| , στερεωτάτῃ ὑπαρχούσῃ καὶ ἑδραιοτάτῃ : τῷ δὲ σχήματι τῷ δωδεκαέδρῳ πρὸς τὸ πᾶν κατεχρήσατο . Πάντων δὲ τούτων ἀρχικωτέρα | ||
| ἐξ ὁποίων ἓξ τετραγώνων ὁ κύβος συνίσταται : τῷ δὲ δωδεκαέδρῳ εἰς τὸ πᾶν ὁ θεὸς κατεχρήσατο , διότι ζῴδιά |
| προσλαβὼν τὸν ἐλάσσονα ἀριθμὸν ἴσος ᾖ τῷ ἀπὸ τοῦ ἐλάσσονος κύβῳ προσλαβόντι τὸν μείζονα ἀριθμόν . Ἔστω ὁ μὲν ʂ | ||
| β ἐν μορίῳ τῷ ἀπὸ ΔΥ α # Μο β κύβῳ . καὶ ἔστιν τὸ μόριον κυβικόν : ἔστω ΔΥ |
| πλευρῶν ἕτερον ἐκ δὶς τοσούτων συνεστηκὸς ἐντὸς συνήρμοσται σχῆμα κύκλον περιλαβὸν μετεωρίζοντά που τὸν ὄροφον , τὸ διὰ πάντων ἤδη | ||
| : μέχρι μὲν οὖν ἂν ἁπλῶς τοιοῦτο λέγηται , πάντα περιλαβὸν ἐν ἑαυτῷ ἔχει : ἐπειδὰν δὲ τὸ εἰδοποιοῦν ἑκάστῳ |
| ὁμοίων ἐπιπέδων περιεχόμενα ἴσων τῷ πλήθει καὶ τῷ μεγέθει . Στερεὰ γωνία ἐστὶν ἡ ὑπὸ πλειόνων ἢ δύο γραμμῶν ἁπτομένων | ||
| ἡμέραι : πᾶσα γὰρ τετρὰς ἱερὰ ὡς καὶ στερεά . Στερεὰ δὲ λέγεται , διότι πάντα τὰ συνεστῶτα ἐκ στιγμῆς |
| δὲ διαπορῆσαι , διὰ τί οἱ μὲν δύο ποταμοὶ ὁ Φεισὼν καὶ ὁ Γηὼν κυκλοῦσι χώρας , ὁ μὲν τὴν | ||
| κἀκεῖθεν διαχωρίζεσθαι εἰς τέσσαρας ἀρχάς : ὧν δύο οἱ καλούμενοι Φεισὼν καὶ Γεὼν ποτίζουσιν τὰ ἀνατολικὰ μέρη , μάλιστα ὁ |
| καὶ ἀμφοτέρων διαφέρει : τῷ μὲν γὰρ ἀρτιά - κις ἀρτίῳ κοινωνεῖ , καθὸ καὶ οὗτος πλείους διαιρέσεις ἐπιδέχεται , | ||
| : τοῦτον γὰρ κωλύειν τὴν εἰς ἴσα διαίρεσιν προστιθέμενον τῷ ἀρτίῳ . φέρουσι δὲ καὶ ἄλλο σημεῖον τοῦ πέρατος μὲν |
| μαθηματικοῦ , γραμμικῶς αὐτὸ ἀποδεικνύντος , ὅτι τὸ ἕκτον τοῦ ζωδιακοῦ κύκλου μέρος ἀπὸ τῆς μέχρι τῆς ἀνατολῆς ἐκβαλλομένης εὐθείας | ||
| ὡς καὶ ὁ Ἄρατος πρῶτον ἀναγράφει τὰ βορειότερα ἄστρα τοῦ ζωδιακοῦ , ἔπειθ ' οὕτως τὰ νοτιώτερα . Καὶ τὰς |
| γὰρ ἰσημερίας ἐαρινῆς ἐπὶ τροπὴν θερινὴν ἐν ἡμέραις παραγίνεται Ϟδʹ ςʹ , ἀπὸ δὲ θερινῆς τροπῆς ἐπὶ ἰσημερίαν μετοπωρινὴν ἡμέραις | ||
| ἀνήλισκον δὲ ἡμιτάλαντον : οἱ δὲ τὸ ζευγίσιον τελοῦντες ἀπὸ ςʹ μέτρων διελέγοντο , ἀνήλισκον δὲ μνᾶς ιʹ : οἱ |
| ἕξει ἡ ἰσότης πρὸς τὴν ἀνισότητα , καθάπερ καὶ ἐν γραμμικοῖς ἡ ὀρθὴ γωνία πρὸς ἀμβλεῖαν καὶ ὀξεῖαν , καὶ | ||
| ἰσοδιάστατοι , καθ ' ὁμοιότητα καὶ αὐτοὶ λαμβανόμενοι τῶν ἐν γραμμικοῖς : καλοῦνται δ ' οὗτοι κύβοι καὶ τετράεδροι πυραμίδες |
| μεταξὺ τῶν Ρ Θ , πάντες δὲ οἱ μείζους τοῦ πενταπλασίου ποιοῦσι τὸ σημεῖον τῆς τομῆς μεταξὺ τῶν Ρ Τ | ||
| τοῦ εἰκοσαέδρου καθέτου τὸ δυνάμει δωδεκαπλάσιον μεῖζόν ἐστιν τοῦ δυνάμει πενταπλασίου τῆς πλευρᾶς τοῦ εἰκοσαέδρου . Ἐκκείσθω κύκλος ὁ ΑΒΓ |
| μὴ ἐξισταμένη δὲ τῆς ἑαυτῆς φύσεως μηδ ' ἐν τῷ πολλαπλασιασμῷ : ἔτι , εἰ μὴ καὶ ἐντελεχείᾳ , ἀλλὰ | ||
| ἀποκατάστασις σφαῖραν γράφει . καὶ ἀριθμοὶ δὴ οἱ ἐν τῷ πολλαπλασιασμῷ ἐφ ' ἑαυτοὺς καταλήγοντες κυκλικοί τε καλοῦνται καὶ σφαιροειδεῖς |
| λβ καὶ τοῦτο δι ' ὅλου : ἐν δὲ περισσαῖς ἐκθέσεσιν ἶσον τὸ ἅπαξ ξδ τῷ δὶς λβ καὶ τοῦτο | ||
| διὰ τετάρτης ἀπαντᾶν ἡμέρας , ὡς ἐν ταῖς αὐτῶν ἀνάλογον ἐκθέσεσιν εἰς τὰς τετάρτας πάντως οἱ κύβοι ἀποτελοῦνται χώρας : |
| τοῦ ζωδιακοῦ κατὰ κορυφὴν ὄντος ἀεὶ τῷ ἐν τῇ γῇ ζωδιακῷ , τούτου δ ' οὐκ ἐκβαίνοντος ἔξω τῆς Αἰθιόπων | ||
