| τῆς Ἀφροδίτης παραλήψεται Ἑρμῆς διὰ τοὺς Διδύμους ἔτη κʹ καὶ ἐπιμερίσει ἑκάστῳ ζῳδίῳ : εἶτα Σελήνη ἐπὶ ἔτη κεʹ , | ||
| ξʹ : ἐκ τούτων τὴν ἡμίσειαν τῷ κατὰ διάμετρον Ὑδροχόῳ ἐπιμερίσει , ἅ ἐστιν ἔτη λʹ : ἡ δὲ Σελήνη |
| , στερεωτάτῃ ὑπαρχούσῃ καὶ ἑδραιοτάτῃ : τῷ δὲ σχήματι τῷ δωδεκαέδρῳ πρὸς τὸ πᾶν κατεχρήσατο . Πάντων δὲ τούτων ἀρχικωτέρα | ||
| ἐξ ὁποίων ἓξ τετραγώνων ὁ κύβος συνίσταται : τῷ δὲ δωδεκαέδρῳ εἰς τὸ πᾶν ὁ θεὸς κατεχρήσατο , διότι ζῴδιά |
| συμπτώματα , ὧν ἡ μὲν ἡμέρα κατὰ τὸν ἐξ ἡλίου φωτισμὸν συμβαίνει , ἡ δὲ νὺξ κατὰ φωτισμοῦ στέρησιν τοῦ | ||
| πλείστου τῶν ἡμερῶν . ἤματος ἐκ πλείου : καθὸ τὸν φωτισμὸν ἡ σελήνη πλήρη ἔχει ἐν αὐτῷ . ἴδρις ⌊ |
| , τετράγωνον ὄντα , ποιήσει τὸν ξδ κύβον . . δυναμοδύναμις . Οἷον ὁ ιϚ : τετράκις γὰρ τὰ δ | ||
| πολλαπλασιασθῇ , ποιήσει τὸν ιϚ , καὶ λέγεται ὁ ιϚ δυναμοδύναμις ἐπειδὴ ἐκ τετραγώνου ἐγένετο τοῦ δ ἐφ ' ἑαυτὸν |
| τὰ ἀφαιρούμενα . Ἐὰν δύο μεγεθῶν [ ἐκκειμένων ] ἀνίσων ἀνθυφαιρουμένου ἀεὶ τοῦ ἐλάσσονος ἀπὸ τοῦ μείζονος τὸ καταλειπόμενον μηδέποτε | ||
| ὄντων ἀνίσων τῶν ΑΒ , ΓΔ καὶ ἐλάσσονος τοῦ ΑΒ ἀνθυφαιρουμένου ἀεὶ τοῦ ἐλάσσονος ἀπὸ τοῦ μείζονος τὸ περιλειπόμενον μηδέποτε |
| οὐ ποιεῖ , οὐ στενάζει , οὐκ ἐρημίας , οὐ πολυπληθείας δεήσεται : τὸ μέγιστον , ζήσει μήτε διώκων μήτε | ||
| ' ἐπὶ τοὺς λόφους ἄνω ἤδη διώκους ' . ὢ πολυπληθείας ὄχλου . οἴμοι , πάλιν τις οὑτοσὶ πρὸς ταῖς |
| ΘΜ ἐπὶ τὸν ἀπὸ τοῦ ΚΒ ⃞ον , μετὰ τοῦ ηκις ὑπὸ ΗΘ . ΚΒ , καὶ ὁ ἀπὸ τοῦ | ||
| ΒΔ , τῷ ἴσῳ ἀλλήλων ὑπερεχέτωσαν : δεικτέον ὅτι ὁ ηκις ὑπὸ ΑΒ . ΒΓ , προσλαβὼν τὸν ἀπὸ τοῦ |
| μεταξὺ τῶν Ρ Θ , πάντες δὲ οἱ μείζους τοῦ πενταπλασίου ποιοῦσι τὸ σημεῖον τῆς τομῆς μεταξὺ τῶν Ρ Τ | ||
| τοῦ εἰκοσαέδρου καθέτου τὸ δυνάμει δωδεκαπλάσιον μεῖζόν ἐστιν τοῦ δυνάμει πενταπλασίου τῆς πλευρᾶς τοῦ εἰκοσαέδρου . Ἐκκείσθω κύκλος ὁ ΑΒΓ |
| τῶν κεράτων ἐπεκτείνοντες καὶ ὁμοίως τοὺς ἱππέας τὴν ὄψιν τοῦ διπλασιασμοῦ οὕτως γενέσθαι παραγγέλλουσι χωρὶς ταραχῆς τῆς φάλαγγος οὕτω συντασσομένης | ||
| ηʹ , τὸ ἥμισυ . Ἡμιολιασμός : Ἀντιφῶν Πολιτικῷ “ διπλασιασμοῦ καὶ ἡμιολιασμοῦ ” “ ἀντὶ τοῦ τὸ ἡμιόλιον δοῦναι |
| ' ἑτέροις ὁμοφύλοις , συνεκρατήθη τὸ κατὰ φύσιν καὶ βρέφος τελεσιουργεῖται . Ἀλκμαίων τῶν ἡμιόνων τοὺς μὲν ἄρρενας ἀγόνους παρὰ | ||
| ὁτὲ δὲ τὸν τῶν ἐννεαμήνων ἀριθμὸν δηλοῦμεν , ὧν ἑκατέρῳ τελεσιουργεῖται τὸ ἀνθρώπειον , ἐξ ἄρρενος καὶ θήλεος τὴν σύστασιν |
| μὲν δύο τροχαϊκὰ δίμετρα ἀκατάληκτα . τὸ τρίτον ἰαμβικὸν ἐκ τριβράχεων . τὸ δ ' παιωνικὸν ἐκ κρητικῶν διρρύθμων . | ||
| παιωνικὸν ἐκ κρητικῶν διρρύθμων . τὸ πέμπτον ἰαμβικὸν ἑφθημιμερὲς ἐκ τριβράχεων . ἐφ ' ἑκάστης στροφῆς παράγραφος . ἐπὶ δὲ |
| ; πρῴην Ἱππόλυτον τὸν Εὐριπίδου θρήνων οὐκ ἠξίωσα τοσούτων , ὅσωνπερ ἄν , εἰ παρῆν καὶ ἑώρων τὸ πάθος ; | ||
| . Ἀλλὰ μὴν πλειόνων γε μέτρων ὂν ἢ ἐλαττόνων , ὅσωνπερ μέτρων , τοσούτων καὶ μερῶν ἂν εἴη : καὶ |
| τετράκις δεκαέξ . Οἷον δύναμις ὁ δ τετράγωνος . . δυναμόκυβος . Οἷον δύναμις ὁ δ καὶ κύβος ὁ η | ||
