| ὁμοίως διῃρήσθωσαν , καὶ τοῦτο ἀεὶ γινέσθω , ἕως οὗ λειφθῶσί τινες πυραμίδες ἀπὸ τῆς ΔΕΖΘ πυραμίδος , αἵ εἰσιν | ||
| ὁμοίως διῃρήσθωσαν , καὶ τοῦτο ἀεὶ γινέσθω , ἕως οὗ λειφθῶσί τινες πυραμίδες ἀπὸ τῆς ΔΕΖΘ πυραμίδος , αἵ εἰσιν |
| ἔπεστι κολοσσὸς λίθινος κατήμενος ἐν θρόνῳ . Οὕτω αἱ μὲν πυραμίδες εἰσὶ ἑκατὸν ὀργυιέων , αἱ δ ' ἑκατὸν ὀργυιαὶ | ||
| . , ] αἱ γὰρ ὑπὸ τὸ αὐτὸ ὕψος οὖσαι πυραμίδες πρὸς ἀλλήλας εἰσὶν ὡς αἱ βάσεις : ἴσαι δὲ |
| . ἐὰν τὰ στελέχη τῶν ἀμπέλων κισσῷ δασεῖ περιδήσωμεν , εὑρεθήσονται μετ ' ὀλίγον οὐ μόνον οἱ μύρμηκες , ἀλλὰ | ||
| γὰρ οὐδέν ἐστι παρὰ τὰ γένη καὶ τὰ εἴδη , εὑρεθήσονται ἐκ τοῦ μηδαμῇ μηδαμῶς ὄντος προελθοῦσαι αἱ διαφοραὶ ἐν |
| δεξιὸν κατ ' ὦμον : δύο γάρ εἰσιν ἐνταῦθα ἰωνικαὶ συζυγίαι καὶ μετὰ ταῦτα τὸ ἰθυφαλλικὸν καλούμενον μέτρον ἐκ τριῶν | ||
| διάλεκτον ἀναγκαίοις , γλώττῃ καὶ φάρυγγι καὶ λάρυγγι , καὶ συζυγίαι τρεῖς εἰσιν ἀδενωδῶν σωμάτων ἐπιτήδειον ὑγρότητα παρασκευάζουσαι , ἀλλ |
| ' ὃ συμβάλλουσιν ἀλλήλαις , ἐπὶ τὰ κέντρα ἐπιζευγνύμεναι ὁμοίως περιέξουσι τὴν λείπουσαν εἰς τὰς δύο ὀρθὰς τῆς κλίσεως τῶν | ||
| αἱ ἀπὸ τῆς κοινῆς τομῆς ἐπὶ τὰ κέντρα ἐπιζευγνύμεναι εὐθεῖαι περιέξουσι τὴν λείπουσαν εἰς τὰς δύο ὀρθὰς τῆς ἐπιζητουμένης κλίσεως |
| τῆς γενέσεως πῆξιν ὁπόταν ἔχωσι τὰ χρονικὰ ἢ καὶ αἱ ἀναφοραὶ τῶν ζῳδίων κατὰ τὸν αὐτὸν χρόνον συμπληρούμενοι τύχοιεν . | ||
| εἰσὶν αἱ τῶν ηζ ζε εδ δγ γβ βα περιφερειῶν ἀναφοραὶ ἐν ἴσῃ ὑπεροχῇ , ἑξῆς ἀλλήλοις κείμενοι , ἀρχόμενοι |
| ἀπὸ τῶν ἴσων γωνιῶν ἐπὶ τὰς βάσεις κάθετοι εὐθεῖαι γραμμαὶ ἀχθῶσιν , ᾖ δέ , ὡς ἡ τοῦ πρώτου τριγώνου | ||
| τομῶν β σημεῖα ληφθῇ , καὶ ἀφ ' ἑκατέρου παράλληλοι ἀχθῶσιν , ὁμοίως ἴσα ἔσται τὰ γινόμενα ὑπ ' αὐτῶν |
| που τοιόνδε : ποικίλαι κατὰ τοῦ νώτου παντὸς αὐτοῦ διήκουσι γραμμαί : ἔπειτα ἐὰν προσάψηται ἀνθρώπου σώματι , φρίκην τε | ||
| καὶ αἱ στιγμαί , δηλονότι καὶ αἱ ἐπιφάνειαι καὶ αἱ γραμμαί , οὐσίαι ὑπάρχουσιν ἢ οὐχ ὑπάρχουσιν : εἰ γὰρ |
| ἥττονα ποιησόμεθα λόγον , τοῦ δ ' ἀσφαλοῦς προνοούμενοι δύο διαιρέσεις ἐμβαλοῦμεν συμμέτρους ὡς πρὸς τὸ ἀπόστημα , τὴν μὲν | ||
| Ἐνταῦθα δηλοῖ τὸ πρῶτον διαιρετικὸν παράγγελμα τὸ λέγον δεῖν τὰς διαιρέσεις ἀπὸ τῶν γενικωτάτων μέχρι τῶν εἰδικωτάτων προάγειν καὶ μὴ |
| : ἔχει δὲ λιμένα καὶ ὕδωρ . Αὗται αἱ νῆσοι περιέχουσι τὸ Ἰκάριον πέλαγος . Ἀπὸ Θάψου εἰς Λέπτιν τὴν | ||
| Ἀσίας λαχοῦσαι νῆσοι αὗταί εἰσιν , αἳ κύκλῳ τὴν Δῆλον περιέχουσι , καὶ Κυκλάδες ἐκ τούτου ὀνομάζονται . Χαριστήρια δὲ |
| ὑπὸ ΖΗΘ , ἐκτὸς τοῦ Η , ὡς ἔχουσιν αἱ καταγραφαί . ἐπεὶ οὖν τὸ δὶς ὑπὸ ΡΗΘ ἢ ΡΗΖ | ||
| ͵Ϛχκʹ καὶ ὁ τῶν Μιγ ͵εσμʹ : ὡς ἔχουσιν αἱ καταγραφαί . Ἐπὶ δὲ τῶν ἀπύκνων γενῶν ἀκολούθου τοῖς προδιωρισμένοις |
| δι ' ἀλλήλων δύνασθαι μυριάδων πλῆθος τρισκαιδεκαπλῶν ρϘϚʹ , δωδεκαπλῶν τξηʹ , ἑνδεκαπλῶν ͵δωʹ , συμφώνως τοῖς ὑπὸ Ἀπολλωνίου κατὰ | ||
| μυριάδας ἐνναπλᾶς δέκα , ποιοῦσιν μυριάδας τρισκαιδεκαπλᾶς ρϘϚʹ , δωδεκαπλᾶς τξηʹ , ἑνδεκαπλᾶς ͵δωʹ . [ ἐνναπλαῖ γὰρ μυριάδες ἐπὶ |
| μέσους δρόμους ὦσιν , ὅπου μείζους εἰσὶν αἱ τῶν παραυξήσεων ὑπεροχαί , τήν γε μέχρι τῶν τοσούτων ὡρῶν πάροδον , | ||