| τὸ γένος ἐχόντων : ὑπὲρ ἧστινος Ταπροβάνης ἄνωθεν ἐν τῷ ζωδιακῷ τοῦ οὐρανοῦ κύκλῳ ὁ διάπυρος καρκίνος ἀναστρέφεται , ὡς |
| εἰς τοσαῦτα μέρη διῃρημένης καλῶς ἔχειν ἐνόμισα τά τε λόγῳ γεωμετρικῷ θεωρούμενα [ καὶ ἀναγκαιότατα περὶ τὴν τῶν βαρῶν κίνησιν | ||
| γὰρ τῷ μουσικῷ , καθὸ μουσικός ἐστιν , οὐδὲ τῷ γεωμετρικῷ . οὐκοῦν ὠφελῆσαι θέλεις ; πρὸς τί ; εἰπὲ |
| γὰρ αὐτῷ Φύλαρχον : ὢ τοῦ μάρτυρος ὡς ἔοικε τῷ ἐπαγομένῳ , ὃς οὐδὲ Θουκυδίδου λέγοντος ἤκουσε ” καθὸ δεῖ | ||
| ἐπέσχεν τὴν ἐλπίδα . Δοκοῦσι δὲ καὶ ἑκάτεροι μὴ τῷ ἐπαγομένῳ προσχεῖν τὸν νοῦν ἐπάγεται γὰρ ὅτι τῇ βουλῇ τοῦ |
| τῆς Ἀφροδίτης παραλήψεται Ἑρμῆς διὰ τοὺς Διδύμους ἔτη κʹ καὶ ἐπιμερίσει ἑκάστῳ ζῳδίῳ : εἶτα Σελήνη ἐπὶ ἔτη κεʹ , | ||
| ξʹ : ἐκ τούτων τὴν ἡμίσειαν τῷ κατὰ διάμετρον Ὑδροχόῳ ἐπιμερίσει , ἅ ἐστιν ἔτη λʹ : ἡ δὲ Σελήνη |
| κεφαλαῖς τῶν Διδύμων , πρὸς μεσημβρίαν δὲ τῆς νοτίου διεῖχεν τριτημορίῳ σελήνης ἔλασσον ἢ διπλάσιον , οὗ αἱ κεφαλαὶ διεστήκασιν | ||
| εἰς τὰ τῆς ὅλης ἐπισκοτήσεως ἐπιβάλλει , τῷ δὲ ἐφεξῆς τριτημορίῳ τὸ τρίτον , τῷ δὲ λοιπῷ τὸ ἕκτον : |
| Κρόνου , νυκτὸς δὲ Ἑρμοῦ . κεῖται δὲ ἐν τῷ κλίματι τῷ τῆς Αἰγύπτου ἀπομεμερισμένον ἀνέμῳ Λιβί . κυριεύει δὲ | ||
| πῆξιν τοῦ ἀναφορικοῦ : ὡς εἶναι ἐν μὲν τῷ πρώτῳ κλίματι ἀπὸ Καρκίνου ἕως Τοξότου ἀναφορὰς σιʹ , ἐν δὲ |
| ὑπὸ ΔΓΗ τῇ ὑπὸ ΔΖΗ : ἐν γὰρ τῷ αὐτῷ τμήματι τοῦ κύκλου εἰσίν . ἡ δὲ ὑπὸ ΔΖΗ ἐδείχθη | ||
| ὑπὸ ΘΑΓ ἴση ἐστὶ τῇ ἐν τῷ ἐναλλὰξ τοῦ κύκλου τμήματι γωνίᾳ τῇ ὑπὸ ΑΒΓ . ἀλλ ' ἡ ὑπὸ |
| μηροὺς τούτῳ ἀνέθεσαν , ἔστι δὲ οἶκος τοῦ Διὸς καὶ τριγωνίζεται τῷ τε Λέοντι καὶ τῷ Κριῷ καθὰ δὴ καὶ | ||
| , ἐν καλῷ τόπῳ ἕστηκεν ἰδιοθρονῶν καὶ ὑπὸ τῆς Ἀφροδίτης τριγωνίζεται , τοῦ Ἄρεως ἀποστρόφου ὄντος , βίον καλὸν ἕξει |
| ἰξυόθεν κατιόντων . τοῦ γὰρ νοτιωτέρου τῶν ἡγουμένων ἐν τῷ πλινθίῳ εἷς μόνος προηγεῖται λαμπρὸς ἀστήρ , ὁ νῦν ἐν | ||
| τὸ σχῆμα , Ἀφροδίτης ἐστὶν ἐν αὐτῇ ναὸς καλούμενος ἐν πλινθίῳ καὶ ἄγαλμα λίθου . στήλαις δὲ ἐπειργασμένοι τῇ μὲν |
| , τετράγωνον ὄντα , ποιήσει τὸν ξδ κύβον . . δυναμοδύναμις . Οἷον ὁ ιϚ : τετράκις γὰρ τὰ δ | ||
| πολλαπλασιασθῇ , ποιήσει τὸν ιϚ , καὶ λέγεται ὁ ιϚ δυναμοδύναμις ἐπειδὴ ἐκ τετραγώνου ἐγένετο τοῦ δ ἐφ ' ἑαυτὸν |
| τομή ἐστι κυλίνδρου , οἵα καὶ ἐν τῷ πρὸ τούτου θεωρήματι . ἡ ΝΗΕΡ ἄρα τομὴ οὔτε κύκλος οὔτε εὐθύγραμμόν | ||
| τὰς ἀποδείξεις ποιοῦνται , ὡς γεωμετρία ἀποδείκνυσιν ἐν τῷ πρώτῳ θεωρήματι καὶ δευτέρῳ καὶ τοῖς ἐφεξῆς , ἢ ἀναγκαιότερον , |
| αὐτῇ προσαρμοζομένης πρὸς τὰ ἔσχατα γινώσκειν τε τὰ ὄντα καὶ ἐναρμόζειν διὰ τὸ ἔχειν ἐν αὑτῇ τὰ στοιχεῖα κατὰ ἁρμονίαν | ||
| ἢ ἀπολαύσεις ἡδονῶν : πάντα ταῦτα , κἂν πρὸς ὀλίγον ἐναρμόζειν δόξῃ , κατεκράτησεν ἄφνω καὶ παρήνεγκεν . σὺ δέ |
| . . . ἀξίωμα . ὁρᾷς γὰρ τὴν ἐν τῷ ἀβακίῳ γραμμὴν καὶ τὸ ἐν τῇ τέφρᾳ ἐπίπεδον : ἐπεὶ | ||
| τοῦ ἀβακίου τὸ ἐν τῷ τέκτονι συνώνυμόν ἐστι τῷ γινομένῳ ἀβακίῳ : διὸ καὶ αὐτὸς ἐπήγαγεν ὥσπερ τὰ φύσει , |
| δὲ εἶδος οὐ παρέργως ἐπισκεπτέον . τὸ μὲν δὴ δεύτερον ἐμφανεστάτην ἔχει προνομίαν : αἰεὶ γὰρ ὁ ἀπὸ μονάδος συντιθέμενος | ||
