Συναγ . . , . : Τὰ Εὐκλείδου βιβλία δ Κωνικῶν Ἀπολλώνιος ἀναπλώσας καὶ προσθεὶς ἕτερα δ παρέδωκεν η Κωνικῶν | ||
σκοπεῖν , ἔξεστι ταῦτα παρατιθέντι τοῖς ἐν τῷ πρώτῳ τῶν Κωνικῶν εἰρημένοις αὐτῷ δι ' αὑτοῦ βεβαιῶσαι τὸ προκείμενον : |
, οὕτω καὶ νῦν εἰς τύχην ἀνάγει τὸν λόγον . ρπαʹ Τέχνῃ λαβεῖν Ἵνα τεχνικῶς τις διέλῃ πρῶτον εἰς δύο | ||
ὁ λόγος ἐστὶ τῆς ΗΖ πρὸς τὴν ΖΘ ὁ τῶν ρπαʹ ∠ ʹʹγʹʹ πρὸς τὰ μϚʹ ∠ ʹʹ καὶ κʹʹ |
τὴν ΖΛ . δύο δὴ τρίγωνά ἐστι τὰ ΒΑΕ , ΗΖΛ μίαν γωνίαν μιᾷ γωνίᾳ ἴσην ἔχοντα τὴν ὑπὸ ΒΑΕ | ||
πάλιν ἀποκατασταθῇ ὅθεν ἤρξατο φέρεσθαι , τὰ μὲν ΚΓΔ , ΗΖΛ ἡμικύκλια ἐνεχθήσεται κατὰ τῶν σφαιρῶν , τὸ δὲ ΑΖ |
ἐν δὲ τῇ γῇ τὸν ΗΘΚ , ἐν δὲ τῷ σκιάσματι τὴν ΝΞ περιφέρειαν , ἐν δὲ τῷ κώνῳ εὐθείας | ||
Ϙ . Ἡ ὑποτείνουσα εὐθεῖα ὑπὸ τὴν ἀπολαμβανομένην ἐν τῷ σκιάσματι τῆς γῆς περιφέρειαν τοῦ κύκλου , καθ ' οὗ |
καὶ τῆς ὀρθίας πρὸς τὴν πλαγίαν . καὶ διὰ τὰ δεδειγμένα ἐν τῷ τεσσαρακοστῷ πρώτῳ θεωρήματι τὸ ΓΚΜ τρίγωνον τοῦ | ||
, πάνθ ' ἅμα καὶ μιᾷ δείξει καὶ τὰ μήπω δεδειγμένα καὶ τὰ ἤδη ὡς καὶ τὰ ἐν τῷ δωδεκάτῳ |
πλευρῶν , καὶ τὸ ἐμβαδὸν εἰς ἴσα διαιρεῖται κατὰ τὴν διαγώνιον διὰ τὴν κοινὴν ἰδιότητα τῶν παραλληλογράμμων . ἐπὶ δὲ | ||
βάσιν τέμῃ ἐκ τῆς κορυφῆς δίχα κατὰ τὴν τοῦ τετραγώνου διαγώνιον τὴν ἀπὸ τῆς ὀρθῆς , ἔσονται δύο στερεαὶ πυραμίδες |
τομή ἐστι κυλίνδρου , οἵα καὶ ἐν τῷ πρὸ τούτου θεωρήματι . ἡ ΝΗΕΡ ἄρα τομὴ οὔτε κύκλος οὔτε εὐθύγραμμόν | ||
τὰς ἀποδείξεις ποιοῦνται , ὡς γεωμετρία ἀποδείκνυσιν ἐν τῷ πρώτῳ θεωρήματι καὶ δευτέρῳ καὶ τοῖς ἐφεξῆς , ἢ ἀναγκαιότερον , |
εἰς ξ , ὧν δύο ἔστω τὰ ΑΣ , ΣΥ ξξα πρῶτα : ἐὰν δὴ πολλαπλασιάσω τὸ πρῶτον ξον τὸ | ||
β λεπτὰ τὰ ΑΞ , ΞΖ , ἔσται λεπτὰ ἤτοι ξξα β καὶ τὰ ἑξῆς : ὁμοίως οὖν καὶ μοῖρα |
στοιχείων . ] Ἔχει δὲ τὰ ηʹ βιβλία τῶν Ἀπολλωνίου κωνικῶν θεωρήματα ἤτοι διαγράμματα υπζʹ , λήμματα δὲ [ ἤτοι | ||
' οὖν Ἀπολλώνιος οἷα περιέχει τὰ ὑπ ' αὐτοῦ γραφέντα κωνικῶν ηʹ βιβλία λέγει κεφαλαιώδη θεὶς προδήλωσιν ἐν τῷ προοιμίῳ |
ὁ Ε : καὶ ὁ μὲν ΓΔ τὸν ΒΖ μετρῶν λειπέτω ἑαυτοῦ ἐλάσσονα τὸν ΖΑ , ὁ δὲ ΑΖ τὸν | ||
ἐλάσσονα τὸν ΗΓ , ὁ δὲ ΗΓ τὸν ΖΘ μετρῶν λειπέτω μονάδα τὴν ΘΑ . Ἐπεὶ οὖν ὁ Ε τὸν |
ἐναρμοσθῇ , μεταξὺ πεσεῖται τῶν Β καὶ Ε σημείων . ἐνηρμόσθω ἡ ΑΖ ἴση τῇ ἐκ τοῦ κέντρου , καὶ | ||
εὐθειῶν ἐναρμόσαι τῷ ΑΚΓΗ κύκλῳ εὐθεῖαν ἴσην τῇ ΔΖ . ἐνηρμόσθω ἡ ΑΛΜ , καὶ ἐπεζεύχθω ἡ ΑΗ : ἴση |
κατὰ πάντων φέρεται , ὅλον τὸ ἐντὸς τῆς περιφερείας πλάτος καταμετρήσει , πλάτος δὲ καταμετροῦν ἕξει πλάτος : τὸ γὰρ | ||
ὁ πῆχυς τὸ μῆκος τῷ λαβεῖν τι μῆκος , ὃ καταμετρήσει τὸ ὅλον . ἡ γὰρ ὥρα τί ἐστιν ἄλλο |
μδʹ γοʹʹ [ Ἀρτάβρων ] Ἀρτάβρων λιμὴν εʹ γʹʹ μεʹ Νέριον ἀκρωτήριον εʹ δʹʹ μεʹ Ϛʹʹ Ἡ δὲ ἀρκτικὴ πλευρὰ | ||
τοῦ ἱεροῦ ἀκρωτηρίου μέχρι τῆς πρὸς Ἀρτάβροις ἄκρας ἣν καλοῦσι Νέριον : τέταρτον δὲ τὸ ἐνθένδε μέχρι τῶν βορείων ἄκρων |