| λϚ , τετραπλάσιος τοῦ θ , ἀπλανῶν . Αἱ δὲ ὑπεροχαί : λϚ ὑπερέχει δ , λβ η , κδ |
| δύο πυραμίδες ὑπὸ τὸ αὐτὸ ὕψος οὖσαι καὶ τριγώνους ἔχουσαι βάσεις τὰς ΑΒΓ , ΜΝΞ , κορυφὰς δὲ τὰ Δ | ||
| τὴν ἰδίαν κακοπραγίαν ὁ δείλαιος , πολλάκις δὲ καὶ τὰς βάσεις πρὸς τὸν δίφρον ἐξημμένος ἀνατραπεὶς ὕπτιος ἐπὶ νῶτα | |
| πενταγωνισμὸν ἀπὸ πενταγώνου βάσεως , εἶτα ἀνάλογον ἀπὸ ἑξαγώνου καὶ ἑπταγώνου καὶ ὀκταγώνου καὶ ἀεὶ ἐπ ' ἄπειρον . καθάπερ | ||
| η ∠ ʹ ιδʹ . τοσοῦτον ἔσται ἡ πλευρὰ τοῦ ἑπταγώνου . Ἐὰν θέλῃς τὴν διάμετρον εὑρεῖν ἀπὸ τῆς πλευρᾶς |
| συζυγίαν ἀντικειμένων εὐθεῖαι ἐπιψαύουσαι συμπίπτωσι , καὶ διὰ τῶν ἁφῶν διάμετροι ἀχθῶσι , ληφθῇ δέ τι σημεῖον ἐφ ' ὁποτέρας | ||
| αἱ δὲ διὰ τῶν ἁφῶν καὶ τοῦ κέντρου συζυγεῖς ἔσονται διάμετροι τῶν ἀντικειμένων . ἔστωσαν κατὰ συζυγίαν ἀντικείμεναι , ὧν |
| : αὗται γὰρ ταῖς τῶν προσπιπτόντων αἰσθήσεσί τε καὶ φαντασίαις ἑπόμεναι φωνεῖν τε παρασκευάζουσι τὰ ἔχοντα ταύτην τὴν δύναμιν κατὰ | ||
| συμψεύδονται γὰρ ἀλλήλαις αἱ μὲν ταῖς ἁπλαῖς τοῦ δυνατοῦ προτάσεσιν ἑπόμεναι , ἡ οὐκ ἀναγκαῖον εἶναι καὶ ἡ ἀναγκαῖον μὴ |
| ΑΒΘ τρίγωνον τῷ ΔΕΖ τριγώνῳ ἴσον ἐστίν , καὶ αἱ λοιπαὶ γωνίαι ταῖς λοιπαῖς γωνίαις ἴσαι ἔσονται , ὑφ ' | ||
| , ἀνακήρυξις , ἀνάρρησις , ἀναγγελία καὶ μὴν καὶ αἱ λοιπαὶ τιμαί , δωρεαί , γέρα , προτιμήσεις , χάριτες |
| . Πρὸς γὰρ τοῦτο τὸ ἓν κλίμα καὶ αἱ κρικωταὶ σφαῖραι κατασκευάζονται καὶ αἱ στερεαί , τῶν ἀρκτικῶν μόνων μεταπιπτόντων | ||
| μὴ , ἐπίδεσις μὲν οὐκ ἐπιτήδειον , διάτασις δὲ , σφαῖραι ποιηθεῖσαι , οἷαι πέδαις , ἡ μὲν παρὰ σφυρὸν |
| ἑαυτῶν εἰλυοὺς ἐκλιποῦσαι , μεμυκυῖαί τε καὶ κατάκλειστοι ἔτι , ἀνίασιν ἐκ τῶν μυχῶν , καὶ ἀκύμονος οὔσης τῆς θαλάττης | ||
| ταῖς ἀκουομέναις ἀριθμοὺς ζητοῦσιν , ἀλλ ' οὐκ εἰς προβλήματα ἀνίασιν , ἐπισκοπεῖν τίνες σύμφωνοι ἀριθμοὶ καὶ τίνες οὔ , |
| ] ὑπεστησάμην ὁρίζοντα τοιοῦτον μὴ μειζόνων ἐφαπτόμενον ἤπερ εἰσὶν οἱ τροπικοὶ κύκλοι , φανερὸν οὖν ὅτι διὰ τὸ προαποδεδειγμένον παρθένος | ||
| θερινός , τοῖς δὲ ὑπὸ τῷ ἰσημερινῷ οἰκοῦσιν οἱ δύο τροπικοὶ χειμερινοὶ τυγχάνουσιν , ἐπειδὴ μακρότατα ἀφίσταται αὐτῶν ὁ ἥλιος |
| τοὺς πόρους ἐπιφανείαις προσπίπτον ποιεῖν . ἀλλ ' αἵ γε ἐπιφάνειαί εἰσιν ἀσώματοι , καὶ τὸ ἀσώματον οὔτε ποιεῖν οὔτε | ||
| ἐν ταῖς τραγῳδίαις , μετ ' ἄλλας ἐπιδείξεις πολλάς , ἐπιφάνειαί τινες ἐπὶ τέλει ἐκ μηχανῆς τινὸς θεῶν ἀναδείκνυνται . |
| αὐτὸν ἀνάγειν . ταύτην τὴν πρόσταξιν ἀνάγραπτον αἱ ἱεραὶ βίβλοι περιέχουσιν εἰς τὴν τῶν καθ ' ἑκάστην γενεὰν ἀρχόντων διδασκαλίαν | ||
| ἔδοξε τὰ Ζήνωνος ἢ τὰ Διογένους καὶ Κλεάνθους , ὁπόσα περιέχουσιν αἱ βίβλοι αὐτῶν διδάσκουσαι ἀνθρωποβορίας , πατέρας μὲν ὑπὸ |
| ἐξουσίας , ἀνατολὰς , ἐπιτολὰς , δυνάμεις , βασιλείας , ὑψώματα καὶ λαμπηνὰς , ταπεινώσεις καὶ οἴκους καὶ τὸ μεγαλοδύναμον | ||
| ζῳδιακοῦ μέρεσι κατά τε τοὺς καλουμένους οἴκους καὶ τρίγωνα καὶ ὑψώματα καὶ ὅρια καὶ τὰ τοιαῦτα . καὶ τὸ μὲν |
| εἰσι μὲν εὔρωστοι σφόδρα , ὀλιγάκις δὲ καὶ οὐκ ἀκινδύνως διαιροῦνται διὰ τὴν γειτνίασιν τῶν μυῶν καὶ διὰ τὴν ἐπιπλοκὴν | ||