| : ἀλλ ' ὅσα μὲν ἥμερα καὶ ἄγρια λέγεται ταύτην ἐμφανεστάτην καὶ μεγίστην ἔχει διαφοράν , οἷον συκῆ ἐρινεός , |
| τοσούτους γε ἂν ἀποτέμοι ὥστε μή τινας ἀπολείπεσθαι ὑψηλοτέρους τῶν ἀτμήτων ἀεὶ μενόντων . τοῦτο γὰρ δὴ τὸ σχετλιώτατον τῆς | ||
| ταῖς χρείαις διαφέροντας : ὁ μὲν γὰρ ἐκ λίθων λογάδων ἀτμήτων συνῳκοδόμηται καὶ ἐν ὑπαίθρῳ παρὰ ταῖς τοῦ νεὼ προσβάσεσιν |
| ἐν δὲ τῇ γῇ τὸν ΗΘΚ , ἐν δὲ τῷ σκιάσματι τὴν ΝΞ περιφέρειαν , ἐν δὲ τῷ κώνῳ εὐθείας | ||
| Ϙ . Ἡ ὑποτείνουσα εὐθεῖα ὑπὸ τὴν ἀπολαμβανομένην ἐν τῷ σκιάσματι τῆς γῆς περιφέρειαν τοῦ κύκλου , καθ ' οὗ |
| καὶ Σελήνη ἑξάδα , ἡ δὲ ἑβδομὰς κοινὴ πάντων , ὀγδοάδα δὲ Ἀφροδίτη , ἐννεάδα δὲ καὶ δεκάδα ἥλιος Ἄρης | ||
| . Κρόνος δὲ καὶ Ζεὺς ἀνὰ μοίρας ἐννέα , Τὴν ὀγδοάδα δ ' ἔσχε τῶν μοιρῶν Ἄρης Ἔμπροσθεν καὶ ὄπισθεν |
| προτέροις τοῦ δ γεννᾶται τῇ αὐτῇ ἐφόδῳ : τὸ γὰρ συγκεφαλαίωμα τῶν τριῶν , τοῦ τε α καὶ β καὶ | ||
| ἥττονος : ἑκατὸν γὰρ ιϚ ἐν ἑκατέροις τὸ τοῦ ἀριθμοῦ συγκεφαλαίωμα . Ἔστω ἡ ΑΒ μονάδων ιβ . ἐτμήθη εἰς |
| τὸ φανερὸν ἐξαλλάσσει . Τῶν δὲ ἐν τῷ ἡμικυκλίῳ τῷ ἀπολαμβανομένῳ ὑπὸ τοῦ ἰσημερινοῦ πρὸς τῷ θερινῷ τροπικῷ ἴσων περιφερειῶν | ||
| δὲ ΑΓ ἐλάσσων ἐστὶν ἑκατέρας αὐτῶν τῷ ὑπὸ τῆς ἐπισκοτήσεως ἀπολαμβανομένῳ μέρει τῆς τοῦ ἐκλείποντος διαμέτρου . Ἔστω τὸ τῆς |
| δωδεκάεδρον πρὸς τὸ εἰκοσάεδρον διὰ τὸ ὑπὸ τοῦ αὐτοῦ κύκλου περιλαμβάνεσθαι τό τε τοῦ δωδεκαέδρου πεντάγωνον καὶ τὸ τοῦ εἰκοσαέδρου | ||
| πάντας ἁπλῶς ἀκούοιμεν τοὺς ποιητὰς ὥστε καὶ Ὅμηρον καὶ Ὀρφέα περιλαμβάνεσθαι , δῆλον ὅτι καὶ ἑαυτὸν συμπεριλαμβάνει , ὡς οὐδὲ |
| ἥ γε μὴν ἐνάτη μετ ' αὐτὰς κρίνουσα , καὶ τριγωνικὴν πλευρὰν ἀποσώζουσα , διὰ τοιαύτην ἂν μᾶλλον ῥηθείη δύναμιν | ||
| ὄντα καὶ γόνιμα ὅ τε Τοξότης καὶ οἱ Ἰχθύες κατὰ τριγωνικὴν πρὸς τὰ φῶτα διάστασιν , ἥτις ἐστὶ συμφώνου καὶ |
| καὶ τῆς ὀρθίας πρὸς τὴν πλαγίαν . καὶ διὰ τὰ δεδειγμένα ἐν τῷ τεσσαρακοστῷ πρώτῳ θεωρήματι τὸ ΓΚΜ τρίγωνον τοῦ | ||
| , πάνθ ' ἅμα καὶ μιᾷ δείξει καὶ τὰ μήπω δεδειγμένα καὶ τὰ ἤδη ὡς καὶ τὰ ἐν τῷ δωδεκάτῳ |
| ἐναρμοσθῇ , μεταξὺ πεσεῖται τῶν Β καὶ Ε σημείων . ἐνηρμόσθω ἡ ΑΖ ἴση τῇ ἐκ τοῦ κέντρου , καὶ | ||
| εὐθειῶν ἐναρμόσαι τῷ ΑΚΓΗ κύκλῳ εὐθεῖαν ἴσην τῇ ΔΖ . ἐνηρμόσθω ἡ ΑΛΜ , καὶ ἐπεζεύχθω ἡ ΑΗ : ἴση |
| ' ἑτέρων συζυγιῶν ἀναπεπληρῶσθαι , πῶς οὐχὶ γέλοιον τοσαύτας φωνὰς συζύγως κατὰ τύχην σεσιγῆσθαι ; τούτου οὖν ἐν μηδενὶ μέρει | ||
| ὧν ἐστὶ καὶ ὁ Ἅβρων , θέμα ἐστίν , ὃ συζύγως οἱ αὐτοί φασι τῇ μὲν ἐγών τὴν ἱών , |
| καὶ ὕστεροι αὐτῶν ἔσονται ; τὸ γὰρ συμπέρασμα τῆς αὐτὸ περαινούσης ἀποδείξεως ὕστερον . ἀλλ ' οὐδὲ ἅμα ἄμφω , | ||
| πέφυκε . Συνέστηκε δὲ φυσικώτατα ἔκ τε τῆς ἀπείρου καὶ περαινούσης καὶ ἐκ τῆς ἀρτιοπερίσσου φύσεως καὶ αὐτὴ καὶ τὰ |
| , Γ στερεὸν ἴσον ἐστὶ τῷ ἀπὸ τῆς Β στερεῷ ἰσοπλεύρῳ μέν , ἰσογωνίῳ δὲ τῷ προειρημένῳ . Ἐκκείσθω στερεὰ | ||
| στερεὸν παραλληλεπίπεδον ἴσον ἐστὶ τῷ ἀπὸ τῆς μέσης στερεῷ παραλληλεπιπέδῳ ἰσοπλεύρῳ μέν , ἰσογωνίῳ δὲ τῷ προειρημένῳ . Ἔστωσαν τρεῖς |
