τὸ διὰ στρουθίου καλούμενον , ὧν καὶ τὰς γραφὰς ὑμῖν ὑπέταξα πρὸς τὸ μὴ δεῖσθαι ζητεῖν αὐτὰς ἐξ ἑτέρων εὑρίσκειν | ||
τὸ τὰς εἰσόδους αἰνιγματώδεις ἐσχηκέναι δοκιμάσας καὶ ἀνευρὼν καὶ συγκομίσας ὑπέταξα , ὅπως οἱ φιλόκαλοι διὰ πολλῶν εἰς μίαν δύναμιν |
. ἔτι προμήκης ἐστὶν ὁ κατὰ πάσας τὰς σχέσεις τῶν πολλαπλασιασμῶν πλέον ἢ μονάδι μείζονα τὴν ἑτέραν ἔχων πλευράν : | ||
σημεῖον Ψ ἐλλιπὲς κάτω νεῦον , # . Καὶ τῶν πολλαπλασιασμῶν σοι σαφηνισθέντων , φανεροί εἰσιν οἱ μερισμοὶ τῶν προκειμένων |
κατὰ τὸ διατονικὸν γένος συναναπληρώσας φθόγγοις ἀναλόγοις , οὕτως τὴν ὀκτάχορδον ἀριθμοῖς συμφώνοις ὑπέταξε , διπλασίῳ , ἡμιολίῳ , ἐπιτρίτῳ | ||
πρὸς τὰς ἁρμονίας κέχρηνται . ἐνίοτε μὲν οὖν αὗται τέλειον ὀκτάχορδον ἐπλήρουν , ἔσθ ' ὅπη δὲ καὶ μεῖζον ἑξατόνου |
μεταξὺ τῶν Ρ Θ , πάντες δὲ οἱ μείζους τοῦ πενταπλασίου ποιοῦσι τὸ σημεῖον τῆς τομῆς μεταξὺ τῶν Ρ Τ | ||
τοῦ εἰκοσαέδρου καθέτου τὸ δυνάμει δωδεκαπλάσιον μεῖζόν ἐστιν τοῦ δυνάμει πενταπλασίου τῆς πλευρᾶς τοῦ εἰκοσαέδρου . Ἐκκείσθω κύκλος ὁ ΑΒΓ |
μέρη τί βούλεται ἐνδείκνυσθαι ; Ῥητέον οὖν ὡς ὅτι τὴν δωδεκάδα ταύτην διεῖλε διχῇ , εἴς τε μονάδα καὶ ἑνδεκάδα | ||
Ζεὺς δὲ τὴν δεκάδα καὶ ἑνδεκάδα , καὶ Ἀφροδίτη τὴν δωδεκάδα . ἄγει δὲ τὸ θέμα ἔτος λαʹ : εὑρίσκονται |
οὐ μόνον τοῦτο , ἀλλὰ καὶ ἣν προέθετο διάνοιαν τῶν στίχων ἀποδοῦναι μηδὲ ταύτην σαφῶς , ἀλλ ' ἀσυνέτως ἐξενηνοχέναι | ||
οἱ πρὸς τῷ ἀπογείῳ στίχοι μείζονας ἔχουσιν τὰς ὑπεροχὰς τῶν στίχων τῶν περὶ τοὺς μέσους δρόμους καὶ κατὰ μοίρας Ϛ |
καρποῦ τὸ κατὰ τὸν μέγαν δάκτυλον . ὑπὸ τούτων τῶν τριῶν καρπὸς ἐκτείνεται , κατὰ μὲν τὸν μικρὸν δάκτυλον ἐγκλινομένης | ||
τι πρὸς ἀντιστρέφοντα οὐ λέγονται , καὶ ἰδοὺ ὡς ἐπὶ τριῶν ὑποθέσεων γυμνάζει τὸν λόγον , ἐπὶ κεφαλῆς καὶ ζῴου |
οἱ προστιθέντες ἐνταῦθα τὸ Ἐτεόκλεις ἀρχηγέτα ἀμαθεῖς εἰσι καὶ τῶν μέτρων καὶ τῆς ὀρθῆς τοῦ λόγου συντάξεως : τὸ γὰρ | ||
. Εἰ δὲ βούλοιο καὶ τὸν ϲταθμὸν τῶν ὑγρῶν εἰδέναι μέτρων , πάμπολλοι μὲν αἱ τῶν ὑγρῶν οὐϲιῶν εἰϲιν κατὰ |
ἡμερῶν κβʹ δύο τρίτων , ταύτας ἐπὶ τὸν ζʹ ἥμισυ πολυπλασιάσωμεν : εὑρήσομεν ροʹ : τοσαύτας Ἀφροδίτη ἕξει ἐκ τῶν | ||