| αὐτῷ πλευρᾶς γεγονότος πολλαπλασιάσῃς , γενήσεται ὁ λβ ὅστις ἐστι δυναμόκυβος . . κυβοκύβων . Δυναμόκυβός ἐστιν ὁ λβ ἐπειδὴ |
| : ἐλλείπει ἄρα καὶ οὗτος ἐν τοῖς μέρεσι πρὸς τὸ συμπληρωθῆναι τὸ ὅλον ἐξ αὐτῶν . Ἀντικειμένων δὲ τῶν δύο | ||
| γένεσιν μετὰ τὸν Ἄρεα κείμενοι ἀστέρες : μετὰ δὲ τὸ συμπληρωθῆναι ἔτη κηʹ ἄρχου πάλιν ἀπὸ τοῦ μετὰ τὸν Ἄρεα |
| ἡμερῶν κβʹ δύο τρίτων , ταύτας ἐπὶ τὸν ζʹ ἥμισυ πολυπλασιάσωμεν : εὑρήσομεν ροʹ : τοσαύτας Ἀφροδίτη ἕξει ἐκ τῶν | ||
| πρὸς τέταρτον τὸ Γ . ἐὰν ἄρα τὸ ὑπὸ μέσων πολυπλασιάσωμεν , τουτέστι τὸν δέκα καὶ πέντε , καὶ παραβάλωμεν |
| τὸ ἐγγεγραμμένον εἰς τὸν ΑΒΓΔ κύκλον τετράγωνον ἥμισύ ἐστι τοῦ περιγεγραμμένου : καί ἐστι τὰ ἀπ ' αὐτῶν ἀνιστάμενα στερεὰ | ||
| οὐδὲ μέχρι τινὸς ὡρισμένου χρόνου καὶ παραγεγραμμένου , ὅ ἐστι περιγεγραμμένου . Παραγγελία : Δημοσθένης ἐν τῷ κατ ' Αἰσχίνου |
| τῶν καθεστώτων στρατιωτῶν χρήσιμον μετὰ σημείου , ᾥτινι ὁ πᾶς τοῦλδος ἤτοι τὰ σαγμάρια ἀκολουθεῖν ὀφείλουσιν . Χρὴ ὁρισθῆναι πόσαι | ||
| ὡς ἀπὸ λίθου βολῆς . Ἐὰν δὲ σύνεισι καβαλλάριοι ἢ τοῦλδος , ὄπισθεν αὐτῶν τὸν τοῦλδον ποιεῖν καὶ μετ ' |
| ὁ μὲν γὰρ τοῦ Κρόνου τὸν Ἥλιον παρὰ τὴν αἵρεσιν τετραγωνίσας ἢ διαμηκίσας ἐν μὲν τοῖς στερεοῖς ποιεῖ αὐτοὺς καταθλίψει | ||
| οὖν ἐτῶν ξθʹ : ἐὰν δὲ μὴ ἐκώλυσεν ὁ Ζεὺς τετραγωνίσας , μόνα ἔτη ξδʹ ἔζησεν ἄν . Ἄλλη . |
| τέσσαρα καὶ μέχρις οὗ βουλόμεθα , τρίγωνοι ἐφεξῆς ἀπὸ μονάδος ἀποτελεσθήσονται οἱ αʹ γʹ Ϛʹ ιʹ ιεʹ καʹ κηʹ λϚʹ | ||
| καθ ' ἕκαστον ἐπινοήσομεν πέρατα , τριῶν δὲ ὄντων ἓξ ἀποτελεσθήσονται , δι ' ἣν αἰτίαν καὶ αἱ λεγόμεναι σωματικαὶ |
| ἐπειδὴ τὸν μὲν κε ὁ ε ἐποίησεν ἐφ ' ἑαυτὸν πολλαπλασιασθείς , τὸν δὲ μθ ὁ ζ . οἱ δὲ | ||
| ὁ γ τὸν θ , οὔτε μετ ' ἄλλου τινὸς πολλαπλασιασθείς . Μέρη λέγω τοὺς ὑπολόγους , ὑποεπιτρίτους , ὑποεπιτετάρτους |
| Γ πρὸς τὴν Β οὖσαν β κϚ νδ . πάλιν πολλαπλασίασαι τὴν Γ ἐπὶ τὴν Β καὶ τὸν γεγονότα εὐθὺς | ||
| Γ πρὸς τὴν Β οὖσαν β κϚ νδ . πάλιν πολλαπλασίασαι τὴν Γ ἐπὶ τὴν Β καὶ τὸν γεγονότα εὐθὺς |
| δοθέντα κύβον πυραμίδα ἐγγράψαι . Ἔστω ὁ δοθεὶς κύβος ὁ ΑΒΓΔΕΖΗΘ , εἰς ὃν δεῖ πυραμίδα ἐγγράψαι . ἐπεζεύχθωσαν αἱ | ||
| δοθέντα κύβον ὀκτάεδρον ἐγγράψαι . Ἔστω ὁ δοθεὶς κύβος ὁ ΑΒΓΔΕΖΗΘ , καὶ εἰλήφθω τὰ κέντρα τῶν ἐφεστώτων τετραγώνων τὰ |
| τούς τε περιττοὺς καὶ τοὺς ἀρτιάκις ἀρτίους καὶ ποιήσομεν στίχους περισσαρτίων καὶ εὑρίσκομεν τὸ ζητούμενον : γ , ε , | ||
| παραδείγματος : εἰ δοκεῖ μέν , ἅμα τοὺς στίχους τῶν περισσαρτίων ἐκθώμεθα : εὑρήσεις τοίνυν ἐπὶ τῶν στίχων κοινωνίαν πρὸς |
| μδʹ γοʹʹ [ Ἀρτάβρων ] Ἀρτάβρων λιμὴν εʹ γʹʹ μεʹ Νέριον ἀκρωτήριον εʹ δʹʹ μεʹ Ϛʹʹ Ἡ δὲ ἀρκτικὴ πλευρὰ | ||
| τοῦ ἱεροῦ ἀκρωτηρίου μέχρι τῆς πρὸς Ἀρτάβροις ἄκρας ἣν καλοῦσι Νέριον : τέταρτον δὲ τὸ ἐνθένδε μέχρι τῶν βορείων ἄκρων |
| νόμισμα αʹ ʂ , κεράτια λϚʹ . καὶ τὸ διπλοῦν δίδραχμον ὁμοίως ἄγει δραχμὰς δʹ , νομίσματα γʹ . καὶ | ||
| αἰσθητῶν . ἆρά γε οὐχὶ τοῦτον τὸν τρόπον καὶ τὸ δίδραχμον διενεμήθη τὸ ἅγιον , ἵνα τὸ μὲν ἥμισυ αὐτοῦ |
| λείψει ἀριθμοῦ ἑνός , ἐλάσσονα δὲ τὸν κ καὶ τὸν Ϟόν . Ἅπαξ ἄρα τὰ ἐλάσσονα , ἤτοι τὸν π | ||