| ἀδιαίρετοι , ἀλήθεια γοργότης δεινότης κάλλος , αἱ δὲ τρεῖς διαιροῦνται εἰς ἑτέρας δώδεκα , ὡς εἶναι τὰς πάσας ἑκκαίδεκα |
| εὖ ἀκρότητος . οἱ δὲ ἀποροῦντες πρὸς τὸ τὰς ἀρετὰς μεσότητας εἶναι καὶ λέγοντες , εἰ μήτε ἡ ὑπερβολὴ μήθ | ||
| τούτων , τὸ μὲν συμπληροῦν τὰ διαστήματα καὶ παρεντάττειν τὰς μεσότητας , εἰ καὶ μηδεὶς ἐτύγχανε πεποιηκὼς πρότερον , ὑμῖν |
| μῆνες ἀχθήσονται νϚ : ἐν δὲ τῇ ὀκταετηρίδι μῆνες ἐμβόλιμοι ἄγονται γ : ἐν ἄρα ταῖς ιθ ὀκταετηρίσιν , ὅπερ | ||
| , καὶ τότε αἱ ἀρχαὶ ὑπὸ τῶν ἄνω τροχίλων ἐκληφθεῖσαι ἄγονται κάτω καὶ ἀποδίδονται ταῖς σκυτάλαις ταῖς τοῦ ἄξονος ὡς |
| ἅμα καὶ πρὸς τοὐκτὸς περιστρέφων τοῦ μηροῦ τὴν κεφαλήν . ὑπόλοιποι δὲ δύο μύες εἰσὶ τῶν κινούντων τὸν μηρόν : | ||
| , ᾧ προσέφυγον ἁλούσης ὑπὸ Ἀσσυρίων Ἱερουσαλὴμ οἱ τῶν Ἰουδαίων ὑπόλοιποι . ηʹ Ἄμωσις ἔτη μδʹ . θʹ Ψαμμεχερίτης μῆνας |
| φύσις τοῖσδε τοῖς ἀδελφοῖς : ἀλλήλοις αἴτιοι τῆς αὔξης ἄμφω γενήσονται . ὁρῶντες μὲν γὰρ ἀλλήλους ἴσα βλαστήσουσι , θατέρου | ||
| ἄλλοθι τοιοῦτοι γεγόνασι μαρτυρεῖν , καὶ προσμαντεύεσθαί γε ὅτι καὶ γενήσονται . Ἴσως δ ' ἄν τις κἀκεῖνο θαυμάσειεν , |
| οὗτος γάρ ἐστι πεντάκις πέντε : ἰδοὺ οὖν ὅτι αἱ πλευραὶ αὐτοῦ ἐκ πέντε εἰσίν : ἀπὸ ε οὖν ἀρχόμεθα | ||
| ιη καὶ η ὅμοιοί εἰσι , δῆλον : εἰσὶ γὰρ πλευραὶ τοῦ μὲν ιη ὁ Ϛ καὶ ὁ γ , |
| . τὼς δ ' ἄρα καὶ διάμετροι . ἀτὰρ χαίρουσι τρίγωνοι , σχήμασι δ ' ἐν τούτοισιν ἀεὶ φιλομάντιας ἄνδρας | ||
| ἐλευθερωθῆναι . κυνοῦχος : θυλάκιον , μαρσίππιον . κύρβεις : τρίγωνοι πίνακες , ἐν οἷς οἱ περὶ τῶν ἱερῶν νόμοι |
| ἐπειδὴ διὰ τοῦ λόγου τῶν μέσων κινήσεων ἐπιβάλλουσιν περιοδικοῦ μήκους μοῖραι κ νη κα , ταύταις μὲν ἀντὶ τῶν κα | ||
| καὶ τὰς τοῦ ὡροσκόπου μοίρας ια . ὁμοῦ αἱ πᾶσαι μοῖραι τμα : ἀπολύσομεν ἀπὸ τοῦ Λέοντος , κατέληξεν ἐν |
| : δεῖ δὲ τὰς δύο τῆς λοιπῆς μείζονας εἶναι πάντῃ μεταλαμβανομένας [ διὰ τὸ καὶ παντὸς τριγώνου τὰς δύο πλευρὰς | ||
| παντὸς τριγώνου τὰς δύο πλευρὰς τῆς λοιπῆς μείζονας εἶναι πάντῃ μεταλαμβανομένας ] . Ἔστωσαν αἱ δοθεῖσαι τρεῖς εὐθεῖαι αἱ Α |
| σὺν τούτοις τὴν Σελήνην τε καὶ τοὺς λοιποὺς ἀστέρας μὴ διαμέτρους ὑπάρχειν τούτους ἐκ τῶν ἰδίων ὑψωμάτων καὶ οἴκων τε | ||
| περιτίθησι γνώμονα . ἄγει δὲ καὶ ἐν ἑκάστῳ τετραγώνῳ διαγωνίας διαμέτρους , λέγω δὴ τὴν ΑΘ καὶ τὴν ΘΖ καὶ |
| δύναμις ἀσθενής , καὶ τὸ τηνικαῦτα φθείρονται καὶ ἀπόλλυνται . ἀποστάσεις γὰρ αὐτοῖς οὐ γίνονται . Ταῦτα εἰρηκὼς θεώρημα πάνυ | ||
| περιπνευμονία . Τρίτον προσδιορισμόν φησι τοιοῦτον , ὅτι αὗται αἱ ἀποστάσεις τὴν μὲν περιπνευμονίαν ἀπαλλάσσουσι προδήλως , ἔστι δ ' |
| ἐπιπαρουσίας ἐπιχρησιμεύουσιν οἵδε : πάντα τὰ κέντρα καὶ αἱ τούτων ἐπαναφοραὶ καὶ τὸ ἕκτον ἀπὸ ὡροσκόπου , προκεκριμένου μέντοι γε | ||
| τι καὶ μὴ ἀκμαῖον εἶναι μηδὲ λαμπρόν . αἱ μέντοι ἐπαναφοραὶ εἰ κατὰ κόμμα γίνοιντο , γοργὸν ποιοῦσι τὸν λόγον |
| τοῦ ἐλαχίστου ὑπερέχει Μο ιγ : αἱ δὲ Μο ιγ συντεθεῖσαί εἰσι ⃞ων τοῦ δ καὶ τοῦ θ : γέγονεν | ||
| ἁπλαῖ οὖσαι σύνταξιν τὴν ἐφ ' ἕτερον πρόσωπον ἔχουσιν , συντεθεῖσαί γε μὴν ἠλλοτρίωνται τῆς μεταβάσεως τοῦ προσώπου . ὅπερ |
| , οὐ μὴν ὅπερ τὸ ἀγαθὸν ἁπλῶς , ὥσπερ αἱ μονάδες ἢ ἑνάδες αἱ ἀπὸ τῆς πρωτίστης αἰτίας προελθοῦσαι : | ||
