| τὸ φανερὸν ἐξαλλάσσει . Τῶν δὲ ἐν τῷ ἡμικυκλίῳ τῷ ἀπολαμβανομένῳ ὑπὸ τοῦ ἰσημερινοῦ πρὸς τῷ θερινῷ τροπικῷ ἴσων περιφερειῶν | ||
| δὲ ΑΓ ἐλάσσων ἐστὶν ἑκατέρας αὐτῶν τῷ ὑπὸ τῆς ἐπισκοτήσεως ἀπολαμβανομένῳ μέρει τῆς τοῦ ἐκλείποντος διαμέτρου . Ἔστω τὸ τῆς |
| ὑπὸ ΔΓΗ τῇ ὑπὸ ΔΖΗ : ἐν γὰρ τῷ αὐτῷ τμήματι τοῦ κύκλου εἰσίν . ἡ δὲ ὑπὸ ΔΖΗ ἐδείχθη | ||
| ὑπὸ ΘΑΓ ἴση ἐστὶ τῇ ἐν τῷ ἐναλλὰξ τοῦ κύκλου τμήματι γωνίᾳ τῇ ὑπὸ ΑΒΓ . ἀλλ ' ἡ ὑπὸ |
| ἑκατέρᾳ : καὶ γωνία ἡ ὑπὸ ΒΑΓ γωνίᾳ τῇ ὑπὸ ΕΔΗ ἴση : βάσις ἄρα ἡ ΒΓ βάσει τῇ ΕΗ | ||
| πλείονα σημεῖα ἢ δύο . ἔστωσαν ἀντικείμεναι αἱ ΑΒ , ΕΔΗ , καὶ ὑπερβολὴ ἡ ΑΓ τῆς ΑΒ ἐφαπτέσθω κατὰ |
| προσλαβὼν τὸν ἐλάσσονα ἀριθμὸν ἴσος ᾖ τῷ ἀπὸ τοῦ ἐλάσσονος κύβῳ προσλαβόντι τὸν μείζονα ἀριθμόν . Ἔστω ὁ μὲν ʂ | ||
| β ἐν μορίῳ τῷ ἀπὸ ΔΥ α # Μο β κύβῳ . καὶ ἔστιν τὸ μόριον κυβικόν : ἔστω ΔΥ |
| ΑΓ . καὶ ἐπεὶ τὸ ΑΒΓ ὀρθογώνιόν ἐστιν , ἐν ἡμικυκλίῳ ἄρα ἐστίν , οὗ διάμετρος ἡ ΑΓ : περιγραφὲν | ||
| ὥστε καὶ ἡ πρὸς τῷ Ε ὀρθή ἐστιν : ἐν ἡμικυκλίῳ ἄρα ἐστίν : διάμετρος ἄρα ἐστὶν ἡ ΑΘ . |
| ΑΓ τετραγώνων τῷ δὶς ὑπὸ τῶν ΓΑ , ΑΔ περιεχομένῳ ὀρθογωνίῳ . Ἐπεὶ γὰρ εὐθεῖα ἡ ΓΑ τέτμηται , ὡς | ||
| ὀρθογώνιον ἴσον ἐστὶν τῷ ὑπὸ τῶν ΛΔ , ΔΜ περιεχομένῳ ὀρθογωνίῳ , ἕξομεν καὶ τὸ ὑπὸ τῶν ΛΔ , ΔΜ |
| τοῦ ἀπὸ ΑΘ πρὸς τὸ ἀπὸ ΑΕ ἴση ἐστὶν τῷ περιεχομένῳ ὀρθογωνίῳ ὑπό τε τῆς ΕΘ καὶ τῆς ὑπεροχῆς ᾗ | ||
| ἀσυμπτώτων πρὸς τῷ κέντρῳ τῆς τομῆς εὐθείας ἴσον περιεχούσας τῷ περιεχομένῳ ὑπὸ τῶν ἀποτεμνομένων εὐθειῶν ὑπὸ τῆς ἐφαπτομένης κατὰ τὴν |
| καὶ ὑφ ' ἡμῶν διχῶς . Ἔστω γὰρ κύκλου τοῦ ΚΛΘ περιφέρεια ἡ ΛΘ , καὶ δέον ἔστω τεμεῖν αὐτὴν | ||
| τοῦ ΔΖ , τὸ δὲ ΗΘ τοῦ ΖΗ καὶ ὁ ΚΛΘ κύκλος μείζων τοῦ ΚΛΔ . Ἐπὶ τὰ προβλήματα πάλιν |
| περιεχομένη ὑπὸ τῶν ΚΞΛ ἴση τῇ πρὸς τῷ Θ , περιεχομένῃ δὲ ὑπὸ τῶν ΖΘΕ . ἔτι κείσθω τῇ ὑπὸ | ||
| τῶν τόπων ἀπηρτημένην . κεῖσθαι δὲ ταύτην ἔν τινι νήσῳ περιεχομένῃ μὲν ὑπὸ τοῦ Τρίτωνος ποταμοῦ , περικρήμνῳ δὲ καὶ |
| ἰξυόθεν κατιόντων . τοῦ γὰρ νοτιωτέρου τῶν ἡγουμένων ἐν τῷ πλινθίῳ εἷς μόνος προηγεῖται λαμπρὸς ἀστήρ , ὁ νῦν ἐν | ||
| τὸ σχῆμα , Ἀφροδίτης ἐστὶν ἐν αὐτῇ ναὸς καλούμενος ἐν πλινθίῳ καὶ ἄγαλμα λίθου . στήλαις δὲ ἐπειργασμένοι τῇ μὲν |
| κύκλος γεγράφθω ὁ ΕΖΗΓ , κέντρῳ δὲ τῷ Β , διαστήματι δὲ τῷ ΒΔ κύκλος γεγράφθω ὁ ΕΘΗΔ , καὶ | ||
| γεγράφθω ὁ ΔΚΛ : πάλιν κέντρῳ μὲν τῷ Η , διαστήματι δὲ τῷ ΗΘ κύκλος γεγράφθω ὁ ΚΛΘ , καὶ |
| : καὶ κέντρῳ τῷ Η καὶ διαστήματι τῷ ἀπέχοντι αὐτοῦ σημείῳ ἐπὶ τῆς ΗΖ τμήματα οθʹ κύκλον γράψομεν τὸν ἐσόμενον | ||
| θρέψοντα προάγει , καὶ τὴν ἐκ τῶν θηρατῶν ἐπιβουλὴν διδάσκει σημείῳ τινὶ ἀτεκμάρτῳ , καὶ τῶν τόπων ὧν οὐ χρὴ |
| μετὰ δὲ τοῦτο τῷ τὸ ὀξύτερον δίτονον ἐπὶ τὸ βαρὺ ὁρίζοντι διὰ τεσσάρων εἰλήφθω ἐπὶ τὸ ὀξύ , τῷ δὲ | ||
| , ὁ χρόνος ἐστίν , ἐν ᾧ προανατέλλει τῷ ΑΔΓ ὁρίζοντι , ὁ δὲ χρόνος , ἐν ᾧ τὴν ΛΒ |
| ἐν δὲ τῇ γῇ τὸν ΗΘΚ , ἐν δὲ τῷ σκιάσματι τὴν ΝΞ περιφέρειαν , ἐν δὲ τῷ κώνῳ εὐθείας | ||