] ! ΟΤΙΠΑ ? ? ! φυσε [ ] ! ΙΕ [ ! ] ΕΙΑ ? [ ] ΤΑΥ ! | ||
ἢ καταπαυομένοις ἢ τὸ ποθεινότατον ; ΑΘΗΝΑΙΟΥ ΝΑΥΚΡΑΤΙΤΟΥ ΔΕΙΠΝΟΣΟΦΙΣΤΩΝ ⋮ ΙΕ ⋮ Δωρίδος ἐκ μητρὸς Φοίβου κοινώμασι βλαστών . χαῖρε |
, πρὶν παθεῖν , διδαχθῆναι , πηλίκον ἐστὶν ἡσυχία . Ϛγʹ . Νουμηνίῳ . Οὐ θρηνητέον οἵων φίλων ἐστερήθημεν , | ||
γʹʹ , τῶν αὐτῶν ἔσται καὶ ἡ μὲν ΒΖ ὑποτείνουσα Ϛγʹ δεκάτου , ἡ δὲ ὑπὸ ΒΖΕ γωνία τοιούτων ρνʹ |
λβ καὶ τοῦτο δι ' ὅλου : ἐν δὲ περισσαῖς ἐκθέσεσιν ἶσον τὸ ἅπαξ ξδ τῷ δὶς λβ καὶ τοῦτο | ||
διὰ τετάρτης ἀπαντᾶν ἡμέρας , ὡς ἐν ταῖς αὐτῶν ἀνάλογον ἐκθέσεσιν εἰς τὰς τετάρτας πάντως οἱ κύβοι ἀποτελοῦνται χώρας : |
μεῖζόν ἐστιν : ὅπερ ἔδει δεῖξαι . Ϛʹ , λʹ ΑΛΛΩΣ Ἔστω ἡ δοθεῖσα εὐθεῖα ἡ ΑΒ . δεῖ δὴ | ||
ΚΟΤΕΕΙ . Ζηλοῖ , ὀργίζεται , φθονεῖ , βασκαίνει . ΑΛΛΩΣ . Προτρέπεται πρὸς γεωργίαν διὰ τοῦτο . Ἐν γὰρ |
δύνει : ἐν δὲ τῷ τῆς ἡμέρας χρόνῳ ὁ ἥλιος διερχέσθω περιφέρειαν τὴν οπʹ , καὶ τῇ ποʹ ἴση ἔστω | ||
πεποιήσθω κατὰ τὸ Η , τὴν δὲ λοιπὴν τὴν ΗΕ διερχέσθω ἐν τετάρτῳ μέρει περιφορᾶς . Λέγω , ὅτι διὰ |
ἐν πλείονι χρόνῳ ἀνατέλλει ἡ ΕΛ τῆς ΛΜ , καὶ ὀρθοτέρα ἡ ΛΜ περιφέρεια , ἥτις ἐστὶν τοῦ λέοντος , | ||
δὲ τὴν μὲν Ἰδαίαν τὴν δὲ παραλίαν : τούτων δὲ ὀρθοτέρα καὶ μακροτέρα καὶ τὸ φύλλον ἔχουσα παχύτερον ἡ Ἰδαία |
καλεομένου καὶ Κοινύρων , ἀντίον δὲ Σαμοθρηίκης , ὄρος μέγα ἀνεστραμμένον ἐν τῇ ζητήσι . Τοῦτο μέν νύν ἐστι τοιοῦτο | ||
τρίτη ὑπερβολαίων : υ κάτω νεῦον καὶ ἡμίαλφα ⋏ ἀριστερὸν ἀνεστραμμένον # ὑπερβολαίων διάτονος : μῦ καὶ πῖ καθειλκυ - |
ἀνωμαλίας ἡ κατ ' ἐπίκυκλον ὑπόθεσις , ὡς ἔφαμεν , περιεχέτω τὸν τρόπον τοῦτον . νοείσθω γὰρ ἐν τῇ τῆς | ||
ὃς καλείσθω ζῳδιακός . ἡ δὲ κλίσις τῶν ἐπιπέδων τούτων περιεχέτω γωνίαν τοιούτων κγ να κ , οἵων ἐστὶν ἡ |
δὴ τομὰς κύκλους . ποιείτω , ὧν ἡμικύκλια ἔστω τὰ ΓΝΔ , ΜΝΞ . καὶ ἐπεὶ ἴσοι εἰσὶν οἱ ΒΓΔ | ||
διὰ τῆς ΝΑ ἐπιπέδων ἐστὶν ἡ ΓΝΔ κύκλος . ὁ ΓΝΔ ἄρα κύκλος ὀρθός ἐστι πρὸς τὸν ΒΓΔ κύκλον . |
τὸ φανερὸν ἐξαλλάσσει . Τῶν δὲ ἐν τῷ ἡμικυκλίῳ τῷ ἀπολαμβανομένῳ ὑπὸ τοῦ ἰσημερινοῦ πρὸς τῷ θερινῷ τροπικῷ ἴσων περιφερειῶν | ||
δὲ ΑΓ ἐλάσσων ἐστὶν ἑκατέρας αὐτῶν τῷ ὑπὸ τῆς ἐπισκοτήσεως ἀπολαμβανομένῳ μέρει τῆς τοῦ ἐκλείποντος διαμέτρου . Ἔστω τὸ τῆς |
, ὡς ἐν τοῖς Ἀποδεικτικοῖς αὐτὸς ἡμᾶς ἐδίδαξε . καὶ τετραγωνίσαι παραλληλόγραμμον ὀρθογώνιον οὐδὲν ἦν ἄλλο ἢ τῆς μέσης εὕρεσις | ||
ὅρος τοῦτο , ἀποδείξις δὲ ὁ αὐτὸς οὕτως : ὁ τετραγωνίσαι βουλόμενος μέσην ἀνάλογον ζητεῖ εὑρεῖν : ἡ μέση εὑρεθεῖσα |
τουτέστιν οἱ κινοῦντες ἔστωσαν ἄνθρωποι μʹ , ἡ δὲ ὑπὸ ΚΜΝ γωνία , τουτέστιν ἡ ὑπὸ ΕΘΛ , διμοίρου ὀρθῆς | ||
, καὶ τῇ ὑπὸ ΑΘΔ γωνίᾳ ἴση συνεστάτω ἡ ὑπὸ ΚΜΝ , καὶ ἀπὸ τῶν Κ Λ κάθετοι αἱ ΛΟ |
ῥεῖ κατ ' Ἀκούτειαν πόλιν τῶν Ὀυακκαίων ἔχων διάβασιν , Καλλαϊκοὶ δ ' ὕστατοι , τῆς ὀρεινῆς ἐπέχοντες πολλήν : | ||
