τοῦ ἀρτιάκις ἀρτίου ἐποιοῦμεν : γίνεται τοίνυν δωδεκάκις ψξη , ͵θσιϚ : οὗτος τοίνυν ὁ ὑπὸ τῶν ἄκρων ἐστί , | ||
ϘϚ : πολλαπλασιαζόμεναι γὰρ αἱ κδ ἐπὶ τὰς τπδ ποιοῦσι ͵θσιϚ , ἀλλὰ καὶ ὁ ϘϚ ἐφ ' ἑαυτὸν πολλαπλασιασθεὶς |
μεριζόμενα μοίρας ποιήσει , ἐπεὶ καὶ μοῖραι ἐπὶ τρίτα λεπτὰ πολλαπλασιαζόμεναι τρίτα λεπτὰ ποιοῦσιν : καὶ ἁπλῶς πᾶν εἶδος παρ | ||
λόγον ἔχειν λέγεται , ὅταν αἱ πλευραὶ αὐτῶν πρὸς ἀλλήλας πολλαπλασιαζόμεναι ποιῶσιν ἕτερον ἀριθμὸν μέσον ἀνάλογον , οἷον τοῦ ιϚ |
λέγεται , ὅταν αἱ τῶν λόγων πηλικότητες ἐφ ' ἑαυτὰς πολλαπλασιασθεῖσαι ποιῶσί τινα . ] Τὰ τρίγωνα καὶ τὰ παραλληλόγραμμα | ||
συγκεῖσθαι λέγεται , ὅταν αἱ πηλικότητες αὐτοῦ ἐφ ' ἑαυτὰς πολλαπλασιασθεῖσαι ποιῶσί τινα . ὁ τοίνυν τῶν δύο ὅρων μέσος |
κατασκευάζουσι τὸ προκείμενον οὕτω . λαμβάνουσιν ἡμιόλιον ἀριθμόν τινα τὸν ψξη πρὸς τὸν φιβ . καὶ ἀπὸ τούτου τοῦ φιβ | ||
͵γοβ καὶ τοῦ δʹ διαστάματος : ὑπερέχει γὰρ καὶ ὑπερέχεται ψξη . ὁ δ ' αὐτὸς μέσος τοῦ τε θʹ |
κλίμακος : καὶ γὰρ ἐν ταύτῃ , ἐφ ' ὃν λήγομεν βαθμόν , ἀπ ' ἐκείνου πάλιν ἀρχόμεθα . Προσδιασάφησίς | ||
Ϛ : ἰδοὺ ἀπὸ Ϛ ἠρξάμεθα καὶ εἰς Ϛ δὲ λήγομεν : αἱ γὰρ λϚ εἰς Ϛ λήγουσιν . οὗτοι |
, τοῖς οὖν ἐν αὐτῷ γινομένοις μετρεῖται . τκδ τξδ τπδ υλβ υπϚ φιβ φοϚ χμη ψκθ ψξη ωξδ Ϡοβ | ||
δύο μο σ . . Τετράκις γὰρ τὰ ϘϚ , τπδ , οἷς προστίθεμεν τὸν ἀπὸ τῆς ὑπεροχῆς τῶν ιβ |
ΘΜ ἐπὶ τὸν ἀπὸ τοῦ ΚΒ ⃞ον , μετὰ τοῦ ηκις ὑπὸ ΗΘ . ΚΒ , καὶ ὁ ἀπὸ τοῦ | ||
ΒΔ , τῷ ἴσῳ ἀλλήλων ὑπερεχέτωσαν : δεικτέον ὅτι ὁ ηκις ὑπὸ ΑΒ . ΒΓ , προσλαβὼν τὸν ἀπὸ τοῦ |
τέσσαρα καὶ μέχρις οὗ βουλόμεθα , τρίγωνοι ἐφεξῆς ἀπὸ μονάδος ἀποτελεσθήσονται οἱ αʹ γʹ Ϛʹ ιʹ ιεʹ καʹ κηʹ λϚʹ | ||
καθ ' ἕκαστον ἐπινοήσομεν πέρατα , τριῶν δὲ ὄντων ἓξ ἀποτελεσθήσονται , δι ' ἣν αἰτίαν καὶ αἱ λεγόμεναι σωματικαὶ |
δὲ οἱ τριάδι ἀλλήλων ὑπερέχοντες ἐν τῇ συνθέσει ἀπὸ μονάδος πενταγώνους ἀποτελοῦσιν , ἑξαγώνους δὲ οἱ τετράδι , ἀεί τε | ||
πυραμίδας τριγώνους βάσεις ἐχούσας . καί εἰσι ιβ μὲν πυραμίδες πενταγώνους βάσεις ἔχουσαι τὸ στερεὸν τοῦ δωδεκαέδρου , εἴκοσι δὲ |
ΝΤ , ΤΔ ἐπίπεδον καὶ τὸ διὰ τῶν ΝΦ , ΦΔ κοινὴν τομὴν ἕξει τὴν ΔΝ , ἐφ ' ἧς | ||
. ἡ οὖν ΒΔ ὁ ιβ ἡμιόλιός ἐστι πρὸς τὴν ΦΔ τὸν η : ἀλλὰ καὶ τὸ ὑπὸ τῶν ΔΒ |
προηγούμενα τῶν ζῳδίων μοίρας ια θ , αἷς ὑπερέχουσιν αἱ διπλασίονες τῆς ἀποχῆς μοῖραι κδ κγ τὰς τοῦ πλάτους ιγ | ||
Τούτοις προστεθέντος καὶ τοῦ τρίτου , γίνονται οἱ τρεῖς ὁμοῦ διπλασίονες τοῦ τρίτου καὶ ἔτι ὑπερέχοντες μονάδων κ . Ἐὰν |
ὁ μέσος ἥμισυς ἦν τῶν ἄκρων , εἰ περιτταὶ αἱ ἐκθέσεις , εἰ δὲ ἄρτιαι , οἱ μέσοι τοῖς ἄκροις | ||
ἐὰν μὲν γὰρ ἄρτιοι ὦσιν αἱ τοῦ προκεχειρισμένου ἀρτιάκις ἀρτίου ἐκθέσεις , πάντως τὸ ὑπὸ τῶν ἄκρων πρὸς ἄλληλα πολυπλασιαζομέ |
σμύρνα , σίδιον αὖον . Ἕτερον : ἄνθος χαλκοῦ ὀπτὸν ἡμιμοίριον , σμύρνης δύο ἡμιμοίρια , κρόκου τρεῖς μοῖραι , | ||