| Ϙ . Ἡ ὑποτείνουσα εὐθεῖα ὑπὸ τὴν ἀπολαμβανομένην ἐν τῷ σκιάσματι τῆς γῆς περιφέρειαν τοῦ κύκλου , καθ ' οὗ |
| ΒΓ τῇ ΣΛ , καὶ ὅμοιον τὸ ΘΓΒ τρίγωνον τῷ ΘΛΖ , καί ἐστιν , ὡς ἡ ΘΒ πρὸς ΓΒ | ||
| ἡ ΣΥ . λέγω , ὅτι τὸ ΣΛΥ τρίγωνον τοῦ ΘΛΖ τριγώνου μεῖζόν ἐστι τῷ ΘΓΒ . ἤχθω γὰρ διὰ |
| λόγῳ , καὶ μᾶλλον , εἰ μὴ ἴσαι εἶεν αἱ ΕΖΚ ταῖς ΑΒΓ ἀλλὰ μείζους αὐτῶν , καὶ φανερόν , | ||
| ὑπὲρ γῆν τὸ ΒΘΔ , μεσημβρινὸς - δὲ κύκλος ὁ ΕΖΚ . καὶ ὁ ἥλιος ἀπὸ θερινῶν τροπῶν πορευόμενος ἔν |
| τομή ἐστι κυλίνδρου , οἵα καὶ ἐν τῷ πρὸ τούτου θεωρήματι . ἡ ΝΗΕΡ ἄρα τομὴ οὔτε κύκλος οὔτε εὐθύγραμμόν | ||
| τὰς ἀποδείξεις ποιοῦνται , ὡς γεωμετρία ἀποδείκνυσιν ἐν τῷ πρώτῳ θεωρήματι καὶ δευτέρῳ καὶ τοῖς ἐφεξῆς , ἢ ἀναγκαιότερον , |
| λέγω , ὅτι ἴσον ἐστὶ τὸ ΓΜ στερεὸν τῷ ΓΝ στερεῷ . Ἐκβεβλήσθωσαν γὰρ αἱ ΝΚ , ΔΘ καὶ συμπιπτέτωσαν | ||
| εὐθεῖαν . αἰτιῶνται δὲ αὐτοῦ τινες ὡς οὐ δεόντως χρησαμένου στερεῷ προβλήματι . . . . . . . . |
| τοῦ ζωδιακοῦ κατὰ κορυφὴν ὄντος ἀεὶ τῷ ἐν τῇ γῇ ζωδιακῷ , τούτου δ ' οὐκ ἐκβαίνοντος ἔξω τῆς Αἰθιόπων | ||
| τὸ γένος ἐχόντων : ὑπὲρ ἧστινος Ταπροβάνης ἄνωθεν ἐν τῷ ζωδιακῷ τοῦ οὐρανοῦ κύκλῳ ὁ διάπυρος καρκίνος ἀναστρέφεται , ὡς |
| Κρόνου , νυκτὸς δὲ Ἑρμοῦ . κεῖται δὲ ἐν τῷ κλίματι τῷ τῆς Αἰγύπτου ἀπομεμερισμένον ἀνέμῳ Λιβί . κυριεύει δὲ | ||
| πῆξιν τοῦ ἀναφορικοῦ : ὡς εἶναι ἐν μὲν τῷ πρώτῳ κλίματι ἀπὸ Καρκίνου ἕως Τοξότου ἀναφορὰς σιʹ , ἐν δὲ |
| καὶ τῶν γωνιῶν ἡ ὑπὸ ΕΒΓ καὶ οὐχὶ ἡ ὑπὸ ΕΖΓ . ἔνθεν καὶ πρὸς τὸ ποιήσασθαί τινα κἂν μερικὴν | ||
| τῇ ὑπὸ ΗΖΑ γωνίᾳ : ὅλη ἄρα ἡ ὑπὸ τῶν ΕΖΓ ὅλῃ τῇ ὑπὸ τῶν ΓΖΗ γωνίᾳ ἴση ἐστίν : |
| καὶ δεξιός ἐστιν ὁ τόπος κατὰ τρίγωνον στάσιν τῷ μεσουρανοῦντι κέντρῳ . σημαίνει δὲ ὁ τόπος τὰ πρὸς ὑπηρεσίαν συντείνοντα | ||
| ἔλλοπος δὲ τοῦ ἰχθύος τουτέστι τῆς τρυγόνος : τῷ γὰρ κέντρῳ αὐτῆς χρώμενος ἀντὶ δόρατος ὁ Τηλέγονος ἀνεῖλε τὸν πατέρα |
| , Γ στερεὸν ἴσον ἐστὶ τῷ ἀπὸ τῆς Β στερεῷ ἰσοπλεύρῳ μέν , ἰσογωνίῳ δὲ τῷ προειρημένῳ . Ἐκκείσθω στερεὰ | ||
| στερεὸν παραλληλεπίπεδον ἴσον ἐστὶ τῷ ἀπὸ τῆς μέσης στερεῷ παραλληλεπιπέδῳ ἰσοπλεύρῳ μέν , ἰσογωνίῳ δὲ τῷ προειρημένῳ . Ἔστωσαν τρεῖς |
| πλατυνομένης , καὶ τοῦ μὲν μήκους ἐπὶ παραλλήλου τινὸς τῷ ἰσημερινῷ γραφομένου , τοῦ δὲ πλάτους ἐπὶ μεσημβρινοῦ , δεῖ | ||
| ἡμέραν , μείζονα μέντοι τῆς νυκτός , μέχρι πελάσῃ τῷ ἰσημερινῷ , διαμένουσαν . Ἐπὰν δὲ τούτου ἐφαψάμενος φθινοπωρινὴν ἰσημερίαν |
| ἐγεννήθη , καὶ μέγιστος δ ' οὗτός ἐστιν ἐν τῷ κρυσταλλοειδεῖ καὶ δίχα τέμνων αὐτό . κατὰ δὴ τὸν κύκλον | ||
| κύκλῳ χιτῶνος δίκην τὸ ὑαλοειδὲς ὑγρόν , ἐμφυόμεναι δὲ τῷ κρυσταλλοειδεῖ . τοῦτο δὲ τὸ κρυσταλλοειδὲς ὑγρὸν τὸ πρῶτόν ἐστι |
| οὕτω γὰρ τὸ ξοπρσ ζυγὸν οὐδενὶ τῶν ἐν τῷ παρεδρεύοντι ζυγῷ στοιχήσει , οἷον τῷ θικλμν , ἀλλὰ τῷ παρ | ||
| , ὁ ὑπὸ τὸν ζυγὸν ἐξαγόμενος , ὁ ἐν τῷ ζυγῷ ἵππος . ὁ σαπφόρας ] ὃν ἔχεις ἐν τῷ |