| ἡμῖν ἐν τρισὶν ὅροις ἶσοί τινες ἀριθμοί , πρῶτον μὲν μονάδες , εἶτα δυάδες ἐν ἄλλοις τρισίν , εἶτα τριάδες |
| ἀλλὰ [ καὶ ] τὰς ἐπὶ ταύταις ἀλόγους συστολὰς καὶ ταπεινώσεις καὶ δήξεις ἐπάρσεις τε καὶ διαχύσεις ὑπολαμβάνουσιν εἶναι τὰ | ||
| , Παρθενικῇ δὲ τρίτης κατὰ πεντάδος Ἑρμῆς . αἱ δὲ ταπεινώσεις ὑψώματα ἐν διαμέτρῳ . Προστάσσοντα καὶ ἀκούοντα λέγονται τὰ |
| κενώσεις μὲν δὴ φυσικαὶ τῶν ἄρκτων καὶ πληρώσεις ἐς δέον εἴρηνταί μοι μήτε ἰατρῶν μήτε συγκραμάτων , ὦ ἄνθρωποι , | ||
| σκοποῦντι . Μέλητος μέν κτλ . Ἄνυτος μὲν καὶ Μέλητος εἴρηνταί τινες , ὅτι ὁ μὲν πλούσιος ἐκ σκυτοδεψικῆς , |
| : ὅπερ ἄτοπον . οὐκ ἄρα αἱ ΔΕΒ , ΔΖΒ εὐθεῖαί εἰσιν . ὁμοίως δὴ δείξομεν , ὅτι οὐδὲ ἄλλη | ||
| ἐγκεφάλου γνωρίϲματα περιττώματα πλείω κατὰ τὰϲ οἰκείαϲ ἐκροὰϲ καὶ τρίχεϲ εὐθεῖαί τε καὶ πυρραὶ καὶ μόνιμοι : καὶ ῥᾳδίωϲ ὑπὸ |
| γὰρ μεγίστων ἀποστάσεων τηρήσεις , ἐφ ' ὧν αἱ ἑῷοι πάροδοι ταῖς ἑσπερίοις ἴσον ἀπὸ τῆς ἡλιακῆς μέσης παρόδου , | ||
| . θʹ . πῶς ἀπὸ τῶν περιοδικῶν κινήσεων αἱ ἀκριβεῖς πάροδοι γραμμικῶς λαμβάνονται . ιʹ . πραγματεία τῆς τῶν ἀνωμαλιῶν |
| γένωνται , πάθεσιν ἀκαθάρτοις καὶ παρὰ φύσιν ἡδοναῖς χρήσονται . ἑξάγωνοι δὲ πρὸς ἀλλήλους τὴν αὐτὴν ἀποτελεσματογραφίαν τοῖς τριγώνοις ἔχουσιν | ||
| πεντάγωνοι , ἐκ δὲ τῶν πενταγώνων καὶ τῶν τριγώνων οἱ ἑξάγωνοι , ἐκ δὲ τῶν ἑξαγώνων καὶ τῶν τριγώνων οἱ |
| ὅτι τὸν αὐτὸν ἀεὶ τόπον ἐπέχουσιν . ~ αἳ γὰρ περιέχουσαί εἰσιν εὐθεῖαι , τῇ θέσει δεδομέναι εἰσίν . Τὸν | ||
| ὅτι τὸν αὐτὸν ἀεὶ τόπον ἐπέχουσιν . ~ αἳ γὰρ περιέχουσαί εἰσιν εὐθεῖαι , τῇ θέσει δεδομέναι εἰσίν . Τὸν |
| ἐστὶ καὶ παροιμίαι πᾶσαι αἱ περὶ τῶν φίλων ὁμογνωμονοῦσι καὶ συμφωνοῦσι τοῖς λόγοις τούτοις . τὸ γὰρ κοινὰ τὰ τῶν | ||
| κυριωτάτους λόγους πολλαπλασίους τε καὶ ἐπιμορίους ἤδη καὶ σύμφωνοι . συμφωνοῦσι δὲ φθόγγοι πρὸς ἀλλήλους , ὧν θατέ - ρου |
| , τούτωι δεύτερος τρίτου ὑπερέχει . καὶ ἐν ταύται τᾶι ἀναλογίαι συμπίπτει ἦιμεν τὸ τῶν μειζόνων ὅρων διάστημα μεῖον , | ||
| ὁμοίως πλαττομένων οἱ ἐπιμόριοι λόγοι καὶ αἱ ἐν τούτοις συστήσονται ἀναλογίαι , ἐκ μὲν τῶν διπλασίων ἡμιόλιοι , ἐκ δὲ |
| λόγος ἀποδοθῇ , καταριθμεῖσθαι πρὸς ὑμᾶς ὡς ἄρα τῇ πόλει τέτταρες ἤδη γεγένηνται καιροὶ ἐν οἷς αὐτὸς πεπολίτευται . Ὧν | ||
| τῶν προειρημένων νήσων . κατὰ δὲ τὸν ἐκ Τροίας ἀπόπλουν τέτταρες τῶν Ἀγαμέμνονος νεῶν ἐξέπεσον περὶ Κάλυδναν , καὶ τοῖς |
| δεῖ γάρ με εἶναι ἀπαθῆ ὡς ἀνδριάντα , ἀλλὰ τὰς σχέσεις τηροῦντα τὰς φυσικὰς καὶ ἐπιθέτους ὡς εὐσεβῆ , ὡς | ||
| εἶναι πολυώνυμα , ἐφ ' ὧν οὐ κατὰ τὰς διαφόρους σχέσεις τῆς μιᾶς φύσεως διάφορα κεῖται ὀνόματα , ἀλλ ' |
| δὲ τῶν τριπλασίων οἱ ἐπίτριτοι , ἐκ δὲ τῶν τετραπλασίων ἐπιτέταρτοι , καὶ ἀεὶ ἑξῆς οὕτως . οἷον ἔστω ἀναλογία | ||
| χρεία , ἵνα πρῶτος καὶ τέταρτος συνάμφω τῶν δύο μέσων ἐπιτέταρτοι ὦσιν , ἔστι δὲ πρόλογος ἐν ἐπιτετάρτῳ πυθμέσι ὁ |
| συμπέρασμα αἱ τοῦ ἐνδεχομένου προτάσεις ἐν δευτέρῳ σχήματι , ἐνδεχόμενον συνάγουσιν , ἐπεὶ ἀμφότεραί εἰσιν ἐνδεχόμεναι : καὶ τοῦτο πάντως | ||