| νεωστὶ γεγονυίας , τεθραμμένης δὲ ἐν γάλακτι : τὰ δὴ περιλαμβανόμενα ἐν αὐτῇ τρίγωνα ἔξωθεν ἐπεισελθόντα , ἐξ ὧν ἂν | ||
| κόσμου περιγραφῇ , πόλεως τρόπον τῇ τῶν ἀπλανῶν ἐξωτάτω σφαίρᾳ περιλαμβανόμενα , καὶ ὡς ὁ γεννήσας πατὴρ νόμῳ φύσεως ἐπιμελεῖται |
| καὶ ἐπὶ τοῦ λθʹ ἐλέγομεν , καὶ τὸ παραλελειμμένον τῷ στοιχειωτῇ τῆς εἰς ἀδύνατον ἀπαγωγῆς ὡσαύτως ἀποδείκνυται καὶ οὐδὲν δεῖ | ||
| γὰρ νοσοῦσι μηδὲν ὅλως ὑγιὲς φέρουσαι . καὶ τῷ μὲν στοιχειωτῇ οὐ περιάπτω τὸ ἁμάρτημα , τῷ γραφεῖ δέ : |
| ἡμέραις θέρους μεσοῦντος ἤδη καὶ ἡ λοιμώδης νόσος παντὶ τῷ θέματι Θρᾴκης τε καὶ Μακεδονίας ἐνέσκηψεν ἀρξαμένη μὲν ἀπὸ Θετταλίας | ||
| κεκακωμένος ᾖ τοῖς δυσὶ καιροῖς , ἐπίκεντρος δὲ ὑπάρχει τῷ θέματι τῆς ἐναλλαγῆς καὶ κακωθῇ ὑπὸ τοῦ ἀστέρος ἀπὸ τετραγώνου |
| ΘΜ ἐπὶ τὸν ἀπὸ τοῦ ΚΒ ⃞ον , μετὰ τοῦ ηκις ὑπὸ ΗΘ . ΚΒ , καὶ ὁ ἀπὸ τοῦ | ||
| ΒΔ , τῷ ἴσῳ ἀλλήλων ὑπερεχέτωσαν : δεικτέον ὅτι ὁ ηκις ὑπὸ ΑΒ . ΒΓ , προσλαβὼν τὸν ἀπὸ τοῦ |
| στίχῳ : τὸ δ ' αὐτὸ διάστημα ἐν τῷ κάτω στίχῳ εἰς ιεʹ ὥρας τοῦ τελείου ὅρου : ἔστι δὲ | ||
| στίχου μονάδος ὑπερέχει δυάδι : καὶ ἔστιν ἐν τῷ δευτέρῳ στίχῳ μεταξὺ τῶν γ καὶ τῆς μονάδος ὁ β . |
| μάλιστα περὶ τὴν ιθʹ μοῖραν , οἶκον δὲ Ἄρεως , τριγωνιζόμενον δὲ σὺν τῷ Λέοντι καὶ τῷ Τοξότῃ : τὸ | ||
| τοῦ Διὸς περὶ ιεʹ μοῖραν μάλιστα , οἶκος Σελήνης , τριγωνιζόμενον δὲ σὺν τῷ Σκορπίῳ καὶ τοῖς Ἰχθύσιν : ἔστι |
| στοιχεῖα ἐξ ὧν συνέστηκε τὸ ἡμέτερον σῶμα , ἑνὶ ἑκάστῳ στοιχείῳ ἔτος α : δηλοῖ δὲ ὅτι μόνα τὰ τέσσαρα | ||
| τῶν κατὰ συμβεβηκὸς διαλέγεται ἡμῖν ὁ φιλόσοφος ἐν τῷ Ε στοιχείῳ πολυπραγμονῶν αὐτὰ καὶ πολυειδῶς ἐξετάζων , περὶ δὲ τῶν |
| ἐκ πλειόνων μέν εἰσιν ἁπλῶν λόγων ἡνωμένων δὲ ὑπὸ τοῦ συναπτικοῦ προσαγορευομένου συνδέσμου , οἷον εἰ ἡμέρα ἐστίν , ἥλιος | ||
| ἐν οἷς συμπλέκει λόγους , ἔχων δὲ καὶ τὴν τοῦ συναπτικοῦ , ἐν οἷς ἀκολουθίας ἐστὶ παραστατικός , οὐκ ἀπὸ |
| ὡς δὲ οἱ ἀκριβέστεροι λέγουσι διὰ τὸ φευκτέον εἶναι ἐν δακτυλικῷ μέτρῳ τὸ παράλληλον τῶν τριῶν βραχειῶν . . . | ||
| : κοινὴ γὰρ συλλαβὴ τὰ τέλη τῶν λέξεων ἐν τῷ δακτυλικῷ λελόγισται . Τὸ ζʹ προσοδιακὸν τρίμετρον βραχυκατάληκτον ἐξ Ἰωνικοῦ |
| : τὸ ιδʹ ” ἀλλ ' ἀποσεισάμεναι νέφος ὄμβριον “ δακτυλικὸς τετράμετρος : [ τὸ ιεʹ ] ” ἀθανάταις ἰδέαις | ||
| δίμετρον : τὸ ζʹ ⌋ ” τηλεφανεῖς σκοπιὰς ἀφορώμεθα “ δακτυλικὸς τετράμετρος : τὸ ηʹ ” καρπούς τ ' ἀρδομέναν |
| . νεοχμόν : νεώτατον . ὡς καὶ Ἀλκμὰν ἐν αʹ Μελῶν . ξυντεκμαίρεσθαι : συσσημειοῦσθαι . τέκμαρ γὰρ καὶ τεκμήριον | ||
| λύγῳ τινὲς στεφανοῦνται ; φησὶν γὰρ ἐν τῷ δευτέρῳ τῶν Μελῶν : Μεγίστης δ ' ὁ φιλόφρων δέκα δὴ μῆνες |
| 〛 μὴ εἶναι μήτε ἐκτὸς τοῦ κόσμου μήτε ἐν τῷ κόσμῳ . Πυθαγόρας Πλάτων Ἀριστοτέλης δεξιὰ τοῦ κόσμου τὰ ἀνατολικὰ | ||
| ταύτας μερίζουσαν . ἐπεὶ τοίνυν , ὅπερ ἐστὶν ἥλιος ἐν κόσμῳ , τοῦτο ἐν σώματι ὀφθαλμός , τὸ αὐτὸ καὶ |
| ἀπὸ μονάδος πρῶτος τέλειός ἐστιν ἰσούμενος τοῖς ἑαυτοῦ μέρεσι καὶ συμπληρούμενος ἐξ αὐτῶν , ἡμίσους μὲν τριάδος , τρίτου δὲ | ||
| οὕτως ἐκ τούτου κἀκείνων ὁ τοῦ προκειμένου γένους ὁρισμὸς εὑρεθήσεται συμπληρούμενος . οἷον εἰ γραμμὴ εἴη τὸ γένος τὸ εἰς |