| περιχώρῳ εὑρεθήσεται , καὶ θᾶττον εἰ ἐν τῷ ὑπὲρ γῆν ἡμισφαιρίῳ τύχῃ ὥσπερ βραδύτερον εἰ ἐν τῷ ὑπὸ γῆν . | ||
| τοῖς λαιοῖς , καὶ ἡ Σελήνη δὲ ἐν τῷ βορείῳ ἡμισφαιρίῳ τὰ δεξιά : ἀνερχομένη γὰρ τὰ βόρεια σημαίνει ἕως |
| . γίνεται δὲ ἐν ὀστρείῳ τινὶ παραπλησίῳ ταῖς πίνναις πλὴν ἐλάττονι : μέγεθος δὲ ἡλίκον ἰχθύος ὀφθαλμὸς εὐμεγέθης , φέρει | ||
| τῷ ΚΟΛ [ ] τμήματι γωνία : ἡ γὰρ ἐν ἐλάττονι τμήματι γωνία . . μείζων : ἡ δὲ πρὸς |
| σταδίους ιʹ τὸ πλάτος . Ἀπὸ δὲ Θαψάκου ποταμοῦ ἐστὶ Τρίπολις Φοινίκων , Ἄραδος νῆσος καὶ λιμὴν , βασίλεια Τύρου | ||
| . . . . . . νη λη Καρίας δὲ Τρίπολις . . . . . . . . . |
| τῆς ὅλης καὶ τοῦ εἰρημένου τμήματος ὡς ἀπὸ μιᾶς ἀναγραφέντι τετραγώνῳ : τεσσαρεσκαιδεκάκι γὰρ ιδ ρϘϚ ποιοῦσι : δεκάκι γὰρ | ||
| ἀπὸ τοῦ γβ τετραγώνου ἴσος ἐστὶ τῷ ἀπὸ τοῦ γδ τετραγώνῳ . Ἔστω γὰρ ἀπὸ μὲν τοῦ γδ τετράγωνος ὁ |
| τοῦ κατὰ πρόσωπον μέρους τοῦ πρὸς μεσημβρίαν βλέποντος τριπλῷ περιλαμβανόμενος στοίχῳ κιόνων , ἐκ δὲ τῶν πλαγίων ἁπλῷ : ἐν | ||
| καθ ' ἣν μέμαρπται καὶ συνείληπται πάντα ἐν τάξει καὶ στοίχῳ μὴ ἔχοντι πέρας τὰ γινόμενα [ σύλληψιν ἡ ει |
| ἐξ ἀνάγκης δὲ τὰ λοιπά : τὸ μὲν γὰρ τῷ περιέχοντι διὰ παντὸς ὁμιλεῖν , ἐσθίειν τε καὶ πίνειν καὶ | ||
| ῥᾳδίως βλάπτεσθαι τὸν ἄνθρωπον , εἴ τις ἐξαιφνίδιος ἐν τῷ περιέχοντι γίνοιτο πρὸς τὸ ψυχρὸν μεταβολή . κατὰ τοῦτο καὶ |
| τρίγωνον διὰ τὸ ἴσον εἶναι τὸ ΑΒΔ τρίγωνον τῷ ΑΓΔ τριγώνῳ . ἐπισταθὲν δὲ ὁμοίως τὸ ΑΒΓ τρίγωνον κατὰ τὴν | ||
| ' αὑτὸ συμβεβηκότα τοῖς καθόλου ὑπάρχουσιν , οἷον τῷ ἁπλῶς τριγώνῳ τὸ ἔχειν τὰς τρεῖς γωνίας δυσὶν ὀρθαῖς ἴσας : |
| ἢ πολλαπλασία . Ἔστω γὰρ τρίγωνον τὸ ΑΒΓ , καὶ συνεστάτω τρίγωνον τὸ ΕΖΗ ἑκάστην πλευρὰν ἔχον ἑκάστης τῶν τοῦ | ||
| μείζων ἐστίν . ἔστω μείζων ἡ ὑπὸ ΑΒΓ . καὶ συνεστάτω πρὸς τῇ ΑΒ εὐθείᾳ καὶ τῷ πρὸς αὐτῇ σημείῳ |
| φύσιν μεταξὺ περιτοναίου καὶ ἐν - τέρων ἢ ἐν τῷ σαρκώδει μέρει τῶν μυῶν . Δεύτερον κεφάλαιόν ἐστιν , ἐν | ||
| μέγιστα βλαπτομένας ὑπὸ ψυχροῦ πόσεως : εἰ δ ' ἐν σαρκώδει μέρει τῶν κατὰ τὰ κῶλα γένοιτο φλεγμονή , καὶ |
| στίχῳ : τὸ δ ' αὐτὸ διάστημα ἐν τῷ κάτω στίχῳ εἰς ιεʹ ὥρας τοῦ τελείου ὅρου : ἔστι δὲ | ||
| στίχου μονάδος ὑπερέχει δυάδι : καὶ ἔστιν ἐν τῷ δευτέρῳ στίχῳ μεταξὺ τῶν γ καὶ τῆς μονάδος ὁ β . |
| ἐναρμοσθῇ , μεταξὺ πεσεῖται τῶν Β καὶ Ε σημείων . ἐνηρμόσθω ἡ ΑΖ ἴση τῇ ἐκ τοῦ κέντρου , καὶ | ||
| εὐθειῶν ἐναρμόσαι τῷ ΑΚΓΗ κύκλῳ εὐθεῖαν ἴσην τῇ ΔΖ . ἐνηρμόσθω ἡ ΑΛΜ , καὶ ἐπεζεύχθω ἡ ΑΗ : ἴση |
| ἡμέραις θέρους μεσοῦντος ἤδη καὶ ἡ λοιμώδης νόσος παντὶ τῷ θέματι Θρᾴκης τε καὶ Μακεδονίας ἐνέσκηψεν ἀρξαμένη μὲν ἀπὸ Θετταλίας | ||
| κεκακωμένος ᾖ τοῖς δυσὶ καιροῖς , ἐπίκεντρος δὲ ὑπάρχει τῷ θέματι τῆς ἐναλλαγῆς καὶ κακωθῇ ὑπὸ τοῦ ἀστέρος ἀπὸ τετραγώνου |
| ἡμῶν χρόνῳ , ὅσῳ σχεδὸν ἐν τῷ πρὸς τὸν ἰσημερινὸν πλάτει δια - φέρουσιν αἱ δύο # μοῖραι τοῦ διὰ | ||
| ὁπόταν κατὰ τὰς τοῦ παραδείγματος συμμετρίας τις ἐν μήκει καὶ πλάτει καὶ βάθει , καὶ πρὸς τούτοις ἔτι χρώματα ἀποδιδοὺς |