κατήντησεν . ἡ μεταφορὰ ἀπὸ τῶν καθορμιζομένων πλοίων εἴρηται . ἡμιμοίριον : τὸ ἥμισυ τῆς δραγμῆς . ἠρύγγη , πόλιον |
: ἡ μὲν ἄρα αγ ἀνενεχθήσεται ἐν ο μϚʹ λγʹʹ κʹʹʹ , ἡ δὲ δβ ἐν ο μʹ Ϛʹʹ μʹʹʹ | ||
. αἱ δὲ τοσαῦται ὑπεροχαὶ αἱ ἀνὰ ο οʹ ιγʹʹ κʹʹʹ συντεθεῖσαι γίγνονται ο Ϛʹ κϚʹʹ μʹʹʹ : ὥστε καὶ |
ἡμερῶν κβʹ δύο τρίτων , ταύτας ἐπὶ τὸν ζʹ ἥμισυ πολυπλασιάσωμεν : εὑρήσομεν ροʹ : τοσαύτας Ἀφροδίτη ἕξει ἐκ τῶν | ||
πρὸς τέταρτον τὸ Γ . ἐὰν ἄρα τὸ ὑπὸ μέσων πολυπλασιάσωμεν , τουτέστι τὸν δέκα καὶ πέντε , καὶ παραβάλωμεν |
, τετράγωνον ὄντα , ποιήσει τὸν ξδ κύβον . . δυναμοδύναμις . Οἷον ὁ ιϚ : τετράκις γὰρ τὰ δ | ||
πολλαπλασιασθῇ , ποιήσει τὸν ιϚ , καὶ λέγεται ὁ ιϚ δυναμοδύναμις ἐπειδὴ ἐκ τετραγώνου ἐγένετο τοῦ δ ἐφ ' ἑαυτὸν |
ταῖς ἑξῆς περιφερείαις ἀναφορικῆς ὑπεροχῆς , ὅ ἐστιν ο οʹ ιγʹʹ κʹʹʹ , καὶ αἱ λοιπαὶ γνωσθήσονται , ἐν ὅσῳ | ||
ἡ αγ τῆς δβ κθʹ ὑπεροχαῖς ταῖς ἀνὰ ο οʹ ιγʹʹ κʹʹʹ . αἱ δὲ τοσαῦται ὑπεροχαὶ αἱ ἀνὰ ο |
, πρὶν παθεῖν , διδαχθῆναι , πηλίκον ἐστὶν ἡσυχία . Ϛγʹ . Νουμηνίῳ . Οὐ θρηνητέον οἵων φίλων ἐστερήθημεν , | ||
γʹʹ , τῶν αὐτῶν ἔσται καὶ ἡ μὲν ΒΖ ὑποτείνουσα Ϛγʹ δεκάτου , ἡ δὲ ὑπὸ ΒΖΕ γωνία τοιούτων ρνʹ |
αὐτῶν ια . καὶ ἔστιν ὡς τξ πρὸς μζ μβʹ μʹʹ οὕτως πγ πρὸς ια . . . , . | ||
σκιᾶς κατὰ μὲν τὸ μέγιστον ἀπόστημα τῆς σελήνης ἑξηκοστὰ μʹ μʹʹ , κατὰ δὲ τὸ ἐλάχιστον ἀπόστημα ἑξηκοστὰ μϚʹ . |
μεθύσκουσιν . κἀν ἄλλῳ δὲ μέρει φησίν : αἱ Ῥοδιακαὶ χυτρίδες γίνονται σμύρνης , σχοίνου , ἀνήθου , κρόκου , | ||
. Ἕρμιππος : χρυσίδ ' οἴνου πανσέληνον πιὼν ὑφείλετο . χυτρίδες . Ἄλεξις : ἐγὼ Πτολεμαίου τοῦ βασιλέως τέτταρα χυτρίδι |
τὸ εὕρημα , καθάπερ αἱ Σκυθικαὶ Σκυθῶν καὶ Ῥοδίων αἱ Ῥοδιακαί . αἱ δὲ Λακωνικαὶ τὸ μὲν χρῶμα ἐρυθραί , | ||
ὀπτᾶται . καὶ Ἀριστοτέλης δὲ ἐν τῷ περὶ Μέθης αἱ Ῥοδιακαί , φησί , προσαγορευόμεναι χυτρίδες διά τε τὴν ἡδονὴν |
σὺν τούτοις τὴν Σελήνην τε καὶ τοὺς λοιποὺς ἀστέρας μὴ διαμέτρους ὑπάρχειν τούτους ἐκ τῶν ἰδίων ὑψωμάτων καὶ οἴκων τε | ||
περιτίθησι γνώμονα . ἄγει δὲ καὶ ἐν ἑκάστῳ τετραγώνῳ διαγωνίας διαμέτρους , λέγω δὴ τὴν ΑΘ καὶ τὴν ΘΖ καὶ |
κθ : τὰ γὰρ ἀπ ' αὐτῶν τετρά - γωνα τξα καὶ υμα κατ ' οὐδὲν χωρίον κοινῷ μέτρῳ μετροῦνται | ||
καὶ τῆς τοῦ ἀστέρος , ὥστε ἐν ὅλοις πρώτοις νυχθημέροις τξα πρὸς Αἰγυπτιακοῖς ἔτεσιν Ϙε ἀποκαταστάσεις ποιεῖσθαι να ἔγγιστα : |
γὰρ ἰσημερίας ἐαρινῆς ἐπὶ τροπὴν θερινὴν ἐν ἡμέραις παραγίνεται Ϟδʹ ςʹ , ἀπὸ δὲ θερινῆς τροπῆς ἐπὶ ἰσημερίαν μετοπωρινὴν ἡμέραις | ||
ἀνήλισκον δὲ ἡμιτάλαντον : οἱ δὲ τὸ ζευγίσιον τελοῦντες ἀπὸ ςʹ μέτρων διελέγοντο , ἀνήλισκον δὲ μνᾶς ιʹ : οἱ |
μεταξὺ τῶν Ρ Θ , πάντες δὲ οἱ μείζους τοῦ πενταπλασίου ποιοῦσι τὸ σημεῖον τῆς τομῆς μεταξὺ τῶν Ρ Τ | ||
τοῦ εἰκοσαέδρου καθέτου τὸ δυνάμει δωδεκαπλάσιον μεῖζόν ἐστιν τοῦ δυνάμει πενταπλασίου τῆς πλευρᾶς τοῦ εἰκοσαέδρου . Ἐκκείσθω κύκλος ὁ ΑΒΓ |
