καὶ Σελήνη ἑξάδα , ἡ δὲ ἑβδομὰς κοινὴ πάντων , ὀγδοάδα δὲ Ἀφροδίτη , ἐννεάδα δὲ καὶ δεκάδα ἥλιος Ἄρης | ||
. Κρόνος δὲ καὶ Ζεὺς ἀνὰ μοίρας ἐννέα , Τὴν ὀγδοάδα δ ' ἔσχε τῶν μοιρῶν Ἄρης Ἔμπροσθεν καὶ ὄπισθεν |
οἳ ἐδόκουν λέγειν ἀριθμοὺς ἐκ τοῦ ἀνάλογον , οἷον δικαιοσύνην τετράδα καὶ ἄλλον ἄλλως : ἐκείνως δὲ μᾶλλον τῷ πλήθει | ||
δὲ τριάδα παραλείποιεν , τετρὰς ἡ ὑπεροχή : καὶ εἰ τετράδα , πεντάς , καὶ ἐφεξῆς εὑρήσεις τοῦτο . μετέχει |
μέρη τί βούλεται ἐνδείκνυσθαι ; Ῥητέον οὖν ὡς ὅτι τὴν δωδεκάδα ταύτην διεῖλε διχῇ , εἴς τε μονάδα καὶ ἑνδεκάδα | ||
Ζεὺς δὲ τὴν δεκάδα καὶ ἑνδεκάδα , καὶ Ἀφροδίτη τὴν δωδεκάδα . ἄγει δὲ τὸ θέμα ἔτος λαʹ : εὑρίσκονται |
τῶν δέκα πληρώσει ἀριθμόν : ὥστε ὁ ἀριθμὸς κατὰ μὲν μονάδα ἐν τοῖς δέκα κατὰ δὲ δύναμιν ἐν τοῖς τέσσαρσι | ||
εὑρίσκεται ἔχων ὁλοκλήρως τὰς δ μονάδας καὶ ἐπέκεινα τούτων μίαν μονάδα , ἥ ἐστιν τῶν δ δʹ , καὶ διὰ |
, ἀλλὰ μεταπίπτει ἐν τῷ πολλαπλασιασμῷ , οἷον δυὰς ἐπὶ τριάδα καὶ τριὰς ἐπὶ τετράδα καὶ τετρὰς ἐπὶ πεντάδα : | ||
λέγοντες οὕτως , οἷον τὴν γραμμὴν δυάδα , τὴν ἐπιφάνειαν τριάδα , τὸ δὲ στερεὸν τετράδα : καὶ τῶν παραδειγμάτων |
κοινὴ πάντων , ὀγδοάδα δὲ Ἀφροδίτη , ἐννεάδα δὲ καὶ δεκάδα ἥλιος Ἄρης Ἑρμῆς ὡροσκόπος , καὶ Ζεὺς δὲ τὴν | ||
δέκα λέγομεν , ὅταν δὲ ἐκ πολλῶν γίνηται ἕν , δεκάδα , ὡς κἀκεῖ οὕτως . Ἀλλ ' εἰ οὕτως |
. Κουρήτιδα δὲ ἰδίως καὶ Ὀρφεὺς καὶ Πυθαγόρας αὐτὴν τὴν ἐννεάδα ἐκάλουν , ὡς Κουρήτων ἱερὰν ὑπάρχουσαν τριῶν τριμερῆ , | ||
κατὰ παρωνυμίαν τοῦ ἕν : ὅτι δὲ οὐδὲν ὑπὲρ τὴν ἐννεάδα ὁ ἀριθμὸς ἐπιδέχεται , ἀλλ ' ἀνακυκλεῖ πάντα ἐντὸς |
ὑποκειμένοις ἐπιβάλλουσα . Ἀλλὰ γὰρ καὶ τὴν τῶν πρώτων στοιχείων πεντάδα τούτοις ἀναλογοῦσαν εὑρήσομεν , τῷ μὲν ὑπάτων γῆν ὡς | ||
καὶ ὀκτασήμου . μερίζω τὴν ὀκτάδα πάλιν εἰς τριάδα καὶ πεντάδα : οὐδ ' οὕτως ἔσται ῥυθμικὸς λόγος . τὸν |
τὰς ἰδέας πρεσβεύοντες οἱ μὲν τὸ παράδειγμα τῆς γραμμῆς τὴν δυάδα λέγουσιν , οἱ δὲ τὴν ἰδέαν τῆς γραμμῆς . | ||
; ἢ τὰ δύο : καὶ μετὰ τὴν μονάδα τὴν δυάδα καὶ οὕτω γε τὸν λοιπὸν ἀριθμὸν προελθεῖν . Οὕτω |
κατὰ μὲν ἑβδομάδα τασσομένου , τοῦ δὲ ψυχικοῦ καθ ' ἑξάδα , τὸ φυτικὸν ἀναγκαίως κατὰ τὴν πεντάδα πίπτει , | ||
τὴν ὁλότητα . ὅτι ἑπτὰ τῶν σφαιρῶν οὐσῶν κατὰ τὴν ἑξάδα τὰ διαστήματά ἐστι : μονάδι γὰρ ἀεὶ ἐλάττονα . |
τὸν δέκα συνθῇς , μέσος εὑρεθήσεται ὁ εʹ κατὰ τὴν ἀριθμητικὴν ἀναλογίαν , οἷον θʹ καὶ αʹ , ηʹ καὶ | ||
εἰσὶν αἱ προηγούμεναι τῶν ἀναλογιῶν . πάλιν δὲ κατὰ τὴν ἀριθμητικὴν παράδοσιν λέγονται λόγοι τῶν ἀριθμῶν , ὡς καὶ ὁ |
ἀποδείκνυσι λόγον . ἐπεὶ οὖν κατὰ Πυθαγόραν τὸν Σάμιον ἡ τριὰς εἰς γάμον συνελθοῦσα τῇ τετράδι ἀπεγέννησε τὴν ἑβδομάδα καὶ | ||
τῷ τέλει τῆς στροφῆς καὶ ἀντιστροφῆς παράγραφος . ἔστι δὲ τριὰς ἐπῳδική . ἥκω σεβίζων ] αἱ ἑξῆς αὗται συστημάτων |
] ⌈ κϘʹ . / [ εἰκοστὴ ἕκτη . ] τετρὰς ] ⌈ κζʹ . / [ εἰκοστὴ ζʹ . | ||
, οὕτω καὶ ἡ τοῦ μεγίστου παρὰ τὸν μέσον διαφορὰ τετρὰς οὖσα πρὸς τὴν τοῦ μέσου παρὰ τὸν ἐλάχιστον δυάδα |