| ἀπεδείξαμεν γάρ , ὅτι αἱ δύο αὗται συζυγίαι τὸ ἀναγκαῖον συνάγουσιν οἵας δή ποτε ἀναγκαίας λαμβανομένης προτάσεως , κἂν τῆς |
| δυοκαίδεκα καὶ τῶν λοιπῶν ἄστρων , καὶ οὐχ ἁμαρτήσῃ τῆς διασκέψεως . Ταῦτά σοι , ὦ Ἰουλιανέ , συναγαγόντες ταχεῖαν | ||
| πνεύματος ἔμπλεα εἶναι μόνον , ἀλλὰ καὶ ἐννοίας μουσικῆς καὶ διασκέψεως τῶν αὐλημάτων . μέχρι τούτων σε τὸ ὕδωρ γράφει |
| τὴν περίμετρον ἔχουσα ὀγδοήκοντα καὶ τριακοσίων σταδίων , αἱ δὲ ἐκρύσεις οὐδαμοῦ φαίνονται πλὴν τοῦ δεχομένου τὸν Κηφισσὸν χάσματος καὶ | ||
| ἀναχεομένων εἰς αὐτά , τῶν δ ' ἐμπιπτόντων , εἶτα ἐκρύσεις λαμβανόντων : τὰ δ ' ἀνέψυκται καὶ γεωργεῖται παντοδαπῶς |
| κοινὸν ἐγένετο τὸ ἀτύχημα , καὶ μᾶλλον αὐτῆς , ὅσῳ μαλακώτεραί πως αἱ γυναῖκες πρὸς τὰ πάθη . ὁμοίως δὲ | ||
| διὰ τὴν ὑποκειμένην φύσιν , περὶ ἧς πραγματεύεται , ἐπεὶ μαλακώτεραί γε αἱ ἀποδείξεις ἀστρονομίας : τῷ γὰρ ἔγγιστα χρῆται |
| δὲ ΒΕ τῇ ΔΖ . αἱ δὲ ΑΕ , ΕΒ μέσαι εἰσὶ δυνάμει μόνον σύμμετροι : καὶ αἱ ΓΖ , | ||
| πλειόνων ἄκρων . διὰ γὰρ τοῦτο ἡ ψυχὴ καὶ αἱ μέσαι φύσεις πᾶσαι πλείοσι μαθήμασιν ἀναδιδάσκονται , ὡς πρὸς πλείονας |
| ζῶον . καὶ εἰ ἄπειροι ἑκατέρωθεν , ἢ πᾶσαι πάσαις ἐφαρμόσουσι κἀντεῦθεν ἄπειροι δήπου καὶ ψυχαὶ τῷ ζώῳ ἐνέσονται , | ||
| ἐπίπεδά ἐστι σχήματα . Δῆλον , ὅτι ἐφαρμοζουσῶν τῶν εὐθειῶν ἐφαρμόσουσι καὶ τὰ πέρατα αὐτῶν , εἰ δὲ τοῦτο , |
| . Φέρεται ἔν τισιν ἀρχαία πρότασις τοιαύτη : ὑποκείσθω τρία ἡμικύκλια ἐφαπτόμενα ἀλλήλων τὰ ΑΒΓ ΑΔΕ ΕΖΓ , καὶ εἰς | ||
| περιφέρειαν ἴσαι εἰσίν . ἀλλὰ εἰ μιᾶς οὔσης διαμέτρου δύο ἡμικύκλια γίνεται , ἄπειροι δὲ αἱ διάμετροι , συμβήσεται τῶν |
| , καὶ διήχθωσαν αἱ εὐθεῖαι τέμνουσαι τὰς τομάς , καὶ διῃρήσθωσαν , ὡς εἴρηται . λέγω , ὅτι ἡ διὰ | ||
| τρεῖς ἄρα αἱ ΖΗ ΗΘ ΘΚ σύμμετροι ἀλλήλαις εἰσίν . διῃρήσθωσαν οὖν εἰς τὰ μέτρα τοῖς Τ Υ Φ Χ |
| ὁ πλείων καὶ τοῦ πέριξ ἦχος . Πῶς γὰρ ἂν σύμφωνοι ἐγίγνοντό τινες φθόγγοι εἰ μὴ ἰσότης ἦν ; ἀσύγκριτον | ||
| , ὁμοίως δὲ καὶ εἰ οἱ κοσμικοὶ κυκλικοὶ τῆς γενέσεως σύμφωνοι ἢ οἱ αὐτοί . πρὸς ἐπὶ τούτοις δὲ καὶ |
| ἁφῶν πρὸς τὸ αὐτὸ σημεῖον τῆς ἑτέρας τομῆς ἀχθῶσιν εὐθεῖαι τέμνουσαι τὰς παραλλήλους , τὸ περιεχόμενον ὀρθογώνιον ὑπὸ τῶν ἀποτεμνομένων | ||
| εὐθεῖαι ἐφαπτόμεναι συμπίπτωσιν , ἀχθῶσι δὲ παράλληλοι ταῖς ἐφαπτομέναις ἀλλήλας τέμνουσαι καὶ τὴν τομήν , ἔσται , ὡς τὰ ἀπὸ |
| δῆλον γάρ , ὅτι ὑπὸ ἀνίσων εὐθειῶν ὑποτείνονται : ὅτι ἄνισοι οἱ κύκλοι . εἰ γὰρ ἴσοι , ἄνισοι δὲ | ||
| μονάδες : αὗται γὰρ ἴσαι εἰσὶ μόνως μὴ δυνάμεναι γενέσθαι ἄνισοι : προσθήκην γὰρ λαμβάνουσα ἡ ἑτέρα μονὰς μείζων οὐ |
| . . . : πονηρὸν γὰρ εἰς ὑπόκρισιν αἱ μακραὶ περίοδοι καθάπερ καὶ παρὰ [ Δημητρίῳ ] [ ] κεῖται | ||
| ' ἡμέρα τε καὶ νὺξ ὀφθεῖσαι μῆνές τε καὶ ἐνιαυτῶν περίοδοι καὶ ἰσημερίαι καὶ τροπαὶ μεμηχάνηνται μὲν ἀριθμόν , χρόνου |
| ἀκολουθίαν ἐπὶ τοῦτο ἀναβάντας κρίναντες ὁ δῆμος καὶ ἡ σύγκλητος ἐπελέξαντο . οὐ γὰρ ἑνὸς ἀνδρὸς ἴδιον κτῆμα ἡ ἀρχή | ||
| , ὅσα θέλουσιν , ἐπιλέξασθαι . ὡς δὲ οἳ μὲν ἐπελέξαντο , οἳ δὲ ᾐδοῦντο συστρατιώτας πολλὰ συνειργασμένους σφίσιν ἀνδραποδίσασθαι |
| ΙΑ πρὸς ΑΜ , διὰ τὴν ὁμοιότητα τῶν τριγώνων . τέσσαρες ἄρα αἱ ΔΑ ΑΚ ΑΙ ΑΜ ἑξῆς ἀνάλογόν εἰσιν | ||