] καὶ πίσσα ὑγρὰ ἐκλειχομένη : γενναιότατα δὲ βοηθοῦσι καὶ ἀντίδοτοι , ὧν τὰς σκευασίας ἐπὶ τέλει ἀναγράψομεν : κοινῶς | ||
ῥητίνης # γ ἢ πίσσης ξηρᾶς τὸ αὐτό . Ἡπατικαὶ ἀντίδοτοι . Ἡ πικρὰ ἡπατική . Ἀλόης ⋖ ρ , |
ἀφαιροῦμεν ἐκ τῶν ἀριθμῶν τῶν τριῶν καὶ μονάδων ξ , μονάδας ξ καὶ ἐκ τοῦ ἀριθμοῦ τοῦ ἑνὸς καὶ μονάδων | ||
καὶ ἀπὸ τῶν β ἀριθμῶν καὶ τῶν μ μονάδων ὁμοίως μονάδας μ : ] λοιποὶ ʂ β ἴσοι Μο ξ |
ἐκβαλλόμεναι μείναιεν ἂν ἀσύμπτωτοι , τὸ δ ' εἰς ἄπειρον ἐκβαλλομένας μὴ συμπίπτειν χαρακτηρίζει τὰς παραλλήλους , καὶ οὐδὲ τοῦτο | ||
τῆς σφαίρας σχῆμα πανταχόθεν ἴσον καὶ ἀπὸ τοῦ μέσου κέντρου ἐκβαλλομένας εὐθείας εἰς τὴν ἐπιφάνειαν ἴσας ἔχον , ὥσπερ οἶνος |
' οὗ Σωτὴρ ] ὁ Φύσκων ἐπικληθεὶς [ ἀπέθανεν ] ϘϚ . ἀφ ' [ οὗ ] . . . | ||
ξη λε οϚ λϚ ν λζ νγ λη δ λθ ϘϚ μ μ μα κα μβ κγ μγ ο μδ |
ἄϲηπτα φυλάττουϲι τὰ δι ' ὑγρότητα περιττωματικὴν ϲήπεϲθαι πεφυκότα . Ἅλεϲ κακαυμένοι . Τὸ μὲν διαφορητικὸν μᾶλλον ἔχουϲι τῶν ἀκαύτων | ||
ἀλωπεκίαϲ ἰᾶται μετ ' οἴνου κιρροῦ καὶ λεπτοῦ χριόμενον . Ἅλεϲ . Εἰϲὶ μὲν τῆϲ αὐτῆϲ κατὰ γένοϲ δυνάμεωϲ οἵ |
τοῦ ἐλαχίστου ὑπερέχει Μο ιγ : αἱ δὲ Μο ιγ συντεθεῖσαί εἰσι ⃞ων τοῦ δ καὶ τοῦ θ : γέγονεν | ||
ἁπλαῖ οὖσαι σύνταξιν τὴν ἐφ ' ἕτερον πρόσωπον ἔχουσιν , συντεθεῖσαί γε μὴν ἠλλοτρίωνται τῆς μεταβάσεως τοῦ προσώπου . ὅπερ |
οὗτος γάρ ἐστι πεντάκις πέντε : ἰδοὺ οὖν ὅτι αἱ πλευραὶ αὐτοῦ ἐκ πέντε εἰσίν : ἀπὸ ε οὖν ἀρχόμεθα | ||
ιη καὶ η ὅμοιοί εἰσι , δῆλον : εἰσὶ γὰρ πλευραὶ τοῦ μὲν ιη ὁ Ϛ καὶ ὁ γ , |
εἰσὶν τμημάτων ὡς τῆς διαμέτρου διὰ τὸ ἐξ αὐτῶν τῶν ἐπιλογισμῶν φανησόμενον ἐν τοῖς ἀριθμοῖς εὔχρηστον εἰς ρκ τμήματα διῃρημένης | ||
. ἀλλ ' εἰς ἐκείνην τὴν ὥραν διὰ τῶν προεκτεθειμένων ἐπιλογισμῶν εὑρίσκομεν τὴν σελήνην μέσως μὲν ἐπέχουσαν Διδύμων μοίρας θ |
καὶ παράλληλοί εἰσιν διὰ τὸ λγʹ τοῦ αʹ . τὸ ΚΒΟΣ ἄρα τετράπλευρον . , . ] τετράπλευρόν ἐστιν , | ||
κύκλος . Ἤχθω ἀπὸ τοῦ Α σημείου ἐπὶ τὸ τοῦ ΚΒΟΣ τετραπλεύρου ἐπίπεδον κάθετος ἡ ΑΨ καὶ συμβαλλέτω τῷ ἐπιπέδῳ |
ὃ δὴ τοῦ παντὸς ἔθεμεν δωδεκατημόριον , ἓν καὶ εἴκοσιν εἰκοσάκις ὀρθότατα φύν . ἔχει δὲ διανομὰς δώδεκα μὲν ὁ | ||
καρὸς αἴσῃ . οὐδ ' εἴ μοι δεκάκις τε καὶ εἰκοσάκις τόσα δοίη ὅσσά τέ οἱ νῦν ἔστι , καὶ |
πενταγωνισμὸν ἀπὸ πενταγώνου βάσεως , εἶτα ἀνάλογον ἀπὸ ἑξαγώνου καὶ ἑπταγώνου καὶ ὀκταγώνου καὶ ἀεὶ ἐπ ' ἄπειρον . καθάπερ | ||
η ∠ ʹ ιδʹ . τοσοῦτον ἔσται ἡ πλευρὰ τοῦ ἑπταγώνου . Ἐὰν θέλῃς τὴν διάμετρον εὑρεῖν ἀπὸ τῆς πλευρᾶς |
τὸ ὄμμα καὶ ἔστω τὸ Φ , καὶ περὶ τὴν ΦΚ κύκλος γεγράφθω , καὶ ἐπεζεύχθωσαν αἱ ΦΡ , ΡΚ | ||
ΧΥ , ἴσαι καὶ ἀπεναντίον ἔσονται , καί ἐστιν ἡ ΦΚ ἐκ τοῦ κέντρου οὖσα ἑξαγώνου : ἑξαγώνου ἄρα καὶ |
, ὡς ὁ ρκεʹ ἀπὸ πλευρᾶς πεντάδος ὢν καὶ ὁ σιϚʹ ἀπὸ πλευρᾶς ἑξάδος . κἂν ἐπὶ πλέον δὲ αὐξάνωνται | ||
καὶ Ἱππόβοτος καὶ Νεάνθης οἱ τὰ κατὰ τὸν ἄνδρα ἀναγράψαντες σιϚʹ ἔτεσι τὰς μετεμψυχώσεις τὰς αὐτῷ συμβεβηκυίας ἔφασαν γεγονέναι . |