| αὐτοῦ . ἐπ ' ἐκείνων μὲν γὰρ διεβάλλετο , ἐπεὶ κειμένῳ τῷ ἐξ ἀναγκαίας τῆς μείζονος καὶ ὑπαρχούσης τῆς ἐλάττονος | ||
| ὠνομάζετο ὁ τὴν Σωφη - νὴν ἀπολαμβάνων ἐν αὐλῶνι μεταξὺ κειμένῳ αὐτοῦ τε καὶ τοῦ Ταύρου . πέραν δὲ τοῦ |
| ᾗ κατεκομίσθη τὸ Ἀλεξάνδρου σῶμα , Πολύκλειτος δὲ ἐπὶ τῷ λυχνίῳ τῷ κατασκευασθέντι τῷ Πέρσῃ , Ἱέρων δὲ ὁ Συρακούσιος | ||
| , ὧν ὁ μὲν ἕτερος τοιοῦτος : ἵστασαν ξύλον τι λυχνίῳ παραπλήσιον ἐν μέσῳ Γ τοῦ συμποσίου , καὶ ἀπ |
| Ἀττικαὶ δέκα παρῆσαν . ἐπὶ δὲ τῇ Λευκίμμῃ αὐτοῖς τῷ ἀκρωτηρίῳ ὁ πεζὸς ἦν καὶ Ζακυνθίων χίλιοι ὁπλῖται βεβοηθηκότες . | ||
| σταδίων ὡς ὀκτακοσίων : ὁ δὲ ὅρμος ἐπίσαλος , σκεπόμενος ἀκρωτηρίῳ τῷ ἐξ ἀνατολῆς ἀνατείνοντι : οἱ δὲ κατοικοῦντες εἰρηνικώτεροι |
| καὶ ἀμφοτέρων διαφέρει : τῷ μὲν γὰρ ἀρτιά - κις ἀρτίῳ κοινωνεῖ , καθὸ καὶ οὗτος πλείους διαιρέσεις ἐπιδέχεται , | ||
| : τοῦτον γὰρ κωλύειν τὴν εἰς ἴσα διαίρεσιν προστιθέμενον τῷ ἀρτίῳ . φέρουσι δὲ καὶ ἄλλο σημεῖον τοῦ πέρατος μὲν |
| διατελεῖς , μὴ διαφθείρῃς πολλὰς καὶ λαμπρὰς εὐεργεσίας ἐν τῷ τελευταίῳ , μηδ ' , ἂν ἐγὼ τὰ βελτίω διηγῶμαι | ||
| δεκάδι τὴν μονάδα προστίθεσθαι ῥητέον . καὶ μὴν οὐδὲ τῷ τελευταίῳ μέρει τῆς δεκάδος , ἐπεὶ οὐκ αὐξηθήσεται ἡ δεκὰς |
| καὶ ἀνατέλλει κατὰ τὸ Θ , ἐν δὲ τῷ γʹ ἐνιαυτῷ ὁρμήσας ἀπὸ τοῦ Θ καὶ διελθὼν τξε περιφορὰς λείψει | ||
| καὶ οὐδὲ ταῦτα παλαιά , ἀλλ ' ἐν τῷ παρελθόντι ἐνιαυτῷ γενόμενα , ὡς ἅπαντες ἴστε , ὅτ ' ἐπὶ |
| ἀνυπέραρτος ἐν δαπάναις καὶ παρασκευαῖς . δʹ Λιτότης δὲ ἕξις ἀρκουμένη τοῖς τυχοῦσιν . εʹ Κοσμιότης δὲ ἐπιστήμη περὶ τὸ | ||
| ἐν ταῖς ἐνέδραις γὰρ εὐκόλως λανθάνειν δύναται , ὀλίγῳ τόπῳ ἀρκουμένη , καὶ συντόμως μετατίθεται πρὸς τὰς χρείας . Διὸ |
| ὁ λόγος : ἕκαστον γὰρ τῶν μορίων συμφέρεται τῷ ἰδίῳ συντάγματι . ἀλλ ' ὁπηνίκα τὸ ἄρθρον ἐμπεριλαμβάνει τὸ ἐπίρρημα | ||
| δὲ ἀναγράφει αὐτῶν γένη ὁ Κλέαρχος ἐν τῷ περὶ γρίφων συντάγματι . γρῖφοι δὲ λέγεται τὰ ἐν τοῖς συμποσίοις προβαλλόμενα |
| στοιχεῖα ἐξ ὧν συνέστηκε τὸ ἡμέτερον σῶμα , ἑνὶ ἑκάστῳ στοιχείῳ ἔτος α : δηλοῖ δὲ ὅτι μόνα τὰ τέσσαρα | ||
| τῶν κατὰ συμβεβηκὸς διαλέγεται ἡμῖν ὁ φιλόσοφος ἐν τῷ Ε στοιχείῳ πολυπραγμονῶν αὐτὰ καὶ πολυειδῶς ἐξετάζων , περὶ δὲ τῶν |
| . . . ἀξίωμα . ὁρᾷς γὰρ τὴν ἐν τῷ ἀβακίῳ γραμμὴν καὶ τὸ ἐν τῇ τέφρᾳ ἐπίπεδον : ἐπεὶ | ||
| τοῦ ἀβακίου τὸ ἐν τῷ τέκτονι συνώνυμόν ἐστι τῷ γινομένῳ ἀβακίῳ : διὸ καὶ αὐτὸς ἐπήγαγεν ὥσπερ τὰ φύσει , |
| καὶ τῆς ὀρθίας πρὸς τὴν πλαγίαν . καὶ διὰ τὰ δεδειγμένα ἐν τῷ τεσσαρακοστῷ πρώτῳ θεωρήματι τὸ ΓΚΜ τρίγωνον τοῦ | ||
| , πάνθ ' ἅμα καὶ μιᾷ δείξει καὶ τὰ μήπω δεδειγμένα καὶ τὰ ἤδη ὡς καὶ τὰ ἐν τῷ δωδεκάτῳ |
| , μὴ δειχθέντων δὲ ἐατέον ; καὶ ταῦτα ἡμῖν οὕτω συγκείσθω ; Πάνυ μὲν οὖν . Ἤδη τοίνυν χρὴ φάναι | ||
| τῷ Ε μονάδες , ἐκ τοσούτων μεγεθῶν ἴσων τῷ Γ συγκείσθω τὸ Ζ . Ἐπεὶ οὖν , ὅσαι εἰσὶν ἐν |