εἰσιν , ἀμφότεροι γραμματικοὶ ὀνομάζονται , καθὸ ὑπέκειτο μέν τις δυὰς ἡ διὰ τοῦ ἀμφότεροι , τὸ δ ' ἐπιγεγενημένον | ||
δὲ τὰ ἀναρίθμητα . Μονὰς ἀπὸ τοῦ μένω μονὰς , δυὰς ἀπὸ τοῦ δύω τὸ ὑπεισέρχομαι , τριὰς ἀπὸ τοῦ |
τετράκις ὀκτάκις ἢ τρὶς πεντάκις δωδεκάκις ἢ κατά τινα ἄλλην ἀνισότητα τοιαύτην . τὰ δὲ τοιαῦτα στερεὰ σχήματα λέγεται σκαληνὰ | ||
, καὶ ταύτην τὴν διὰ τὴν βλάβην ἢ τὴν ἀδικίαν ἀνισότητα [ λέγει ] γινομένην ἐπανορθοῦν πειρᾶται καὶ ἐς τὸ |
συγγενῆ τῶν θνητῶν πλάνην , ἀπατῷτο ἂν ἴσως περὶ τὴν ποσότητα τῆς ὕλης , ὅποτε τεχνιτεύοι : τότε μὲν ὡς | ||
περιεχούσης . ἓξ δὲ σημαινόμενα τοῦ ἔχειν : λεγόμεθα γὰρ ποσότητα ἔχειν , ὡς δίπηχυ ἢ τρίπηχυ μέγεθος , λεγόμεθα |
, πρόσθησον ἄλλα ἐννέα καὶ τέλειον πάλιν ἀριθμὸν καὶ πάλιν ἑνδεκάδα : εἰ βάλλεις ἄλλα ἕνδεκα , γίνονται ἑξήντα τρία | ||
Ἄρης Ἑρμῆς ὡροσκόπος , καὶ Ζεὺς δὲ τὴν δεκάδα καὶ ἑνδεκάδα , καὶ Ἀφροδίτη τὴν δωδεκάδα . ἄγει δὲ τὸ |
ῥητὴν ἔχουσι τὴν πλευράν , καί ἐστιν ἐπὶ τῶν ἀρτίων ἀριθμῶν δεικνύμενον οὕτως : λαμβάνει τὸ ἥμισυ τοῦ προκειμένου αὐτῷ | ||
τοῦ δευτέρου . † . Ἐὰν ἄρα ἀπὸ τῶν τριῶν ἀριθμῶν τὴν ὑπεροχὴν τῶν μονάδων κ καὶ ἀπὸ τοῦ δὶς |
περιλαμβάνουσα μέτρα καὶ τεταγμένους σῴζουσα ῥυθμοὺς καὶ κατὰ στίχον ἢ περίοδον ἢ στροφὴν διὰ τῶν αὐτῶν σχημάτων περαινομένη κἄπειτα πάλιν | ||
ἀναλάβωσι τὰ μέτρα τοῦ μελαγχολικοῦ , τότε τεταρταϊκὴν ποιοῦνται τὴν περίοδον . καὶ αὕτη δὲ τὸ πιθανὸν ἔχει μόνον . |
καὶ ἐν τῷ Περὶ ἑρμηνείας σύνθεσιν ἐκάλεσεν τὴν κατάφασιν , διαίρεσιν δὲ τὴν ἀπόφασιν λέγων “ περὶ γὰρ σύνθεσιν καὶ | ||
' ἑαυτά . Καὶ διαιροῦνται μὲν κατὰ τὴν πρώτην αὐτῶν διαίρεσιν εἰς τρία , εἰς μακρά , εἰς βραχέα καὶ |
] μήτε [ σάρκινον ] εἶναι [ κατ ] ' ἀναλογίαν [ ἔχον ] τι [ σῶμ ' ὅπερ ] | ||
. Ἐξ εὐχεροῦς δὲ καὶ διὰ μνήμης ἔχων ποιήσεις τὴν ἀναλογίαν τοῦ ἐπιμερισμοῦ οὕτως . ἐπὶ μὲν Κρόνου τοὺς λ |
ἐτύγχανον δ ' οὗτοι τὴν χειμασίαν ἔχοντες ἐν πολλοῖς μέρεσι διεζευγμένην , ὥστ ' ἐνίους ἀπ ' ἀλλήλων ἀπέχειν ὁδὸν | ||
. εἰ δὲ καὶ δ καὶ πλείους λάβῃς , ὡς διεζευγμένην ποιῆσαι ἔκθεσιν , καὶ οὕτω μονάδι ἔσται ἡ ὑπεροχὴ |
λέγῃ ἡ ἡδονὴ σπουδαία ἐστιν , εἰ μὲν πρὸς τὴν γεωμετρικὴν ἡδονὴν ἀποβλέψας φησίν , οὐ τὸ προκείμενον συνάγεται : | ||
. διὰ τοῦτο τὸν Βρύσωνος τετραγωνισμὸν οὐκ ἄν τις εἴποι γεωμετρικὴν ἀπόδειξιν : χρῆται γὰρ ἀξιώματι ἀληθεῖ μὲν κοινῷ δέ |
σελήνης εἰς γʹ δεκάδας Ἀθηναῖοι διαιροῦσιν . καὶ τὴν μὲν πρώτην ὡς ἡμεῖς ἀπαριθμοῦνται , τὴν δὲ δευτέραν οὕτως : | ||
ἄνισα διαιρούμενοι , οἷον ὁ εʹ , ὁ ζʹ . πρώτην δὲ τῶν περισσῶν ἔνιοι ἔφασαν τὴν μονάδα . τὸ |
κατὰ τὸ διατονικὸν γένος συναναπληρώσας φθόγγοις ἀναλόγοις , οὕτως τὴν ὀκτάχορδον ἀριθμοῖς συμφώνοις ὑπέταξε , διπλασίῳ , ἡμιολίῳ , ἐπιτρίτῳ | ||
πρὸς τὰς ἁρμονίας κέχρηνται . ἐνίοτε μὲν οὖν αὗται τέλειον ὀκτάχορδον ἐπλήρουν , ἔσθ ' ὅπη δὲ καὶ μεῖζον ἑξατόνου |
ποιεῖ τὸν κύβον , εἰ δὲ ἐλάττων , ποιεῖ τὴν πλινθίδα . καὶ γὰρ αἱ πλίνθοι , τὰ μὲν κάτω | ||
ἐννεάδας , καὶ μένουσι γʹ . ἐλθὲ οὖν ἐπὶ τὴν πλινθίδα , καὶ εὑρήσεις τὴν μίαν νικῶσαν τὰς γʹ . |