| κβ . Δεῖ τοίνυν τὸν ἀπὸ τῆς ὑπεροχῆς αὐτῶν τετράγωνον Ϟόν , ἤτοι καθ ' ὑπόθεσιν τὸν ιϚ , ἐλάττονα |
| , ὡς ἐν τοῖς Ἀποδεικτικοῖς αὐτὸς ἡμᾶς ἐδίδαξε . καὶ τετραγωνίσαι παραλληλόγραμμον ὀρθογώνιον οὐδὲν ἦν ἄλλο ἢ τῆς μέσης εὕρεσις | ||
| ὅρος τοῦτο , ἀποδείξις δὲ ὁ αὐτὸς οὕτως : ὁ τετραγωνίσαι βουλόμενος μέσην ἀνάλογον ζητεῖ εὑρεῖν : ἡ μέση εὑρεθεῖσα |
| ἕξει ἡ ἰσότης πρὸς τὴν ἀνισότητα , καθάπερ καὶ ἐν γραμμικοῖς ἡ ὀρθὴ γωνία πρὸς ἀμβλεῖαν καὶ ὀξεῖαν , καὶ | ||
| ἰσοδιάστατοι , καθ ' ὁμοιότητα καὶ αὐτοὶ λαμβανόμενοι τῶν ἐν γραμμικοῖς : καλοῦνται δ ' οὗτοι κύβοι καὶ τετράεδροι πυραμίδες |
| δεδομένων ἄνευ θέσεως . τὰ δὲ ἑξῆς τούτοις Ϛʹ ἐν παραλληλογράμμοις ἐστὶ καὶ παραβολαῖς εἴδει δεδομένων χωρίων . τῶν δὲ | ||
| πρὸς ἑκάτερον τῶν παραλληλογράμμων . ἀσύμμετρον ἄρα τὸ τετράγωνον τοῖς παραλληλογράμμοις . ῥητὸν δὲ τὸ τετράγωνον : ἄλογα ἄρα τὰ |
| ἑαυτῆς πολλαπλασιαζομένης , οἷον ὁ θ : ἓν γάρ ἐστιν ἑτερώνυμον : τρὶς γὰρ γ θ : ὁ γ οὖν | ||
| ἀριθμόν , ἐξ ὧν προαπεδείχθη , πρῶτον καὶ ἀσύνθετον : ἑτερώνυμον γὰρ μόριον οὐκ ἔχει , ἀλλὰ μόνον τὸ ἑαυτῷ |
| τῷ βῳ διδόναι τὸ γον , τὸν δὲ βον τῷ γῳ τὸ δον , τὸν δὲ γον τῷ δῳ τὸ | ||
| ἐπεὶ θέλω τὸν μέγιστον τοῦ μέσου ὑπερέχειν τῷ τοῦ ἐλαχίστου γῳ μέρει , ἐὰν προσθῶ τῷ μέσῳ τὸ τοῦ ἐλαχίστου |
| προσλαβὼν τὸν ἐλάσσονα ἀριθμὸν ἴσος ᾖ τῷ ἀπὸ τοῦ ἐλάσσονος κύβῳ προσλαβόντι τὸν μείζονα ἀριθμόν . Ἔστω ὁ μὲν ʂ | ||
| β ἐν μορίῳ τῷ ἀπὸ ΔΥ α # Μο β κύβῳ . καὶ ἔστιν τὸ μόριον κυβικόν : ἔστω ΔΥ |
| τῷ ἀπὸ ΔΗ , διὰ δὲ τὴν ΑΜΒ τὸ ὑπὸ ΖΔΛ ἴσον τῷ ἀπὸ ΔΜ . τὸ ἄρα ἀπὸ ΜΔ | ||
| τοῦ περιγείου φαίνεσθαι μοίρας ξζ λ , ἡ δὲ ὑπὸ ΖΔΛ τῶν λοιπῶν με μα : καὶ ἡ μὲν ἐπὶ |
| ἐπιμερισμῷ ἢ συνεπιμερισμῷ ἔσται κατὰ τὸ διαφέρον τῶν σχημάτων τῶν ἐπιμεριζόντων ἢ συνεπιμεριζόντων ἀστέρων . ἐπιτακτικώτεραι δὲ αἱ ἐνέργειαι αὐτῶν | ||
| κακοποιὸς κακοποιῷ . Καὶ ἕτεροι η τρόποι λαμβανόμενοι ἐκ τῶν ἐπιμεριζόντων καὶ συνεπιμεριζόντων αὐτοῖς ἀγαθοποιῶν ἢ κακοποιῶν σωματικῶς ἢ ἀκτινοβολικῶς |
| πονηρὸς ἔδοξεν , ὥστε μηδ ' ἐκεῖ ⌈ ⌉ τῶν ἴσων ἀξιοῦσθαι τοῖς ἄλλοις , ἀλλὰ κλέπτην ὥς φασι ληφθέντα | ||
| δυσὶ πλευραῖς ἴσας ἔχοντα ἑκατέραν ἑκατέρᾳ καὶ τὰς ὑπὸ τῶν ἴσων εὐθειῶν περιεχομένας γωνίας ἴσας : καὶ τὴν βάσιν ἄρα |
| εὐθεῖα ἴση ἐστὶ τῇ ἀπὸ τοῦ Β ἐπὶ τὸ Γ ἐπιζευγνυμένῃ εὐθείᾳ [ καί ἐστιν ἡ μὲν ἀπὸ τοῦ Α | ||
| εὐθεῖα ἴση ἐστὶ τῇ ἀπὸ τοῦ Κ ἐπὶ τὸ Δ ἐπιζευγνυμένῃ εὐθείᾳ : καὶ ἡ ΑΘ ἄρα περιφέρεια ἴση ἐστὶ |
| διαλύων ὕδατι ψυχρῷ ἐρεβίνθου τὸ μέγεθος . ἐπὶ δὲ τῶν κατεψυγμένων καὶ ἐπὶ τῶν διὰ πάχος τοῦ φλέγματος θερμαίνεσθαί τε | ||
| διὰ ψῦξιν ἢ θρόμβωϲιν ἀναιρούντων . ἐπὶ μὲν οὖν τῶν κατεψυγμένων ὅλον τὸ ϲῶμα ἀποπλήκτων ἰϲχιαδικῶν τε καὶ νεφριτικῶν καϲτορίου |
| μηροὺς τούτῳ ἀνέθεσαν , ἔστι δὲ οἶκος τοῦ Διὸς καὶ τριγωνίζεται τῷ τε Λέοντι καὶ τῷ Κριῷ καθὰ δὴ καὶ | ||
| , ἐν καλῷ τόπῳ ἕστηκεν ἰδιοθρονῶν καὶ ὑπὸ τῆς Ἀφροδίτης τριγωνίζεται , τοῦ Ἄρεως ἀποστρόφου ὄντος , βίον καλὸν ἕξει |
| λβ καὶ τοῦτο δι ' ὅλου : ἐν δὲ περισσαῖς ἐκθέσεσιν ἶσον τὸ ἅπαξ ξδ τῷ δὶς λβ καὶ τοῦτο | ||