Μινίου καὶ τοῦ Δορίου ποταμοῦ τὰ μὲν ἐπὶ θαλάσσῃ κατέχουσι Καλλαϊκοὶ οἱ Βρακάριοι , ἐν οἷς πόλεις αἵδε : Βρακαραυγούστα |
δὲ καὶ ἑτέρῳ ἐπιπέδῳ τῷ ὑποκειμένῳ κατ ' εὐθεῖαν τὴν ΠΔΡ πρὸς ὀρθὰς τῇ ΗΔΘ , ἡ δὲ κοινὴ τομὴ | ||
τὸ ΖΗΘ : καὶ ἡ κοινὴ ἄρα αὐτῶν τομὴ ἡ ΠΔΡ ὀρθή ἐστι πρὸς τὸ ΖΗΘ : καὶ πρὸς πάσας |
. ἔστι καὶ εἶδος φυτοῦ , περὶ οὗ Βῶλος ὁ Δημοκρίτειος . ὅτι Θεόφραστος ἐν τῷ περὶ φυτῶν ἐνάτῳ , | ||
. . ἔστι καὶ εἶδος φυτοῦ περὶ οὗ Βῶλος ὁ Δημοκρίτειος , ὅτι Θεόφραστος ἐν τῶι Περὶ φυτῶν ἐνάτωι : |
Ὑδροχόον : ἅπερ οὐ φαίνεται . δῆλον οὖν ὅτι ὁ εζη κύκλος ἤτοι ἐπὶ τὰ αὐτὰ τῷ παντί , βραδύτερον | ||
τὴν ξμ κίνησιν ἀποκαθεστακέτω τὸν χψ ἐπὶ τὸν ἐπίκυκλον τὸν εζη , καὶ αὐτὸς ὁ ἥλιος , ἐνεχθεὶς ὁμοίαν λοιπὴν |
τῆς Α , ἴσον παρὰ τὴν ΒΓ παραβεβλήσθω ἐλλεῖπον εἴδει τετραγώ - νῳ , καὶ ἔστω τὸ ὑπὸ τῶν ΒΔ | ||
τετραγώνισον τὸν κζ , εἶτα λαβὲ τὴν πλευρὰν τοῦ γεγονότος τετραγώ - νου ἀπὸ τοῦ κζ , εἶτα ἀναβίβασον αὐτὴν |
ἐπὶ τὴν ἑξάδα : οὐδεὶς διὰ τῶν Ϛʹ διέστηκεν . μεταβαίνω ἐπὶ τὸν στίχον τῆς ἑβδομάδος : εὑρίσκεται δὲ τῆς | ||
: Ποῦ μένεις ; ὁ δὲ εἶπεν : † Ἐκεῖθεν μεταβαίνω . Δυσκόλῳ τις ναυκλήρῳ ἀπαντήσας εἶπε : Τὸν ἐπίπλουν |
αὐτῶν ἐπίπεδα καλεῖσθαι , τὰ δὲ στερεά , τὰ δὲ γραμμικά . τὰ μὲν οὖν δι ' εὐθείας καὶ κύκλου | ||
ἐπ ' αὐτῶν τῶν ἑξηκοστῶν αἰσθητὴν διαφορὰν γίνεσθαι παρὰ τὰ γραμμικά , ὡς ἐξέσται πειρωμένῳ σκοπεῖν . Οἷον ὡς ἐπὶ |
εἰς τοσαῦτα μέρη διῃρημένης καλῶς ἔχειν ἐνόμισα τά τε λόγῳ γεωμετρικῷ θεωρούμενα [ καὶ ἀναγκαιότατα περὶ τὴν τῶν βαρῶν κίνησιν | ||
γὰρ τῷ μουσικῷ , καθὸ μουσικός ἐστιν , οὐδὲ τῷ γεωμετρικῷ . οὐκοῦν ὠφελῆσαι θέλεις ; πρὸς τί ; εἰπὲ |
δον μέρος τῆς ἀποκαταστάσεως , ἐπὶ τὰς ἡμέρας Ϛ νγʹ κʹʹ , ἀποτελοῦνται μοῖραι β δʹ : ταῦτα προσέθηκα τῇ | ||
# λαʹ κʹʹ , κατὰ δὲ τὸ ἐλάχιστον # λεʹ κʹʹ , ἡ δὲ διάμετρος τοῦ κύκλου τῆς σκιᾶς κατὰ |
λοιπὰ ὁμοίως ἀναγράφει : τὴν δὲ κεφαλὴν τοῦ Ὀφιούχου γράφει ἀνατέλλουσαν καὶ τὴν ἀριστερὰν μόνον χεῖρα : . . . | ||
τοῦ Καρκίνου , ὁ Ἄρατος θεωρῶν τὴν κεφαλὴν τοῦ Λέοντος ἀνατέλλουσαν καὶ ὑπολαμβάνων τὸ κατὰ τὸν Λέοντα δωδεκατημόριον ἀναφέρεσθαι , |
ἱστᾶν τοὺς κίονας ἐν ὀρθότητι καὶ ἡ γεωμετρία πρὸς τὰ μηχανικά , τῆς δὲ τοῦ διαλογιστικοῦ καὶ βουλευτικοῦ οὐχ ἱκανὸν | ||
ἱστᾶν τοὺς κίονας ἐν ὀρθότητι καὶ ἡ γεωμετρία πρὸς τὰ μηχανικά , τῆς δὲ τοῦ διαλογιστικοῦ καὶ βουλευτικοῦ οὐχ ἱκανὸν |
, ἐν δὲ τῷ δʹ κατὰ τὸ Λ , καὶ προσδιελθὼν τὴν ΛΜ οὖσαν περιφορὰν πάλιν ἀνατελεῖ κατὰ τὸ Μ | ||
, τὴν ἀνομίαν τε τοῖς νόμοις κατέσβεσεν . καὶ ὀλίγα προσδιελθὼν ἐπιφέρει οὕτω δὲ πρῶτον οἴομαι πεῖσαί τινα θνητοὺς νομίζειν |
Βάστουλοι , τὴν δὲ ὑπὲρ τούτους μεσόγειον καὶ πρὸς τῇ Ταρρακωνησίᾳ Τούρδουλοι , ἐν οἷς μεσόγειοι πόλεις Σεγίδα θʹ Ϛʹʹ | ||