δυνάμει πεφυκυῖα , δύο μεσότητας ἔχει , ἀριθμητικήν τε καὶ ἁρμονικήν , φαίνεταί τε τὰ μέρη αὐτῆς καὶ τὰ μεγέθη | ||
δεύτερος πρὸς τὸν τρίτον , οἷον δʹ Ϛʹ θʹ , ἁρμονικήν δὲ ὅταν τριῶν ἀριθμῶν ἀνίσων , εἰ ὡς ὁ |
τοιούτῳ ἀναπλασσομένῳ Ἑρμῇ . ἐπεὶ δὲ μονάδος ἀνὰ μέσον καὶ ἑβδομάδος κυβικῶν χωρίων κυβικὸς ὁ δʹ , εἰκότως , κρισίμου | ||
λοιπάζονται πρὸς τὸ ἕβδομον ἀριθμόν εἰσιν ἀπὸ τῶν ἡμερῶν τῆς ἑβδομάδος . ἔπειτα ἵνα ἐπιδώσεις ἑνὶ ἑκάστῳ ἀστέρι μίαν περίοδον |
, ἐὰν λέγωσιν . . ὁμοφωνεῖ δὲ ἁπάντοτε κατὰ δευτέραν συζυγίαν τῶν περισπωμένων , ἐπί τε πρώτων προσώπων τῶν κατ | ||
διποδίαν ἰαμβικὴν καθαρὰν καὶ τὴν ἑπτάσημον , σπανίως δὲ καὶ συζυγίαν [ καὶ ] τὴν ἰσόχρονον αὐτῷ : ἄρχεται δ |
Εἴωθεν ὁ γεωμέτρης ἐν τοῖς τῶν σχέσεων λόγοις δεικνύναι τὴν ταυτότητα διήκουσαν ἐν ἅπασι τοῖς πρὸς τὸ αὐτὸ τὴν αὐτὴν | ||
τρῆμα , μηδετέρου μετέχουσαν . ἀλλ ' ἰσότητα μόνον καὶ ταυτότητα . κατὰ βραχὺ δὲ τὰ γειτνιῶντα αὐτῇ καὶ ἐγγυτέρω |
γάμον τε κορωνίδος καὶ γένεσιν τοῦ θεοῦ , καὶ τὴν στροφὴν ὡς ἐπὶ μήκιστον ἀποτεῖναι : καὶ ἐποίησα τὰ ᾄσματα | ||
σύστημα ἐπιφθεγματικὸν στίχων ἰαμβικῶν τριμέτρων ἀκαταλήκτων ιʹ : ἑξῆς δὲ στροφὴν μονόστροφον κώλων κβʹ : ἃ καὶ μετρήσεις τοῖς προτέροις |
τῇ αʹ . εἶτα ἀπ ' ἄλλης ἀρχῆς ἡ τρίτη ἑβδομὰς τὰς αὐτὰς διαθέσεις ποιεῖ τῇ ὑδατικῇ σφαίρᾳ , ἃς | ||
ἑβδομάς . . . § : καλεῖται δ ' ἡ ἑβδομὰς ὑπὸ τῶν κυρίως τοῖς ὀνόμασιν εἰωθότων χρῆσθαι καὶ τελεσφόρος |
, ἣν καὶ ἄριστον καλεῖ , δευτέραν δὲ δεῖπνον καὶ τρίτην τὴν δειελινήν . ἔσσεται οὕτως ἄττα : σὺ δ | ||
ἐν λόγῳ τινί , ἔσται ὡς ἡ πρώτη πρὸς τὴν τρίτην , οὕτως τὸ ὑπὸ τῆς πρώτης καὶ μέσης πρὸς |
μεταξὺ τῶν Ρ Θ , πάντες δὲ οἱ μείζους τοῦ πενταπλασίου ποιοῦσι τὸ σημεῖον τῆς τομῆς μεταξὺ τῶν Ρ Τ | ||
τοῦ εἰκοσαέδρου καθέτου τὸ δυνάμει δωδεκαπλάσιον μεῖζόν ἐστιν τοῦ δυνάμει πενταπλασίου τῆς πλευρᾶς τοῦ εἰκοσαέδρου . Ἐκκείσθω κύκλος ὁ ΑΒΓ |
λε # ʂ β . θέλομεν δὴ ταῦτα πλευρὰν εἶναι κυβικὴν τῶν γενομένων ΚΥ κζ , τουτέστι ʂ γ : | ||
, εὑρίσκομεν Μο η . θέλομεν δὲ τοὺς ʂ η κυβικὴν εἶναι πλευρὰν τῶν η Μο : Μο ἄρα β |
, καὶ τὴν ηκ πηʹ ηʹʹ , τὴν δὲ κε Ϟʹ ηʹʹ . φανερὸν οὖν ὡς ἐπὶ μὲν τοῦ ε | ||
μὲν οʹ τριπλασιασθεῖσαι τοῦ σιʹ ποιητικαί εἰσιν , αἱ δὲ Ϟʹ τοῦ σοʹ , ἑπταμήνου καὶ ἐννεαμήνου . ὅτι καὶ |
ἀπηγορευμένους μῆνας ἀπέχου τοῦ λούεσθαι : ὅταν δὲ λούεσθαι τὴν ἑβδομάδα ἅπαξ , ἀεὶ δὲ πότε νήστης λούου . καὶ | ||
φυτικοῦ ψυχικοῦ λογικοῦ , καὶ τοῦ μὲν λογικοῦ κατὰ μὲν ἑβδομάδα τασσομένου , τοῦ δὲ ψυχικοῦ καθ ' ἑξάδα , |
τὰς ὑποκειμένας στιγμὰς τῆς γραμμῆς νοεῖν ὑπαναχωρούσας καὶ τόπον καὶ διάστασιν παρεχομένας , τοτὲ μὲν ἐπὶ τόδε τὸ μέρος συστελλομένων | ||
μοίρας τλγ ιβ , τὴν ἀπὸ τοῦ Ζ ἀκριβοῦς ἀπογείου διάστασιν αὐτῆς εὕρωμεν συναγομένην μοιρῶν δηλονότι τμε ιγ , πρὸς |
καὶ ἐπὶ μὲν τῶν πρακτικῶν καὶ ἐνιαυσιαίων ἀφέσεων κατά τινας ἁρμονικοὺς ἀριθμοὺς εἰς τοὺς αὐτοὺς τόπους ἢ καὶ τοὺς ἀστέρας | ||
ᾗ προηγεῖται ἡ μονάς . τὴν δὲ τετάρτην ὡς τοὺς ἁρμονικοὺς περιέχουσαν λόγους καὶ τὸν διὰ τεσσάρων τὸν καὶ ἐπίτριτοντρία |