| διὰ τετάρτης ἀπαντᾶν ἡμέρας , ὡς ἐν ταῖς αὐτῶν ἀνάλογον ἐκθέσεσιν εἰς τὰς τετάρτας πάντως οἱ κύβοι ἀποτελοῦνται χώρας : |
| πεπέρεωϲ λευκοῦ ⋖ ε κιναμώμου ⋖ δ ναδροϲτάχυοϲ κρόκου ϲμύρνηϲ τρωγλοδυτικῆϲ πολίου ἀνὰ ⋖ δ . ἀναλάμβανε μέλιτι καὶ δίδου | ||
| ἀριϲτολοχίαϲ ϲτρογγύληϲ πεπέρεωϲ λευκοῦ ἀνὰ ⋖ ε κιναμώμου ναρδοϲτάχυοϲ ϲμύρνηϲ τρωγλοδυτικῆϲ πολίου κρόκου ἀνὰ ⋖ δ : ἀναλάμβανε μέλιτι ἀπηφριϲμένῳ |
| καὶ ὑπ ' εὐθύνην ὤν ὑπεύθυνος ] δυνατὸς ὑπ ' εὐθύνην ἐλθεῖν ἐάν τι παρὰ δίκην ἐργάσηται κρατεῖ ] ἄρχει | ||
| ὑπεύθυνος : ἤγουν ὑπ ' ἄλλου ἐξουσιαζόμενος καὶ ὑπ ' εὐθύνην ὤν ὑπεύθυνος ] δυνατὸς ὑπ ' εὐθύνην ἐλθεῖν ἐάν |
| ἐν αὐτῇ ἀσαφές , ἐξηγήσεως ἀξιούσθω . ἀρξάμενος ἀπὸ τοῦ πρωτίστου . τουτέστιν ἀπὸ τοῦ γ , τοὺς δύο μέσους | ||
| ἐπιμορίου δύο πρώτιστα εἴδη συντεθέντα ποιητικὰ εἶναι τοῦ τῶν πολλαπλασίων πρωτίστου εἴδους . πάλιν δὲ ἐξ ἄλλης ἀρχῆς τὸ γεννηθὲν |
| δὲ οἱ τριάδι ἀλλήλων ὑπερέχοντες ἐν τῇ συνθέσει ἀπὸ μονάδος πενταγώνους ἀποτελοῦσιν , ἑξαγώνους δὲ οἱ τετράδι , ἀεί τε | ||
| πυραμίδας τριγώνους βάσεις ἐχούσας . καί εἰσι ιβ μὲν πυραμίδες πενταγώνους βάσεις ἔχουσαι τὸ στερεὸν τοῦ δωδεκαέδρου , εἴκοσι δὲ |
| τὸ ΗΘ . καὶ ἔστιν ἰσογώνιον τὸ ΓΗΚ τρίγωνον τῷ ΕΘΛ , ὅτι καὶ ἡ ΓΚ παράλληλός ἐστι τῇ ΕΛ | ||
| ΚΘΛ ἴση . ἐπεὶ οὖν δύο αἱ ΚΘΛ δυσὶν ταῖς ΕΘΛ ἴσαι , καὶ γωνία γωνίᾳ , καὶ βάσις ἡ |
| . βελόνην οὖν λαβόντεϲ ἰϲχνοτάτην διείρομεν διὰ τοῦ ὠτὸϲ αὐτῆϲ τριχὸϲ γυναικείαϲ ἢ ἁπλουϲτάτου κλωνὸϲ βύϲϲου τὰ δύο ὁμοῦ πέρατα | ||
| ! ! ] οὐδ ] ? ' ἂν ? ? τριχὸϲ πριαίμην . ] ν ] ! οϲ τὰϲ ? |
| προτέροις τοῦ δ γεννᾶται τῇ αὐτῇ ἐφόδῳ : τὸ γὰρ συγκεφαλαίωμα τῶν τριῶν , τοῦ τε α καὶ β καὶ | ||
| ἥττονος : ἑκατὸν γὰρ ιϚ ἐν ἑκατέροις τὸ τοῦ ἀριθμοῦ συγκεφαλαίωμα . Ἔστω ἡ ΑΒ μονάδων ιβ . ἐτμήθη εἰς |
| διὰ πάντων εἴρηται αὕτη μόνη καὶ δοκεῖ εἶναι τριπλῆ καὶ πενταπλῆ μετάληψις , ἕκαστον γὰρ αὐτῶν δεῖ λυθῆναι τοῖς προειρημένοις | ||
| αἱ ΒΓ : ἡ μὲν γὰρ ΒΘ τῆς ΘΓ ἐστι πενταπλῆ , ἡ δὲ ΒΓ τῆς ΓΘ ἐστιν ἑξαπλῆ . |
| ἀπὸ μονάδος πρῶτος τέλειός ἐστιν ἰσούμενος τοῖς ἑαυτοῦ μέρεσι καὶ συμπληρούμενος ἐξ αὐτῶν , ἡμίσους μὲν τριάδος , τρίτου δὲ | ||
| οὕτως ἐκ τούτου κἀκείνων ὁ τοῦ προκειμένου γένους ὁρισμὸς εὑρεθήσεται συμπληρούμενος . οἷον εἰ γραμμὴ εἴη τὸ γένος τὸ εἰς |
| : κατὰ βραχὺ δὲ προϊοῦσα ἡ αἴσθησις ὁμοῦ τῷ λογισμῷ ἐσοφίσατο καὶ ἐξεῦρεν ὄχημα κοῖλον , ἐρεσσόμενόν τε , καὶ | ||
| γίγνεται , τὰ δὲ πλεῖστα καταναλίσκεται παραχρῆμα . πυρσοὺς αὖ ἐσοφίσατο , ἀλλ ' ἐπὶ τῷ ἡμετέρῳ κακῷ διενοεῖτο ποιεῖν |
| ἡ νόσος καὶ ἐν τῇ καταρχῇ , ἀπὸ κραιπάλης καὶ περιφορῶν καὶ πλήθους καὶ ἔσονται στεγνοὶ πυρετοὶ καὶ τῶν ὑποχονδρίων | ||
| . ιϚʹ Ἐὰν δὲ μὴ ᾖ ὁ ἐνιαυτὸς ἐξ ὅλων περιφορῶν ἡλίου , ἀλλ ' ἐπίῃ ἐφ ' ὅλαις περιφοραῖς |
| τὸ διὰ στρουθίου καλούμενον , ὧν καὶ τὰς γραφὰς ὑμῖν ὑπέταξα πρὸς τὸ μὴ δεῖσθαι ζητεῖν αὐτὰς ἐξ ἑτέρων εὑρίσκειν | ||
| τὸ τὰς εἰσόδους αἰνιγματώδεις ἐσχηκέναι δοκιμάσας καὶ ἀνευρὼν καὶ συγκομίσας ὑπέταξα , ὅπως οἱ φιλόκαλοι διὰ πολλῶν εἰς μίαν δύναμιν |
| εἰ μὴ κικίννους ἀξίους λίτραιν δυοῖν . σὺν δὲ τῇ λίτρᾳ καὶ ἄλλα ὠνόμασε νομισμάτων ὀνόματα Ἐπίχαρμος ἐν Ἁρπαγαῖς ὥσπερ | ||