τοῦ Δορίου ποταμοῦ , ἀπὸ δὲ τῶν ἀνατολῶν τῇ αὐτῇ Ταρρακωνησίᾳ , ἀπὸ δὲ δύσεως τῷ δυτικῷ ὠκεανῷ , ἀπὸ |
ΑΠ [ ] [ ] ΤΩΙΨΗΙΚ [ ] [ ] ΩϹ καὶ Μ [ ] [ ] θανάτω ? [ | ||
: ΕΥΦ ! [ ! ] ! ! [ ] ΩϹ ! ! [ ] # ΚΑΡΝΕΙϹΚΟΥ # ΦΙΛΙϹΤΑ Β |
ἀπὸ ΑΚ πρὸς τὸ ἀπὸ ΑΖ , τουτέστι τὸ ὑπὸ ΑΖΚ . ὀρθία ἄρα ἐστὶν ἡ ΓΔ τῆς τομῆς : | ||
διάμετρον τὴν ΚΑ κύκλος ὀρθὸς ὢν πρὸς τὸ διὰ τῶν ΑΖΚ ἐπίπεδον . ἔσται δὴ ὀρθὸς ὁ κῶνος : ἴση |
σημείου δοθέντος τοῦ Ϡ , λαβεῖν δύο σημεῖα ὡς Ε͵ Ζ͵ , ὥστε εἶναι ὡς μὲν τὴν ΔΗ πρὸς τὴν | ||
τῆς ΔϠ , κἂν τὸ Θ͵ μεταξὺ βούληται πίπτειν τῶν Ζ͵ Ϡ . οὐδὲν γὰρ ἕξει καὶ ὧδε λέγειν ἀνασκευαστικόν |
τοῦ ζωδιακοῦ κατὰ κορυφὴν ὄντος ἀεὶ τῷ ἐν τῇ γῇ ζωδιακῷ , τούτου δ ' οὐκ ἐκβαίνοντος ἔξω τῆς Αἰθιόπων | ||
τὸ γένος ἐχόντων : ὑπὲρ ἧστινος Ταπροβάνης ἄνωθεν ἐν τῷ ζωδιακῷ τοῦ οὐρανοῦ κύκλῳ ὁ διάπυρος καρκίνος ἀναστρέφεται , ὡς |
, ἐὰν πρὸς πάσας τὰς ἐπιφανείας πᾶς ὁπλίτης παρατάσσηται ἐν ἑτερομήκει σχήματι : πλινθίον δέ , ἐὰν ἴσαις ταῖς φάλαγξι | ||
τὸ γοῦν ἀπὸ ταύτης ἀναγραφὲν τετράγωνον ἴσον ἔσται τῷ προρρηθέντι ἑτερομήκει . δὶς γὰρ ηʹ ιϚʹ : οὕτω γὰρ ἐκείνῳ |
πέρατος τοῦ Δ , τὴν ὑπὸ ΔΒΗ , ὑποτείνουσαν τοῦ ὁμοκέντρου τῷ ζῳδιακῷ περιφέρειαν μοιρῶν ιγ ιδ . Ἐπεὶ δὲ | ||
πάροδος τῆς κατὰ τὴν ἀνωμαλίαν , τουτέστιν ἡ γινομένη τοῦ ὁμοκέντρου περιφέρεια τῆς τοῦ ἐπικύκλου : οὕτως γὰρ ἂν οὐ |
μεταξὺ τῶν Ρ Θ , πάντες δὲ οἱ μείζους τοῦ πενταπλασίου ποιοῦσι τὸ σημεῖον τῆς τομῆς μεταξὺ τῶν Ρ Τ | ||
τοῦ εἰκοσαέδρου καθέτου τὸ δυνάμει δωδεκαπλάσιον μεῖζόν ἐστιν τοῦ δυνάμει πενταπλασίου τῆς πλευρᾶς τοῦ εἰκοσαέδρου . Ἐκκείσθω κύκλος ὁ ΑΒΓ |
μαθηματικοῦ , γραμμικῶς αὐτὸ ἀποδεικνύντος , ὅτι τὸ ἕκτον τοῦ ζωδιακοῦ κύκλου μέρος ἀπὸ τῆς μέχρι τῆς ἀνατολῆς ἐκβαλλομένης εὐθείας | ||
ὡς καὶ ὁ Ἄρατος πρῶτον ἀναγράφει τὰ βορειότερα ἄστρα τοῦ ζωδιακοῦ , ἔπειθ ' οὕτως τὰ νοτιώτερα . Καὶ τὰς |
καὶ παράλληλοί εἰσιν διὰ τὸ λγʹ τοῦ αʹ . τὸ ΚΒΟΣ ἄρα τετράπλευρον . , . ] τετράπλευρόν ἐστιν , | ||
κύκλος . Ἤχθω ἀπὸ τοῦ Α σημείου ἐπὶ τὸ τοῦ ΚΒΟΣ τετραπλεύρου ἐπίπεδον κάθετος ἡ ΑΨ καὶ συμβαλλέτω τῷ ἐπιπέδῳ |
περὶ καλοῦ τι λέγειν οὔτε περὶ ἐναντίου προσήκει λέγειν τῷ γεωμέτρῃ καθὸ γεωμέτρης : κοινὰ γὰρ ταῦτα καὶ πλείοσιν ὑπάρχοντα | ||
ἅπτεσθαι τοῦ ἐφάπτεσθαι : τὸ μὲν γὰρ ἐφάπτεσθαι εἴρηται τῷ γεωμέτρῃ ὡς δεῖ ἐκδέχεσθαι , τὸ δὲ ἅπτεσθαι , ἵνα |
ΒΓ τῇ ΣΛ , καὶ ὅμοιον τὸ ΘΓΒ τρίγωνον τῷ ΘΛΖ , καί ἐστιν , ὡς ἡ ΘΒ πρὸς ΓΒ | ||
ἡ ΣΥ . λέγω , ὅτι τὸ ΣΛΥ τρίγωνον τοῦ ΘΛΖ τριγώνου μεῖζόν ἐστι τῷ ΘΓΒ . ἤχθω γὰρ διὰ |
. ὥστε καὶ τὰ στερεὰ παραλληλεπίπεδα τὰ ἀπὸ τῶν εἰρημένων πρισμάτων ἀναγραφόμενα ἰσοϋψῆ καὶ πρὸς ἄλληλα [ εἰσὶν ] ὡς | ||
ἡμέρας ι καὶ μετὰ ταῦτα σμώμενα , λωτοῦ τοῦ δένδρου πρισμάτων ἀφέψημα . μελαίνας δὲ ποιεῖ σμώμενα κηκῖδος ἀπόβρεγμα καὶ |
ὑπὸ ΜΧΟ γωνία : καὶ τὰ ἀπὸ τῶν ΓΦ , ΦΟ ἄρα ἴσα ἐστὶ τοῖς ἀπὸ τῶν ΜΧ , ΧΥ | ||