. ἔτι προμήκης ἐστὶν ὁ κατὰ πάσας τὰς σχέσεις τῶν πολλαπλασιασμῶν πλέον ἢ μονάδι μείζονα τὴν ἑτέραν ἔχων πλευράν : | ||
σημεῖον Ψ ἐλλιπὲς κάτω νεῦον , # . Καὶ τῶν πολλαπλασιασμῶν σοι σαφηνισθέντων , φανεροί εἰσιν οἱ μερισμοὶ τῶν προκειμένων |
⋖ β πεπέρεωϲ λευκοῦ ⋖ α , λείοιϲ χρῶ . Ϲτίμμι γυναικεῖον ποιοῦν πρὸϲ τοὺϲ βεβρωμένουϲ κανθοὺϲ καὶ πτίλουϲ . | ||
ἔπειτα κόψαϲ ϲήϲαϲ καὶ λεάναϲ χνοωδέϲτατα , χρῶ ϲτιμμίζων . Ϲτίμμι ῥυαδικόν . χαλκοῦ κεκαυμένου # α ϲ ϲτίμμεωϲ # |
κύκλον ἐν τοῖς αὐτοῖς δώδεκα ζωδίοις πληροῦσθαι ἐν ἰσαρίθμοις μοίραις τξʹ . Ὅθεν συνέβη τὰς βασιλείας τῶν παρ ' αὐτοῖς | ||
τι παντάπασιν ὁρᾶται , τὸ πᾶν περὶ μίαν μοῖραν τῶν τξʹ : ἡ δὲ σελήνη , καθὰ οἱ ἀρχαῖοί φασι |
ἐπειδὴ τὸν μὲν κε ὁ ε ἐποίησεν ἐφ ' ἑαυτὸν πολλαπλασιασθείς , τὸν δὲ μθ ὁ ζ . οἱ δὲ | ||
ὁ γ τὸν θ , οὔτε μετ ' ἄλλου τινὸς πολλαπλασιασθείς . Μέρη λέγω τοὺς ὑπολόγους , ὑποεπιτρίτους , ὑποεπιτετάρτους |
μεῖζόν ἐστιν : ὅπερ ἔδει δεῖξαι . Ϛʹ , λʹ ΑΛΛΩΣ Ἔστω ἡ δοθεῖσα εὐθεῖα ἡ ΑΒ . δεῖ δὴ | ||
ΚΟΤΕΕΙ . Ζηλοῖ , ὀργίζεται , φθονεῖ , βασκαίνει . ΑΛΛΩΣ . Προτρέπεται πρὸς γεωργίαν διὰ τοῦτο . Ἐν γὰρ |
τὰϲ δυνάμειϲ δίδου πάλιν τὴν ἱερὰν Ῥούφου ἢ Ἀρχιγένουϲ ἢ Ἰούϲτου . πλῆθοϲ δὲ ἔϲτω τὸ ξηρίον διδόμενον ὡϲ ⋖ | ||
προδιαιτήϲαϲ τὸν πάϲχοντα κάθαιρε τῇ ἱερᾷ Ῥούφου ἢ Ἀρχιγένουϲ ἢ Ἰούϲτου . εἰ δ ' ἄμφω πλεονάζοι , προφλεβοτομήϲαϲ κάθαιρε |
ἐπαναφερομένων τῇ ὡροσκοπούσῃ , καὶ ταύταις ταῖς λ μοίραις δεξιὰς ἑξαγώνους μὲν τὰς τοῦ ιαʹ τόπου ὃν καὶ ἀγαθὸν δαίμονά | ||
μοιρῶν εἴκοσι πέντε καὶ τὰς ταύταις ταῖς λʹ μοίραις δεξιὰς ἑξαγώνους τὰς τοῦ ἀγαθοῦ δαίμονος καὶ τετραγώνους τοῦ ὑπὲρ γῆν |
ἀκτῖ - νες αἱ ΔΒ , ΔΓ . καὶ ἐπεὶ προσπεπτώκασιν ἀκτῖνες αἱ ΔΓ , ΔΒ ἐφαπτόμεναι τοῦ ΒΓ , | ||
ἀπό τινος σημείου τῶν ἐκτὸς τοῦ κύκλου πρὸς τὴν περιφέρειαν προσπεπτώκασιν εὐθεῖαι αἱ ΖΕ , ΖΔ , τὸ ΔΘΕ ἄρα |
δὲ τὰς ὑπὸ τὰς καθ ' ἡμιμοίριον παραυξήσεις τῶν περιφερειῶν ὑποτεινομένας εὐθείας , τουτέστι πόσων εἰσὶν τμημάτων ὡς τῆς διαμέτρου | ||
ὀρθῆς ὑποτεινουσῶν , ὡς εἶναι τὰς ὑπὸ τῶν β πλευρῶν ὑποτεινομένας β γωνίας ἡμισείας ὀρθὰς μίαν ὀρθήν . εἰ δὲ |
, ὃς ἀπὸ πλευρᾶς λζ ιʹ . . Ἀπὸ τῶν χκε λϚʹ ἀφαιρουμένων υνϚ λϚʹ , λείπεται ρξθ : ἀφαιρουμένων | ||
τρὶς κζ , γίνονται πα , καὶ πεντάκις ρκε γίνονται χκε : οἱ ἄρα πα καὶ χκε πρὸς ἀλλήλους μὲν |
τοῖς ὑπὸ τοῦ Ἱππάρχου λεγομένοις . κατὰ ταύτας οὖν τὰς πηλικότητας σκεψώμεθα πρότερον , πόσον ἐστὶν τὸ πλεῖστον διάφορον τῆς | ||
, τὰ δὲ δεύτερα τὰς τῶν παρακειμένων ταῖς περιφερείαις εὐθειῶν πηλικότητας ὡς τῆς διαμέτρου τῶν ρκ τμημάτων ὑποκειμένης , τὰ |
, Τρόμης Τρόμητος . Εἰς ης εἶπε διὰ τὰς ἄλλας καταλήξεις , οἷον διὰ τὸ Θόας : ἰδοὺ γὰρ τοῦτο | ||
ἀφαιρῶν ἀπὸ τοῦ κβ , ὁσάκις δυνατόν , εἰς μονάδα καταλήξεις : διὰ τοῦτο πρῶτοι καὶ ἀσύνθετοι πρὸς ἀλλήλους εἰσὶ |
δον μέρος τῆς ἀποκαταστάσεως , ἐπὶ τὰς ἡμέρας Ϛ νγʹ κʹʹ , ἀποτελοῦνται μοῖραι β δʹ : ταῦτα προσέθηκα τῇ | ||