| γὰρ ια καὶ ιγ # τοῦ ἐλαίου μίξειϲ τότε τῇ λίτρᾳ τοῦ κηροῦ . Ἐν ταῖϲ ἑψήϲεϲι τῶν φαρμάκων ἡ |
| κατὰ μῆνα καὶ τῶν καθ ' ἡμέραν ἀποτελεσμάτων ἀπὸ τῶν ἐννάτων καθὼς ἐδόξασαν οἱ Ἰνδοὶ διηγησόμεθα εἰς τὸ μετέπειτα , | ||
| εἶτα τῆς Ἀφροδίτης . καὶ τοιουτοτρόπως ποιοῦμεν τὸν περίπατον τῶν ἐννάτων τῶν ζῳδίων πάντων , διαγινώσκοντες τοὺς κυρίους ἑκάστης διαιρέσεως |
| ἀκαύστους , οὐγγίας ιηʹ , καὶ μαγνησίαν , ἤγουν κεκαυμένους κροκοὺς , Ϛγ δʹ κο κʹ : καὶ ζύγιν , | ||
| ἀκαύστους , οὐγγίας ιηʹ , καὶ μαγνησίαν , ἤγουν κεκαυμένους κροκοὺς , Ϛγ δʹ κο κʹ : καὶ ζύγιν , |
| προσδιορισμὸν ἡγούμεθα κοινοτάτην ποιεῖσθαι τὴν ἀπόφανσιν καὶ μὴ μάτην αὐτὸν προστίθεμεν , μόνον ἄρα τὸ ἄρθρον ῥηθὲν οὐκ εὐθὺς ἅπαντα | ||
| ἐπιβολὴν τοῦ ἀνδρὸς καὶ ἐν τούτοις θαυμάσαντες , τοσοῦτον μόνον προστίθεμεν ὅτι οὐχ ἁπλῶς δεῖ ἀκούειν τὸν Δία τὸν ἕνα |
| τὸ κέντρον ἐγκεῖϲθαι τῷ πλήγματι , τοῖϲ δὲ ὑπὸ τῶν ϲφηκῶν πάλιν τὰ ὅμοια μετ ' ἐπιτάϲεωϲ πολλῆϲ , πλὴν | ||
| τὸ κέντρον μένειν ἐν τῇ πληγῇ , τοῖϲ δὲ ὑπὸ ϲφηκῶν τὰ ὅμοια μὲν ἐπιτεταμένα δέ , πλὴν τὸ κέντρον |
| σοφώτατον καὶ φρονιμώτατον πεποίηκεν ὑπὲρ εὐκλείας πόνου καταφρονοῦντα καὶ ἡδονῆς ὑπερορῶντα : τὸ μὲν πρότερον οὕτως : ἀλλ ' οἷον | ||
| ἀδεῶς τὰ κακὰ πολιτεύσεται πανταχοῦ : τὸν δὲ δωρεᾶς διδομένης ὑπερορῶντα ζηλοῦντος ἑκάστου γνησίας εἶναι συμβαίνει τὰς ἁπάντων εὐεργεσίας . |
| μὲν πρῶτον ἐπὶ ψιλῷ τῷ τρέφεσθαι συνῆν τινι κακοδαίμονι καὶ γλίσχρῳ ἐραστῇ . ἐπεὶ δὲ τὴν ὁδὸν ταύτην ῥᾴστην οὖσαν | ||
| , τῷ ἀλήτῳ , τῷ σιτανίῳ , τῷ πλυτῷ , γλίσχρῳ , πεφυρημένῳ , ὀλίγῳ , καταπλάσσειν τὰ τοιαῦτα : |
| πολλαπλασιαζόμενοι ἑκάτερος τούτων καὶ εἰς ἀλλήλους παραβαλλόμενοι καὶ ἕτερος θάτερον πολλαπλασιάζων ποιοῦσι τὸ ὅλον ἐμβαδὸν τοῦ τετραγώνου ἤγουν τοῦ ΑΔΕΒ | ||
| καὶ ἐφεξῆς οὕτω παρ ' ἕνα ποτὲ ἄρτιόν ποτε περιττὸν πολλαπλασιάζων , ποιήσεις τοὺς διπλασίους . τριπλάσιοι δὲ πάντες εἰσίν |
| τῶν ρπ μοιρῶν τῆς ἀναφορᾶς συμπληρουμένης ἢ καὶ ἕως ἑτέρας τετραγώνου ἢ συμπληρουμένου παντὸς τοῦ κύκλου , ἢν δὲ καὶ | ||
| πλευρὰ μονὰς ἔσται πανταχόθι , ὅσηπερ καὶ ἡ τῆς δυνάμει τετραγώνου μονάδος . καθόλου δὲ ἕκαστος τετράγωνος ἓν μὲν ἐπίπεδόν |
| πόνων ἀρωγήν , ἀνῆκεν τοῖς ἐκγόνοις : θρεψαμένη δὲ καὶ αὐξήσασα πρὸς ἥβην ἄρχοντας καὶ διδασκάλους αὐτῶν θεοὺς ἐπηγάγετο : | ||
| , ἠγάπησε δὲ τῶν Ἀθηναίων ἡ πόλις καὶ θρέψασα καὶ αὐξήσασα καὶ κοσμήσασα πανταχῆ διέπεμψεν . οὗτοι συγκρύπτουσι μὲν δυσγένειαν |
| τὴν μὲν τῶν χορδῶν κοινὴν ἀπόδεσιν , τὴν ἐκ τοῦ διαγωνίου πασσάλου , εἰς τὸν τοῦ ὀργάνου βατῆρα , ὃν | ||
| πρὸ ἐκείνου τετραγώνου τοῦ δʹ , παρὰ τὸν εʹ , διαγωνίου κειμένου αὐτῷ ἑνὸς τριγώνου . ὁ δ ' ὑπὸ |
| ἐν τοῖς μέσοις συναναβλαστάνοντα καὶ ἐπιφυόμενα τῶν βλαβερῶν ἀναγκαίως ἂν τέμνοιτο τοῦ μὴ ζημιοῦσθαι τὰ ἀμείνω χάριν . ἢ οὐκ | ||
| συγκαταθετέον , διὰ γὰρ τῆς δριμυφαγίας εἰ καὶ τὸ πάχος τέμνοιτο τοῦ γάλακτος , ἡ ποιότης αὐτοῦ φθαρεῖσα καὶ δηκτικὴ |
| αὐτῶν ια . καὶ ἔστιν ὡς τξ πρὸς μζ μβʹ μʹʹ οὕτως πγ πρὸς ια . . . , . | ||