| εἰς τοσαῦτα μέρη διῃρημένης καλῶς ἔχειν ἐνόμισα τά τε λόγῳ γεωμετρικῷ θεωρούμενα [ καὶ ἀναγκαιότατα περὶ τὴν τῶν βαρῶν κίνησιν | ||
| γὰρ τῷ μουσικῷ , καθὸ μουσικός ἐστιν , οὐδὲ τῷ γεωμετρικῷ . οὐκοῦν ὠφελῆσαι θέλεις ; πρὸς τί ; εἰπὲ |
| Μεγαλοπολίτας , μηδ ' ἄλλον ἁπλῶς μηδένα τῶν ἐλαττόνων τῷ μείζονι . Ἄξιον ἀποδέχεσθαι , ὦ ἄνδρες Ἀθηναῖοι , σφόδρα | ||
| ἡ τὴν ἐλάττονα ἀναγκαίαν ἔχουσα τὸ δὲ ἐνδεχόμενον πρὸς τῇ μείζονι τὸ ἐνδέχεσθαι καὶ αὐτὴ συνάγει διὰ τῆς ἐπ ' |
| τοῖς καλοῖς τὰ χείρονα προσμιγνύντων : ἐν Κύκλωπος γὰρ δράματι λεγομένῳ οὕτω φησὶ πρὸς Ὀδυσσέα Πολύφημος . Αἲξ Σκυρία : | ||
| σοῦ . αὐδωμένῳ ] ἤγουν τῷ Πολυνείκει . αὐδωμένῳ ] λεγομένῳ . Ξ αὐδωμένῳ ] φημιζομένῳ . αὐδωμένῳ ] ὑβριζομένῳ |
| μείζων ἐστὶν ἡ ΓΕ περιφέρεια τῆς ΕΔ περιφερείας . ὁ πόλῳ γὰρ τῷ Ε , διαστήματι δὲ τῷ ΕΑ κύκλος | ||
| φανερὸς μὲν ἀεὶ κύκλος γίνεται ὁ πόλῳ μὲν τῷ βορείῳ πόλῳ τοῦ ἰσημερινοῦ , διαστήματι δὲ τῷ τοῦ πόλου ἐξάρματι |
| Συναγ . . , . : Τὰ Εὐκλείδου βιβλία δ Κωνικῶν Ἀπολλώνιος ἀναπλώσας καὶ προσθεὶς ἕτερα δ παρέδωκεν η Κωνικῶν | ||
| σκοπεῖν , ἔξεστι ταῦτα παρατιθέντι τοῖς ἐν τῷ πρώτῳ τῶν Κωνικῶν εἰρημένοις αὐτῷ δι ' αὑτοῦ βεβαιῶσαι τὸ προκείμενον : |
| δυνάμει ἀσυμμέτρων , ἐν δὲ τῷ ηʹ γένεσιν συμμέτρων καὶ ἀσυμμέτρων μήκει καὶ δυνάμει . Τὸ τὰ σύμμετρα μεγέθη λόγον | ||
| ἐστὶν ἤτοι δύο μέσα δυναμένη ] . Δύο ἄρα μέσων ἀσυμμέτρων ἀλλήλοις συντιθεμένων αἱ λοιπαὶ δύο ἄλογοι γίγνονται ἤτοι ἐκ |
| ἕλκη , χρῆϲθαι τῷ Λιβιανῷ ἢ μᾶλλον τῷ διὰ λιβάνου κολλυρίῳ . ϲαρκωθέντων δὲ τῶν ἑλκῶν καὶ ἰϲοπέδων γιγνομένων ἢ | ||
| ἐξελθόντα ἐπιμελῶϲ ϲπογγίζειν τὴν ὑγρότητα καὶ οὕτωϲ ἐπιχρίειν τῷ αὐτῷ κολλυρίῳ παραφυλαττομένουϲ , μή τι αὐτοῦ παρεμπέϲῃ εἰϲ τὸν ὀφθαλμόν |
| ἀρκοῦντι ἐπὶ ἡμέραϲ γ , προκαθάραϲ καὶ ἀφελὼν αὐτῆϲ τὸ ὑμενῶδεϲ , τῇ δὲ τετάρτῃ τῶν ἡμερῶν αἴρων ἐξ αὐτῆϲ | ||
| . μὴ παρόντοϲ ἄνθουϲ ῥοᾶϲ τὸ ἐντὸϲ μεταξὺ τῶν κόκκων ὑμενῶδεϲ μίγνυε . Τὸ πτερύγιον νευρώδηϲ ἐϲτὶν τοῦ ἐπιπεφυκότοϲ ὑμένοϲ |
| μέγιστον κύκλον . ποιείτω τὸν ΕΓΔΖ , ἐν δὲ τῷ κώνῳ εὐθείας τὰς ΑΓ , ΑΔ , ΔΓ : ὁ | ||
| , ΒΕΖ τρίγωνα ἴσα ἀλλήλοις ἐστίν . ἔστω τῷ ΑΗΓΔ κώνῳ ἰσοϋψὴς ὁ ΚΘΕΖ κῶνος . ἐπεὶ οὖν , ὡς |
| γλῶττα , τηκέσθωσαν οἱ ὀφθαλμοί , ἐκλυέσθω ἡ ἀκοή , πληρούσθω ἡ γαστήρ , ὑβριζέτω τὰ ὑβρίζειν πεφυκότα . Εὗρες | ||
| βλάβης . ἀλλ ' ἀγαθῇ γε τύχῃ μενέτω τε καὶ πληρούσθω λόγων ἀρχαίων ἡγεμόνι τῷ γονεῖ χρώμενος . Ἔμελλές ποτε |
| γεγράφθω κύκλος ὁ ΑΕΖΓ , καὶ ἐκβεβλήσθωσαν αἱ ΑΒΕ , ΑΔΖ , ΑΗΘ : ἴση ἄρα διὰ τὸ πρὸ τούτου | ||
| γωνία τὴν ἡμίσειαν αὐτῆς ὑποτείνουσα δεδομένη ἔσται καὶ ὅλον τὸ ΑΔΖ τρίγωνον , δῆλον : ἐπεὶ δὲ τῆς ΑΓ εὐθείας |
| κωνικὴν ποιήσει ἐπιφάνειαν τῇ ΑΠ εὐθείᾳ , ἣ δὴ περιαγομένη συμβαλεῖ τῇ κυλινδρικῇ γραμμῇ κατά τι σημεῖον . ἅμα δὲ | ||
| τοῦ Γ σημείου ἐντὸς τῆς τομῆς ἀγομένη παρὰ τεταγμένως κατηγμένην συμβαλεῖ τῇ ΑΒ διαμέτρῳ καὶ δίχα τμηθήσεται ὑπ ' αὐτῆς |