πρὸς τέταρτον τὸ Γ . ἐὰν ἄρα τὸ ὑπὸ μέσων πολυπλασιάσωμεν , τουτέστι τὸν δέκα καὶ πέντε , καὶ παραβάλωμεν |
γυμνῷ φυλακὴν ἐπίταττε , καὶ διὰ τριῶν ποτηρίων με ματτύης εὐφραινέτω . καὶ ἐν Ἀνδροφόνῳ : πιεῖν τις ἡμῖν ἐγχεάτω | ||
φίλος καὶ οἷς ἐρεῖ περὶ τῶν ἐσομένων πρὸ τῶν ἔργων εὐφραινέτω . δύναμαι δέ σε καὶ αὐτὸς εὐφραίνειν τοῖς εἰρημένοις |
καὶ Σελήνη ἑξάδα , ἡ δὲ ἑβδομὰς κοινὴ πάντων , ὀγδοάδα δὲ Ἀφροδίτη , ἐννεάδα δὲ καὶ δεκάδα ἥλιος Ἄρης | ||
. Κρόνος δὲ καὶ Ζεὺς ἀνὰ μοίρας ἐννέα , Τὴν ὀγδοάδα δ ' ἔσχε τῶν μοιρῶν Ἄρης Ἔμπροσθεν καὶ ὄπισθεν |
δὲ καὶ πρεσβυτέρους ἄνδρας ἓξ ἀπὸ φυλῆς ἑκάστης , οὓς πεπόμφαμεν ἔχοντας τὸν νόμον . ἔσται δὲ τῆς σῆς εὐσεβείας | ||
ἀλλ ' , οἶμαι , πρόφασιν ἥρπασας εἰς ῥᾳθυμίαν . πεπόμφαμεν δὲ ὑμῖν ὧν ἡμῖν τὸ ὄρος τρέφει . σὺ |
δὴ Μο α : καὶ γίνεται τὸ σύνθεμα τῶν τριῶν κύβων ΔΥ θ Μο κη # ʂ κζ : ταῦτα | ||
ὑπάρχουσα οὐδ ' ἐπίδοσιν αὐξήσεως ἀπέλιπεν , ἀλλὰ καὶ δύο κύβων ἅμα σύνθεσις , τοῦ αʹ καὶ τοῦ ηʹ , |
οὐγγίαϲ αʹ ἡμιϲείαϲ . Ἡ μνᾶ πρὸϲ τὸ Ἰταλικὸν ἔχει δραχμὰϲ ρμδʹ , πρὸϲ δὲ τὸ Ἀττικὸν δραχμὰϲ ρκβʹ : | ||
παρ ' ἔμοιγ ' ὤν . ἀλλὰ διὰ τὰϲ τέτταραϲ δραχμὰϲ ἀποβαλῶ , φηϲί , τὴν προαίρεϲιν ; καὶ τῶν |
ὁ μέσος ἥμισυς ἦν τῶν ἄκρων , εἰ περιτταὶ αἱ ἐκθέσεις , εἰ δὲ ἄρτιαι , οἱ μέσοι τοῖς ἄκροις | ||
ἐὰν μὲν γὰρ ἄρτιοι ὦσιν αἱ τοῦ προκεχειρισμένου ἀρτιάκις ἀρτίου ἐκθέσεις , πάντως τὸ ὑπὸ τῶν ἄκρων πρὸς ἄλληλα πολυπλασιαζομέ |
ῥητὴν ἔχουσι τὴν πλευράν , καί ἐστιν ἐπὶ τῶν ἀρτίων ἀριθμῶν δεικνύμενον οὕτως : λαμβάνει τὸ ἥμισυ τοῦ προκειμένου αὐτῷ | ||
τοῦ δευτέρου . † . Ἐὰν ἄρα ἀπὸ τῶν τριῶν ἀριθμῶν τὴν ὑπεροχὴν τῶν μονάδων κ καὶ ἀπὸ τοῦ δὶς |
Ἔννατον ἐπὶ τοῖς εἰρημένοις δεῖ ζητῆσαι κεφάλαιον , ἐκ πόσων κανόνων δεῖ θηρᾶν τὸν ἑκάστου διαλόγου σκοπόν . χρεία γάρ | ||
βάσεων , σκελῶν , διαπηγμάτων , ἀγκώνων , ἀξόνων , κανόνων , χελωνῶν , κοχλιῶν , τυμπάνων , τύλων , |
, ὂπ , ὠὸπ , ὂπ : Εἴσθεσις μέλους χοροῦ μονοστροφική : ἧς προτίθεται τὸ τοιοῦτον κῶλον δακτυλικὸν ὂν δίμετρον | ||
. Μίδᾳ αὐλητῇ Ἀκραγαντίνῳ . Ἡ δωδεκάτη ᾠδὴ καὶ τελευταία μονοστροφική ἐστιν ἐκ κώλων ιδʹ . τὸ αʹ περίοδος δωδεκάσημος |
κατασκευάζουσι τὸ προκείμενον οὕτω . λαμβάνουσιν ἡμιόλιον ἀριθμόν τινα τὸν ψξη πρὸς τὸν φιβ . καὶ ἀπὸ τούτου τοῦ φιβ | ||