: μείζων ἄρα ἐστὶν ἢ ὁμοία ἡ μὲν ΧΩ τῆς ΦΟ , ἡ δὲ ΦΟ τῆς ΞΤ : ἐν πλείονι |
: ἀσπίς ῥανίς κρηπίς κνημίς ἁψίς . Εἰ δὲ εἰς ΙΝ ἔχουσι τὴν αἰτιατικὴν , περισπῶνται : Βενδῖς Μολῖς Τοτῖς | ||
λοιπὴ ἡ ΙΝ ἑνός : τριπλῆ ἄρα ἡ ΛΙ τῆς ΙΝ : λέγω οὖν ὅτι δώδεκα τὰ ἀπὸ ΟΝ μείζονά |
αὐτῶν ια . καὶ ἔστιν ὡς τξ πρὸς μζ μβʹ μʹʹ οὕτως πγ πρὸς ια . . . , . | ||
σκιᾶς κατὰ μὲν τὸ μέγιστον ἀπόστημα τῆς σελήνης ἑξηκοστὰ μʹ μʹʹ , κατὰ δὲ τὸ ἐλάχιστον ἀπόστημα ἑξηκοστὰ μϚʹ . |
τρίτον ἔχουσαν . πρῶτος δὴ καὶ ἐλάχιστος ἡμῖν ὁ Ϛʹ χρησιμεύσει πρὸς τὰς τῶν λόγων ἀποστάσεις , ἀποτέλεσμα ὢν τῶν | ||
ἁπλῆ ὕλη τοῖς παλαιοῖς πρὸς ταῦτα ἀναγέγραπται : ῥοῦς συριακὸς χρησιμεύσει καὶ διὰ τῶν δυοῖν τόπων λαμβανόμενος : τὰ δὲ |
τὴν ΑΖ , τῇ δὲ Δ τὴν ΖΗ , καὶ ἐπιζεύξας τὴν ΒΗ ταύτῃ παράλληλον ἤγαγον τὴν ΖΘ . ἐπεὶ | ||
. εἰ δ ' ἀρεταί : ὅτι ἀρεταὶ κατάκειται εἴρηκεν ἐπιζεύξας πληθυντικῷ ἑνικὸν ῥῆμα τὸ κατάκειται . καὶ ὅτι ὀργὰν |
ἐχρήσαντο , τὸ μὴ δυνηθῆναι διὰ τοῦτο μετασχεῖν τῆς τῶν διαβατηρίων θυσίας . εἶτ ' ἐδέοντο μὴ ἔλαττον τῶν ἄλλων | ||
ὁ δὲ Ἀριστόβουλος προστίθησιν ὡς εἴη ἐξ ἀνάγκης τῇ τῶν διαβατηρίων ἑορτῇ μὴ μόνον τὸν ἥλιον ἰσημερινὸν διαπορεύεσθαι τμῆμα , |
μοῖραι τῶν φώτων καταληπταὶ ἔσονται . Καὶ τοῦτο δέ μοι παρεισῆλθεν περὶ τῆς προκειμένης ἀγωγῆς , τουτέστι τῶν κζʹ ἐτῶν | ||
καιροί : καὶ τότε παγιωτέραν γυναῖκα τὴν ἀστήν , ὅτε παρεισῆλθεν ἑτέρα . Πρὸς μὲν γὰρ τὴν παλλακίδα μίξις ἦν |
ΗΒΓ τρίγωνον : ὅλον ἄρα τὸ ΑΒΓΔ παραλληλόγραμμον ὅλῳ τῷ ΕΒΓΖ παραλληλογράμμῳ ἴσον ἐστίν . Τὰ ἄρα παραλληλόγραμμα τὰ ἐπὶ | ||
ΒΓ : λέγω , ὅτι ἴσον ἐστὶ τὸ ΑΒΓΔ τῷ ΕΒΓΖ παραλληλογράμμῳ . Ἐπεὶ γὰρ παραλληλόγραμμόν ἐστι τὸ ΑΒΓΔ , |
τὸ ἄρα ὑπὸ τῶν ΕΖΔ ἴσον ἐστὶ τῷ ὑπὸ τῶν ΚΖΗ . ἀλλὰ τῷ ὑπὸ τῶν ΕΖΔ ἴσον ἐδείχθη τὸ | ||
ἡ ΛΝ τῇ ΝΖ . ἤχθωσαν τεταγμένως αἱ ΒΘ , ΚΖΗ , ΛΜΔ . ἐπεὶ οὖν διὰ τὰ δεδειγμένα ἐν |
ἐκ πλειόνων μέν εἰσιν ἁπλῶν λόγων ἡνωμένων δὲ ὑπὸ τοῦ συναπτικοῦ προσαγορευομένου συνδέσμου , οἷον εἰ ἡμέρα ἐστίν , ἥλιος | ||
ἐν οἷς συμπλέκει λόγους , ἔχων δὲ καὶ τὴν τοῦ συναπτικοῦ , ἐν οἷς ἀκολουθίας ἐστὶ παραστατικός , οὐκ ἀπὸ |
γὰρ ἀπέχει τοῦ ἰσημερινοῦ . τὸ μὲν ἄρα δη τεταρτημόριον ἀνενεχθήσεται ἐν μοίραις χρονικαῖς ρεʹ , τὸ δὲ δα τεταρτημόριον | ||
, τὸ ἕκτον γίνεται λεʹ : ἐν τούτοις ὁ Λέων ἀνενεχθήσεται . καὶ ὁμοίως κατὰ τὴν προκειμένην ἔφοδον , ἐὰν |
πρὸς τὴν ΗΚ . ὅμοια ἄρα ἐστὶ τὰ ΑΖΒ , ΛΗΚ τρίγωνα , ὡς δέδεικται ἐν τῷ ἕκτῳ θεωρήματι τοῦ | ||
ΒΜΘ , ἡ δὲ ΒΜΘ τῆς ΛΗΚ , ἡ δὲ ΛΗΚ τῆς ΓΕ , ἐν πλείονι ἄρα χρόνῳ τὸ Α |
. Γεγράφθωσαν γὰρ διὰ τῶν Δ Ε παράλληλοι κύκλοι οἱ ΒΔΛ ΝΘΕΚ : [ γίνεται ἄρα μείζων ἢ ὁμοία ἡ | ||
οὖν ἐπίπεδά ἐστιν ὀρθὰ ἀλλήλοις τό τε ΓΚΛ καὶ τὸ ΒΔΛ , καὶ τῇ κοινῇ τομῇ αὐτῶν τῇ ΚΛ ἐν |
ἡ ΓΑ , ὀρθία δὲ ἡ ΓΛ , αἱ δὲ καταγόμεναι ἀπὸ τῶν τομῶν ἐπὶ τὴν ΓΑ καταχθήσονται ἐν τῇ | ||