| σκιᾶς κατὰ μὲν τὸ μέγιστον ἀπόστημα τῆς σελήνης ἑξηκοστὰ μʹ μʹʹ , κατὰ δὲ τὸ ἐλάχιστον ἀπόστημα ἑξηκοστὰ μϚʹ . |
| καὶ μύστης γενόμενος συνέταξα δοκῶν † κόρον ἐν ταῖς γραφαῖς τεθεικέναι ἀρχήν , ἀνα - τυποῦμαι καὶ οὐ διαλιμπάνω κάμνων | ||
| τοῦ στεφάνου φέγγος : ἐν δὲ τοῖς ἄστροις ὕστερον αὐτὸν τεθεικέναι , ὅτε εἰς Νάξον ἦλθον ἀμφότεροι , σημεῖον τῆς |
| ' ἑκάτερα ἐναντία , τὸν αὐτὸν δὴ τρόπον καὶ τῇ ἀλυπίᾳ ἀντίκειται ἡ ἡδονὴ καὶ λύπη , ἡ μὲν ὡς | ||
| πενίαν λαβὼν πράως φέρει , πρὸς τῇ ἀπὸ τῆς πραότητος ἀλυπίᾳ καὶ ἐξευρήσει τινὰ βίου παραμυθίαν , τοῦτο μὲν τοῦ |
| ταμίας τούτων , ὁ ἡγεμὼν τοῦ δεσμωτηρίου , σύστημα καὶ συμφόρημα κακιῶν ἀθρόων καὶ ποικίλων εἰς ἓν εἶδος συνυφασμένων ἐστίν | ||
| καὶ ἀνακερασάμενος ὁ ζῳοπλάστης ἓν ἐκ πασῶν ἕκαστον ἡμῶν ἀπειργάζετο συμφόρημα , ἀφ ' οὗ καὶ φύραμα εἴρηται . τούτου |
| περὶ πλατὺν καὶ μαλακὸν τόπον : ὑπὸ δὲ τοὺς κανόνας ὑποθήσομεν καταζυγίδας σιδηρᾶς πλάτος μὲν ἐχούσας ἴσον τοῖς κανόσι , | ||
| ἐνερευθὴς ὁ τόπος γίνεσθαι , κύκλον ἐξ ἐρίου ποιήσαντες εὐμεγέθη ὑποθήσομεν τῷ τόπῳ , μετὰ ταῦτα ῥοδίνην ἢ μυρσίνην κηρωτὴν |
| ἡ ψυχὴ καὶ λέγεται αὕτη ἡ βούλησις ὁριστική , ὡς ὁρίζουσα τὸ ψεῦδος καὶ τὴν ἀλήθειαν , ἢ προστάσσειν βούλεται | ||
| λέγοντες . ἐπῆκται γὰρ ἤδη ψῆφος ἀίδιον κατ ' αὐτῶν ὁρίζουσα φυγήν , καὶ θεοὺς ὀμωμόκαμεν ἅπαντες μήτ ' αὐτοὶ |
| αἳ μὲν τετράγωνοι , αἳ δὲ ἑτερομήκεις , αἳ δὲ ῥομβοειδεῖς , αἳ δὲ ἐς ἔμβολον ξυνηγμέναι . ἀγαθαὶ δὲ | ||
| αὐγῇ καὶ τῷ χρώματι παραπλησίους ὀστρείοις , τῷ δὲ σχήματι ῥομβοειδεῖς . φησί που Εὔβουλος : ὁμοῦ δὲ τευθὶς καὶ |
| τετραγώνων , οἵ εἰσιν ἐξ ἀριθμοῦ τινος ἐφ ' ἑαυτὸν πολυπλασιασθέντος : οὗτος δὲ ὁ ἀριθμὸς καλεῖται πλευρὰ τοῦ τετραγώνου | ||
| δὲ κύβος ηὐξημένος ὢν ἐξ ἑκάστου τετραγώνου τῇ ἰδίᾳ πλευρᾷ πολυπλασιασθέντος ἐπίπεδα μὲν ἕξει πάντως ἕξ , ὧν ἕκαστον ἶσον |
| ὑποτοξεύουσι βέλεσιν , ἀλλὰ τὴν ἐλευθερίαν ἡμῶν οὐ βλάπτουσιν . ἶσον δ ' ἐστὶ τὸ ψεύδεσθαι καὶ τὸ τάχος πείθεσθαι | ||
| οὖθαρ ἀρούρης γαμβρός κέν οἱ ἔοις : τίσει δέ σε ἶσον Ὀρέστῃ , ὅς οἱ τηλύγετος τρέφεται θαλίῃ ἔνι πολλῇ |
| ὄντος τοῦ ἡλίου μεγίστας ἐνεργείας ἔχει : ὠφελεῖ τριταίζοντας καὶ τεταρταίζοντας ἴσον ἴσῳ μετὰ ῥοδίνου ἀλειφόμενον : σκευάζεται ⌊ δὲ | ||
| διεὶς ἕνα ἐν κυάθῳ γάλακτος ὀνείου σύγχριε καθάπερ καὶ τοὺς τεταρταίζοντας . γίνεται δὲ καὶ ἄκοπον πρὸς νευρικὰς καὶ ὑστερικὰς |
| . Ἀφ ' οὗ δ ' ἂν ⃞ου ἀπὸ πλήθους ʂῶν καὶ Μο γ ἀφέλω Μο θ , οὗτος ἔσται | ||
| Μο α , τὸ αὐτὸ μέρος ἢ τὰ αὐτὰ μέρη ʂῶν γ # Μ α οἱ ʂ γζ / # |
| , καί εἰσι πάλιν ἀρτιάκις ἄρτιοι . γένεσις δὲ τοῦ ἀρτιάκις ἀρτίου . περὶ τῆς γενέσεως τοῦ ἀρτιάκις ἀρτίου λέγει | ||
| ἓξ ἀριθμὸν ἔλεγον κρίσιν , ὃς καὶ ἔστιν ἀρτιοπέριττος . ἀρτιάκις γὰρ ἄρτιός ἐστιν ἀριθμὸς ὁ ἀναλυόμενος μέχρι μονάδος αὐτῆς |
| τοῦ ἀρτιάκις ἀρτίου ἐποιοῦμεν : γίνεται τοίνυν δωδεκάκις ψξη , ͵θσιϚ : οὗτος τοίνυν ὁ ὑπὸ τῶν ἄκρων ἐστί , | ||
| ϘϚ : πολλαπλασιαζόμεναι γὰρ αἱ κδ ἐπὶ τὰς τπδ ποιοῦσι ͵θσιϚ , ἀλλὰ καὶ ὁ ϘϚ ἐφ ' ἑαυτὸν πολλαπλασιασθεὶς |