͵γοβ καὶ τοῦ δʹ διαστάματος : ὑπερέχει γὰρ καὶ ὑπερέχεται ψξη . ὁ δ ' αὐτὸς μέσος τοῦ τε θʹ |
συνθέμενοι , διὰ τὴν ἐπιμιξίαν ταύτης ἔτυχον τῆς προσηγορίας . δυεῖν δ ' ἐθνῶν ἀλκίμων μιχθέντων καὶ χώρας ὑποκειμένης ἀγαθῆς | ||
δ ' ἀπ ' ἀργυροῦ πίνακος ἄγοντος μνᾶν τάριχος ἐνίοτε δυεῖν ὀβολῶν ἔσθοντας ἢ τριωβόλου καὶ κάππαριν χαλκῶν τριῶν ἐν |
ἴσοι χαμαί ” . ἕπεται δὲ τοῖς δυσὶ κώλοις στίχος τροχαϊκὸς ὅδε “ ἀντὶ ποίας αἰτίας ” καὶ ἐν εἰσθέσει | ||
κατὰ γὰρ μονοποδίαν μετρεῖται , ὡς εἴρηται : ὁ τρίτος τροχαϊκὸς τετράμετρος καταληκτικός : τὸ τέταρτον ἰαμβικὸν δίμετρον ἀκατάληκτον : |
ἀλεαίνοντα τὴν γαϲτέρα φάρμακα ποτά , ὁκόϲα διὰ ζιγγιβέριοϲ καὶ πεπέριοϲ καὶ ϲελίνου τοῦ καρποῦ τοῦ ἀγρίου τοῦ ἐν πέτραιϲ | ||
δυνάμιεϲ , κινάμωμον καὶ καϲίην , φύλλα τὰ μαλαβάθρου καὶ πεπέριοϲ καὶ ϲεϲέλιοϲ πάϲαϲ ἰδέαϲ . καὶ τί γὰρ οὐκ |
προβληθέντων . τοσαῦτα προδιαστείλαντες ἤδη λέγομεν . Πρῶτον δὴ ληπτέον πόσων στοχάζονται οἱ ἐν τοῖς διαλόγοις ἀγωνιζόμενοι καὶ διαφιλονεικοῦντες . | ||
τῆς τοῦ Ἑρμοῦ ἐποχῆς λαβὼν τὸ τῶν μοιρῶν διάστημα σκέπτου πόσων ζῳδίων ἐστὶν ὁ τῶν μοιρῶν ἀριθμός , καὶ εἰ |
θέαν καὶ τὴν γεῦσιν καὶ τὴν ὀσμήν , ὅθεν καὶ δυσδιάκριτόν ἐστι τῷ πίνοντι πότερον γάλα ἐστὶν ἢ οὔ . | ||
δ ' εἰσὶν αἱ θήλειαι τοῖς ἄρρεσι : διὸ καὶ δυσδιάκριτόν ἐστι τὸ τῶν μελεαγρίδων γένος . Τοσαῦτα καὶ ὁ |
ρβ ιβ καὶ τὸν τῶν σνζ μη , πάλιν τὴν αὐξομείωσιν αὐτῶν ποιησόμεθα τοῖς ἐπιβάλλουσι τῷ ιβʹ τῆς τότε σεληνιακῆς | ||
μὲν οὖν καθόλου τύπος τῆς προκειμένης ἐπισκέψεως τοιαύτην τινὰ τὴν αὐξομείωσιν ἔχει τῶν ἀξιωμάτων , τὰς δὲ μεταξὺ τούτων καταστάσεις |
ἀμώμου , ναρδοϲτάχυοϲ , κόϲτου , καρυοφύλλου , καϲϲίαϲ , καϲάμου ἀνὰ # γ , οἴνου τὸ ἀρκοῦν . γʹ | ||
: κατεψυγμένοιϲ δὲ τὰ δι ' ὀποβαλϲάμου , φύλλου , καϲάμου , πεπέρεωϲ : θώρακι δὲ ἐν μὲν αἵματοϲ ἀναγωγαῖϲ |
. Συντεθέντων γὰρ σὺν δύο καὶ ὑπὸ τοῦ λοιποῦ τρὶς πολλαπλασιασθέντων , ἀποτελεσθήσονται ρπ ζʹ , ρν ζʹ , ρκ | ||
τοῦ τε τρίτου ὄντος τελείου καὶ τοῦ τετάρτου ὄντος γονίμου πολλαπλασιασθέντων καὶ συγκερασθέντων ἀποκυίσκεται . Τῶν οὖν ἐν τοῖς δώδεκα |