καὶ φανοῦνται παράλληλοι , αἱ δ ' ἐπὶ τὴν ΑΓ καταγόμεναι διαχθήσονται μὲν ἀπὸ τοῦ Κ , φανοῦνται δὲ τῇ |
κατὰ βρέγματος ἐπὶ ἰνίον , εἶτα μετωπιαία . Κεφ . κστʹ . Ἡ μεσότης τῷ ἰνίῳ ἐντιθέσθω τὰ εἰλήματα , | ||
πρὶν ἀλείψασθαι . ἐπὶ ἡμέρας κʹ . ἀφανίζονται . [ κστʹ . Πρὸς τὸ κοιλίαν , ἢ ὑποχόνδριον , ἢ |
εἰς ἴσα . ὁμοίως οὐδὲ ἡ τρίτη . Τὸν κανόνα καταγράψαι κατὰ τὸ καλούμενον ἀμετάβολον σύστημα . ἔστω τοῦ κανόνος | ||
βασιλεῦσαι , „ Ἡρόδοτον δὲ καὶ τὸ ὄνομα τοῦ βασιλέως καταγράψαι καλέσαντα Ἀργανθώνιον . Τῇ δὲ τῆς χώρας εὐδαιμονίᾳ καὶ |
πλευρῶν ἕτερον ἐκ δὶς τοσούτων συνεστηκὸς ἐντὸς συνήρμοσται σχῆμα κύκλον περιλαβὸν μετεωρίζοντά που τὸν ὄροφον , τὸ διὰ πάντων ἤδη | ||
: μέχρι μὲν οὖν ἂν ἁπλῶς τοιοῦτο λέγηται , πάντα περιλαβὸν ἐν ἑαυτῷ ἔχει : ἐπειδὰν δὲ τὸ εἰδοποιοῦν ἑκάστῳ |
ἀποχῆς ἀριθμὸν εἰσενεγκόντες εἰς τὰ αὐτὰ σελίδια , ὅσα ἂν παρακέηται αὐτῷ ἑξηκοστὰ ἐν τῷ ἕκτῳ σελιδίῳ , τὰ τοσαῦτα | ||
μοιρῶν , εἰσενεγκόντες εἰς τοὺς αὐτοὺς ἀριθμούς , ὅσα ἐὰν παρακέηται καὶ τούτῳ ἑξηκοστὰ ἐν τῷ εʹ σελιδίῳ , τὰ |
προσλαβὼν τὸν ἐλάσσονα ἀριθμὸν ἴσος ᾖ τῷ ἀπὸ τοῦ ἐλάσσονος κύβῳ προσλαβόντι τὸν μείζονα ἀριθμόν . Ἔστω ὁ μὲν ʂ | ||
β ἐν μορίῳ τῷ ἀπὸ ΔΥ α # Μο β κύβῳ . καὶ ἔστιν τὸ μόριον κυβικόν : ἔστω ΔΥ |
δοθὲν ἄρα καὶ τὸ ὑπὸ ΛΥΦ : καὶ δοθέντα τὰ ΛΥ : δοθὲν ἄρα τὸ Φ : ἀπῆκται οὖν εἰς | ||
ΛΖ βάσις τῇ ΝΖ βάσει , ἴσον ἐστὶ καὶ τὸ ΛΥ στερεὸν τῷ ΝΥ στερεῷ , καὶ εἰ ὑπερέχει ἡ |
ῥαφή : ἀντὶ τοῦ παραλογίζεται , ὡς καὶ ἐν εʹ Ἐπιδημιῶν φησιν : ἔκλεψαν δέ μου τὴν γνώμην αἱ ῥαφαὶ | ||
συνώνυμον θεὶς τὸ ἀλύειν τῷ πλανᾶσθαι . κεῖται ἐν τετάρτῳ Ἐπιδημιῶν καὶ ἐν αʹ Γυναικείων καὶ ἐν Ἀφορισμοῖς . ἀπεδείξαμεν |
ἔχει ἀλλ ' ἔτι γίνεται : τὸ δὲ γινόμενον οὐκ ἀπήρτισται . σπουδὴ δὲ καὶ τοῦδε : ἡ τούτου δὲ | ||
ταύτηι , ἧι ἡ μὲν σφαῖρα κυκλοτερῶς πανταχόθεν εἰς λειότητα ἀπήρτισται , τὸ σφαιροειδὲς δὲ κύκλος , οὐ μὴν ἴσος |
μὲν τοῦ ΕΖΗΘ κύκλου , ὕψους δὲ τοῦ ΝΠ κύλινδρος νενοήσθω ὁ ΕΣ . καὶ ἐπεὶ ἴσος ἐστὶν ὁ ΑΞ | ||
ΛΜ , καὶ ἐπεζεύχθωσαν αἱ ΜΒ , ΜΚ , καὶ νενοήσθω κῶνος , οὗ κορυφὴ μὲν τὸ Μ σημεῖον , |
μετὰ δὲ τοῦτο τῷ τὸ ὀξύτερον δίτονον ἐπὶ τὸ βαρὺ ὁρίζοντι διὰ τεσσάρων εἰλήφθω ἐπὶ τὸ ὀξύ , τῷ δὲ | ||
, ὁ χρόνος ἐστίν , ἐν ᾧ προανατέλλει τῷ ΑΔΓ ὁρίζοντι , ὁ δὲ χρόνος , ἐν ᾧ τὴν ΛΒ |
δέ , τῶν κλιμάτων ἐν παραλληλογράμμῳ σχήματι διαστελλομένων , τὰ ἐγγραφόμενα τρίγωνα καὶ μάλιστα ὅσα σκαληνὰ καὶ ὧν οὐδεμία πλευρὰ | ||
καὶ τῆς περιφερείας τετραπλάσιόν ἐστιν τοῦ κύκλου . τὰ γὰρ ἐγγραφόμενα τοῖς κύκλοις ἢ περιγραφόμενα ὅμοια πολύγωνα τὰς περιμέτρους ἔχει |
συνδοθήσεται , ὅπερ ἀποπτύσαντες αὖθις φλέγμα συνεστραμμένον ἐκβάλλουσιν , ἔπειτα διαστήσαντες μέρος τῆς τροφῆς καὶ τοῦ φαρμάκου μετὰ φλέγματος ἐμοῦσιν | ||