| τῶν ἄκρων ἴσος ᾖ τῷ ὑπὸ τῶν μέσων , οἱ τέσσαρες ἀριθμοὶ ἀνάλογόν εἰσιν : ἔστιν ἄρα ὡς ὁ Ε |
| , ὡς ἔοικεν , ὀνομάτων ὀρθότητος . καὶ γὰρ μεταβάλλοντες σκοποῦνται τὴν ” Φερσεφόνην , “ καὶ δεινὸν αὐτοῖς φαίνεται | ||
| νῦν διαβουλεύσασθαι . Οἱ μέν γε σχολῇ περὶ τῶν εἰσαγγελλομένων σκοποῦνται , ὑπάρχει τε αὐτοῖς , ἐάν τι ἐξαμαρτάνωσιν , |
| καὶ οἱ ἰσάκις ἶσοι ἰσάκις ἅπαντες , τουτέστι κύβοι τριχῆ διαστατοὶ ὄντες καὶ ταυτότητος ἐπὶ πλεῖον δοκοῦντες μετέχειν ἔργον εἰσὶ | ||
| λϚ , μθ , ξδ καὶ οἱ ἑξῆς διχῆ ὄντες διαστατοὶ καὶ ἐν τῇ ἐπιπέδῳ σχηματογραφίᾳ μῆκος καὶ πλάτος μόνον |
| ΒΓ : αἱ ἄρα ΑΓ , ΓΒ δυνάμει εἰσὶν ἀσύμμετροι ποιοῦσαι τὰ προκείμενα : λέγω , ὅτι τῇ ΑΒ ἑτέρα | ||
| Κεχαρίσθω δὲ εἶπεν ἐπειδὴ αἱ Χάριτές εἰσιν αἱ πάντα ἐράσμια ποιοῦσαι . Δύναται δὲ καί τις καὶ τὸ μακρότερα οὕτως |
| μήποτε ἡττᾶσθαι μήτε αἰσθητικῆς μήτε ὁρμητικῆς κινήσεως : ζῳώδεις γὰρ ἑκάτεραι , ἡ δὲ νοερὰ ἐθέλει πρωτιστεύειν καὶ μὴ κατακρατεῖσθαι | ||
| τε καὶ ποικίλας , ἐπιστάμενον ὥς τισι τῶν μερῶν ἁρμόζουσιν ἑκάτεραι , τισὶ δὲ ἡ ἑτέρα , λέγω δὲ ἡ |
| μήτε προάγειν , | ὃ ποιοῦσιν αἱ προπετεῖς τε καὶ φερόμεναι τῶν αἰσθήσεων , μήθ ' ὑστερίζειν , ὃ ποιοῦσιν | ||
| καθαρῷ γὰρ καὶ πάντοθεν ἀναπεπταμένῳ ἀέρι λεπταὶ καὶ θυμηδεῖς ἀναθυμιάσεις φερόμεναι περιτήκουσι τῶν σωμάτων τὰ νοσερὰ μετὰ τοῦ τὴν λοιπὴν |
| ἀεὶ ἀσύμπτωτοί εἰσι καὶ συννεύουσι μὲν ἀλλήλαις , οὐδέποτε δὲ συννεύουσιν παντελῶς , ὃ καὶ παραδοξότατόν ἐστιν ἐν γεωμετρίᾳ θεώρημα | ||
| νῆστιν πονηρευομένοις , καὶ ὅσαι συν - τήξεις ἐπὶ γαστέρα συννεύουσιν , ἑψῶντα διδόναι τοῦ γάλακτος : ἑψεῖν δὲ τὸ |
| καὶ κείσθω τῇ μὲν ὑπὸ ΓΕΑ γωνίᾳ ἴση ἡ ὑπὸ ΘΝΚ , καὶ ἤχθω τῇ ΘΝ παράλληλος ἡ ΚΞ , | ||
| , τροπικοὶ δὲ οἱ περὶ διαμέτρους τὰς ΘΚ ΛΜ οἱ ΘΝΚ ΛΞΜ , ὁ δὲ τῶν ζῳδίων κύκλος θέσιν ἐχέτω |
| , ἐπειδήπερ οἱ διὰ τῶν πόλων τοῦ ἑτέρου τῶν εἰρημένων γραφόμενοι μέγιστοι κύκλοι ἀνίσους ἀπολαμβάνουσιν ἐφ ' ἑκατέρου περιφερείας , | ||
| τῇ ΘΚ , καὶ οἱ διὰ τῶν Κ καὶ Η γραφόμενοι παράλληλοι ἴσον ἀπέχουσιν ἐφ ' ἑκάτερα τοῦ ἰσημερινοῦ , |
| γραφεισῶν περιφερειῶν αἱ ἀπὸ τῆς κοινῆς τομῆς ἐπὶ τὰ κέντρα ἐπιζευγνύμεναι περιέξουσι τὴν λείπουσαν ὁμοίως εἰς τὰς δύο ὀρθὰς τῆς | ||
| καὶ ἡ ὑπὸ ΓΗΔ ὀρθή . Τῶν αὐτῶν ὄντων αἱ ἐπιζευγνύμεναι ἴσας ποιοῦσι γωνίας πρὸς ταῖς ἐφαπτομέναις . τῶν γὰρ |
| ὁ μέσος ἥμισυς ἦν τῶν ἄκρων , εἰ περιτταὶ αἱ ἐκθέσεις , εἰ δὲ ἄρτιαι , οἱ μέσοι τοῖς ἄκροις | ||
| ἐὰν μὲν γὰρ ἄρτιοι ὦσιν αἱ τοῦ προκεχειρισμένου ἀρτιάκις ἀρτίου ἐκθέσεις , πάντως τὸ ὑπὸ τῶν ἄκρων πρὸς ἄλληλα πολυπλασιαζομέ |
| τέσσαρα καὶ μέχρις οὗ βουλόμεθα , τρίγωνοι ἐφεξῆς ἀπὸ μονάδος ἀποτελεσθήσονται οἱ αʹ γʹ Ϛʹ ιʹ ιεʹ καʹ κηʹ λϚʹ | ||
| καθ ' ἕκαστον ἐπινοήσομεν πέρατα , τριῶν δὲ ὄντων ἓξ ἀποτελεσθήσονται , δι ' ἣν αἰτίαν καὶ αἱ λεγόμεναι σωματικαὶ |
| τινὰ δὲ καὶ διάφωνα . σύμφωνα μὲν , ἐπειδὴ οἱ περιέχοντες φθόγγοι διάφοροι τῷ μεγέθει ὄντες , ἅμα κρουσθέντες ἢ | ||
| σφισιν ἐφεστήκασι τρίποδες χαλκοῖ μέν , μνήμης δὲ ἄξια μάλιστα περιέχοντες εἰργασμένα . σάτυρος γάρ ἐστιν , ἐφ ' ᾧ |