τροχαϊκὰς συνθήκας καίτοι πλείονας ἐχούσας μακρὰς ἀνεπιτηδειοτέρας ἔφησεν εἶναι τῶν παιωνικῶν τῶν πολλὰς ἐχουσῶν βραχείας . φαμὲν οὖν ὅτι ἡ | ||
“ τί ταῦτα στρέφεις ” , καὶ ἔστιν ἐκ κώλων παιωνικῶν Ϛʹ ἐπιμεμιγμένων κρητικοῖς καὶ βακχείοις , ὧν τὸ αʹ |
δοθέντα κύβον πυραμίδα ἐγγράψαι . Ἔστω ὁ δοθεὶς κύβος ὁ ΑΒΓΔΕΖΗΘ , εἰς ὃν δεῖ πυραμίδα ἐγγράψαι . ἐπεζεύχθωσαν αἱ | ||
δοθέντα κύβον ὀκτάεδρον ἐγγράψαι . Ἔστω ὁ δοθεὶς κύβος ὁ ΑΒΓΔΕΖΗΘ , καὶ εἰλήφθω τὰ κέντρα τῶν ἐφεστώτων τετραγώνων τὰ |
τέσσαρα καὶ μέχρις οὗ βουλόμεθα , τρίγωνοι ἐφεξῆς ἀπὸ μονάδος ἀποτελεσθήσονται οἱ αʹ γʹ Ϛʹ ιʹ ιεʹ καʹ κηʹ λϚʹ | ||
καθ ' ἕκαστον ἐπινοήσομεν πέρατα , τριῶν δὲ ὄντων ἓξ ἀποτελεσθήσονται , δι ' ἣν αἰτίαν καὶ αἱ λεγόμεναι σωματικαὶ |
αὐτὸ τῷ οἴνῳ τοῦ μέλιτοϲ ποϲὸν ὅλον τὸν τοῦ οἴνου ϲταθμὸν καὶ προϲέτι τὸ γʹ αὐτοῦ . τοῦ δὲ ἐλαίου | ||
ἔχειν χοίνικαϲ μη , ξέϲταϲ ϘϚ . τούτων δὲ τὸν ϲταθμὸν εἰπεῖν οὐκ εὔκολον , ὅτι τῶν ξηρῶν οὐϲιῶν ἄπειρόϲ |
τῶν ὑγρῶν εἰδέναι μέτρων , πάμπολλοι μὲν αἱ τῶν ὑγρῶν οὐϲιῶν εἰϲι κατὰ τὴν ῥοπὴν διαφοραί , ὡϲ ἐπὶ παραδείγματοϲ | ||
ἄριϲτον γάλα ϲχεδὸν ἁπάντων ὅϲα προϲφερόμεθα , ϲυγκείμενον ἐξ ἐναντίων οὐϲιῶν τε καὶ δυνάμεων , ὑπακτικῆϲ τε καὶ ϲταλτικῆϲ , |
μέντοι ἐκ τῆς τῶν πρὸς τὰ φαινόμενα κανόνων πραγματείας τὰς μοιρικὰς κινήσεις ἐξετάζειν : αἱ γὰρ καθολικαὶ ὑποστάσεις καὶ χρονογραφίαι | ||
οὕτως ποιήσῃς , κρείσσων ἐνεργήσεις . ποιεῖ δὲ καὶ πρὸς μοιρικὰς ἀνεπιτυχίας , ἀπραξίας καὶ τὰ τοιαῦτα . Τῆς οὖν |
πεπέρεωϲ λευκοῦ ⋖ ε κιναμώμου ⋖ δ ναδροϲτάχυοϲ κρόκου ϲμύρνηϲ τρωγλοδυτικῆϲ πολίου ἀνὰ ⋖ δ . ἀναλάμβανε μέλιτι καὶ δίδου | ||
ἀριϲτολοχίαϲ ϲτρογγύληϲ πεπέρεωϲ λευκοῦ ἀνὰ ⋖ ε κιναμώμου ναρδοϲτάχυοϲ ϲμύρνηϲ τρωγλοδυτικῆϲ πολίου κρόκου ἀνὰ ⋖ δ : ἀναλάμβανε μέλιτι ἀπηφριϲμένῳ |
κεφαλὴν βλάπτει Περὶ τῶν τῆϲ γῆϲ διαφορῶν καὶ λίθων καὶ μεταλλικῶν καὶ τῆϲ ἀπὸ τῶν ζῴων ὠφελείαϲ , ἐκ τῶν | ||
λέγω καὶ βοτανῶν καὶ σπερμάτων : τὰ δὲ διὰ τῶν μεταλλικῶν ἢ μεταλλικοῖς ἀναλογούντων : τὰ δὲ διὰ χυλῶν καὶ |
τοῦ ἀρτιάκις ἀρτίου ἐποιοῦμεν : γίνεται τοίνυν δωδεκάκις ψξη , ͵θσιϚ : οὗτος τοίνυν ὁ ὑπὸ τῶν ἄκρων ἐστί , | ||
ϘϚ : πολλαπλασιαζόμεναι γὰρ αἱ κδ ἐπὶ τὰς τπδ ποιοῦσι ͵θσιϚ , ἀλλὰ καὶ ὁ ϘϚ ἐφ ' ἑαυτὸν πολλαπλασιασθεὶς |