τῆς ἀμπέλου καὶ τοῦ δένδρου σφῆνα ἐμβάλλουσιν , οὕτω δὲ διαστήσαντες ἐκ τοῦ δένδρου τὴν ἄμπελον , χώρημα αὐτὴν ἔχειν |
, ὅτι τῶν νόμων οὓς μὲν αὐτὸς ὁ θεὸς οὐ προσχρησάμενος ἄλλῳ δι ' ἑαυτοῦ μόνου θεσπίζειν ἠξίωσεν , οὓς | ||
τῆς γραφῆς : ἀλλ ' εἰ τοῖς τυχοῦσιν εἰς ἀφορμὴν προσχρησάμενος ταῦτα δέδρακεν , ἅπερ ἂν ἡμεῖς τῶν νεωρίων ἀπολλυμένων |
ἐν τοῖς μέσοις συναναβλαστάνοντα καὶ ἐπιφυόμενα τῶν βλαβερῶν ἀναγκαίως ἂν τέμνοιτο τοῦ μὴ ζημιοῦσθαι τὰ ἀμείνω χάριν . ἢ οὐκ | ||
συγκαταθετέον , διὰ γὰρ τῆς δριμυφαγίας εἰ καὶ τὸ πάχος τέμνοιτο τοῦ γάλακτος , ἡ ποιότης αὐτοῦ φθαρεῖσα καὶ δηκτικὴ |
ποτ ' ἄλλαλα , ὃν τὰ τετράγωνα τὰ ἀπὸ τᾶν ἐπιψαυουσᾶν : ὁμόλογον δὲ ἐσσεῖται τὸ περιεχόμενον ὑπὸ τῶν τᾶς | ||
ποτ ' ἄλλαλα , ὃν τὰ τετράγωνα τὰ ἀπὸ τᾶν ἐπιψαυουσᾶν : ὁμόλογον δὲ ἐσσεῖται τὸ περιεχόμενον ὑπὸ τῶν τᾶς |
Ῥιανὸς ἐν τῶι ιδ Ἡρακλείας : Νίκανδρος δὲ ἐν τοῖς Αἰτωλικοῖς ὅτι ἐν αὐτοῖς τῆς Σελήνης τῶι Ἐνδυμίωνι συγκαθευδούσης , | ||
λέγοιτ ' ἄν , κοινῇ δ ' ὅσα καὶ τοῖς Αἰτωλικοῖς ἐπιπλέκεται νῦν ἐροῦμεν , τὰ Αἰτωλικὰ λέγοντες ἐφεξῆς ὅσα |
αὐτῇ προσαρμοζομένης πρὸς τὰ ἔσχατα γινώσκειν τε τὰ ὄντα καὶ ἐναρμόζειν διὰ τὸ ἔχειν ἐν αὑτῇ τὰ στοιχεῖα κατὰ ἁρμονίαν | ||
ἢ ἀπολαύσεις ἡδονῶν : πάντα ταῦτα , κἂν πρὸς ὀλίγον ἐναρμόζειν δόξῃ , κατεκράτησεν ἄφνω καὶ παρήνεγκεν . σὺ δέ |
ἐν τοῖς ἑξῆς , λέγω δὲ ἐν τῷ μετὰ τοῦτο βιβλίῳ , ἀκριβέστερον εἰσόμεθα . νῦν δὲ ἐκ τῶν εἰρημένων | ||
ὡς προείρηται . Διεξελθὼν ὁ Πτολεμαῖος καὶ ἐν τῷ τετάρτῳ βιβλίῳ τῶν μαθηματικῶν , ἀπὸ ποίων τηρήσεων τὰ περὶ τὴν |
κωνικὴν ποιήσει ἐπιφάνειαν τῇ ΑΠ εὐθείᾳ , ἣ δὴ περιαγομένη συμβαλεῖ τῇ κυλινδρικῇ γραμμῇ κατά τι σημεῖον . ἅμα δὲ | ||
τοῦ Γ σημείου ἐντὸς τῆς τομῆς ἀγομένη παρὰ τεταγμένως κατηγμένην συμβαλεῖ τῇ ΑΒ διαμέτρῳ καὶ δίχα τμηθήσεται ὑπ ' αὐτῆς |
ΗΘ , ΘΕ εὐθειῶν παραλληλόγραμμα , ἕκαστον τῶν ΕΚΖ , ΖΛΗ , ΗΜΘ , ΘΝΕ τριγώνων ἥμισυ ἔσται τοῦ καθ | ||
. ἴση ἄρα ἐστὶν ἡ ὑπὸ ΑΕΒ γωνία τῇ ὑπὸ ΖΛΗ . ἀλλ ' ἡ μὲν ὑπὸ ΑΕΒ τῇ ὑπὸ |
ἴσα τμήματα ἴσων κύκλων τὰ ΑΒΓ , ΔΕΖ , καὶ ἀπειλήφθωσαν ἴσαι περιφέρειαι αἱ ΑΒ , ΔΕ , καὶ κάθετοι | ||
δὲ τῶν ζῳδίων κύκλος θέσιν ἐχέτω τὴν ΑΕΓΔ , καὶ ἀπειλήφθωσαν ἴσαι περιφέρειαι αἱ ΑΔ , ΓΕ : κατὰ διάμετρον |
ἔστιν ἄρα καὶ ὡς εἷς τῶν ἡγουμένων πρὸς ἕνα τῶν ἑπομένων , οὕτως ἅπαντες οἱ ἡγούμενοι πρὸς ἅπαντας τοὺς ἑπομένους | ||
, τὸ δὲ καὶ μετὰ κυνῶν . δύο γὰρ τῶν ἑπομένων ταῖς βουσίν , ὡς δὴ μακρὰν ἦσαν οὐχ ὁρῶντες |
ὁ γὰρ πρὸς τοῖς δυσὶ διαστήμασι τοῖς ἐν τῇ ἐπιπέδῳ σχηματογραφίᾳ θεωρουμένοις ἐπὶ μῆκος καὶ ἐπὶ πλάτος τρίτον διάστημα προσειληφώς | ||
γὰρ καὶ α ὁ γ ἐστί , καὶ τῇ γε σχηματογραφίᾳ οὕτως συνίσταται : ἐπὶ μιᾷ μονάδι δύο μονάδες παράλληλοι |
, τὰ δὲ νότια μᾶλλον τῷ ὁρίζοντι πελάζειν διὰ τὸ ἐγκεκλίσθαι ἀπὸ τῶν βορείων ἐπὶ τὰ νότια τὸν κόσμον ἐν | ||