| αὐτὰ οἱ τοῖχοι . καὶ οἰκήματα ἐνταῦθά ἐστιν ὀρόφῳ τε ἐπιχρύσῳ καὶ ἀλαβάστρῳ λίθῳ , πρὸς δὲ ἀγάλμασι κεκοσμημένα καὶ | ||
| ὁμοιώματι σελήνης ὁλοτελοῦς . προσβάλλοντος δὲ τοῦ ἡλίου τῷ τοιούτῳ ἐπιχρύσῳ χαλκῷ αἴγλη τις ἐντεῦθεν ἀπήντᾳ τοῖς ὁρῶσιν καὶ οὐ |
| δυνάμει ἀσυμμέτρων , ἐν δὲ τῷ ηʹ γένεσιν συμμέτρων καὶ ἀσυμμέτρων μήκει καὶ δυνάμει . Τὸ τὰ σύμμετρα μεγέθη λόγον | ||
| ἐστὶν ἤτοι δύο μέσα δυναμένη ] . Δύο ἄρα μέσων ἀσυμμέτρων ἀλλήλοις συντιθεμένων αἱ λοιπαὶ δύο ἄλογοι γίγνονται ἤτοι ἐκ |
| μὲν οὖν περιφερόγραμμοι τὰς συνελισσούσας αἰτίας ἀπομιμοῦνται , αἱ δὲ εὐθύγραμμοι τὰς τῶν αἰσθητῶν , αἱ δὲ μικταὶ τὰς τὴν | ||
| παραλληλόγραμμον τῷ ΔΖ παραλληλογράμμῳ . καὶ ἐπεὶ δύο γωνίαι ἐπίπεδοι εὐθύγραμμοι ἴσαι εἰσὶν αἱ ὑπὸ ΔΕΖ , ΝΛΜ , καὶ |
| : τὴν ὀροφήν τε πᾶσαν ἐπὶ πλάτος δυοῖν ὀργυιῶν ὑπάρχειν μονόλιθον , ἀστέρας ἐν κυανῷ καταπεποικιλμένην : ἑξῆς δὲ τοῦ | ||
| τὴν δύναμιν ἐνδεδυμένοι εἰσί . διὰ τοῦτο βλέπεις τὸν πύργον μονόλιθον γεγονότα μετὰ τῆς πέτρας : οὕτω καὶ οἱ πιστεύσαντες |
| κατὰ τὸ διατονικὸν γένος συναναπληρώσας φθόγγοις ἀναλόγοις , οὕτως τὴν ὀκτάχορδον ἀριθμοῖς συμφώνοις ὑπέταξε , διπλασίῳ , ἡμιολίῳ , ἐπιτρίτῳ | ||
| πρὸς τὰς ἁρμονίας κέχρηνται . ἐνίοτε μὲν οὖν αὗται τέλειον ὀκτάχορδον ἐπλήρουν , ἔσθ ' ὅπη δὲ καὶ μεῖζον ἑξατόνου |
| . Γεγράφθωσαν γὰρ διὰ τῶν Δ Ε παράλληλοι κύκλοι οἱ ΒΔΛ ΝΘΕΚ : [ γίνεται ἄρα μείζων ἢ ὁμοία ἡ | ||
| οὖν ἐπίπεδά ἐστιν ὀρθὰ ἀλλήλοις τό τε ΓΚΛ καὶ τὸ ΒΔΛ , καὶ τῇ κοινῇ τομῇ αὐτῶν τῇ ΚΛ ἐν |
| καὶ τεσσάρων καὶ πέντε συμπληροῦσιν ἀριθμὸν τὸν δώδεκα , τοῦ ζῳοφόρου κύκλου παράδειγμα , διπλασιασθείσης . . . . . | ||
| τόπῳ αὐτῆς περὶ τὸ αὐτὸ στρεφομένης , ἐνεργούσης δὲ τὴν ζῳοφόρου κύκλου . . . , παραδιδοῦσα τὸ πᾶν τοῦτο |
| ἱστᾶν τοὺς κίονας ἐν ὀρθότητι καὶ ἡ γεωμετρία πρὸς τὰ μηχανικά , τῆς δὲ τοῦ διαλογιστικοῦ καὶ βουλευτικοῦ οὐχ ἱκανὸν | ||
| ἱστᾶν τοὺς κίονας ἐν ὀρθότητι καὶ ἡ γεωμετρία πρὸς τὰ μηχανικά , τῆς δὲ τοῦ διαλογιστικοῦ καὶ βουλευτικοῦ οὐχ ἱκανὸν |
| αὐτὸ μέρος τοῦ τῶν γωνιῶν κανόνος ἐπισκεψόμεθα τὰς παρακειμένας τῷ ἀριθμῷ τῶν ὡρῶν μοίρας , ἐὰν μὲν πρὸ τοῦ μεσημβρινοῦ | ||
| διαφέρον : τὸ οὖν γένος κατηγορεῖται κατὰ πολλῶν διαφερόντων τῷ ἀριθμῷ καὶ τῷ εἴδει . ἐδείχθη οὖν ὅτι μόνον τὸ |
| ὀφθαλμὸν πρὸς τοῖς μετώποις . οὓς ὁ Κρόνος μὲν τῷ ταρτάρῳ προσέδησεν , ὡς ἐπιβούλους πτοούμενος , ὁ δὲ Ζεὺς | ||
| πυρὸς ψοφεῖν ἀνάγκη , καὶ ἵνα φοβῶνται οἱ ἐν τῷ ταρτάρῳ , καθάπερ οἱ Πυθαγόρειοι λέγουσι . καὶ ὅλως διττὴ |
| γίνεσθαι , περὶ καρκίνον γενομένου τοῦ ἡλίου , περὶ μεσημβρίαν ἀτρεκῆ ἐπὶ τριακοσίους τὴν διάμετρον σταδίους μηνύει σαφῶς , ὅτι | ||
| δὲ ὅμως οὐδὲν καὶ τούτων οὕτως ἐχόντων συγγενομένους ἡμᾶς τὴν ἀτρεκῆ διάπειραν ἀλλήλων λαβεῖν : δύναιτο γὰρ ἂν καὶ τὰ |
| πρὸ αὐτῆς ὁ δύο πλείων [ τοῦ αʹ ] τοῦ ὑπόπροσθεν ὑπάρχει , καὶ ῥίζα γε τῆς πυθμενικῆς τοῦ μείζονος | ||
| δὲ μεταξὺ ἀμφοῖν ἴση [ τῷ αʹ βʹ ] τοῖς ὑπόπροσθεν [ ἤγουν ἐστὶ γʹ ] : εἰδοποιὸς ἄρα μεσότητος |