μαστίχης . ἐπιβρέχειν δὲ διὰ τοῦ ἀψινθίου καὶ μηλίνου καὶ μαστιχίνου καὶ νάρδου . Καὶ εἰ ἐκκαίοιντο δὲ τὸν στόμαχον | ||
κρόκου καὶ οἰνάνθης καὶ μύρου τοῦ διὰ νάρδου στάχυος καὶ μαστιχίνου καὶ σχινίνου . τούτοις οὖν ἀμμωνιακὸν καὶ βδέλλιον οἵ |
. τὸ γὰρ μύϲτρον ἔχει ϲταθμὸν ϲταγίων τριῶν ἤτοι οὐγγίαν ἡμίϲειαν . ἐν ἄλλοιϲ δέ φαϲιν , ὅτι ὁ κύαθοϲ | ||
διαϲτήϲανταϲ ἡμέραϲ δ προϲάγειν τελείαν δραχμὴν καὶ μετέπειτα μίαν καὶ ἡμίϲειαν , εἶτα δύο καὶ τρεῖϲ , καὶ αὖθιϲ διαϲτήϲανταϲ |
: διὸ λίθῳ φησὶν αὐτὴν κλασθῆναι . Γ κυψέλην ] μόδιον . ξυνῆλθεν οὑργάτης Γ λεώς Γ : διὰ γὰρ | ||
τὸ ἀληθὲς εἶχεν , εἶπε : μυρίους ὀλύνθους ἔχει καὶ μόδιον ἕνα καὶ ὄλυνθον ἕνα . Μόψος δὲ συὸς ἐπὶ |
τεσσάρων , δι ' ὀξειᾶν δὲ τὴν διὰ πέντε , σύστημα δὲ ἀμφοτέρων συλλαβᾶς τε καὶ δι ' ὀξειᾶν ἡ | ||
πασῶν , ἀλλὰ πρὸς τὴν διεζευγμένην . τό τε πᾶν σύστημα οὔτε κατὰ διάτονον γένος ἁρμόζεται : οὔτε γὰρ τριημιτονιαῖον |
τὸν δέκα συνθῇς , μέσος εὑρεθήσεται ὁ εʹ κατὰ τὴν ἀριθμητικὴν ἀναλογίαν , οἷον θʹ καὶ αʹ , ηʹ καὶ | ||
εἰσὶν αἱ προηγούμεναι τῶν ἀναλογιῶν . πάλιν δὲ κατὰ τὴν ἀριθμητικὴν παράδοσιν λέγονται λόγοι τῶν ἀριθμῶν , ὡς καὶ ὁ |
εὖ ἀκρότητος . οἱ δὲ ἀποροῦντες πρὸς τὸ τὰς ἀρετὰς μεσότητας εἶναι καὶ λέγοντες , εἰ μήτε ἡ ὑπερβολὴ μήθ | ||
τούτων , τὸ μὲν συμπληροῦν τὰ διαστήματα καὶ παρεντάττειν τὰς μεσότητας , εἰ καὶ μηδεὶς ἐτύγχανε πεποιηκὼς πρότερον , ὑμῖν |
, καὶ τὴν ὑπὸ ΔΒΓ γωνίαν δίχα τεμόντες ἕξομεν τρίχα τετμημένην τὴν ὑπὸ ΑΒΓ γωνίαν . μʹ . Ἔστω δὲ | ||
τὸν οἶνον ἔνδοθεν , πρὸς δὲ τούτοις τὴν ὕλην τὴν τετμημένην πεπρακότα μετὰ τὴν ἀντίδοσιν , πλέον ἢ τριάκοντα μνῶν |
δυάδες τρεῖς , δικώλους ἔχουσαι τὰς περιόδους , ἐξ ἰάμβου τριμέτρου ἀκαταλήκτου ἐκκειμένου καὶ κώλων διαφόρων . τῆς μὲν οὖν | ||
ἢ τετράδα , ἧς αἱ μὲν ὅμοιαι περίοδοι ἐξ ἰαμβικοῦ τριμέτρου ἀκαταλήκτου ἐν ἐκθέσει καὶ ἰωνικοῦ ἡμιολίου ἐν εἰσθέσει : |
, ὡς ὁ ρκεʹ ἀπὸ πλευρᾶς πεντάδος ὢν καὶ ὁ σιϚʹ ἀπὸ πλευρᾶς ἑξάδος . κἂν ἐπὶ πλέον δὲ αὐξάνωνται | ||
καὶ Ἱππόβοτος καὶ Νεάνθης οἱ τὰ κατὰ τὸν ἄνδρα ἀναγράψαντες σιϚʹ ἔτεσι τὰς μετεμψυχώσεις τὰς αὐτῷ συμβεβηκυίας ἔφασαν γεγονέναι . |
ὑπὲρ δὲ τὰς περὶ Δρυοῦσαν ] καὶ τὰς περὶ τὸ Κάριον χώρας οὐθεὶς ἀμφεσβάτει : [ νῦν δὲ Σαμίους ἐλθεῖν | ||