| τοῦ μεσαιτάτου , ἵνα μὴ περαιτέρω τοῦ ἡμίσους ὁ τῆς κρούσεως κραδασμὸς χωρήσῃ , διὰ πασῶν εὑρήσει τὸν ἀπὸ τῆς | ||
| ἔσται τῶν κακῶν . ἐπὶ δὲ νυκτὸς ἐξ ἀπο - κρούσεως φερομένης τῆς Σελήνης εἰς πάντα ἀγαθὸς καὶ ὠφέλιμος ἔσται |
| ἀντὶ τοῦ , ἐν δημοκρατίᾳ δὲ ἄρχοντός τινος αἱρεθέντος ἢ πρωτεύοντός τινος ῥᾳδίως φέρουσιν οἱ μὴ τυχόντες τῶν ὁμοίων : | ||
| ἀντὶ τοῦ , ἐν δημοκρατίᾳ δὲ ἄρχοντός τινος αἱρεθέντος ἢ πρωτεύοντός τινος ῥᾳδίως φέρουσιν οἱ μὴ τυχόντες τῶν ὁμοίων : |
| τε καὶ πρακτικήν , κακίας δὲ τὸν μὲν ἀπὸ τῆς ἀφοβίας ὑπερβάλλοντα ἀνώνυμόν τινα λέγει , εἴη δ ' ἄν | ||
| αὐτοὶ μεμηχανήμεθα τοὺς γὰρ γόητας οὐκ ἐν θοίνῃ λέγωτῆς δὲ ἀφοβίας καὶ τοῦ λίαν θαρρεῖν καὶ ἀκαίρως ἃ μὴ χρή |
| δυνάμει ἀσυμμέτρων , ἐν δὲ τῷ ηʹ γένεσιν συμμέτρων καὶ ἀσυμμέτρων μήκει καὶ δυνάμει . Τὸ τὰ σύμμετρα μεγέθη λόγον | ||
| ἐστὶν ἤτοι δύο μέσα δυναμένη ] . Δύο ἄρα μέσων ἀσυμμέτρων ἀλλήλοις συντιθεμένων αἱ λοιπαὶ δύο ἄλογοι γίγνονται ἤτοι ἐκ |
| καὶ εἰς ἄνισα θ καὶ γ . τὸ ἀπὸ τῶν ἀνίσων τῆς ὅλης τετράγωνον , τουτέστι θ ἐπὶ θ , | ||
| τετράγωνος , ἀλλὰ καὶ ἑτερομήκης λέγεται , ὡς ἂν ἐξ ἀνίσων πλευρῶν συντεθεὶς ἔκ τε τοῦ η καὶ τοῦ β |
| τοῦ τραχήλου τρίς . ἄλλο . κοχλίας γυμνοὺς βάλε εἰς πολτάριον καὶ καῦσον καὶ λειώσας τὴν τέφραν ἀναλάμβανε μέλιτι λείῳ | ||
| δραχμῆς πλέον μήτε ὀβολῶν τεσσάρων ἔλασσον : συνεψῆσαι δὲ τούτοις πολτάριον ἐκ σεμιδάλεως : ἔπειτα ἀπὸ τούτου τῷ πάσχοντι διδόναι |
| τῷ Διὶ ἐπὶ τῇ τῶν καλῶν αὐτῶν μοίρᾳ μὴ ἐπιθεῖναι διχόβουλον καὶ ἐναντίαν νέμεσιν . εὔχομαι ἀμφὶ καλῶν : εὔχομαι | ||
| ὀξείας δὲ νόσους ἀπαλάλκοι . εὔχομαι ἀμφὶ καλῶν μοίρᾳ νέμεσιν διχόβουλον μὴ θέμεν : ἀλλ ' ἀπήμαντον ἄγων βίοτον αὐτούς |
| αʹ ἀτελὴς καὶ δοκεῖ βακχεῖος ἴτ ' ἐγκονεῖ : ] διίαμβος - τε σπεύδεθ ' ὡς : ] ἐπίτριτος γʹ | ||
| ⌈ καὶ ἑξασύλλαβος , καὶ ἀντίσπαστος καὶ ἐπίτριτος πεντασύλλαβος καὶ διίαμβος καὶ διτρόχαιος καὶ ἰωνικὸς καὶ παίων ⌈ , ὥσπερ |
| ὢν τοῦ Σκορπίου μοίρας κ νη : τοῦτο γὰρ ἡμῖν προαπεδείχθη διὰ τῶν περὶ τὰς μεγίστας ἀποστάσεις ἐφωδευμένων : φανερόν | ||
| ἐστι , καὶ εὑρίσκω τὸν γ ἀριθμόν , ἐξ ὧν προαπεδείχθη , πρῶτον καὶ ἀσύνθετον : ἑτερώνυμον γὰρ μόριον οὐκ |
| πλευρῶν ἕτερον ἐκ δὶς τοσούτων συνεστηκὸς ἐντὸς συνήρμοσται σχῆμα κύκλον περιλαβὸν μετεωρίζοντά που τὸν ὄροφον , τὸ διὰ πάντων ἤδη | ||
| : μέχρι μὲν οὖν ἂν ἁπλῶς τοιοῦτο λέγηται , πάντα περιλαβὸν ἐν ἑαυτῷ ἔχει : ἐπειδὰν δὲ τὸ εἰδοποιοῦν ἑκάστῳ |
| γένος εἶναι σημεῖον καὶ διὰ τῶν ὁμολογουμένων λημμάτων ἐκκαλύπτειν τὸ ἀδηλούμενον συμπέρασμα , μή τι οἰκεῖόν ἐστι τῇ περὶ σημείου | ||
| κατὰ τὸν ἐν χρόνοις εἱρμὸν ἀκολουθίας καὶ τάξεως : ὅπερ ἀδηλούμενον ἐπιθειάσας ἀνέφηνε λογίῳ μαρτυρηθέντι διὰ σημείου τινὸς ἐναργοῦς . |
| ΓΖ περιεχόμενον ὀρθογώνιον τῶν αὐτῶν ωξε ε λβ , ἐὰν παραβάλωμεν παρὰ τὸν ἀριθμὸν τῶν ωξε ε λβ τὰ ͵γφνζ | ||
| πρὸς κείμενόν τι πλῆθος ἐφαρμόζειν τὰς τῶν ἀποχῶν εἰκασίας , παραβάλωμεν τὸν ἀπὸ τῆς Χρυσῆς Χερσονήσου μέχρι Καττιγάρων πλοῦν , |
| καὶ παράλληλοί εἰσιν διὰ τὸ λγʹ τοῦ αʹ . τὸ ΚΒΟΣ ἄρα τετράπλευρον . , . ] τετράπλευρόν ἐστιν , | ||