| ποιότησι τῶν ἐπεισιόντων καὶ τὸ πάσχειν ἐμποιούντων . Τῷ γὰρ ἐνόντι θερμῷ ἡ ἀλλοίωσις ἡ παρὰ τοῦ ψύχοντος καὶ τῷ | ||
| τὸν νοῦν ἀφομοιῶν πρὸς τὸ ὄν , ποτὲ δὲ τῷ ἐνόντι αὐτῷ ἑνουμένῳ ἀνάγων αὐτὸ πρὸς τὸ πρὸ αὐτοῦ ἡνωμένον |
| τῶν ζῳδίων , ὃς ὁ αὐτὸς ἔγγιστα ἦν τότε τῷ μεσημβρινῷ , ἀπὸ τοῦ διὰ μέσων τῶν ζῳδίων πρὸς τὰς | ||
| . Ὑποκείσθω ἡμῖν πρῶτον μὲν κἀνταῦθα , ὑπὸ τῷ αὐτῷ μεσημβρινῷ κεῖσθαι Συήνην καὶ Ἀλεξάνδρειαν , καὶ δεύτερον , τὸ |
| ὁρῶν εἰς τὸ πεδίον , μεστὸν νεκρῶν τῶν ὑπὸ σοὶ ταττομένων , ἡμέραν οὐκ οἶδα πόστην ἄνω . τί δ | ||
| φθόνον τιμωρίαις περιβάλλουσι . διὸ καὶ τῶν ἐπὶ τὰς ἡγεμονίας ταττομένων τινὲς μὲν φοβούμενοι τὰς ἐν τῷ δικαστηρίῳ κρίσεις ἀποστάται |
| , στερεωτάτῃ ὑπαρχούσῃ καὶ ἑδραιοτάτῃ : τῷ δὲ σχήματι τῷ δωδεκαέδρῳ πρὸς τὸ πᾶν κατεχρήσατο . Πάντων δὲ τούτων ἀρχικωτέρα | ||
| ἐξ ὁποίων ἓξ τετραγώνων ὁ κύβος συνίσταται : τῷ δὲ δωδεκαέδρῳ εἰς τὸ πᾶν ὁ θεὸς κατεχρήσατο , διότι ζῴδιά |
| κατὰ τὸ αὐτὸ πρὸς ἀλλήλους τε καὶ τοὺς ἐν τῷ ζῳδιακῷ . ἐπὶ μὲν τοίνυν τῶν κατὰ τὸν Καρκῖνον ἀστέρων | ||
| δὲ ἐφ ' ἑκάστου καὶ τό τε μεσουρανοῦν ἐν τῷ ζῳδιακῷ κύκλῳ ζῴδιον καὶ τὴν μοῖραν αὐτοῦ , πρὸς δὲ |
| , τὸ ΜΛΓ πρὸς τὸ ΜΑΓ , καὶ τὸ διπλάσιον ΒΛΓ πρὸς τὸ ΒΑΓ : καὶ συνθέντι ἄρα πρὸς συγκείμενον | ||
| δὲ τὸ ΔΛ τετράπλευρον τῷ ΑΕΗ τριγώνῳ , τὸ δὲ ΒΛΓ τῷ ΑΓΘ : ὡς ἄρα τὸ ὑπὸ ΖΕΔ πρὸς |
| τὸ σκέλος τοῖς διακόπτειν τεταγμένοις παραδίδωσιν , ὡς ἂν τῷ λοιπῷ σώματι ὑγιὴς ὁ ἄνθρωπος ᾖ . Σὺ δὲ τὸν | ||
| ἀπὸ τῆς ΗΚ : λοιπὸν ἄρα τὸ ἀπὸ τῆς ΘΛ λοιπῷ τῷ ἀπὸ τῆς ΚΝ ἴσον ἐστίν : ἴση ἄρα |
| ἐκ τοιούτων . Δεύτερος δὲ καὶ σύνθετος ὁ τἀναντία τῷ λεχθέντι ἔχων μέρος τε παρὲξ τοῦ παρωνύμου ἢ ἓν ἢ | ||
| ἑλέσθαι . καὶ μὴν ὅσον ἐπὶ τῷ ὑπ ' Εὐριπίδου λεχθέντι περὶ θεῶν , τὴν αὐτὴν καὶ οἱ ἰδιῶται δόξαν |
| μυθικῶς , ἀλληγορικώτερον δὲ Κωκυτὸς ὁ θρῆνος καὶ Ἀχέρων ἡ ῥεῦσις καὶ χύσις τῶν ἀχέων καὶ θλίψεων διὰ τοὺς τεθνηκότας | ||
| : ἢ γὰρ ἐκ δευτέρου πάλιν τομὴ γενήσεται ἢ αἵματος ῥεῦσις πολλοῦ . Σελήνη συνοδεύουσα Κρόνῳ βλάπτει τὰς χειρουρ - |
| ἐπὶ τὸ εʹ παραγενόμενος τὴν ἑῴαν ἀνατολὴν ποιεῖ τῷ δʹ ἄστρῳ καὶ διὰ ἡμερῶν τριάκοντα : ἑνὸς γὰρ ζῳδίου δίεισιν | ||
| τι τῶν ἀπλανῶν ἀνατελλέτω τὸ δʹ : τῷ ἄρα δʹ ἄστρῳ ἀληθινή ἐστιν ἑῴα ἐπιτολή : λέγω ὅτι τοῦ δʹ |
| συγκείμενον ἐκ τῶν ἀπὸ τῶν ΑΕ , ΕΒ τετραγώνων τῷ συγκειμένῳ ἐκ τῶν ἀπὸ τῶν ΓΖ , ΖΔ , τὸ | ||
| ἀπὸ τῶν ΑΒ , ΒΓ καὶ σύμμετρον τῷ ἐξ αὐτῶν συγκειμένῳ , ἀνάγκη καὶ τὸ ἐκ τῶν ἀπ ' αὐτῶν |
| καὶ πολλὰς ἀφορμὰς δόντων εἰς πόλεμον ἐστράτευσεν ἐπ ' αὐτοὺς ἀξιολόγῳ δυνάμει . προσαγαγὼν δὲ τοῖς τείχεσι μηχανὰς καὶ προσβολὰς | ||
| ' ἕκαστον ἀπὸ τοῦ βαρυτάτου πρὸς τὸ ὀξύτατον διαστάσεις μηδενὶ ἀξιολόγῳ διαφέρωσιν , ἀλλὰ τά γε πέρατα αὐτῶν ἀμφότερα διοίσει |
| τοῦ ἡλίου ἀνατέλλοντος κατὰ τὸ αʹ ἄστρα τινὰ τῶν ἀπλανῶν συνανατελλέτω τὰ βʹ αʹ δʹ , τὸ μὲν αʹ ἐπὶ | ||
| δύσεως ἐπὶ τὰ πρὸς ἄρκτους ἔστω τὸ εʹ , καὶ συνανατελλέτω μὲν τῷ ζʹ , συνδυνέτω δὲ τῷ γʹ : |