ἱστοριογράφους τοὺς μαρτυροῦντας [ Σαμίοις ] , ὅτι μὲν τὸ Κάριον ἔλαχον , Μεταγένεα [ ] [ ] Πάριον , |
ὅρου πρὸς ὅρον : εἶτα τούτων ἀμφοτέρων σύστημα τοῦ τε ἡμιολίου καὶ τοῦ ἐπιτρίτου ὁ διὰ πασῶν ἐφεξῆς αὐτοῖς κείμενος | ||
ἀμφοτέρων ἅμα τὸν λόγον , σύστημα ὑπάρχων διπλασίου ἅμα καὶ ἡμιολίου , ὥσπερ τοῦ Ϛ πρὸς β , ὅρου πρὸς |
٩ τὸ ΓΔ ٢ ٤٧ ٣٣ ٢٤ ١٦ ἡ ΕΖ μονάδων τεσσάρων ἡ τὸ ΑΔ δυναμένη ٢ ٢١ ٥٥ ٤١ | ||
μονάδων τʹ καὶ τοῦ Β μονάδων γʹ καὶ τοῦ Γ μονάδων δʹ καὶ τοῦ Δ μονάδων εʹ : ὁ μὲν |
κατὰ συζυγίαν πολλαπλάσιός ἐστι κατὰ τὸν ἥμισυν τοῦ πλήθους τῶν ἐκκειμένων ὅρων . ἐπεὶ γὰρ ἡ τῶν αβ βγ ὑπεροχὴ | ||
γδ , τουτέστιν ὅσον ἐστὶ τὸ ἥμισυ τοῦ πλήθους τῶν ἐκκειμένων ὅρων : ὥστε ὁ αη δύο τῶν κατὰ συζυγίαν |
ὀλίγα παρὰ τῶν ἐπιφανεστάτων ἀνδρῶν . ποιητῶν μὲν οὖν Πίνδαρος ἀρκέσει παραληφθείς , συγγραφέων δὲ Θουκυδίδης : κράτιστοι γὰρ οὗτοι | ||
ἕως ἂν ἡ κάθαρσις ἱκανὴ γένηται . τὸ δὲ πλῆθος ἀρκέσει τῷ πίνοντι τοῦ ὀρροῦ # ε τὸ μέτριον . |
γε μὴν καὶ ἐπὶ τούτοις αἰτίας οὐ μοι νῦν καιρὸς ἐπιπλέκειν τῷ λόγῳ , ἄλλων τε εἰπόντων περὶ τούτου ὡς | ||
' ἂν τοῖς φιλίαν τηρεῖν βουλομένοις τὴν συνήθειαν εἰς δύναμιν ἐπιπλέκειν καὶ τὸ συνδιατρίβειν ἀλλήλοις πολλοῦ ἄξιον εἰς τὸν σύνδεσμον |
δεῖ γάρ με εἶναι ἀπαθῆ ὡς ἀνδριάντα , ἀλλὰ τὰς σχέσεις τηροῦντα τὰς φυσικὰς καὶ ἐπιθέτους ὡς εὐσεβῆ , ὡς | ||
εἶναι πολυώνυμα , ἐφ ' ὧν οὐ κατὰ τὰς διαφόρους σχέσεις τῆς μιᾶς φύσεως διάφορα κεῖται ὀνόματα , ἀλλ ' |
καρπὸν ἐπείγεται , τὸ δ ' ὄρυγμα αὐτὴν θραυσθεισῶν τῶν δοκίδων ὑπεδέξατο . τὴν δὲ πάρδαλιν τρόποις τε τοῖς προειρημένοις | ||
δέ τις στερεῶν ἑτερογενῶν εὐταξία ἐστὶ τῶν λεγομένων κύβων , δοκίδων , πλινθίδων , σφηνίσκων , σφαιρικῶν , παραλληλεπιπέδων , |
στοιχείων . ] Ἔχει δὲ τὰ ηʹ βιβλία τῶν Ἀπολλωνίου κωνικῶν θεωρήματα ἤτοι διαγράμματα υπζʹ , λήμματα δὲ [ ἤτοι | ||
' οὖν Ἀπολλώνιος οἷα περιέχει τὰ ὑπ ' αὐτοῦ γραφέντα κωνικῶν ηʹ βιβλία λέγει κεφαλαιώδη θεὶς προδήλωσιν ἐν τῷ προοιμίῳ |
μοι , τέκνον , ἔχων ἐν στήθεσι θυμόν , τοῖσιν ἐφαρμόζου , ⌊ τῶν κεν κατὰ δῆμον ἵκηαι ⌋ . | ||
τέκνον , ἔχων νόον , Ἀμφίλοχ ' ἥρως , τοῖσιν ἐφαρμόζου , τῶν κεν κατὰ δῆμον ἵκηαι . . Νεοττοῦ |