[ καὶ καθ ' ὃ πίπτει σημεῖον ] καὶ τὴν ἐλαχίστην ἀποτεμνομένην ἀπὸ τῆς καθέτου μεταξὺ τῶν δύο σημείων τοῦ | ||
. τροφὴν δὲ τῷ σώματι παρέχουσιν αἱ μὲν ῥοιαὶ παντάπασιν ἐλαχίστην , αἱ δ ' ἄπιοι , καὶ μάλιστα αἱ |
δὲ μισθοφόροις καὶ συμμαχικαῖς παμμιγέσι , καὶ τῶν διὰ τὴν συμφωνίαν δυσυποστάτων περιεγένετο διὰ τῆς ἰδίας ἀγχινοίας καὶ στρατηγικῆς ἀρετῆς | ||
ἐν ἐπογδόῳ γίνεσθαι λόγῳ , καὶ τὸ τὴν διὰ τεσσάρων συμφωνίαν ἐλάττονα συνίστασθαι δύο καὶ ἡμίσεος τόνων , ἀλλ ' |
οἰκεῖον τῇ τετράδι . ἡ γὰρ πρώτη πυραμὶς ἐν τῇ τετράδι θεωρεῖται , τριγώνου μὲν βάσεως ὑποτεθείσης τοῦ τρία , | ||
τὸ ὑπὸ τῶν ἄκρων ἔλαττόν ἐστι τοῦ ἀπὸ τοῦ μέσου τετράδι . διὰ τί τετράδι ; ἐπειδὴ καὶ ἡ ὑπεροχὴ |
τὴν λυπέουσαν ἀπὸ τοῦ σώματος ἢ ἐν ἄλλῃ τινὶ τῶν περισσῶν ἡμερέων κατὰ τὸν πρότερον εἰρημένον λόγον : οὐ γὰρ | ||
πάλιν αἱ διαλύσεις . Ἔτι δὲ τῇ μονάδι τῶν ἐφεξῆς περισσῶν γνωμόνων περιτιθεμένων , ὁ γινόμενος ἀεὶ τετράγωνός ἐστι τῶν |
παροῦσα γὰρ ἐν τῷ εἶναι εὐθὺς εἰδοποιεῖ τὸ μετέχον . ὑφίστησι δὲ καὶ ἄλλο τελευταῖον ἀπὸ τῆς παρουσίας ἐξ ἑαυτῆς | ||
καὶ περίληψιν ; ὡς γὰρ αὐτὸ τἀγαθὸν τὴν νόησιν καὶ ὑφίστησι καὶ ἑνοῖ πρὸς τὸ νοητόν , καὶ ὡς ὁ |
ἧς τὴν ἀναθυμίασιν ἐπινέμεται . Πλάτων Πυθαγόρας Ἀριστοτέλης παρὰ τὴν λόξωσιν τοῦ ζῳδιακοῦ κύκλου , δι ' οὗ φέρεται λοξοπορῶν | ||
καλουμένον ζῳδιακὸν ὑποβεβλῆσθαι . Πυθαγόρας δὲ πρῶτος ἐπινενοηκέναι λέγεται τὴν λόξωσιν τοῦ ζῳδιακοῦ κύκλου , ἣν Οἰνοπίδης ὁ Χῖος ὡς |
ἀσύμμετρα λέγοντες ἀλλήλοις μεγέθη , καὶ † τοῖς πεπερασμένοις εὐθεῖαν διαιρετὴν εἶναι ἢ ἄπειρον , καὶ τὰ τοιαῦτα , ἐκ | ||
ἔκτασιν τὰ εἴδη τὰ ἔνυλα , ἡ δὲ ὀξεῖα γωνία διαιρετὴν αὐτὴν ἀποτελεῖ τὴν φύσιν , καὶ ὁ τοῦ ὀξυγωνίου |
ἀπόδειξιν οὐ μετὰ τοιαύτης προσθήκης , οἷον ἐκείνην εἶναι δυάδα ἀρτίαν ἣν ἂν εἰδῶσιν ὅτι δυάς , ἀλλὰ πᾶσαν ἁπλῶς | ||
ψευδῆ παρακεῖσθαι , ὥστε λόγου ἕνεκεν δοκεῖν μὲν ἡμᾶς ἔχειν ἀρτίαν τὴν ψυχὴν καὶ τὸ σῶμα , μὴ οὕτως δὲ |
. ἰστέον δέ , ὅτι τῶν κεφαλαίων τούτων καὶ τάξιν ὡρισμένην ἐπειράθησαν ἀποδοῦναί τινες λέγοντες , ὡς δεῖ τὸ ἀπίθανον | ||
τινὶ ὡς πρὸς τὸ κύριον : οὗ τὴν ποιότητα ἰδίαν ὡρισμένην ἔχομεν ἐν ταῖς ἱστορίαις . κρινομένων δὲ λέγει τῶν |
γὰρ ἰσημερίας ἐαρινῆς ἐπὶ τροπὴν θερινὴν ἐν ἡμέραις παραγίνεται Ϟδʹ ςʹ , ἀπὸ δὲ θερινῆς τροπῆς ἐπὶ ἰσημερίαν μετοπωρινὴν ἡμέραις | ||
ἀνήλισκον δὲ ἡμιτάλαντον : οἱ δὲ τὸ ζευγίσιον τελοῦντες ἀπὸ ςʹ μέτρων διελέγοντο , ἀνήλισκον δὲ μνᾶς ιʹ : οἱ |
οὐ γεννᾶι οὔτε γεννᾶται ὑπ ' ἄλλου ἀριθμοῦ πλὴν ὑπὸ μονάδος : διὸ καὶ καλεῖται ὑπὸ τῶν Πυθαγορείων παρθένος ἀμήτωρ | ||
ιη , καὶ α καὶ ιθ . ἐπὶ μέντοι τῆς μονάδος οὐκέτι τοῦτο , ἀλλὰ τοῦ μὲν μετ ' αὐτὴν |
ἀλλ ' οἶμαι τὴν τῶν ὑστάτων πρὸς τὰς ἀρχὰς ἀντικειμένως παραλαμβανομένην ὁμωνυμίαν καὶ κατὰ τὴν θρυληθεῖσαν ἀνόμοιον ὁμοιότητα θεωρουμένην οὐ | ||
ῥευματιϲμοὺϲ ἐπέχειν . ἐνταῦθα τακτέον καὶ τὴν ὑπὲρ αἱμορροίδων ἐποχῆϲ παραλαμβανομένην κάθαρϲιν τοῦ μελαγχολικοῦ χυμοῦ μετὰ τὴν φλεβοτομίαν . ἕνεκεν |
