μοῖραι τμα : ἀπολύσομεν ἀπὸ τοῦ Λέοντος , κατέληξεν ἐν |
| τῶν Α Β Δ σημείων τῷ ὑποκειμένῳ ἐπιπέδῳ πρὸς ὀρθὰς ἀνεστάτωσαν αἱ ΑΘ ΒΚ ΔΛ , τὸ δὲ Γ σημεῖον | ||
| ὑποκειμένῳ ἐπιπέδῳ δύο εὐθεῖαι αἱ ΑΒ , ΑΓ πρὸς ὀρθὰς ἀνεστάτωσαν ἐπὶ τὰ αὐτὰ μέρη , καὶ διήχθω τὸ διὰ |
| τῇ ΖΗ : καὶ τῇ ΕΔ ἄρα παράλληλός ἐστιν ἡ ΝΚ , ἡ δὲ ΜΘ τῇ ΒΛ . ἐπεὶ οὖν | ||
| ἐπὶ τῆς ἐλλείψεως σημεῖα ἐπιζευγνύουσαι παράλληλοι , καὶ ἐπιζευχθεῖσαι αἱ ΝΚ ΜΘ τεμνέτωσαν ἀλλήλας κατὰ τὸ Τ , καὶ διὰ |
| ιʹ . Θερμότης δριμύτητος σημεῖον , οἱ ὄχλοι , αἱ δίοδοι . Οὗτος ὁ λόγος ἀληθής : ἡ γὰρ θερμότης | ||
| χωρίον ᾗ ἂν τύχῃ , ἔστ ' ἂν συμπιεχθῶσιν αἱ δίοδοι τοῦ ῥόου δι ' ἰσχνότητα ὅταν τὸ σῶμα ξηρανθῇ |
| ἄνω θεῖν ἐν τῇ αὐξήσει : οὐκ ἀναστρέφουσι δὲ αἱ ἐτυμολογίαι . . . . . ἡ γὰρ δίκταμνος βοτάνη | ||
| καὶ τρέχειν ἐν τῷ αὔξεσθαι . οὐκ ἀναστρέφουσι δὲ αἱ ἐτυμολογίαι : οὐ γὰρ εἴ τι ἄνω θεῖ καὶ αὔξεται |
| Ο μέγιστος κύκλος γεγράφθω ὁ ΠΟ , καὶ τριῶν οὐσῶν περιφερειῶν ὁμοιογενῶν ἀνίσων τῶν ΚΘ , ΘΠ , ΗΘ εἰλήφθω | ||
| τεσσάρων δὴ ὄντων μεγεθῶν δύο μὲν τῶν ΒΓ , ΕΖ περιφερειῶν , δύο δὲ τῶν ΗΒΓ , ΕΘΖ τομέων εἴληπται |
| ταῖς τρισὶ ταύταις περισπωμέναις συζυγίαις ἐκφέρονται : οἵ τε γὰρ ἐνεργητικοὶ αὐτῶν παρακείμενοι διὰ τοῦ η προάγονται , πεποίηκα , | ||
| γίνεται εἰ μὴ μόνοι οἱ παρακείμενοι καὶ ὑπερσυντέλικοι , οἱ ἐνεργητικοὶ δηλονότι καὶ οἱ παθητικοὶ καὶ οἱ μέσοι : τὰ |
| δύο δοθεισῶν εὐθειῶν πρὸς ὀρθὰς ἀλλήλαις τῶν ΑΓ , ΓΛ γεγράφθωσαν ἀντικείμεναι αἱ ΖΑΗ , ΘΓΚ , ὧν διάμετρος μὲν | ||
| διὰ τοῦ Α καὶ ἑκατέρου τῶν Μ Ν μέγιστοι κύκλοι γεγράφθωσαν : ἥξουσιν δὴ καὶ διὰ τοῦ ἑτέρου πόλου . |
| τῷ Ε , διαστήματι δὲ τῷ ΕΑ κύκλος γραφόμενος μὴ ἐρχέσθω διὰ τοῦ Γ , ἀλλ ' ὑπερπιπτέτω αὐτό : | ||
| ἤτοι διὰ τοῦ ἑτέρου αὐτῶν ἢ δι ' οὐδετέρου . ἐρχέσθω πρότερον διὰ τοῦ Κ καὶ τεμνέτω τὴν ΖΗ κατὰ |
| ἀπὸ ΑΔ ] . Ἐὰν μιᾶς τῶν ἀντικειμένων δύο εὐθεῖαι ἐφαπτόμεναι συμπίπτωσι , διὰ δὲ τῶν ἁφῶν παράλληλοι ἀχθῶσι ταῖς | ||
| τῶν Α , Β , Γ , Δ σημείων ἤχθωσαν ἐφαπτόμεναι τοῦ ΑΒΓΔ κύκλου αἱ ΖΗ , ΗΘ , ΘΚ |
| ναʹ Ϛʹ λϚʹ γʹʹ ιβʹʹ Ἄργος ναʹ γʹʹ λϚʹ δʹʹ Μυκῆναι ναʹ ∠ ʹʹδʹʹ λϚʹ Ϛʹʹ Ἀσίνη ναʹ ∠ ʹʹιβʹʹ | ||
| καὶ ὅπως ἂν αὐτῇ παριστῆται μετὰ ἰσχυρᾶς ἀνάγκης ἄγουσαν . Μυκῆναι μέν γε , τοῦ πρὸς Ἰλίῳ πολέμου τοῖς Ἕλλησιν |
| δῆλον γάρ , ὅτι ὑπὸ ἀνίσων εὐθειῶν ὑποτείνονται : ὅτι ἄνισοι οἱ κύκλοι . εἰ γὰρ ἴσοι , ἄνισοι δὲ | ||
| μονάδες : αὗται γὰρ ἴσαι εἰσὶ μόνως μὴ δυνάμεναι γενέσθαι ἄνισοι : προσθήκην γὰρ λαμβάνουσα ἡ ἑτέρα μονὰς μείζων οὐ |
| . ἐὰν τὰ στελέχη τῶν ἀμπέλων κισσῷ δασεῖ περιδήσωμεν , εὑρεθήσονται μετ ' ὀλίγον οὐ μόνον οἱ μύρμηκες , ἀλλὰ | ||
| γὰρ οὐδέν ἐστι παρὰ τὰ γένη καὶ τὰ εἴδη , εὑρεθήσονται ἐκ τοῦ μηδαμῇ μηδαμῶς ὄντος προελθοῦσαι αἱ διαφοραὶ ἐν |
| , ὅπερ ἂν ἕλωνται : καὶ παρακολουθήσουσιν αὐτοῖς αἱ ἔμπροσθεν εἰρημέναι ἀπορίαι . εἰ δὲ ταῖς αἰσθήσεσι τὰς αἰσθήσεις καὶ | ||
| τοῦ μηροῦ ἐς τὴν ἀρχαίην φύσιν . Αὗται πᾶσαι αἱ εἰρημέναι ἀνάγκαι ἰσχυραὶ , καὶ πᾶσαι κρέσσους τῆς ξυμφορῆς , |