| κέντρου τῆς σφαίρας ἤπερ ὁ ΠΗΡ , μείζων ἄρα ὁ ΧΦΨ κύκλος τοῦ ΠΗΡ κύκλου . ἐπεὶ οὖν δύο κύκλοι | ||
| Ε , Β μέρη . παράλληλος δὲ ὁ ΒΖ τῷ ΧΦΨ : καὶ ὁ ΧΦΨ ἄρα πρὸς τὸν ΞΚΟ κέκλιται |
| περὶ καλοῦ τι λέγειν οὔτε περὶ ἐναντίου προσήκει λέγειν τῷ γεωμέτρῃ καθὸ γεωμέτρης : κοινὰ γὰρ ταῦτα καὶ πλείοσιν ὑπάρχοντα | ||
| ἅπτεσθαι τοῦ ἐφάπτεσθαι : τὸ μὲν γὰρ ἐφάπτεσθαι εἴρηται τῷ γεωμέτρῃ ὡς δεῖ ἐκδέχεσθαι , τὸ δὲ ἅπτεσθαι , ἵνα |
| τὴν Δ , καὶ ἡ Α μὲν τῆς Β μεῖζον δυνάσθω τῷ ἀπὸ τῆς Ε , ἡ δὲ Γ τῆς | ||
| , δύναται χωρίον περιεχόμενον ὑπὸ ῥητῶν δυνάμει μόνον συμμέτρων . δυνάσθω τὸ ΗΖ . δύναται δὲ καὶ τὸ ΒΔ : |
| ΗΒΓ τρίγωνον : ὅλον ἄρα τὸ ΑΒΓΔ παραλληλόγραμμον ὅλῳ τῷ ΕΒΓΖ παραλληλογράμμῳ ἴσον ἐστίν . Τὰ ἄρα παραλληλόγραμμα τὰ ἐπὶ | ||
| ΒΓ : λέγω , ὅτι ἴσον ἐστὶ τὸ ΑΒΓΔ τῷ ΕΒΓΖ παραλληλογράμμῳ . Ἐπεὶ γὰρ παραλληλόγραμμόν ἐστι τὸ ΑΒΓΔ , |
| μὲν οὖν περιφερόγραμμοι τὰς συνελισσούσας αἰτίας ἀπομιμοῦνται , αἱ δὲ εὐθύγραμμοι τὰς τῶν αἰσθητῶν , αἱ δὲ μικταὶ τὰς τὴν | ||
| παραλληλόγραμμον τῷ ΔΖ παραλληλογράμμῳ . καὶ ἐπεὶ δύο γωνίαι ἐπίπεδοι εὐθύγραμμοι ἴσαι εἰσὶν αἱ ὑπὸ ΔΕΖ , ΝΛΜ , καὶ |
| ξίφος ἔχοντ ' ἐλαίας θ ' ὑψιγέννητον κλάδον , λήνει μεγίστῳ σωφρόνως ἐστεμμένον , ἀργῆτι μαλλῷ : τῇδε γὰρ τρανῶς | ||
| τί δήποτε εἰς μὲν τὴν κιβωτόν , ἣν ἐν τῷ μεγίστῳ κατακλυσμῷ κατασκευασθῆναι συνέβη , πᾶσαι τῶν θηρίων αἱ ἱδέαι |
| Κρόνος διακείμενος συνοδεύσει ἀστέρι ἢ ἀκτῖνι ἀστέρος ἢ κλήρῳ ἢ δωδεκατημορίῳ ἢ ἐναντίῳ σχή - ματι ἐπιβλέψει τούτους κατὰ πῆξιν | ||
| καὶ ἐπεὶ ὅροι ὁσοιδηποτοῦν εἰσιν αἱ τῶν ἐν τῷ αβ δωδεκατημορίῳ τριακοστημορίων τῶν ἑξῆς ἀλλήλοις κειμένων ἀναφοραὶ ἐν ἴσῃ ὑπεροχῇ |
| ἁρμονικὸς τοῦ δʹ καὶ ηʹ διαστήματος : τῷ γὰρ τρίτῳ μέρει τῶν ἄκρων οὗ μὲν ὑπερέχει , ὑφ ' οὗ | ||
| ἐξορύττει , εἶτα τῷ τραχήλῳ περιερπύσας , τείνων τῷ οὐραίῳ μέρει καὶ σφίγγων θατέρῳ ἀπάγχει τὸ θηρίον ἀήθει βρόχῳ καὶ |
| συνδέσεως ὠφελεῖν δοκούσης : οἱ δ ' ὕστερον ἅμα τῷ κροτάφῳ προσέβαλόν τινα καὶ κόσμον οἰκεῖον τῇ περὶ τὸν οἶνον | ||
| παραδόξωϲ ἡ Ἀρχιγένουϲ μέλαινα δέρματι ἐμπλαϲϲομένη καὶ ἐπιτιθεμένη τῷ ἀλγοῦντι κροτάφῳ : παραχρῆμα γὰρ παύει τὰϲ ὀδύναϲ . κεῖται ἐν |
| πέρατος τοῦ Δ , τὴν ὑπὸ ΔΒΗ , ὑποτείνουσαν τοῦ ὁμοκέντρου τῷ ζῳδιακῷ περιφέρειαν μοιρῶν ιγ ιδ . Ἐπεὶ δὲ | ||
| πάροδος τῆς κατὰ τὴν ἀνωμαλίαν , τουτέστιν ἡ γινομένη τοῦ ὁμοκέντρου περιφέρεια τῆς τοῦ ἐπικύκλου : οὕτως γὰρ ἂν οὐ |
| ] πολλὰ πέπωκα λιτά : [ ] | [ ] ἀστέρι ? [ ] αστερι´ ? = ἀστερι [ γείτονες | ||
| καθ ' αἵρεσιν κατὰ τρίγωνον αὐτὸ ὑποδεδεγμένου ἀστέρος , ἑκάστῳ ἀστέρι μερίζων μοῖραν μίαν τῇ τῶν καθ ' αἵρεσιν τριγωνικῶν |
| ΚΞ τεταρτημόρια ἀλλήλοις . ὅσαι ἄρα εἰσὶν ἐν τῷ ΒΕ τεταρτημορίῳ πλευραὶ τοῦ πολυγώνου , τοσαῦταί εἰσι καὶ ἐν τοῖς | ||
| ἕκαστον τῆς γῆς τόπον τῶν ἐν τῷ καθ ' ἡμᾶς τεταρτημορίῳ τεταγμένων , λέγω δὲ τῶν ἀπὸ τοῦ ἰσημερινοῦ μέχρι |