τὴν λυπέουσαν ἀπὸ τοῦ σώματος ἢ ἐν ἄλλῃ τινὶ τῶν περισσῶν ἡμερέων κατὰ τὸν πρότερον εἰρημένον λόγον : οὐ γὰρ | ||
πάλιν αἱ διαλύσεις . Ἔτι δὲ τῇ μονάδι τῶν ἐφεξῆς περισσῶν γνωμόνων περιτιθεμένων , ὁ γινόμενος ἀεὶ τετράγωνός ἐστι τῶν |
τῆς βαρυτάτης διατόνου . νοητέον γὰρ ἀπείρους τὸν ἀριθμὸν τὰς λιχανούς : οὗ γὰρ ἂν στήσῃς τὴν φωνὴν τοῦ ἀποδεδειγμένου | ||
τοὺς παραμέσους δακτύλους , ἀπὸ δὲ τῶν μικρῶν ἐπὶ τοὺς λιχανούς , εἶτα διὰ μέσου τῶν πρώτων δακτύλων ὑπὸ τῶν |
ἐναρίξατο : ἔσφαζεν . φῶτας : ἀνθρώπους . Βαλίους : ἰταλικούς . Μόθοισιν . τοῖς ἐν σταδίοις μόθοις . Οἰνείδης | ||
γλεύκους ἀμιναίας σταφυλῆς τοῦτ ' ἔστι στυφούσης λευκῆς ξε ρνʹ ἰταλικούς , ἑλενίου λι ιβʹ , ἀσπαλά - θου λι |
ῥήματι : πᾶσα γὰρ λέξις ῥηματικὴ ἢ ἁπλῆ ἐστι καὶ ἀσύνθετος ἤγουν μονόλεξος , ἢ σύνθετος καὶ δίλεξος , ἢ | ||
ἀλλ ' ἐπισωρεύσεις τὸν ἑξῆς , ἐὰν δὲ πρῶτος καὶ ἀσύνθετος , τῷ ἐσχάτῳ εἰς τὴν σύνθεσιν παραληφθέντι πολλαπλασιάσεις αὐτὸν |
τυχόντες , ἀλλ ' οἱ ἐπιδιμερεῖς , ἐκ δὲ τῶν ἐπιτρίτων οἱ ἐπιτριμερεῖς , ἐκ δὲ τῶν ἐπιτετάρτων οἱ ἐπιτετραμερεῖς | ||
ἐξ ἀμφιμάκρου καὶ δισπονδείου : τὸ ζʹ δίμετρον ἐκ βʹ ἐπιτρίτων δευτέρων : τὸ ηʹ δίμετρον ἐξ ἀμφιμάκρου , παλιμβακχείου |
τοῖς δεομένοις , ᾧ μὲν πέντε δραχμάς , ᾧ δὲ μνᾶν , ᾧ δὲ ἡμιτάλαντον : εἰ δέ τις φιλόσοφος | ||
ὁ δὲ Ῥουτίλιος παρὰ τῶν ἁλιευόντων αὑτοῦ δούλων τριωβόλου τὴν μνᾶν τοῦ ὄψου καὶ μάλιστα τοῦ θυριανοῦ καλουμένου : μέρος |
γιγνόμενος ποιεῖ τὸν ἡμιόλιον λόγον , ἐξ ὧν ἀμφοτέρων ὁ διπλάσιος σύγκειται λόγος , τοῦ δʹ φμηὶ πρὸς τὸν βʹ | ||
τῆς Α τετραγώνου πρὸς τὸ ἀπὸ τῆς Β τετράγωνον ἤτοι διπλάσιος ἤτοι δὶς δίς , ὅπερ ἐδήλωσεν εἰπών : τὰ |
, Τρόμης Τρόμητος . Εἰς ης εἶπε διὰ τὰς ἄλλας καταλήξεις , οἷον διὰ τὸ Θόας : ἰδοὺ γὰρ τοῦτο | ||
ἀφαιρῶν ἀπὸ τοῦ κβ , ὁσάκις δυνατόν , εἰς μονάδα καταλήξεις : διὰ τοῦτο πρῶτοι καὶ ἀσύνθετοι πρὸς ἀλλήλους εἰσὶ |
χοροῦ προῳδικὴ , διὰ τὸ προτίθεσθαι τῆς κορωνίδος , ἐκ κώλων τροχαϊκῶν ἐπιμεμιγμένων χορείοις καὶ ἰάμβοις ηʹ . ὧν τὰ | ||
] λέγω . Αὐλίδος ] τῆς Εὐρίπου . στροφὴ ἑτέρα κώλων ιβʹ . μολοῦσαι ] ἐρχόμεναι . κακόσχολοι ] ἐπὶ |