| ἔδει δεῖξαι . Λῆμμα Ὅτι δὲ ἡ τοῦ ἰσοπλεύρου καὶ ἰσογωνίου πενταγώνου γωνία ὀρθή ἐστι καὶ πέμπτου , οὕτω δεικτέον | ||
| Παράλληλος γάρ ἐστιν ἡ ΕΚ . , ] πάλιν ὁμοίως ἰσογωνίου δεικνυμένου τοῦ ΚΖΓ τριγώνου τῷ ΕΖΒ τριγώνῳ καὶ μιᾶς |
| ὅτι ἐν πλείστῳ μὲν χρόνῳ δύνουσιν αἱ ΑΗ , ΜΓ περιφέρειαι , ἐν ἐλάσσονι δὲ αἱ ΗΘ , ΛΜ , | ||
| τὰ ΑΗΓ , ΔΘΖ , καὶ ἀπ ' αὐτῶν ἴσαι περιφέρειαι ἀπειλήφθωσαν πρὸς τοῖς πέρασι τοῖς Α , Δ σημείοις |
| , μὴ μόνον κατ ' ἄνδρα , ἀλλὰ καὶ πόλεις ὅλαι καὶ ἔθνη , πόσῳ δικαιότερον καὶ ἀληθέστερον τὴν ἁπάντων | ||
| ἀναφορὰ πρὸς τὸ πᾶσαι δ ' ὠίγνυντο πύλαι ἀντὶ τοῦ ὅλαι . . Ἱππασίδην Ὑψήνορα . : Ε . . |
| συμπληροῦσαι τὴν διάλεκτον συλλαβαὶ κατ ' ἐνέργειαν ἀπ ' ἀλλήλων διακεκριμέναι , τέτταρας μὲν συμβαίνει γίνεσθαι κατὰ τὰς συμπλοκὰς τῶν | ||
| , ὀργὴ δὲ τρόπος . Βακχυλίδης , Ὀργαὶ μὲν ἀνθρώπων διακεκριμέναι μυρίαι . Δόρυ καὶ κηρύκιον : παροιμία , ἣν |
| Παρθυαίου παίδων , ἐπιστρατεύσας τῇ Συρίᾳ . τῇ δὲ Γινδάρῳ συνάπτουσιν αἱ Πάγραι τῆς Ἀντιοχίδος , χωρίον ἐρυμνὸν κατὰ τὴν | ||
| νῦν δὲ Παρθυαίοις . Τῇ δὲ Περσίδι καὶ τῇ Σουσιανῇ συνάπτουσιν οἱ Ἀσσύριοι : καλοῦσι δ ' οὕτω τὴν Βαβυλωνίαν |
| , γυμνωθεῖσαι αἱ τῶν κόλπων ἀρχαὶ πολύστομον καὶ πολυσχιδῆ σύριγγα ἐνδείξονται . κοινότερον δ ' ἐπὶ τούτων ἐξετάσαι δεῖ , | ||
| τοῖς ἐνδεικνυμένοις τὰ ἐξ αὐτῶν λαμβανόμενα , δηλονότι τοῖς ἰδιώταις ἐνδείξονται αἱ κοινότητες , καὶ οὐδὲν τῶν ἰδιωτῶν διοίσετε . |
| δανειζομένου , ἐκ δὲ τῶν ὠφελούντων ἢ βλαπτόντων ἀστέρων αἱ προαγορεύσεις ἀκολούθως ἕπονται . τινὲς δὲ ἐπισκέπτουσι τὸν Ἥλιον καὶ | ||
| τῶν ἀποτελεσμάτων ἔκβασιν , καὶ ἀφ ' ὧν μάλιστα τὰς προαγορεύσεις ποιοῦνται , τέσσαρά φασιν εἶναι τὸν ἀριθμόν , ἅπερ |
| πα Ϟ ρ ἐκ δὲ τῶν ἐπιμορίων οἵ τ ' ἐπιμερεῖς καὶ οἱ πολλαπλασιεπιμόριοι , πάλιν δ ' ἐκ τῶν | ||
| σπανιότητα τῶν ἐπιδεξομένων τὸ μόριον ἀριθμῶν καθ ' ὃ ἐπιμόριον ἐπιμερεῖς γενήσονται , πολὺ μᾶλλον σπανιώτεραι αἱ ἀναλογίαι γενήσονται διὰ |
| τὰς ΑΒ ΑΓ ΑΔ ἀπό τινος σημείου τοῦ Ε δύο διήχθωσαν αἱ ΕΖ ΕΒ , ἔστω δὲ ὡς ἡ ΕΖ | ||
| τῆς ὑπὸ ΓΑΒ . Ἔστω κύκλος ὁ ΑΓΒΔ , καὶ διήχθωσαν δύο διάμετροι αἱ ΑΒ , ΓΔ τέμνουσαι ἀλλήλας πρὸς |
| τὴν πρώτην ἄκανθαν ὀνομαζομένην καλοῦνται κυνόλοφα , κέρναι δὲ αἱ πλάγιοι δύο : αἱ δὲ λοιπαὶ κάτω προνεύουσιν . τῶν | ||
| οὐσίαν τοῦ πράγματος ἀλλ ' ἐκ πλαγίου : ὅθεν καὶ πλάγιοι λέγονται , ὡς ἐκ πλαγίου σημαίνουσαι τὴν οὐσίαν τοῦ |
| μυρίων κατεσκευασμένος χρυσῶν . ἐπόμπευσαν δὲ καὶ θυμιατήρια χρυσᾶ καὶ ἐσχάραι ἐπίχρυσοι καὶ Δελφικοὶ τρίποδες καὶ φοίνικες ἐπίχρυσοι ὀκταπήχεις καὶ | ||
| Ἴσις ἔμμοτος μετὰ μέλιτος . ὅταν δ ' ἐκπέσωσιν αἱ ἐσχάραι , καὶ διὰ τῶν ἐπιτυχόντων σαρκοῦνται τὰ τοιαῦτα τῶν |
| μηνῶν καὶ ἡμερῶν καὶ ὡρῶν συνημμένων αὐτοῖς τῶν περιεχόντων τὰς διαστάσεις τῶν περὶ αὐτὸν τὸν ζῳδιακὸν ἀπλανῶν τῶν μέχρι δεκαμοίρου | ||
| ἐπεὶ διαστατὸν ἂν ὑπῆρχε , τοῦ σώματος τὰς τρεῖς ἔχοντος διαστάσεις . καὶ μὴν οὐδὲ ἀσώματον . εἰ γὰρ ἀσώματόν |
| τεσσάρων ἄλλων ἀριθμῶν ἐκτεθέντων κατὰ τὴν αὐτὴν τάξιν τοῖς προτέροις ὁμοταγεῖς κατὰ συνδυασμὸν τὸν προειρημένον τῶν ὁμοιοτάτων , ἀντὶ μὲν | ||