# λαʹ κʹʹ , κατὰ δὲ τὸ ἐλάχιστον # λεʹ κʹʹ , ἡ δὲ διάμετρος τοῦ κύκλου τῆς σκιᾶς κατὰ |
ἡ κωδύα ἐκτελεωθῇ καὶ τὰ ἄνθη περιρρυῇ . τῆς δὲ κωδύας τὸ μέγεθος ἡλίκον μήκωνος τῆς μεγίστης , καὶ διέζωσται | ||
καὶ συλλεάνας ἄλειφε , καὶ ὠῶν λεκίθοις χρῶ : ἢ κωδύας κόψας καὶ σήσας μετὰ χυλοῦ πολυγόνου , ἢ σέρεως |
καὶ γραμματικὴν καὶ τὰς συγγενεῖς καλοῦμεν τέχνας καὶ γὰρ οἱ ἀποτελούμενοι δι ' αὐτῶν τεχνῖται λέγονται μουσικοί τε καὶ γραμματικοί | ||
δοτῆρες γίνονται . καὶ οἱ μὲν διὰ τῶν παραιρέτων ἀστέρων ἀποτελούμενοι κλιμακτῆρες νόσων καὶ κινδύνων καὶ πένθους παραίτιοι χρηματίζουσιν , |
τὸ Δ , καὶ ἐπὶ τῆς ΑΔ γεγράφθω ἡμικύκλιον τὸ ΑΖΔ , καὶ ἤχθω τις εἰς τὸ ἡμικύκλιον παράλληλος τῇ | ||
, ΖΒ , ΖΕ . ἐπεὶ οὖν ἐλάττων ἡ ὑπὸ ΑΖΔ τῆς ὑπὸ ΒΖΕ γωνίας , ἔλαττον ἄρα τὸ ΑΔ |
τούς τε περιττοὺς καὶ τοὺς ἀρτιάκις ἀρτίους καὶ ποιήσομεν στίχους περισσαρτίων καὶ εὑρίσκομεν τὸ ζητούμενον : γ , ε , | ||
παραδείγματος : εἰ δοκεῖ μέν , ἅμα τοὺς στίχους τῶν περισσαρτίων ἐκθώμεθα : εὑρήσεις τοίνυν ἐπὶ τῶν στίχων κοινωνίαν πρὸς |
διαθέϲεων ἐλαίου θερμοῦ καταχύϲει παρηγορητέον . Ὅτι οἱ τῶν αἰγῶν ϲπύραθοι μετ ' ὄξουϲ καταπλαττόμενοι ἰδίωϲ ἰϲχιαδικοῖϲ ἁρμόζουϲιν . Αἰγῶν | ||
μετ ' ὄξουϲ καταπλαττόμενοι ἰδίωϲ ἰϲχιαδικοῖϲ ἁρμόζουϲιν . Αἰγῶν δὲ ϲπύραθοι λεανθέντεϲ ἐν ὄξει τὴν τοῦ ϲιναπιϲμοῦ χρείαν παρέχουϲιν : |
ἐστιν , ὅταν εἰς τὸ ἥμισυ τοῦ ὕδατος ἑψηθῶσιν αἱ κωδύαι . καὶ διὰ τοῦ γλυκέος δὲ σιραίου τε Κρητικοῦ | ||
ὅλαι τακεραὶ γένωνται : καὶ οὕτως ἐκθλιβέσθωσαν καὶ ῥιπτέσθωσαν αἱ κωδύαι . τῷ δ ' ὕδατι μιγνύσθω μέλιτος ἥμισυ μέτρον |
ἀπὸ ΝΞ . καὶ εἰσὶν ἀμφότεραι ἄκρον καὶ μέσον λόγον τετμημέναι : διὰ τὸ ἐν ἀρχῇ τοίνυν ἐστὶν ὡς ἡ | ||
μὲν ἰϲχυροτέροιϲι αἱ ῥίζαι ἐϲ μέγεθοϲ ἄμηϲ ἢ ὀλίγον ἁδρότερον τετμημέναι : ξὺν χόνδρῳ τε πλυτῷ ἢ φακῷ ἡ δόϲιϲ |
τὸ ἀείζῳον λειοτριβήσας πρόσβαλε τὸν ἀφρὸν τοῦ νίτρου καὶ πάλιν συλλέαινε : τὰ δὲ τηκτὰ τήξας κατάχεε ἐν τῇ θυΐᾳ | ||
παραχέων τι τοῦ ἐλαίου , ἐπίβαλλε καὶ τὰς λεκίθους καὶ συλλέαινε . τὸ δὲ στέαρ ἐξυμενίσας καὶ κόψας ἐν θυίᾳ |
τετράκις δεκαέξ . Οἷον δύναμις ὁ δ τετράγωνος . . δυναμόκυβος . Οἷον δύναμις ὁ δ καὶ κύβος ὁ η | ||
αὐτῷ πλευρᾶς γεγονότος πολλαπλασιάσῃς , γενήσεται ὁ λβ ὅστις ἐστι δυναμόκυβος . . κυβοκύβων . Δυναμόκυβός ἐστιν ὁ λβ ἐπειδὴ |
τετραγώνων , οἵ εἰσιν ἐξ ἀριθμοῦ τινος ἐφ ' ἑαυτὸν πολυπλασιασθέντος : οὗτος δὲ ὁ ἀριθμὸς καλεῖται πλευρὰ τοῦ τετραγώνου | ||
δὲ κύβος ηὐξημένος ὢν ἐξ ἑκάστου τετραγώνου τῇ ἰδίᾳ πλευρᾷ πολυπλασιασθέντος ἐπίπεδα μὲν ἕξει πάντως ἕξ , ὧν ἕκαστον ἶσον |
ἀπὸ τῶν ἴσων γωνιῶν ἐπὶ τὰς βάσεις κάθετοι εὐθεῖαι γραμμαὶ ἀχθῶσιν , ᾖ δέ , ὡς ἡ τοῦ πρώτου τριγώνου | ||
τομῶν β σημεῖα ληφθῇ , καὶ ἀφ ' ἑκατέρου παράλληλοι ἀχθῶσιν , ὁμοίως ἴσα ἔσται τὰ γινόμενα ὑπ ' αὐτῶν |