| κατὰ τὸ αὐτὸ πρὸς ἀλλήλους τε καὶ τοὺς ἐν τῷ ζῳδιακῷ . ἐπὶ μὲν τοίνυν τῶν κατὰ τὸν Καρκῖνον ἀστέρων | ||
| δὲ ἐφ ' ἑκάστου καὶ τό τε μεσουρανοῦν ἐν τῷ ζῳδιακῷ κύκλῳ ζῴδιον καὶ τὴν μοῖραν αὐτοῦ , πρὸς δὲ |
| ἐνιαυτὸν συνάγοντος , Σάρδιν ὀνομασθῆναι τὴν πόλιν . Νέον δὲ Σάρδιν τὸ νέον ἔτος ἔτι καὶ νῦν λέγεσθαι τῷ πλήθει | ||
| ἐτίμησαν , δῆλον ἐξ αὐτῆς τῆς Λυδῶν βασιλίδος πόλεως . Σάρδιν γὰρ αὐτὴν καὶ Ξυάριν ὁ Ξάνθος καλεῖ : τὸ |
| ῥαφή : ἀντὶ τοῦ παραλογίζεται , ὡς καὶ ἐν εʹ Ἐπιδημιῶν φησιν : ἔκλεψαν δέ μου τὴν γνώμην αἱ ῥαφαὶ | ||
| συνώνυμον θεὶς τὸ ἀλύειν τῷ πλανᾶσθαι . κεῖται ἐν τετάρτῳ Ἐπιδημιῶν καὶ ἐν αʹ Γυναικείων καὶ ἐν Ἀφορισμοῖς . ἀπεδείξαμεν |
| τούς τε περιττοὺς καὶ τοὺς ἀρτιάκις ἀρτίους καὶ ποιήσομεν στίχους περισσαρτίων καὶ εὑρίσκομεν τὸ ζητούμενον : γ , ε , | ||
| παραδείγματος : εἰ δοκεῖ μέν , ἅμα τοὺς στίχους τῶν περισσαρτίων ἐκθώμεθα : εὑρήσεις τοίνυν ἐπὶ τῶν στίχων κοινωνίαν πρὸς |
| τόπους αὗται πόλεις ἀπερίγραφοί τέ εἰσιν ἀριθμῷ καὶ πολιτείαις χρῶνται διαφερούσαις καὶ νόμοις οὐχὶ τοῖς αὐτοῖς , ἄλλα γὰρ παρ | ||
| δυναστείαις , ἢ κατὰ μοναρχίαν δυναστευούσαις ἢ κατὰ πλούτων ὑπεροχὰς διαφερούσαις ἢ γενῶν , ἢ τὴν Νέστορος ἐάν ποτέ τις |
| ΒΓ τῇ ΣΛ , καὶ ὅμοιον τὸ ΘΓΒ τρίγωνον τῷ ΘΛΖ , καί ἐστιν , ὡς ἡ ΘΒ πρὸς ΓΒ | ||
| ἡ ΣΥ . λέγω , ὅτι τὸ ΣΛΥ τρίγωνον τοῦ ΘΛΖ τριγώνου μεῖζόν ἐστι τῷ ΘΓΒ . ἤχθω γὰρ διὰ |
| εἰ μὴ κικίννους ἀξίους λίτραιν δυοῖν . σὺν δὲ τῇ λίτρᾳ καὶ ἄλλα ὠνόμασε νομισμάτων ὀνόματα Ἐπίχαρμος ἐν Ἁρπαγαῖς ὥσπερ | ||
| γὰρ ια καὶ ιγ # τοῦ ἐλαίου μίξειϲ τότε τῇ λίτρᾳ τοῦ κηροῦ . Ἐν ταῖϲ ἑψήϲεϲι τῶν φαρμάκων ἡ |
| δὲ τῇ εʹ κατὰ τὴν λʹ μάλιστα καὶ πέμπτην ἡμέραν διαπλάττεσθαι ἐν μέσῳ αὐτοῦ μελίττης μὲν μεγέθει ἐοικὸς τὸ βρέφος | ||
| καὶ ποιήσαντες τὸν τριακονταπέντε καθ ' ὅν φασι τὰ ἑπτάμηνα διαπλάττεσθαι , εἰ κατὰ τὸν ἓξ πολυπλασιάσαιμεν αὐτόν , ποιήσαιμεν |
| ἡ νόσος καὶ ἐν τῇ καταρχῇ , ἀπὸ κραιπάλης καὶ περιφορῶν καὶ πλήθους καὶ ἔσονται στεγνοὶ πυρετοὶ καὶ τῶν ὑποχονδρίων | ||
| . ιϚʹ Ἐὰν δὲ μὴ ᾖ ὁ ἐνιαυτὸς ἐξ ὅλων περιφορῶν ἡλίου , ἀλλ ' ἐπίῃ ἐφ ' ὅλαις περιφοραῖς |
| ἐριστικοὶ ἀλλὰ τὸ ὅλον τοῦτο πειραστικοί . ὁ δέ γε Βρύσων κατὰ κοινόν τι τετραγωνίζειν ἐπιχειρῶν καὶ οὐ κατὰ τὸ | ||
| συμπεράσματα , οἱ δὲ παρὰ τὰς ἐν ἰατρικῇ Ὥσπερ ὁ Βρύσων ἐλέγχεται μὴ τετραγωνίζων τὸν κύκλον διὰ τὸ μὴ ἐκ |
| κινεῖται , ἀλλὰ κεκίνηται : εἶτ ' οὐκ αἰσθάνεται περιπίπτων ἀναριθμήτοις τισὶν ἀτοπίαις , πρῶτον μέν , ὅτι τὴν κίνησιν | ||
| αὐτοὶ οὗτοι οἱ Λάκωνες τετρακόσιοι ὄντες οὐκ εἶξαν μυριάσι βαρβάρων ἀναριθμήτοις , οὐ Λούκουλλος Τιγράνῃ , οὐδὲ Πομπήιος Μιθριδάτῃ , |
| πλείονας ἔχει : ἔχει γὰρ καὶ ἄλλο τέταρτον ἡμέρας καὶ ἑκατοστὸν μέρος , καθ ' ἣν καὶ τὸ βίσεξτον ἀπαντᾷ | ||
| ἄχρι τοῦ τὸ εἰκοστὸν μέρος αὐτοῦ ἀφεψηθῆναι , γύψου τὸ ἑκατοστὸν προσεμβάλλοντες . Λακεδαιμόνιοι δὲ ἕως τοσούτου εἰς τὸ πῦρ |
| ἐφάνη τὸ συνεχές , ὅπερ ἐστὶ πηλίκον , ἀντιπάσχον τῷ διῃρημένῳ , τουτέστι ποσῷ , κέχρηται δὲ ἤδη τὸ πρότερον | ||
| καὶ εὑρεθῇ ἐν τῷ διορύγματι τουτέστιν ἐν τῷ τετρημένῳ καὶ διῃρημένῳ , ὃς τὸν ἴδιον νοῦν ἐνεργοῦντα οἶδεν , ἀλλ |