| τομεύς , πρὸς τοὺς περιγραφομένους περὶ τὸ ΑΒΓ τμῆμα τοὺς ὁμοταγεῖς τῷ ΓΒΗ . τῷ δ ' αὐτῷ τρόπῳ δειχθήσεται |
| τὸ ξηρὸν ἐν τῷ ἀφεψήματι καταιόνησον ἑπτάκις τῆς ἡμέρας ἐξ ὡριαίου διαστήματος , τῇ δ ' ἐπιούσῃ ἕτερον ὁμοίως σκευάσας | ||
| μέρος ἐστὶ τοῦ δρόμου , καὶ τοῦτο ἐκκρούειν ἐκ τοῦ ὡριαίου μεγέθους . Ἄλλως . Ἐπεξεύρομεν δὲ καὶ ἄλλως τὸ |
| ηʹ μγʹ ∠ ʹʹδʹʹ Μεταξὺ δὲ τοῦ Μινίου καὶ τοῦ Δορίου ποταμοῦ τὰ μὲν ἐπὶ θαλάσσῃ κατέχουσι Καλλαϊκοὶ οἱ Βρακάριοι | ||
| περίπλου σαφῶς διεξήλθομεν ] . Οἱ πάντες ἀπὸ τῶν τοῦ Δορίου ποταμοῦ ἐκβολῶν ἐπὶ τὸ ἀκρωτήριον τῆς Πυρήνης τὸ Οἰάσσω |
| καὶ ὅτι οἱ ἰατροὶ ἀρχόμενοι τῆς θεραπείας ἀπὸ τῶν μαλακωτέρων ἄρχονται φαρμάκων , ὅτι μάλιστα δοκεῖ Ἀριστοτέλης εὐδοκιμεῖν ἐν ταῖς | ||
| κατάληψιϲ τῶν αἰϲθητηρίων μετὰ ἀφωνίαϲ , ϲκελῶν ϲυνολκή : εἶτα ἄρχονται ἐρεύθειν αἱ γνάθοι , καὶ τὸ πρόϲωπον ὑποπίμπραται : |
| πρώτων : ἀπὸ τῶν πρώτων δὲ εὐεργεσιῶν προκατάρξομαι νυνί . πρῶται δὲ εὐεργεσίαι αἱ ἐπὶ Σκυθίᾳ , ὅτε ὁ Ἰάσων | ||
| εἴδει . ὄντος γὰρ τοῦδέ τινος γένους , οὗ διαφοραὶ πρῶται τὰ λευκά , τούτων δ ' ἑκατέρου ἄλλαι , |
| ἐᾶν ἀδιόρθωτον , λοξὴν φυλάξαντες ” , ὡς οἱ ἀρχαῖοι πίνακες παρέχουσι . ” πρῶτον μὲν γὰρ τὸ μὴ ἔχειν | ||
| ὑπηρεσίαν κύκλοι , τεύχη , χεύματα , κοῖλοι πίνακες , πίνακες ἐκπέταλοι ἢ ὕπτιοι ἢ κυκλοτερεῖς , καί που καὶ |
| . Λοιπὸν δὲ ἐροῦμεν τῶν καθ ' ἡμᾶς νήσων τὰς περιμέτρους , λαβόντες παρὰ Ἀρτεμιδώρου καὶ Μενίππου καὶ ἑτέρων ἀξιοπίστων | ||
| : οἱ μὲν γὰρ πρὸ αὐτοῦ τετράγωνοι πλείονας ἔχουσι τὰς περιμέτρους τῶν ἐμβαδῶν , οἱ δὲ μετ ' αὐτὸν ἀντικειμένως |
| , οἱ πρῶτοι κατὰ πλάτος καὶ οἱ ὑπ ' αὐτοὺς τετραπλάσιοι πάντες εἰσίν , οἱ δὲ ὑποκάτω τῶν ἐπάνω ἐπιτέταρτοι | ||
| ' αὐτῶν ἐπίτριτοι καὶ ἀπὸ τούτων ἐπιτριμερεῖς , εἰ δὲ τετραπλάσιοι ἐπιτέταρτοί τε καὶ ἐπιτετραμερεῖς καὶ ἀεὶ οἱ ἑξῆς , |
| τοῦ μέσου ἐκκέντρου ὑποτείνουσι μὴ δεδομένας , ἐὰν δ ' ἐπιζεύξωμεν τὰς ΝΣΕ καὶ ΝΤΖ καὶ ΝΗΥ , πάλιν τὰς | ||
| Κ . Φανερὸν οὖν , ὅτι . , ] ἐὰν ἐπιζεύξωμεν ἀπὸ τοῦ Θ ἐπὶ τὸ Γ καὶ ἐπὶ τὸ |
| ἀλλήλοις καὶ αἱ συνθῆκαι ἦσαν κείμεναι παρὰ τῷ Ἀνδροκλείδῃ , διεῖλον ἐγὼ δύο μερίδας , ὦ ἄνδρες δικασταί . καὶ | ||
| : οὐδὲ γὰρ τὸ λευκὸν τὸ καθ ' ἑαυτὸ θεωρούμενον διεῖλον , ἀλλὰ τὸ σῶμα τὸ λευκόν , ὅπερ ἐστὶν |
| καὶ ἀπὸ τοῦ Ρ ἐπὶ μὲν τὰς ΘΟ , ΚΠ κάθετοι ἤχθωσαν αἱ ΡΝ , ΡΞ , ἐπὶ μὲν τὴν | ||
| , καὶ ἀπὸ τοῦ Ε ἐπὶ τὰς ΑΒ , ΓΔ κάθετοι ἤχθωσαν αἱ ΕΖ , ΕΗ , καὶ ἐπεζεύχθωσαν αἱ |
| ιϚʹ κεʹ . μέσους δὲ ἔχουσι τοὺς ἑτερομήκεις οὕτως . τετράγωνοι δύο ἐφεξῆς ὅ τε αʹ καὶ δʹ : τούτων | ||
| ἄνω μὲν εἷς ὀδοὺς προσπέφυκε , κάτω δὲ ἄλλος , τετράγωνοι δὲ ἄμφω , πυγόνος δὲ τὸ μῆκος . τοσοῦτον |
| : ἣν δὲ τοῦ παντὸς λέγομεν πρόνοιαν εἶναι , ταύτην ὑποθέμενοι τὰ ἐφεξῆς συνάπτωμεν . Εἰ μὲν οὖν ἀπό τινος | ||
| τοῦ Θ κέντρου τοῦ ζῳδιακοῦ τὰς ΘΕ , ΘΖ , ὑποθέμενοι τὴν σελήνην κατὰ τὸ Λ ἀπέχειν τοῦ ἀπογείου μοίρας |
| , πρὶν δὲ καὶ θανεῖν . διαρταμέοντες : κατακόπτοντες , διακόπτοντες : ἄρταμος πᾶς σφαγεὺς καὶ φονεὺς , κυρίως δ | ||
| οὕτως διαπλήσσοντες διὰ τοῦ η αἱ Ἀριστάρχου , ἀντὶ τοῦ διακόπτοντες . ἄλλοι δὲ διαπλίσσοντες διὰ τοῦ ι . παρασημειώσαιτο |