νῆσον τὴν Στυρέων , καλεομένην δὲ Αἰγιλίην , τοῦτο δὲ καταγομένας ἐς τὸν Μαραθῶνα τὰς νέας ὅρμιζε οὗτος , ἐκβάντας | ||
τῆς ΕΖΗΘ τομῆς : πάσας γὰρ τὰς παρὰ τὴν ΚΛ καταγομένας ἐπ ' αὐτὴν δίχα τέμνει , ὥσπερ τὴν ΖΘ |
ἐκείνῳ ὑπεράνω ὄντι ἀφώτιστος ἂν εἴη τῷ ἑτέρῳ ἡμισφαιρίῳ , λείπουσα δὲ ἡμῖν ἐκείνῳ πλησίφως : ὥστε τὰ ἐναντία ποιεῖν | ||
τῆς ΜΛ . τῆς ἄρα ὑπὸ ΜΚΛ γωνίας δοθείσης ἡ λείπουσα εἰς τὰς δύο ὀρθὰς ἡ κλίσις ἔσται τῶν ἐπιπέδων |
' ἔστιν γο ηʹ , κοτύλης τὸ δίμοιρον , μύρου μαλαβαθρίνου λι αʹ . κόψας τὰ ξηρὰ καὶ ἀραιοτέρῳ κοσκίνῳ | ||
κηροῦ ἀνὰ λίτρ . α . μέλιτος ἀττικοῦ γοε . μαλαβαθρίνου καὶ ναρδίνου μύρου ἀνὰ γοδ . στέατος χηνείου γογ |
ἐπειδὴ διὰ τοῦ λόγου τῶν μέσων κινήσεων ἐπιβάλλουσιν περιοδικοῦ μήκους μοῖραι κ νη κα , ταύταις μὲν ἀντὶ τῶν κα | ||
καὶ τὰς τοῦ ὡροσκόπου μοίρας ια . ὁμοῦ αἱ πᾶσαι μοῖραι τμα : ἀπολύσομεν ἀπὸ τοῦ Λέοντος , κατέληξεν ἐν |
. Ὁ δὲ πῆχυς ἔχει εὐθυμετρικοὺς δακτύλους κδʹ , ἐμβαδομετρικοὺς φοϚʹ , στερεοὺς δὲ α͵γωκδʹ . Ὁ ποὺς ὁ Πτολομαϊκὸς | ||
͵δρ : τοιούτου καὶ ἔστι τετράγωνος πλευρὰν ἔχων τὰ σι φοϚʹ . Προσλήψει δὲ τῶν τκδ φοϚʹ ἀναλυθέντων εἰς ὀκτωκαίδεκα |
δυάδες τρεῖς , δικώλους ἔχουσαι τὰς περιόδους , ἐξ ἰάμβου τριμέτρου ἀκαταλήκτου ἐκκειμένου καὶ κώλων διαφόρων . τῆς μὲν οὖν | ||
ἢ τετράδα , ἧς αἱ μὲν ὅμοιαι περίοδοι ἐξ ἰαμβικοῦ τριμέτρου ἀκαταλήκτου ἐν ἐκθέσει καὶ ἰωνικοῦ ἡμιολίου ἐν εἰσθέσει : |
μὲν τῷ Β διαστήματι δὲ τῷ ΒΓ κύκλος γεγράφθω ὁ ΓΗΘ , καὶ πάλιν κέντρῳ τῷ Δ καὶ διαστήματι τῷ | ||
Ἐπεὶ οὖν τὸ Β σημεῖον κέν - τρον ἐστὶ τοῦ ΓΗΘ κύκλου , ἴση ἐστὶν ἡ ΒΓ τῇ ΒΗ . |
τοῦ μέσου ἐκκέντρου ὑποτείνουσι μὴ δεδομένας , ἐὰν δ ' ἐπιζεύξωμεν τὰς ΝΣΕ καὶ ΝΤΖ καὶ ΝΗΥ , πάλιν τὰς | ||
Κ . Φανερὸν οὖν , ὅτι . , ] ἐὰν ἐπιζεύξωμεν ἀπὸ τοῦ Θ ἐπὶ τὸ Γ καὶ ἐπὶ τὸ |
ἀπὸ τοῦ τῆς συμβολῆς τῶν περιφερειῶν σημείου ἐπὶ τὰ κέντρα ἐπιζεῦξαι εὐθείας περιεχούσας τὴν λείπουσαν εἰς τὰς δύο ὀρθὰς τῆς | ||
Θ , καθ ' ὃ τέμνει τὴν τετραγωνίζουσαν , καὶ ἐπιζεῦξαι τὴν ΘΗ , καὶ δίχα τεμόντα τὴν ΑΒ καὶ |
τοῦ ἄνθους τοῦ κρόκου , ὥστε ἐκεῖθεν δεῖ συλλογίζεσθαι περὶ ὑποξάνθου χρώματος . Τό γε μὴν ἀκριβῶς ξανθὸν κατὰ μηδέν | ||
εὐκράτως ἐχουσῶν οὖρα ἐνδέοντα πολλῷ φαίνεται τοῦθ ' ὑποπύρρου καὶ ὑποξάνθου πρὸς τὸ λευκὸν ἰόντα : ὑπόλεπτοί τε τούτοις αἱ |
ὑπὸ ΖΗΘ , ἐκτὸς τοῦ Η , ὡς ἔχουσιν αἱ καταγραφαί . ἐπεὶ οὖν τὸ δὶς ὑπὸ ΡΗΘ ἢ ΡΗΖ | ||
͵Ϛχκʹ καὶ ὁ τῶν Μιγ ͵εσμʹ : ὡς ἔχουσιν αἱ καταγραφαί . Ἐπὶ δὲ τῶν ἀπύκνων γενῶν ἀκολούθου τοῖς προδιωρισμένοις |
: αἱ δέ γε παρ ' ἡμῶν ῥηθεῖσαι πᾶσαι ὧραι ἰσημεριναί εἰσιν . Ὑπόδειγμα τῆς τοιαύτης χρήσεως . κατήντησεν ἔτος | ||
ἀπὸ τοῦ μεσημβρινοῦ Ἰχθύων ἀρχῆς . καὶ ἐπεὶ ζ ὧραι ἰσημεριναί εἰσιν κατὰ τὸ διὰ Ῥόδου κλίμα , χωρὶς τοῦ |
ρϘβ Κενταύριον τὸ μέγα ρϘγ Κενταύριον τὸ μικρόν ρϘδ Κέραϲοϲ ρϘε Κερατωνία ρϘϚ Κέϲτρον ρϘζ Κηκίϲ ρϘη Κηρόϲ ρϘθ Κιβώριον | ||