Τούτου δ ' αἴτιόν ἐστι τὸ μὴ ἐπίσης παρὰ πᾶσιν ἐγκεκλίσθαι τὸν κόσμον , μηδὲ τὸν βόρειον τῶν πόλων τὰς |
ΓΘΖ ἐστιν ἴση . ἡ δὲ ὑπὸ ΓΘΖ τῇ ὑπὸ ΔΘΗ ἴση : κατὰ κορυφὴν γάρ : καὶ ἡ ὑπὸ | ||
Β τοῦ ΓΗΒ τριγώνου ἴση τῇ πρὸς τῷ Η τοῦ ΔΘΗ τριγώνου , ἡ δὲ πρὸς τῷ Β τῇ πρὸς |
, γυμνάσιον ζωῆς , σύστημα θεόκτιστον , σελήνης παννύχισμα , ἀσύνοπτον θεώρημα , ὄμβρων τιθήνη , καρπῶν φύλαγμα καὶ μήτηρ | ||
μέσῳι κα [ ! ! ! ! ] υτων ? ἀσύνοπτον [ ! ! ! θεωροῦντας ] , ὅτι οὐ |
ὅλων , ἀπὸ δὲ τοῦ ἐξ ἀρχῆς κύκλου ἴσαι περιφέρειαι ἀπειλημμέναι εἰσὶν αἱ ΑΛ , ΔΜ : ἡ ἄρα ἀπὸ | ||
ὅλων , ἀπὸ δὲ τῶν ἐξ ἀρχῆς κύκλων ἴσαι περιφέρειαι ἀπειλημμέναι εἰσὶν αἱ ΜΝ , ΠΡ , ἡ ἄρα ἀπὸ |
ἀπέχουσα ἐν ἀρχῇ τοῦ Σκορπίου ὥρας ἰσημερινὰς δ , καὶ ἐκβληθεῖσαι αἱ ΓΔ , ΑΒ περιφέρειαι τεμνέτωσαν ἀλλήλας μὲν κατὰ | ||
καὶ ἐπιζευχθεῖσαι αἱ ΚΕ , ΚΖ , ΚΗ , ΚΘ ἐκβληθεῖσαι προσπιπτέτωσαν ἐπιπέδῳ τινὶ παραλλήλῳ ὄντι τῷ ΑΒΓΔ κατὰ τὰ |
ΔΕΖ , τὴν δὲ ὑπὸ ΑΓΒ τῇ ὑπὸ ΔΖΕ . Συνεστάτω γὰρ πρὸς τῇ ΔΖ εὐθείᾳ καὶ τοῖς πρὸς αὐτῇ | ||
] ἑκάτερον ἄρα τῶν ΔΘ , ΕΚ ῥητόν ἐστιν . Συνεστάτω οὖν τῷ μὲν ΑΙ ἴσον τετράγωνον τὸ ΛΜ , |
τοῦ γεγονότος τετραγώ - νου ἀπὸ τοῦ κζ , εἶτα ἀναβίβασον αὐτὴν καὶ εὑρήσεις οὐδένα ἄλλον ἢ τὸν ε ια | ||
καὶ ὅρα ταῦτα , πῶς κεῖνται ٣٠ ٦٦ ٢٧٦ ταῦτα ἀναβίβασον , καὶ γίνονται λα ι λϚ , ἅτινα λα |
, τὸ ΜΛΓ πρὸς τὸ ΜΑΓ , καὶ τὸ διπλάσιον ΒΛΓ πρὸς τὸ ΒΑΓ : καὶ συνθέντι ἄρα πρὸς συγκείμενον | ||
δὲ τὸ ΔΛ τετράπλευρον τῷ ΑΕΗ τριγώνῳ , τὸ δὲ ΒΛΓ τῷ ΑΓΘ : ὡς ἄρα τὸ ὑπὸ ΖΕΔ πρὸς |
ἐπὶ τὸ Ψ . ὥστε καὶ ἡ ΩΞ περι - φέρεια ἴση ἐστὶ τῇ ΟΨ . ἐν ᾧ ἄρα τὸ | ||
. ὥστε καὶ ἡ μὲν ἐπὶ τῆς ΕΖ περι - φέρεια τοιούτων ἐστὶν Ϙα νε , οἵων ὁ περὶ τὸ |
καὶ πρὸς τοῖς Γ , Δ , Ε σημείοις ἔστω ἔνοπτρα ἐπίπεδα , ἀφ ' ὧν ὁρᾶται τὸ Α , | ||
με πολυδάκρυτον Ἑλλάδι λάτρευμα γᾶθεν ἐξορίζει , χρύσεα δ ' ἔνοπτρα , παρθένων χάριτας , ἔχουσα τυγχάνει Διὸς κόρα : |
ἡ ἀπὸ τοῦ Ε ἐπὶ τὸ Ζ ἐπιζευγνυμένη εὐθεῖα ἐν μετεωροτέρῳ ἐστὶν ἐπιπέδῳ : ἐν τῷ διὰ τῶν ΑΒ , | ||
ὅπερ ἐστὶν ἀδύνατον . οὐκ ἄρα ἡ ΒΓ εὐθεῖα ἐν μετεωροτέρῳ ἐστὶν ἐπιπέδῳ : αἱ τρεῖς ἄρα εὐθεῖαι αἱ ΒΓ |
προβλήματι ] τῷ φύλακι . Ξ προβλήματι ] σκεπάσματι . προβλήματι ] φυλακῇ . θ οὕτω γὰρ ἐμεμηχάνητο ἡ Σφὶγξ | ||
αἴτιον λαμβάνεται , ὃ καὶ ὁρισμὸς ἦν τοῦ ἐν τῷ προβλήματι κατηγορουμένου . καὶ τίνες μὲν ἀντιστρέφουσι τῶν ὑποκειμένων τῷ |
, κλέος οὐκ ἐπῆλθε ; ποίᾳ Μασσαλίᾳ τὸ πένθος τοῦτο ὁρισθήσεται ; ἢ τίνι Βορυσθένει ; τίς Ἑλλήνων οὕτως ἔξω | ||
ἢ ἁπλούστερα , τεταραγμένου δὲ τοῦ ἡμιτριταίου , σαφέστερον οὕτω ὁρισθήσεται : πρώτης ἀρχῆς σημασίας ἐνδοτέρω οὐκ ἂν ἐπισημήνειε εʹ |
, ἑξάκις ἂν τόσση μιν ὑποδράμοι : αὐτὰρ ἑκάστη ἴση μετρηθεῖσα δύω περιτέλλεται ἄστρα οὐ γραμματικοῦ τοῦτο νοῆσαι , ὅτι | ||
τοῦ λίθου δυνάμει . Ἀλλὰ οὖσα πρώτη φύσις καὶ οὐ μετρηθεῖσα οὐδὲ ὁρισθεῖσα ὁπόσον δεῖ εἶναιταύτῃ γὰρ αὖ ἡ ἑτέρα |