τὴν τῶν Ε Ζ ὑπεροχήν , ὅπερ ἐστὶ κατὰ τὴν μεσότητα τὴν τῇ ἁρμονικῇ ὑπεναντίαν . δῆλον δ ' ὅτι | ||
τὸν ἠδικημένον , καὶ προστεθὲν τῷ ἠδικημένῳ , ἰσότητα καὶ μεσότητα ἐποίησε . καὶ διὰ τοῦτο καὶ δίκαιον καλεῖται , |
καὶ ἀμφοτέρων διαφέρει : τῷ μὲν γὰρ ἀρτιά - κις ἀρτίῳ κοινωνεῖ , καθὸ καὶ οὗτος πλείους διαιρέσεις ἐπιδέχεται , | ||
: τοῦτον γὰρ κωλύειν τὴν εἰς ἴσα διαίρεσιν προστιθέμενον τῷ ἀρτίῳ . φέρουσι δὲ καὶ ἄλλο σημεῖον τοῦ πέρατος μὲν |
καὶ ὕστεροι αὐτῶν ἔσονται ; τὸ γὰρ συμπέρασμα τῆς αὐτὸ περαινούσης ἀποδείξεως ὕστερον . ἀλλ ' οὐδὲ ἅμα ἄμφω , | ||
πέφυκε . Συνέστηκε δὲ φυσικώτατα ἔκ τε τῆς ἀπείρου καὶ περαινούσης καὶ ἐκ τῆς ἀρτιοπερίσσου φύσεως καὶ αὐτὴ καὶ τὰ |
, καὶ τὴν ὑπὸ ΔΒΓ γωνίαν δίχα τεμόντες ἕξομεν τρίχα τετμημένην τὴν ὑπὸ ΑΒΓ γωνίαν . μʹ . Ἔστω δὲ | ||
τὸν οἶνον ἔνδοθεν , πρὸς δὲ τούτοις τὴν ὕλην τὴν τετμημένην πεπρακότα μετὰ τὴν ἀντίδοσιν , πλέον ἢ τριάκοντα μνῶν |
δοθέντων παραγινόμενον ἐφαπτόμενον δὲ ἑκάστης τῶν δεδομένων γραμμῶν . αὕτη περιέχει προβλημάτων ἤδη τὸ πλῆθος ἕξ : ἐκ τριῶν γὰρ | ||
ἐπάγειν ἀσύμφορον . Τὸ δὲ προγύμνασμα τοῦτο πᾶσαν ἐν ἑαυτῷ περιέχει τὴν τῆς τέχνης ἰσχύν . Ποιηταῖς μὲν ἀντερεῖν ἄλογον |
τριάδος καὶ ἡ δυὰς τῷ ἑαυτῆς ἡμίσει ὑπερέχεται ὑπὸ τῆς τριάδος . καὶ τοὺς ἄκρους δὲ συντεθέντας ἀλλήλοις καὶ ὑπὸ | ||
τοῦ γ πρῶτος διπλασιεπίτριτος ἦν , λάμβανε πάντας τοὺς ἀπὸ τριάδος τριάδι διαφέροντας καὶ τοὺς ἀπὸ ἑπτάδος ἑπτάδι , καὶ |
τρεῖς δὲ τὸ χρῶμα : τὸ μὲν γάρ τι αὐτοῦ τονικὸν καλεῖται τὸ δὲ ἡμιτόνιον τὸ δὲ μαλακόν . Πλὴν | ||
παραλήγουσαν προπερισπῶνται , δηλονότι κατὰ τὴν εὐθεῖαν , διὰ τὸ τονικὸν παράγγελμα τὸ λεχθησόμενον ἐν τῇ περὶ τῶν τόνων διδασκαλίᾳ |
ὅροϲ ἐϲτὶν ἡ ἑβδόμη , τὰ δὲ πολλὰ κατὰ τὴν τετάρτην κρίνεται : εἰ δὲ ἐν πλείονι μὲν τοῦδε , | ||
ἀλλὰ σπάσας τὸν ἑωθινὸν καὶ μεθυσθεὶς εἰς ὥραν τρίτην ἢ τετάρτην ἠρεμεῖ . παιδεύομεν δὲ οὐ χεῖρον ἡμεῖς τοὺς νέους |
ἑζέσθην , Τρώων δὲ πρὸς οὐρανὸν εὐρὺν ἄερθεν . Ἡ ἑξὰς πρώτη τέλειος : τοῖς γὰρ αὑτῆς μέρεσιν ἀριθμεῖται , | ||
ὑπεροχὴν ἔχῃ : οἷον Ϛʹ γʹ βʹ : ἡ γὰρ ἑξὰς πρὸς τὴν δυάδα τριπλασία ἐστί : καὶ ἡ ὑπεροχὴ |
πρὸ πάντων : ἅμα ἄρα καὶ ὡς τὴν αὐτὴν ποιεῖται πρόοδον ὁμοειδῆ τε καὶ ἀνομοειδῆ : πάντα γάρ ἐστι καὶ | ||
δυαδικὴ γὰρ πᾶσα πρόοδος , τὸ δὲ ἓν ὑπὲρ πᾶσαν πρόοδον : ἄσχιστον γὰρ ἀεὶ τόγε ἓν καὶ ἀπολλαπλασίῳ τόκῳ |
τὸν ἄλλον βίον γινομένους ἐγκρατεῖς . ἐφ ' ᾧ καὶ ἁπλῆν ἀποδέδωκε τὴν δίαιταν πᾶσι καὶ τὴν αὐτὴν ὁμοίως βασιλεῦσί | ||
γὰρ τῆς τίς καὶ οὐδείς ἀντιφάσεως οὐδὲ ἐνδέχεται δεῖξαι τὴν ἁπλῆν κατάφασιν τῆς στερητικῆς ἀποφάσεως ἢ ἐπὶ πλέον ἢ ἐπ |
περιθεῖναι καὶ μεῖζον ἀξίωμα ; καὶ τὰ τοιαῦτα : μηδὲ λοιπὴν αἰτίαν τὸ εἰκὸς βούλεσθαί σε ζητοῦντα τοὺς ἐχθροὺς ἀμύνεσθαι | ||
βοήθεια παραγένοιτο τοῖς Αἰκανοῖς ἑτέρα μήτε τροφαί , τὴν δὲ λοιπὴν δύναμιν αὐτὸς ἔχων προῆγεν ἐκτεταγμένην ὡς εἰς μάχην . |
Ὑδροχόου , Ἓξ δ ' Ἀφροδίτη , Ζεὺς δὲ πάλιν ἑπτάδα , Ἄρης δὲ πέντε , πέντε δ ' αὖ | ||