: καὶ ἐκτίθεμαι δύο ἀριθμοὺς ὧν τὸ ὑπό ἐστι Μο ρϘε , καί εἰσι ιε καὶ ιγ : καὶ τῆς |
! ! ! ? κωλύϲων δίκην ? ? [ ] ηθ ' ! ! ! ! ! εὐτόνωι φλεβί ? | ||
ὁμοίως ἐκπίπτουσα : ἐπεὶ γὰρ μείζων ἡ κλ διάμετρος τῆς ηθ , αἱ κμ λν ἀκτῖνες ἐπ ' ἄπειρον ἐκπίπτουσαι |
γωνίας τῆς ὑπὸ ΔΗΖ τῆς οὔσης ἴσης τῇ ὑπὸ ΔΖΗ διῆχθαι τὴν ΕΗ εὐθεῖαν , ὑφ ' ἧς ἡ ὑπὸ | ||
φασί , πόλεών τε γὰρ εὖ ἔχειν καὶ νομῶν καὶ διῆχθαι τὸν ποταμὸν ἐς τὰ ἄστη πάντα , γεωργίας τε |
τυχόντες , ἀλλ ' οἱ ἐπιδιμερεῖς , ἐκ δὲ τῶν ἐπιτρίτων οἱ ἐπιτριμερεῖς , ἐκ δὲ τῶν ἐπιτετάρτων οἱ ἐπιτετραμερεῖς | ||
ἐξ ἀμφιμάκρου καὶ δισπονδείου : τὸ ζʹ δίμετρον ἐκ βʹ ἐπιτρίτων δευτέρων : τὸ ηʹ δίμετρον ἐξ ἀμφιμάκρου , παλιμβακχείου |
θερινῆς τροπῆς τὰς πβ ∠ ʹ μοίρας : ἐν τοῖς ιβ ἔτεσιν ἄρα τοῖς μεταξὺ τῶν δύο τηρήσεων Ϛʹ ἔγγιστα | ||
ΑΘ ἔσται νθ μδ , ἡ δὲ ΕΘ ὁμοίως ν ιβ . τῶν δ ' αὐτῶν ἐδέδεικτο καὶ ἡ ΕΒ |
ΖΔ κατὰ τὸ Θ , αἱ δὲ ΓΔ , ΒΑ ἐκβαλλόμεναι κατὰ τὸ Κ , καὶ ἐπεζεύχθω ἡ ΕΘ . | ||
αἱ ὑπὸ ΚΕΖ , ΕΖΚ ἐλάττονές εἰσι δύο ὀρθῶν , ἐκβαλλόμεναι ἄρα συμπεσοῦνται αἱ ΜΚ , ΛΚ . διὰ τὰ |
καὶ σξδ , παράκειται # λα μη : καὶ ταῖς ρβ καὶ σνη # λδ νδ : ὧν ὑπεροχὴ πρὸς | ||
τὰς ιζ ἐπὶ τὰς ἓξ ὥρας , καὶ γίνονται χρόνοι ρβ . πάλιν οὖν δεῖ λαμβάνειν αὐτῆς τῆς ἑπομένης τὴν |
, οὐ μὴν ὅπερ τὸ ἀγαθὸν ἁπλῶς , ὥσπερ αἱ μονάδες ἢ ἑνάδες αἱ ἀπὸ τῆς πρωτίστης αἰτίας προελθοῦσαι : | ||
ἡμῖν ἐν τρισὶν ὅροις ἶσοί τινες ἀριθμοί , πρῶτον μὲν μονάδες , εἶτα δυάδες ἐν ἄλλοις τρισίν , εἶτα τριάδες |
, οὐ μὴν τὴν προσγινομένην κλίσιν ἔξωθεν ἐπιδέχονται , καθὸ προθέσεις οὖσαι οὐκ ὀφείλουσι πρὸ ἑαυτῶν τι ἔχειν . . | ||
. Ὡς μὲν οὖν καὶ κατά τινας ἄλλας παραθέσεις αἱ προθέσεις συνδεσμικῆς συντάξεως γίνονται παρεμφατικαί , λέλεκται ἡμῖν . ἐξ |
ῥάχεως καὶ ὁ τῆς κεφαλῆς . περὶ δὲ τὰς τέσσαρας ἐννεάδας ὁρᾶται πρῶτον διακεκριμένον ὅλον τὸ σῶμα ἢ τὸ τελευταῖον | ||
καὶ μετὰ τὸ ψηφίσαι τὸν τῶν ἑκατέρων συναγόμενον ἀριθμὸν ὕφειλον ἐννεάδας , ὅσας ἐνδέχεται ὑφαιρεθῆναι παρ ' ἰδίᾳ ἑκάστου , |
τὰ αὐτὰ τοῖς τότε γεννωμένοις ἀποτελεῖ διὰ τὰς στιγμιαίας καὶ ὡριαίας παρεγκλίσεις . Πολλὴν οὖν διαφορὰν προσθέσεως ἢ ἀφαιρέσεως ἐτῶν | ||
ἄρα , ἐπειδήπερ πρὸς τὸν δι ' αὐτῆς μεσημβρινὸν τὰς ὡριαίας ἐποχὰς συνιστάμεθα , προηγεῖται δὲ ὁ δι ' αὐτῆς |
ΑΒΘ τρίγωνον τῷ ΔΕΖ τριγώνῳ ἴσον ἐστίν , καὶ αἱ λοιπαὶ γωνίαι ταῖς λοιπαῖς γωνίαις ἴσαι ἔσονται , ὑφ ' | ||
, ἀνακήρυξις , ἀνάρρησις , ἀναγγελία καὶ μὴν καὶ αἱ λοιπαὶ τιμαί , δωρεαί , γέρα , προτιμήσεις , χάριτες |
κζ πολλαπλασιαζέτω τὸν κζ : εἰκοσιεπτάκις κζ : καὶ γίνονται ψκθ . καὶ ἐπεὶ ὁ ιη οὐ μετρεῖ τὸν ψκθ | ||
μετρεῖται . τκδ τξδ τπδ υλβ υπϚ φιβ φοϚ χμη ψκθ ψξη ωξδ Ϡοβ ͵ακδ ͵αρνβ ͵ασϘϚ # ⌉ # |
λβ καὶ τοῦτο δι ' ὅλου : ἐν δὲ περισσαῖς ἐκθέσεσιν ἶσον τὸ ἅπαξ ξδ τῷ δὶς λβ καὶ τοῦτο | ||
διὰ τετάρτης ἀπαντᾶν ἡμέρας , ὡς ἐν ταῖς αὐτῶν ἀνάλογον ἐκθέσεσιν εἰς τὰς τετάρτας πάντως οἱ κύβοι ἀποτελοῦνται χώρας : |