| εἴρηκεν , ὡς τοῖς σωματικοῖς στοιχείοις ἕκαστα γνωρίζεται καὶ τῷ ὁμοίῳ τὸ ὅμοιον , καίπερ ἱκανῶς ἐληλεγμένου , τοῖς φθάσασιν | ||
| [ ἔλαβεν . ] ἐνταυθοῖ ] ἐνταῦθα , ἐν τῷ ὁμοίῳ βίῳ . ἔσθι ' ] ναὶ τρῶγε . , |
| μὲν δοκεῖ πρὸς τὰ ἐν τῷ Σοφιστῇ καὶ πρὸς τῷ πέρατι τοῦ πέμπτου τῆς Πολιτείας περὶ τοῦ μὴ εἶναι δοξαστὸν | ||
| γόνυ κνήμης ἔγγιον . προσομιλεῖ γὰρ ἀεὶ τὸ γόνυ τῷ πέρατι τῆς κνήμης καὶ σύνεστιν αὐτῷ φιλίως . εἰ δὴ |
| ΘΜ ἐπὶ τὸν ἀπὸ τοῦ ΚΒ ⃞ον , μετὰ τοῦ ηκις ὑπὸ ΗΘ . ΚΒ , καὶ ὁ ἀπὸ τοῦ | ||
| ΒΔ , τῷ ἴσῳ ἀλλήλων ὑπερεχέτωσαν : δεικτέον ὅτι ὁ ηκις ὑπὸ ΑΒ . ΒΓ , προσλαβὼν τὸν ἀπὸ τοῦ |
| σημεῖον στῇ καὶ ἡ εὐθεῖα , τότε νοουμένων αὐτῶν ἐν ἐπιπέδῳ δυνατὸν ἀπὸ τοῦ σημείου ἐπὶ τὴν εὐθεῖαν κάθετον ἀγαγεῖν | ||
| ΨΧ καὶ ἡ ΒΓ τέμνουσιν ἀλλήλας , ἐν ἑνί εἰσιν ἐπιπέδῳ διὰ τὸ δεύτερον τοῦ ιαʹ : ἐν δὲ τῷ |
| αὑτόν . Ἀντεπῄει δὲ Κῦρος , Ἀτρατάδην μὲν ἐν τῷ δεξιῷ κέρατι στήσας , Οἰβάραν δὲ ἐπὶ τῷ εὐωνύμῳ : | ||
| τῇ ἀποτομῇ τεσσάρων , ἔσχατος δὲ ὁ ἐν ἄκρῳ τῷ δεξιῷ κέρατι . Μεσουρανεῖ δὲ τῶν ἄλλων πρῶτος μὲν τοῦ |
| φθαρτικῶν αὐτοῦ τούτων , ἐξ ὧν ἐν συνθροήσει τινὶ καὶ κινήματι γενήσεται , κἂν φοβοῖτο . εἰ δὲ ἐν κινήματι | ||
| καὶ κινήματι γενήσεται , κἂν φοβοῖτο . εἰ δὲ ἐν κινήματι τοιούτῳ γίνεται , καὶ τῆς ἐπὶ τὸ χεῖρον μεταβολῆς |
| ' ἔνιοι τὴν νῦν Ὄλουριν ἢ Ὄλουραν ἐν τῷ καλουμένῳ αὐλῶνι τῆς Μεσσηνίας κειμένην Δώριον λέγουσιν . αὐτοῦ δέ που | ||
| καὶ Αἰγύπτου μέρει , ἀπὸ δὲ ἄρκτων τῷ τε Κιλικίῳ αὐλῶνι καὶ μέρει τῆς Καππαδοκίας καὶ τῆς Μεγάλης Ἀρμενίας . |
| ἀνδρῶν τἀναντία εὐχομένων καὶ τὰς ἴσας θυσίας ὑπισχνουμένων οὐκ εἶχεν ὁποτέρῳ μᾶλλον ἐπινεύσειεν αὐτῶν , ὥστε δὴ τὸ Ἀκαδημαϊκὸν ἐκεῖνο | ||
| ΕΖ πρὸς τὴν ΠΡ , καὶ ἀναγεγράφθω ἀπὸ τῆς ΠΡ ὁποτέρῳ τῶν ΜΖ , ΝΘ ὅμοιόν τε καὶ ὁμοίως κείμενον |
| γωνία ὀρθή . καὶ λο πὴ ἡ ὑπὸ ΚΕΑ γωνία περιεχομένη ὑπὸ τοῦ ἑπομένου τμήματος τοῦ ζῳδιακοῦ καὶ τῆς βορείας | ||
| παρὰ τῆς ἐπὶ τῆς βάσεως γωνίας , ὑπὸ τριῶν ἐπιπέδων περιεχομένη , τὴν κατὰ κορυφὴν ὑπὸ τεττάρων συγκλειομένη , ὥστε |
| τοὺς ἀναιρουμένους καλεῖται δήμιος , δημόκοινος , ὁ πρὸς τῷ ὀρύγματι ὁ ἐπὶ τῷ ὀρύγματι : καὶ τὰ ἐργαλεῖα αὐτοῦ | ||
| ὀρύσσουσιν , ἀνθυπορύσσειν καὶ ἀντιοῦσθαι καὶ ἐμπιμπράναι τὸ ἐν τῷ ὀρύγματι μαχόμενον . Παλαιὸν δέ τι λέγεται . . . |
| τὸ Η , ἐπειδὴ περὶ τὸ περίγειόν ἐστιν , καὶ ἐπιζευχθεισῶν τῆς τε ΕΗ καὶ τῆς ΒΗ , ἵνα ἡ | ||
| Γ ση μείων ἐν τῇ περιφερείᾳ τοῦ ἐκκέντρου ὄντων . ἐπιζευχθεισῶν τοίνυν τῶ ΖΓ , ΖΑ , ἑκατέρα τῶν Α |
| γὰρ δύο ἐναντίων κινήσεών ἐστιν ἠρεμία , ὡς ἐν τῷ σφυγμῷ δείκνυται . εἰ δὲ καὶ μή ἐστι μέσον σύμφωνον | ||
| ὁ μέσος τῆς χειρὸς δάκτυλος . σφακελισμῷ : ταραχῇ , σφυγμῷ καὶ παλμῷ , ἄλλοι δὲ σήψει ὀστέου : σφακελισμὸς |
| Ἐν τοῖσιν ὀξέσι νουσήμασι ψύξις ἀκρωτηρίων , κακόν . Ἐπὶ ὀστέῳ νοσέοντι σὰρξ πελιδνὴ , κακόν . Ἐπὶ ἐμέτῳ λὺγξ | ||
| λαβὼν ὀστέον οἱουδήποτε ζῴου ἀποθανόντος , ὀρύξας αὐτὴν τούτῳ τῷ ὀστέῳ καὶ λαβὼν τὴν ῥίζαν λέγε : ὁρκίζω σε κατὰ |