καὶ αἰωνίῳ μονῇ διακρατοῦντες τοσοῦτοί εἰσιν ἀστέρες . ὅτι τὴν ἑπτάδα οἱ Πυθαγόρειοι οὐχ ὁμοίαν τοῖς ἄλλοις φασὶν ἀριθμοῖς , |
γινόμενον καὶ ἀνατυπούμενον καὶ εὐμορφίαν καὶ χρῆσιν ἰδίαν κεκτημένον τὴν κοσμικὴν σύστασιν ἐνδείκνυται : οὐδὲν γὰρ καθ ' ἑαυτὸ μένον | ||
ἑξῆς ἔνεστι χρόνῳ καὶ ἀνθ ' αὑτῶν ἀμείβειν εἰς τὴν κοσμικὴν συμπλήρωσιν ἄνθρωπον , εἰκότως γενεὰν τὴν συμμετρότητα οἱ ποιηταὶ |
δὲ εἶδος οὐ παρέργως ἐπισκεπτέον . τὸ μὲν δὴ δεύτερον ἐμφανεστάτην ἔχει προνομίαν : αἰεὶ γὰρ ὁ ἀπὸ μονάδος συντιθέμενος | ||
: ἀλλ ' ὅσα μὲν ἥμερα καὶ ἄγρια λέγεται ταύτην ἐμφανεστάτην καὶ μεγίστην ἔχει διαφοράν , οἷον συκῆ ἐρινεός , |
δύνει : ἐν δὲ τῷ τῆς ἡμέρας χρόνῳ ὁ ἥλιος διερχέσθω περιφέρειαν τὴν οπʹ , καὶ τῇ ποʹ ἴση ἔστω | ||
πεποιήσθω κατὰ τὸ Η , τὴν δὲ λοιπὴν τὴν ΗΕ διερχέσθω ἐν τετάρτῳ μέρει περιφορᾶς . Λέγω , ὅτι διὰ |
καὶ τὰ γενόμενα ρμε νζ λζ καὶ οβ α νζ μερίσαντες χωρὶς εἰς τὸν ρκ , εὕρομεν τὰ μὲν ἐκ | ||
αὐτῶν , ἀνθ ' ὧν ὁ ἥλιος ἐπικινεῖται , καὶ μερίσαντες εἰς τὸ τότε τῆς σελήνης ἀνώμαλον ὡριαῖον κίνημα , |
αὐξανομένη . πάλιν γὰρ μεταξὺ τοῦ Ϛ καὶ τοῦ ιβ ἑτερομηκῶν ὄντων ἀπόθου τὸν θ τετράγωνον : καὶ ἡ ὑπεροχὴ | ||
ἡ διαγώνιος ἔσται μόνων τετραγώνων , ἑκάστου παρασπιζομένου ὑπὸ δύο ἑτερομηκῶν κατά τε μῆκος καὶ πλάτος , ὡς κἀνταῦθα σῴζεσθαι |
πλείονας ἔχει : ἔχει γὰρ καὶ ἄλλο τέταρτον ἡμέρας καὶ ἑκατοστὸν μέρος , καθ ' ἣν καὶ τὸ βίσεξτον ἀπαντᾷ | ||
ἄχρι τοῦ τὸ εἰκοστὸν μέρος αὐτοῦ ἀφεψηθῆναι , γύψου τὸ ἑκατοστὸν προσεμβάλλοντες . Λακεδαιμόνιοι δὲ ἕως τοσούτου εἰς τὸ πῦρ |
εὐδαιμονίαν οὐ ταῖς αἰσχίσταις μετροῦσιν ἡδοναῖς ἀλλὰ τῷ καλῷ , τελευταίαν δὲ τὴν ἐν τοῖς πολέμοις γενναιότητα τὴν παρασκευάζουσαν εἶναι | ||
αὐταί εἰσιν , ἀλλὰ καὶ διαφορὰν ὀνόματος ἔχουσι κατὰ τὴν τελευταίαν συλλαβήν . ἀλλ ' ἐπειδὴ ὡς Ἕλενος καὶ Ἑλένη |
τῇ τέχνῃ , οἷον ἐξόχως . Πλάτων γοῦν ὁ φιλόσοφος διαιρούμενος τὰς πολιτείας τὴν μὲν πρώτως ἔχειν φησίν , τὴν | ||
τοῦτο ἔστι διαφορά : ὁ μὲν γὰρ ἄρτιος εἰς ἄνισα διαιρούμενος ὁμοειδεῖς τοὺς ἀνίσους ποιεῖται , οἷον ὁ η εἰς |
τῷ τριπλασιασμῷ τῆς ἡμιτονιαίας διαστάσεως ἐπιδεικνύον : τὸ δ ' ἐναρμόνιον κατὰ δίεσιν καὶ δίεσιν καὶ δίτονον τοῖς μὲν διεσιαίοις | ||
τίθεται , ἣν ὡς κατὰ τοὺς Πυθαγορικοὺς κύβον οὖσαν καὶ ἐναρμόνιον ἐπίηρον κατωνόμασεν . ὁ κύβος δὲ ἐναρμόνιον διὰ τοὺς |
τὰ μὲν ιβʹ διχῆ διαιρεῖται εἰς Ϛʹ καὶ Ϛʹ , τριχῆ δὲ εἰς δʹ καὶ δʹ καὶ δʹ , τετραχῆ | ||
. Εἰ δὲ πρὸς τὸ αὐτὸ καὶ ἓν ἐκλάβοιμεν τὸ τριχῆ διαιρούμενον , ἐροῦμεν ἢ συνεῖναι αὐτῷ , ἢ ἀπ |
δὲ πάτρα μὲν εἰς τὴν δευτέραν μετάβασιν ἐλθόντων ἡ κατὰ μόνας ἑκάστῳ πρότερον οὖσα συγγένεια , ἀπὸ τοῦ πρεσβυτάτου τε | ||
φρέατος ἔνδον ψυχρότερον Ἀραρότος . ἢ μετὰ Πλάτωνος ἀδολεσχεῖν κατὰ μόνας μᾶλλον μᾶλλον ὁ συκοφάντης οὐ δικαίως τοὔνομα ἐν τοῖσι |
δὲ τῇ εʹ κατὰ τὴν λʹ μάλιστα καὶ πέμπτην ἡμέραν διαπλάττεσθαι ἐν μέσῳ αὐτοῦ μελίττης μὲν μεγέθει ἐοικὸς τὸ βρέφος | ||
καὶ ποιήσαντες τὸν τριακονταπέντε καθ ' ὅν φασι τὰ ἑπτάμηνα διαπλάττεσθαι , εἰ κατὰ τὸν ἓξ πολυπλασιάσαιμεν αὐτόν , ποιήσαιμεν |