ἄδηκτα ρη Κολλύρια διὰ λιβάνου πρὸϲ τὰ κοινὰ ἕλκη ρθ Κολλύριον τὸ Κλέωνοϲ ρι Κολλύρια διάρροδα λευκὰ καὶ χλωρὰ καὶ | ||
τραχωματικὰ καὶ ϲμηκτικά ριε Κολλύρια ἔνϲτακτα καλούμενα πρὸϲ ἀμβλυωπίαϲ ριϚ Κολλύριον τὸ διὰ κέρατοϲ ριζ Κολλύρια νάρδινα καὶ Θεοδότια Περὶ |
. . . . . . . . . . ξδ ∠ ʹ μα . Ὑπὸ δὲ τὰ εἰρημένα ἔθνη | ||
ἀντιπερίστασιν κἀνταῦθα τὰς λβ ἐπὶ τὰς β , καὶ γίνονται ξδ : καὶ πάλιν τὰς ιϚ ἐπὶ τὰς δ . |
' ὃ συμβάλλουσιν ἀλλήλαις , ἐπὶ τὰ κέντρα ἐπιζευγνύμεναι ὁμοίως περιέξουσι τὴν λείπουσαν εἰς τὰς δύο ὀρθὰς τῆς κλίσεως τῶν | ||
αἱ ἀπὸ τῆς κοινῆς τομῆς ἐπὶ τὰ κέντρα ἐπιζευγνύμεναι εὐθεῖαι περιέξουσι τὴν λείπουσαν εἰς τὰς δύο ὀρθὰς τῆς ἐπιζητουμένης κλίσεως |
τρεῖς εὐθείας τὰς ΒΝ , ΒΓ , ΒΖ δύο εὐθεῖαι διηγμέναι εἰσὶν αἱ ΔΕ , ΔΝ , ἔστιν , ὡς | ||
δοθεῖσα τῇ θέσει καὶ τῷ μεγέθει ἡ ΓΠ , καὶ διηγμέναι αἱ ΠΖΚ ΓΖΘ , ὥστε παράλληλον εἶναι τῇ ΓΠ |
τινὸς κύκλου τοῦ ΑΔ περιφερείας τὰς ΑΕ , ΕΔ ἴσας ἀφαιρείτωσαν πρὸς τὸν μέγιστον τῶν παραλλήλων τὸν ΖΕΗ , καὶ | ||
, ὦ θεοί , ἢ ἀκροάσασθαι ἐπικύψαντας αὐτῶν ; ὥστε ἀφαιρείτωσαν αἱ Ὧραι τὸν μοχλὸν ἤδη καὶ ἀπάγουσαι τὰ νέφη |
ἐκείνοις ἀσφαλέως θήσει , ψυχὴν δ ' εἴωθε ταράσσειν . Τοξευτὴς χειμῶνα φόβους τ ' ἐπισύρεται ἄλλους . εὔπλοος Αἰγόκερως | ||
ἐκείνοις ἀσφαλέως θήσει , ψυχὴν δ ' εἴωθε ταράσσειν . Τοξευτὴς χειμῶνα φόβους τ ' ἐπισύρεται ἄλλους . εὔπλοος Αἰγόκερως |
ο κϚ πθ ζ Ἡλίου η κϚ Ϛ ιε ζ ιϚ νϚ ο κη ϘϚ Ϛ ι λβ ε η | ||
. . . . . . . . . Ζυγοῦ ιϚ ∠ ʹ γʹ νο λγ εʹ ὁ ἐπὶ τῆς |
καὶ ἡ μὲν ΛΕ γίνεται δ κβ , ἡ δὲ ΔΕΛ ὅλη τῶν αὐτῶν κβ ἔγγιστα , τοσαύτας ἀποστῆναι δεῖ | ||
τξ , τοιούτων σμ , εἴη ἂν καὶ ἡ ὑπὸ ΔΕΛ τῶν λοιπῶν εἰς τὰς δύο ὀρθὰς ρκ . ὥστε |
ἐστὶ τοῦ τοιούτου μέρους τοῦ ἐξ ἀρχῆς ἀριθμοῦ . . Ἀφῃρήσθω κοινὴ λεῖψις τὰ κ . Ϟοὶ ἄρα τρεῖς λείψει | ||
ὅτι μεῖζόν ἐστιν τὸ ὑπὸ ΔΒΓ τοῦ Ε χωρίου . Ἀφῃρήσθω γὰρ τὸ δοθὲν χωρίον τὸ ὑπὸ ΑΒΗ : λοιποῦ |
. Λοιπὸν δὲ ἐροῦμεν τῶν καθ ' ἡμᾶς νήσων τὰς περιμέτρους , λαβόντες παρὰ Ἀρτεμιδώρου καὶ Μενίππου καὶ ἑτέρων ἀξιοπίστων | ||
: οἱ μὲν γὰρ πρὸ αὐτοῦ τετράγωνοι πλείονας ἔχουσι τὰς περιμέτρους τῶν ἐμβαδῶν , οἱ δὲ μετ ' αὐτὸν ἀντικειμένως |
ὅμοια . καὶ πυραμὶς ἄρα , ἧς βάσις μὲν τὸ ΒΚΤ τρίγωνον , κορυφὴ δὲ τὸ Λ σημεῖον , ὁμοία | ||
πρὸς τὴν ΜΟ , καὶ περὶ ἴσας γωνίας τὰς ὑπὸ ΒΚΤ , ΖΜΟ , ἐπειδήπερ , ὃ μέρος ἐστὶν ἡ |
τούτων τῶν ἡμικυκλίων συναναφοραὶ διοίσουσιν τῶν μὲν ὁμαλῶς θεωρουμένων χρόνων ρπ τοῖς διαφόροις τῆς μεγίστης ἢ ἐλαχίστης ἡμέρας παρὰ τὴν | ||
σελήνης ἀριθμοῦ ἀφελοῦμεν τοῦ τοῦ ἐπικύκλου , ὑπὲρ δὲ τὰς ρπ προσθήσομεν αὐτῷ , καὶ ἀπὸ τοῦ οὕτω διακριθέντος τοῦ |
εἰ γὰρ μὴ σῶμα , πῶς ἐν τοῖς ἐνόπτροις αἱ ἀνακλάσεις γίνονται ; τοῦτο δὲ κἀν τοῖς περὶ ὄψεως ἀπορηθήσεται | ||
τὰς αἰσθήσεις ὀργάνων . ἔτι δὲ εἰδέναι δεῖ ὅτι αἱ ἀνακλάσεις αὗται καὶ διακλάσεις τῆς ὄψεως οὐκ ἀτάκτως ἐπιτελοῦνται . |