| κύκλος . Ἤχθω ἀπὸ τοῦ Α σημείου ἐπὶ τὸ τοῦ ΚΒΟΣ τετραπλεύρου ἐπίπεδον κάθετος ἡ ΑΨ καὶ συμβαλλέτω τῷ ἐπιπέδῳ |
| Λέγω δή , ὅτι παρὰ τὰ εἰρημένα πέντε σχήματα οὐ συσταθήσεται ἕτερον σχῆμα περιεχόμενον ὑπὸ ἰσοπλεύρων τε καὶ ἰσογωνίων ἴσων | ||
| ἐπὶ τῆς αὐτῆς εὐθείας δύο τμήματα κύκλων ὅμοια καὶ ἄνισα συσταθήσεται ἐπὶ τὰ αὐτὰ μέρη : ὅπερ ἔδει δεῖξαι . |
| καὶ τῆς ὀρθίας πρὸς τὴν πλαγίαν . καὶ διὰ τὰ δεδειγμένα ἐν τῷ τεσσαρακοστῷ πρώτῳ θεωρήματι τὸ ΓΚΜ τρίγωνον τοῦ | ||
| , πάνθ ' ἅμα καὶ μιᾷ δείξει καὶ τὰ μήπω δεδειγμένα καὶ τὰ ἤδη ὡς καὶ τὰ ἐν τῷ δωδεκάτῳ |
| ἴσοι χαμαί ” . ἕπεται δὲ τοῖς δυσὶ κώλοις στίχος τροχαϊκὸς ὅδε “ ἀντὶ ποίας αἰτίας ” καὶ ἐν εἰσθέσει | ||
| κατὰ γὰρ μονοποδίαν μετρεῖται , ὡς εἴρηται : ὁ τρίτος τροχαϊκὸς τετράμετρος καταληκτικός : τὸ τέταρτον ἰαμβικὸν δίμετρον ἀκατάληκτον : |
| ὡροσκόπον τῆς ἐναλλαγῆς ἢ τοὺς δύο κυρίους αὐτῶν καὶ γένηται ἀποκαταστατικὸς ἐν τῇ ἐναλλαγῇ ὅτε καταντήσει ὁ ἐπιμερισμὸς εἰς τὸ | ||
| βίον , ἵν ' οὕτως ἀναχθῇ : καὶ οὗτος ὁ ἀποκαταστατικὸς βίος , ὃν ζήσασα φιλοσόφως καὶ λιποῦσα τὸν βίον |
| χρήσασθαι : δεῖ γὰρ λαμβάνειν τὸν μονάδι ἐλάττονα ἀριθμὸν καὶ πολυπλασιάζειν ἐπὶ τὸν ἐξ ἀρχῆς προκείμενον καὶ τὸν γενόμενον μερίζειν | ||
| : ἐκ γὰρ τοῦ διαφόρως ἔχειν , ἃ δεῖ ἅμα πολυπλασιάζειν , τό τε αʹ ὁμοῦ καὶ τὸ γʹ καὶ |
| μὴ ἐξισταμένη δὲ τῆς ἑαυτῆς φύσεως μηδ ' ἐν τῷ πολλαπλασιασμῷ : ἔτι , εἰ μὴ καὶ ἐντελεχείᾳ , ἀλλὰ | ||
| ἀποκατάστασις σφαῖραν γράφει . καὶ ἀριθμοὶ δὴ οἱ ἐν τῷ πολλαπλασιασμῷ ἐφ ' ἑαυτοὺς καταλήγοντες κυκλικοί τε καλοῦνται καὶ σφαιροειδεῖς |
| : τὸ ζʹ ” ἀμφήκει γλώττῃ “ χοριαμβικὸν πενθημιμερὲς ἐκ δισπονδείου καὶ συλλαβῆς : τὸ ηʹ ” λάμπων πρόβολος ἐμός | ||
| δίμετρον [ καταληκτικὸν ] ἤτοι ἑφθημιμερὲς ἐξ ἐπιτρίτου γʹ ἢ δισπονδείου καὶ βακχείου . προυσχόμην ] περιεποιούμην , ἐκράτουν . |
| ταύρειον αἷμά φησι Πραξαγόρας πινόμενον πήγνυσθαι ἐν τῷ στήθει καὶ θρομβοῦσθαι , ἔπειτα συνέχον τὸ πνεῦμα θνήσκειν ποιεῖ , οὐ | ||
| χυλὸν τῆς περδικιάδος χλιάνας ἔγχει . Ἄλλο , ὥστε μὴ θρομβοῦσθαι τὸ αἷμα ἐν τοῖς ὠσίν : πρασίου χυλὸν καὶ |
| πλείονας ἔχει : ἔχει γὰρ καὶ ἄλλο τέταρτον ἡμέρας καὶ ἑκατοστὸν μέρος , καθ ' ἣν καὶ τὸ βίσεξτον ἀπαντᾷ | ||
| ἄχρι τοῦ τὸ εἰκοστὸν μέρος αὐτοῦ ἀφεψηθῆναι , γύψου τὸ ἑκατοστὸν προσεμβάλλοντες . Λακεδαιμόνιοι δὲ ἕως τοσούτου εἰς τὸ πῦρ |
| ἀμώμου , ναρδοϲτάχυοϲ , κόϲτου , καρυοφύλλου , καϲϲίαϲ , καϲάμου ἀνὰ # γ , οἴνου τὸ ἀρκοῦν . γʹ | ||
| : κατεψυγμένοιϲ δὲ τὰ δι ' ὀποβαλϲάμου , φύλλου , καϲάμου , πεπέρεωϲ : θώρακι δὲ ἐν μὲν αἵματοϲ ἀναγωγαῖϲ |
| διὰ τέσσαρα κύκλος : κείνου δ ' ἡμίτονον φαίνων ἀνίησι χαλασθείς , τοῦ δὲ τόσον φαέθων ὅσον ὄβριμος Ἄρεος ἀστήρ | ||
| διὰ τέσσαρα κύκλος : κείνου δ ' ἡμίτονον Φαίνων ἀνίησι χαλασθείς , τοῦ δὲ τόσον Φαέθων ὅσον ὄβριμος Ἄρεος ἀστήρ |
| διαφορᾶς συμβῆναι , οἷα δὴ ὑπούσης καὶ παλαιᾶς ἀμφοῖν τοῖν γενοῖν πρὸς ἄλληλα πίστεως ἐς τὸ ἡσυχάζειν , δι ' | ||
| θέμις , ποιουμένους , οὐχὶ τοὺς σπείρειν ἀδυνατοῦντας καὶ τοῖν γενοῖν ἑκατέρου διὰ δυσδαιμονίαν τὴν φύσιν ἀρνησαμένους : τίς γὰρ |