σμύρνα , σίδιον αὖον . Ἕτερον : ἄνθος χαλκοῦ ὀπτὸν ἡμιμοίριον , σμύρνης δύο ἡμιμοίρια , κρόκου τρεῖς μοῖραι , | ||
κατήντησεν . ἡ μεταφορὰ ἀπὸ τῶν καθορμιζομένων πλοίων εἴρηται . ἡμιμοίριον : τὸ ἥμισυ τῆς δραγμῆς . ἠρύγγη , πόλιον |
τλημοσύνης μᾶλλον ἢ Ἀντιόχῳ τε καὶ Ἀρίστωνι . ἰδοὺ γὰρ πηλίκη ἡ ναῦς , ἣν κυβερνᾶτον , καὶ ὁπόσοι οἱ | ||
ἅπερ προέκειτο δεῖξαι . τούτων δὴ προεφωδευμένων ἴδωμεν πρῶτον , πηλίκη γωνία καθ ' ἑκάτερον τῶν ἀστέρων ὑπὸ τῆς λοξώσεως |
, στερεωτάτῃ ὑπαρχούσῃ καὶ ἑδραιοτάτῃ : τῷ δὲ σχήματι τῷ δωδεκαέδρῳ πρὸς τὸ πᾶν κατεχρήσατο . Πάντων δὲ τούτων ἀρχικωτέρα | ||
ἐξ ὁποίων ἓξ τετραγώνων ὁ κύβος συνίσταται : τῷ δὲ δωδεκαέδρῳ εἰς τὸ πᾶν ὁ θεὸς κατεχρήσατο , διότι ζῴδιά |
γαμικὴν χλαμίδα δότω τις δεῦρό μοι . μετὰ δὲ τὸν Ϟδʹ στίχον κῶλά ἐστιν ἀντισπαστικὰ Ϛʹ , ἐπιμεμιγμένα διιάμβοις , | ||
μὴ ὄπισθεν , ἀλλ ' ἔμπροσθεν τάξῃ . Κεφ . Ϟδʹ . Ἁρμόζει μὲν ἐφ ' ὧν καὶ ἡ πρὸ |
αὐτῶν ἐπίπεδα καλεῖσθαι , τὰ δὲ στερεά , τὰ δὲ γραμμικά . τὰ μὲν οὖν δι ' εὐθείας καὶ κύκλου | ||
ἐπ ' αὐτῶν τῶν ἑξηκοστῶν αἰσθητὴν διαφορὰν γίνεσθαι παρὰ τὰ γραμμικά , ὡς ἐξέσται πειρωμένῳ σκοπεῖν . Οἷον ὡς ἐπὶ |
σώματι . τομεῖ . τομεύς ἐστιν ἐργαλεῖον τὴν βάσιν ἔχον κυκλικήν , σμίλη δὲ ἡμικυκλικήν . ἦ οὖν ἄλλο τι | ||
ἃ ἀπηγορεύκει . φησὶ γοῦν ὁ τὴν Θηβαίδα πεποιηκὼς τὴν κυκλικήν : αὐτὰρ ὁ διογενὴς ἥρως ξανθὸς Πολυνείκης πρῶτα μὲν |
οὐρανοῦ , νοητὴν δὲ τὴν πάντων τῶν ἐκτὸς οὐρανοῦ , δοξαστὴν δὲ καὶ σύνθετον τὴν αὐτοῦ τοῦ οὐρανοῦ : ὁρατὴ | ||
οὐρανοῦ , νοητὴν δὲ τὴν πάντων τῶν ἐκτὸς οὐρανοῦ , δοξαστὴν δὲ καὶ σύνθετον τὴν αὐτοῦ τοῦ οὐρανοῦ : ὁρατὴ |
ἐπὶ τὴν ἑξάδα : οὐδεὶς διὰ τῶν Ϛʹ διέστηκεν . μεταβαίνω ἐπὶ τὸν στίχον τῆς ἑβδομάδος : εὑρίσκεται δὲ τῆς | ||
: Ποῦ μένεις ; ὁ δὲ εἶπεν : † Ἐκεῖθεν μεταβαίνω . Δυσκόλῳ τις ναυκλήρῳ ἀπαντήσας εἶπε : Τὸν ἐπίπλουν |
. 〚 Καὶ 〛 Ἀναξίμανδρος ὑπὸ τῶν κύκλων καὶ τῶν σφαιρῶν , ἐφ ' ὧν ἕκαστος βέβηκε , φέρεσθαι . | ||
τῶν τοῦ εἰκοσαέδρου , καὶ ἤχθωσαν ἀπὸ τῶν κέντρων τῶν σφαιρῶν τῶν περιεχουσῶν τὰ στερεὰ σχήματα ἐπὶ τὰ ΔΕΖ ΑΒΓ |
ἐγγενὲς ἔμμεν ἀεθˈληταῖς ἀγαθοῖσιν : ἐπεί εὐρυχόρου ταμίαι Σπάρτας ἀγώνων μοῖραν Ἑρμᾷ καὶ σὺν Ἡρακˈλεῖ διέποντι θάλειαν , μάλα μὲν | ||
. Εἶτα διελθουσῶν ἡμερῶν ὀλίγων , ἠγγέλθη Τούρκων οὐκ ἐλαχίστην μοῖραν κατὰ Συρίας χωρεῖν . Ὁ δὲ τὰς δυνάμεις ἀναλαβὼν |
δὲ οὕτως ὥστε ἵστασθαι μέχρι τοῦ γένους . οἷον τῇ τριάδι ὑπάρχει μὲν [ ἀριθμὸς καὶ ] τὸ ὄν , | ||
ἀριθμός ἐστιν , οἱ δὲ δεύτεροι κοινῇ μὲν διαφορᾷ χρώμενοι τριάδι , τάξει δὲ οἱ ἐπιμόριοι ἀφ ' ἡμιολίου ἀρχόμενοι |
' ὡς Ἡρακλῆος περιχώσατο : : Ω . Χαρίτων μίαν ὁπλοτεράων : ἡ διπλῆ ὅτι δύο γενέσεις Χαρίτων ὑποτίθεται , | ||
' ἁπαλήν τε . ἦ τάχα Κύπρις ἔχει Χαρίτων μίαν ὁπλοτεράων . παπταίνων ἐμόγησα , κόρον δ ' οὐχ εὗρον |
ὀρθογωνίου καὶ ἀμβλυγωνίου εἶναι , ἣν δὲ ὀρθογωνίου εἶναι δυναμένην ὀξυγωνίου τε καὶ ἀμβλυγωνίου , ἣν δὲ ἀμβλυγωνίου δυναμένην εἶναι | ||
ἐπιπέδῳ τμηθῇ μὴ παρὰ τὴν βάσιν , ἡ τομὴ γίγνεται ὀξυγωνίου κώνου τομή , ἥτις ἐστὶν ὁμοία θυρεῷ . δῆλον |