| , τὰ δὲ νότια μᾶλλον τῷ ὁρίζοντι πελάζειν διὰ τὸ ἐγκεκλίσθαι ἀπὸ τῶν βορείων ἐπὶ τὰ νότια τὸν κόσμον ἐν | ||
| Τούτου δ ' αἴτιόν ἐστι τὸ μὴ ἐπίσης παρὰ πᾶσιν ἐγκεκλίσθαι τὸν κόσμον , μηδὲ τὸν βόρειον τῶν πόλων τὰς |
| τὴν ΖΛ . δύο δὴ τρίγωνά ἐστι τὰ ΒΑΕ , ΗΖΛ μίαν γωνίαν μιᾷ γωνίᾳ ἴσην ἔχοντα τὴν ὑπὸ ΒΑΕ | ||
| πάλιν ἀποκατασταθῇ ὅθεν ἤρξατο φέρεσθαι , τὰ μὲν ΚΓΔ , ΗΖΛ ἡμικύκλια ἐνεχθήσεται κατὰ τῶν σφαιρῶν , τὸ δὲ ΑΖ |
| . Κουρήτιδα δὲ ἰδίως καὶ Ὀρφεὺς καὶ Πυθαγόρας αὐτὴν τὴν ἐννεάδα ἐκάλουν , ὡς Κουρήτων ἱερὰν ὑπάρχουσαν τριῶν τριμερῆ , | ||
| κατὰ παρωνυμίαν τοῦ ἕν : ὅτι δὲ οὐδὲν ὑπὲρ τὴν ἐννεάδα ὁ ἀριθμὸς ἐπιδέχεται , ἀλλ ' ἀνακυκλεῖ πάντα ἐντὸς |
| αὐτῶν ια . καὶ ἔστιν ὡς τξ πρὸς μζ μβʹ μʹʹ οὕτως πγ πρὸς ια . . . , . | ||
| σκιᾶς κατὰ μὲν τὸ μέγιστον ἀπόστημα τῆς σελήνης ἑξηκοστὰ μʹ μʹʹ , κατὰ δὲ τὸ ἐλάχιστον ἀπόστημα ἑξηκοστὰ μϚʹ . |
| δὲ οἱ τριάδι ἀλλήλων ὑπερέχοντες ἐν τῇ συνθέσει ἀπὸ μονάδος πενταγώνους ἀποτελοῦσιν , ἑξαγώνους δὲ οἱ τετράδι , ἀεί τε | ||
| πυραμίδας τριγώνους βάσεις ἐχούσας . καί εἰσι ιβ μὲν πυραμίδες πενταγώνους βάσεις ἔχουσαι τὸ στερεὸν τοῦ δωδεκαέδρου , εἴκοσι δὲ |
| τουτέστιν οἱ κινοῦντες ἔστωσαν ἄνθρωποι μʹ , ἡ δὲ ὑπὸ ΚΜΝ γωνία , τουτέστιν ἡ ὑπὸ ΕΘΛ , διμοίρου ὀρθῆς | ||
| , καὶ τῇ ὑπὸ ΑΘΔ γωνίᾳ ἴση συνεστάτω ἡ ὑπὸ ΚΜΝ , καὶ ἀπὸ τῶν Κ Λ κάθετοι αἱ ΛΟ |
| πλατυνομένης , καὶ τοῦ μὲν μήκους ἐπὶ παραλλήλου τινὸς τῷ ἰσημερινῷ γραφομένου , τοῦ δὲ πλάτους ἐπὶ μεσημβρινοῦ , δεῖ | ||
| ἡμέραν , μείζονα μέντοι τῆς νυκτός , μέχρι πελάσῃ τῷ ἰσημερινῷ , διαμένουσαν . Ἐπὰν δὲ τούτου ἐφαψάμενος φθινοπωρινὴν ἰσημερίαν |
| εἰσιν κορυφαί , ὧν βάσεις αἰεὶ τὸ αὐτὸ πλάτος τοῦ πρισματίου , ἀλλὰ καὶ παραλλήλων τριγώνων τῷ ΑΒ ἐπιπέδῳ καὶ | ||
| καὶ μέρος τοῦ σώματος αὐτοῦ φαίνηται ὑπὲρ τὸ πλάτος τοῦ πρισματίου , δεήσει πάλιν τὸ πρισμάτιον ἐγγυτέρω τῆς ὄψεως κινοῦντα |
| καὶ ἑκατὸν εἶναι [ . κόσμους ] συντεταγμένους κατὰ σχῆμα τριγωνοειδές , οὗ πλευρὰν ἑκάστην ἑξήκοντα κόσμους ἔχειν . τριῶν | ||
| ἀλλὰ τρεῖς καὶ ὀγδοήκοντα καὶ ἑκατὸν εἶναι συντεταγμένους κατὰ σχῆμα τριγωνοειδές , οὗ πλευρὰν ἑκάστην ἑξήκοντα κόσμους ἔχειν : τριῶν |
| ὑπὸ τῶν λοιπῶν περιεχομένην . καὶ ἡ μὲν ἀπόδειξις τοῦ στοιχειωτοῦ φανερά . Τὸ μὲν οὖν πρῶτον βιβλίον ἄχρι τούτων | ||
| τῶν λοιπῶν δύο , δειχθήσεται , ὡς καὶ παρὰ τοῦ στοιχειωτοῦ ἐδείχθη [ ἐν τῇ ] τοῦ ὀκταέδρου συστάσει . |
| εἶναι αὐτοῦ , ᾗ ὑπερέχων καὶ ᾗ εὐεργέτης ἐν τῷ ὑπερεχομένῳ καὶ εὐεργετηθέντι . φιλητὸς ἄρα ὁ εὐεργετηθεὶς καὶ φυσικόν | ||
| λόγος ἐγγυτάτω τὴν ὑπεροχὴν ἴσην ἔχων καὶ τὴν αὐτὴν τῷ ὑπερεχομένῳ , τῶν δὲ ὁμοφώνων ἑνωτικώτατον καὶ κάλλιστον τὸ διὰ |
| πόνων ἀρωγήν , ἀνῆκεν τοῖς ἐκγόνοις : θρεψαμένη δὲ καὶ αὐξήσασα πρὸς ἥβην ἄρχοντας καὶ διδασκάλους αὐτῶν θεοὺς ἐπηγάγετο : | ||
| , ἠγάπησε δὲ τῶν Ἀθηναίων ἡ πόλις καὶ θρέψασα καὶ αὐξήσασα καὶ κοσμήσασα πανταχῆ διέπεμψεν . οὗτοι συγκρύπτουσι μὲν δυσγένειαν |
| ὀχεῖσθαι , τοῦ μύθου τὴν τῆς σφαίρας εὕρεσιν καὶ καταγραφὴν αἰνιττομένου . γενέσθαι δ ' αὐτῷ πλείους υἱούς , ὧν | ||