ἁρμονίαν μέχρι τῶν στερεῶν προάγειν . ἀριθμῶν καὶ δυσὶ συναρμόζεσθαι μεσότησιν , ὅπως διὰ παντὸς ἐλθοῦσα τοῦ τελείου στερεοῦ κοσμικοῦ | ||
οὕτως διακειμένων τῶν τεσσάρων ἐπιφαίνεσθαι τὴν γεωμετρικὴν ἐμπλέγδην ἀμφοτέραις ταῖς μεσότησιν ἀντεξεταζομένην , ὡς ὁ μέγιστος πρὸς τὸν τρίτον ἀπ |
προσήκουσαν τιμωρίαν εἴτ ' ἐνθάδε μένων εἴτε καὶ ἐν Ἅιδου διαπορευθεὶς εἴτε καὶ τούτων εἰς ἀγριώτερον ἔτι διακομισθεὶς τόπον . | ||
ἐπὶ τὸ α σημεῖον ἀποκαθίστασθαι . καὶ τὸν ἑαυτοῦ κύκλον διαπορευθεὶς ὁμαλῶς τὸν τῶν ζῳδίων ἀνωμάλως δόξει διεληλυθέναι . ἐὰν |
καὶ ψυχρῶν καὶ ξηρῶν καὶ ὑγρῶν ἀντιλαμβάνεται , καὶ ἔστι πεντὰς αὕτη συζυγιῶν ἀνώνυμος ἑνὶ καθάπερ εἶπον ὀνόματι . οὐ | ||
ἀριθμητικὴν ἀναλογίαν , ὡς δηλοῖ τὸ διάγραμμα . ὅτι ἡ πεντὰς πρώτη μεσότητος τῆς ἀρίστης καὶ φυσικωτάτης ἐμφαντικὴ κατὰ διάζευξιν |
. . . τὴν ἱστορίαν ἦρκται γράφειν . διελθὼν δὲ τριακονταετῆ χρόνον ἔγραψε μὲν βύβλους δέκα , τὴν δὲ τελευταίαν | ||
συμπλήρωσιν ἄνθρωπον , εἰκότως γενεὰν τὴν συμμετρότητα οἱ ποιηταὶ τὴν τριακονταετῆ τίθενται , ἐν ᾗ τέκνον ἔστιν ἰδεῖν : καὶ |
ἡ δεῖξις προβήσεται . Ἔστωσαν μείζονες αἱ ρ μο λείψει ἀριθμοῦ ἑνός , ἐλάσσονα δὲ τὸν κ καὶ τὸν Ϟόν | ||
ἄπειρον αὐτὸν οὐ τῷ ἀδιεξιτήτῳ ἢ τοῦ μεγέθους ἢ τοῦ ἀριθμοῦ , ἀλλὰ τῷ ἀπεριλήπτῳ τῆς δυνάμεως . Ὅταν γὰρ |
: ὥστε δύο παρεκβάσεις ἔχειν τὸν λόγον , μίαν μὲν περιεκτικὴν τῆς ἀντεξετάσεως τῶν ἀντιδημαγωγούντων , αὐτοῦ τε λέγω Δημοσθένους | ||
καὶ ἑνιαίως αὐτῶν ὅλων μετέ - χουσα , δύναμίν τε περιεκτικὴν τῶν ὅλων ἐν ἑαυτῇ συλλαβοῦσα καὶ ἑαυτὴν δοῦσα εἰς |
δευτέρα πάντα , ἡ δὲ τρίτη ἓν πάντα καθ ' ἕνωσιν . Τοσαῦτα μὲν ἐπικεχειρήσθω πρὸς ἔνδειξιν τῶν πρώτων λεγομένων | ||
καὶ πᾶσιν ἐξ ἴσου παρόντα καὶ τοῖς μὲν ψυχικοῖς τὴν ἕνωσιν ἐπάγοντα , τὴν δ ' ἐν τοῖς σώμασιν παράλλαξιν |
οὔσης τῆς διηγήσεως καὶ ψιλὴν τῶν πεπολιτευ - μένων ἐχούσης ἔκθεσιν : ἐν οὖν τῷ προκειμένῳ ζητήματι τρία κατὰ τὴν | ||
ἐν τριάσι καὶ ἑξῆς ἀκολούθως , καὶ παρ ' ἑκάστην ἔκθεσιν ἄλλους τρεῖς ὅρους πλαστέον διὰ τριῶν προσταγμάτων ἀεὶ τῶν |
, καὶ ἀναλογοῦσιν ἑκάστῃ μερίδι μοῖρα α λεπτὰ Ϛ καὶ δευτερόλεπτα μ . καὶ ὁ μὲν Κρόνος ὁ κύριος τοῦ | ||
μερίδα ἐπὶ ἐννέα , καὶ γίνεται ἑκάστη μερὶς λεπτὰ ζ δευτερόλεπτα κε καὶ τριτόλεπτα λγ , γινόμενα ὧραι γ καὶ |
τῆς Α , ἴσον παρὰ τὴν ΒΓ παραβεβλήσθω ἐλλεῖπον εἴδει τετραγώ - νῳ , καὶ ἔστω τὸ ὑπὸ τῶν ΒΔ | ||
τετραγώνισον τὸν κζ , εἶτα λαβὲ τὴν πλευρὰν τοῦ γεγονότος τετραγώ - νου ἀπὸ τοῦ κζ , εἶτα ἀναβίβασον αὐτὴν |
πλευρῶν , καὶ τὸ ἐμβαδὸν εἰς ἴσα διαιρεῖται κατὰ τὴν διαγώνιον διὰ τὴν κοινὴν ἰδιότητα τῶν παραλληλογράμμων . ἐπὶ δὲ | ||
βάσιν τέμῃ ἐκ τῆς κορυφῆς δίχα κατὰ τὴν τοῦ τετραγώνου διαγώνιον τὴν ἀπὸ τῆς ὀρθῆς , ἔσονται δύο στερεαὶ πυραμίδες |
καὶ κʹ μοίρᾳ τοῦ Σκορπίου συνανατέλλει , ὁ δὲ ἔσχατος ἀναφερόμενος καὶ νοτιώτερος ὢν τῶν ἐν τῇ κεφαλῇ συνανατέλλει [ | ||
ὁ μὲν γὰρ αἶνός ἐστιν λόγος κατ ' ἀναπόλησιν μυθικὴν ἀναφερόμενος ἀπὸ ἀλόγων ζῴων ἢ φυτῶν πρὸς ἀνθρώπων παραίνεσιν καί |