| διὰ χρυσοῦ πάντα νικήσεις . Φιλίππῳ δὲ ἐδόθη τοῦτο χρησμὸς αἰνιττομένου τοῦ θεοῦ ὡς διὰ προδοσίας πάντων κρατήσει . Ἄριστα |
| προφέρειν ἐτάχθη , μέχρι ἂν κορυφωθῇ τὸ μήκιστον , ἔπειτα ὑπολείπειν , ἄχρι ἂν εἰς τοὐλάχιστον ἀφί - κηται , | ||
| , διὰ τὸ αὐτοὺς ὀργίζεσθαι τοῖς Ἀθηναίοις καὶ μηδ ' ὑπολείπειν λόγον αὐτοῖς : μηδενὶ ἐπιτρέπειν λέγειν περὶ αὐτῶν . |
| τροπῇ τοῦ δ εἰς ζ καὶ τοῦ ε εἰς η ἐκβληθέντος τοῦ ι , οἱονεὶ τὸ μὴ ἔχον διέχειαν ἢ | ||
| σὺ δὲ πετάσῃς ἵνα πλήξῃς ἐκεῖνον , εὐθὺς τεθνήξῃ , ἐκβληθέντος τοῦ κέντρου : ζωὴ γὰρ ἐν σοὶ ἐνυπάρχει τὸ |
| ἦν ἵπποι ἐς ἔτος ἑκατὸν καὶ ὑποζύγια πεντακόσια καὶ πρόβατα τρισμύρια . χρήματα γὰρ οὐκ ἦν Οὐξίοις οὐδὲ ἡ γῆ | ||
| σταθμοὶ διακόσιοι δεκαπέντε , παρασάγγαι χίλιοι ἑκατὸν πεντήκοντα , στάδια τρισμύρια τετρακισχίλια διακόσια πεντήκοντα πέντε . χρόνου πλῆθος τῆς ἀναβάσεως |
| ἁρμονίαν μέχρι τῶν στερεῶν προάγειν . ἀριθμῶν καὶ δυσὶ συναρμόζεσθαι μεσότησιν , ὅπως διὰ παντὸς ἐλθοῦσα τοῦ τελείου στερεοῦ κοσμικοῦ | ||
| οὕτως διακειμένων τῶν τεσσάρων ἐπιφαίνεσθαι τὴν γεωμετρικὴν ἐμπλέγδην ἀμφοτέραις ταῖς μεσότησιν ἀντεξεταζομένην , ὡς ὁ μέγιστος πρὸς τὸν τρίτον ἀπ |
| τὸ ΗΘ . καὶ ἔστιν ἰσογώνιον τὸ ΓΗΚ τρίγωνον τῷ ΕΘΛ , ὅτι καὶ ἡ ΓΚ παράλληλός ἐστι τῇ ΕΛ | ||
| ΚΘΛ ἴση . ἐπεὶ οὖν δύο αἱ ΚΘΛ δυσὶν ταῖς ΕΘΛ ἴσαι , καὶ γωνία γωνίᾳ , καὶ βάσις ἡ |
| . ἐμπυικοὶ καλοῦνται , οἷϲ ἂν ἀπόϲτημα γενόμενον ἐν τῷ ὑπεζωκότι τὰϲ πλευρὰϲ ἔνδοθεν ὑμένι ἢ ἐν ἑτέρῳ τινὶ τῶν | ||
| ἴσως ἀπορήσει τις ὅτι καὶ πόθεν ἡ χολὴ ἐν τῷ ὑπεζωκότι ; καὶ λέγομεν ὅτι ἢ ἀπὸ τῶν παρακειμένων μορίων |
| ἡλίου τῆς ἐπιπροσθούσης αὐτῷ κορυφῆς : ὥστ ' ἂν αὕτη σταδιαία ᾖ , μείζονα δεήσει σταδιαίας εἶναι τὴν τοῦ ἡλίου | ||
| προαστείων : ἀπὸ δὲ τοῦ αὐχένος ἐπὶ τὰς κορυφὰς ἄλλη σταδιαία λείπεται πρόσβασις ὀξεῖα καὶ πάσης βίας κρείττων : ἔχει |
| πράγματος προκόπτει . Τῆς τοῦ τόπου νοήσεως δεδηλωμένης καὶ τῶν συζυγούντων αὐτῷ πραγμάτων ὑποδεδειγμένων ἀπολείπεται , ὡς ἔστιν ἔθος τοῖς | ||
| τῇδε δὲ ἀπὸ δυάδος ἀρτίους ἀπὸ μέσων ἐπὶ πέρατα , συζυγούντων κατ ' ἰσότητα τῶν ἑκατέρωθεν εὐτάκτων . Ἐπιμόριος δὲ |
| καὶ παράλληλοί εἰσιν διὰ τὸ λγʹ τοῦ αʹ . τὸ ΚΒΟΣ ἄρα τετράπλευρον . , . ] τετράπλευρόν ἐστιν , | ||
| κύκλος . Ἤχθω ἀπὸ τοῦ Α σημείου ἐπὶ τὸ τοῦ ΚΒΟΣ τετραπλεύρου ἐπίπεδον κάθετος ἡ ΑΨ καὶ συμβαλλέτω τῷ ἐπιπέδῳ |
| Τραιανῷ δὲ τῷ αὐτοκράτορι ἐν Παρθίᾳ ὄντι καὶ τῆς θαλάσσης ἀπέχοντι ἡμερῶν παμπόλλων ὁδὸν Ἀπίκιος ὄστρεα νεαρὰ διεπέμψατο ὑπὸ σοφίας | ||
| : ὁ δὲ ἀντικείμενος τῷ διὰ Μερόης καὶ νοτιώτατος τῷ ἀπέχοντι τοῦ Η τμήματα ρλαʹ γʹʹ ιβʹʹ , ὡς ὁ |
| τζʹ , γίγνονται τμʹ νεʹ . ταύτας εὗρον ἐν τῷ ἐγκλίματι περὶ τὴν κθʹ τοῦ Ὑδροχόου καὶ προσέθηκα τὰς ηʹ | ||
| φῶς πλῆρες καὶ ἡ ὥρα ἡ δʹ πλήρης ψηφισθεῖσα σὺν ἐγκλίματι ἤνεγκεν ὡροσκόπον Ταύρῳ μοίρᾳ κθʹ . κατὰ δὲ τὸ |
| , οὕτω καὶ νῦν εἰς τύχην ἀνάγει τὸν λόγον . ρπαʹ Τέχνῃ λαβεῖν Ἵνα τεχνικῶς τις διέλῃ πρῶτον εἰς δύο | ||
| ὁ λόγος ἐστὶ τῆς ΗΖ πρὸς τὴν ΖΘ ὁ τῶν ρπαʹ ∠ ʹʹγʹʹ πρὸς τὰ μϚʹ ∠ ʹʹ καὶ κʹʹ |