τούς τε περιττοὺς καὶ τοὺς ἀρτιάκις ἀρτίους καὶ ποιήσομεν στίχους περισσαρτίων καὶ εὑρίσκομεν τὸ ζητούμενον : γ , ε , | ||
παραδείγματος : εἰ δοκεῖ μέν , ἅμα τοὺς στίχους τῶν περισσαρτίων ἐκθώμεθα : εὑρήσεις τοίνυν ἐπὶ τῶν στίχων κοινωνίαν πρὸς |
δὲ τοιαύτη τῶν ἐνεργειῶν ποικιλία καὶ τῶν πολλῶν ὑλικῶν δυνάμεων σύνθεσις οὐχ ὅπως θείας δημιουργίας τῷ παντὶ κεχώρισται , ἀλλὰ | ||
καὶ ἐπὶ τοῦ ἀριθμοῦ ἕξει , εἴπερ ἐστὶν ὁ ἀριθμὸς σύνθεσις μονάδων , ὥσπερ λέγουσί τινες : οὕτως γὰρ ἔσται |
ἀκαύστους , οὐγγίας ιηʹ , καὶ μαγνησίαν , ἤγουν κεκαυμένους κροκοὺς , Ϛγ δʹ κο κʹ : καὶ ζύγιν , | ||
ἀκαύστους , οὐγγίας ιηʹ , καὶ μαγνησίαν , ἤγουν κεκαυμένους κροκοὺς , Ϛγ δʹ κο κʹ : καὶ ζύγιν , |
Ἐπιφανίου . Τῶν μὲν ἄλλων διαφέρουσιν οἱ συνεζευγμένοι , τῶν ἁπλῶν λέγω καὶ διπλῶν , ὅτι ἐν ἐκείνοις μὲν ἓν | ||
Τέττιξ ρϘδ Ὕαινα ρϘε Χελιδόνεϲ ρϘϚ Περὶ ἐκλογῆϲ τῶν καλλιϲτευόντων ἁπλῶν φαρμάκων ρϘζ Ἐκ τῶν Ὀριβαϲίου . Ὅϲα μέϲα ἐϲτὶ |
Τὸ Ἰταλικὸν κεράμιον ἔχει χόαϲ ηʹ . Ὁ χοῦϲ ἔχει ξέϲταϲ Ϛʹ . Ὁ ξέϲτηϲ κοτύλαϲ βʹ , αἳ καὶ | ||
, τινὲϲ δὲ # γ , ἀγχούϲηϲ # β ἐλαίου ξέϲταϲ λ ὕδατοϲ ξέϲταϲ εʹ κόπτε πάντα ἁδρομερῶϲ καὶ βρέχε |
προτέροις τοῦ δ γεννᾶται τῇ αὐτῇ ἐφόδῳ : τὸ γὰρ συγκεφαλαίωμα τῶν τριῶν , τοῦ τε α καὶ β καὶ | ||
ἥττονος : ἑκατὸν γὰρ ιϚ ἐν ἑκατέροις τὸ τοῦ ἀριθμοῦ συγκεφαλαίωμα . Ἔστω ἡ ΑΒ μονάδων ιβ . ἐτμήθη εἰς |
δυνάμει πεφυκυῖα , δύο μεσότητας ἔχει , ἀριθμητικήν τε καὶ ἁρμονικήν , φαίνεταί τε τὰ μέρη αὐτῆς καὶ τὰ μεγέθη | ||
δεύτερος πρὸς τὸν τρίτον , οἷον δʹ Ϛʹ θʹ , ἁρμονικήν δὲ ὅταν τριῶν ἀριθμῶν ἀνίσων , εἰ ὡς ὁ |
, ἀλλὰ μεταπίπτει ἐν τῷ πολλαπλασιασμῷ , οἷον δυὰς ἐπὶ τριάδα καὶ τριὰς ἐπὶ τετράδα καὶ τετρὰς ἐπὶ πεντάδα : | ||
λέγοντες οὕτως , οἷον τὴν γραμμὴν δυάδα , τὴν ἐπιφάνειαν τριάδα , τὸ δὲ στερεὸν τετράδα : καὶ τῶν παραδειγμάτων |
ὑπὸ τῶν δύο εὐθειῶν ἴσον ἐστὶ τοῖς ὑπό τε τῆς ἀτμήτου καὶ ἑκάστου τῶν τμημάτων περιεχομένοις ὀρθογωνίοις : ὅπερ ἔδει | ||
δὲ κατὰ τὸ α , γίνεται τὸ ὑπό τε τῆς ἀτμήτου τῆς βα καὶ ἑκάστου τῶν τμημάτων τῶν δα , |
μέχρι τετάρτου συμφώνου : πρῶτον γὰρ ἐν αὐτῷ τὸ διὰ τεσσάρων , δεύτερον τὸ διὰ πέντε , τρίτον τὸ διὰ | ||
πασῶν σύστημα ἠλέγχετο , ἤτοι τῆς διὰ πέντε καὶ διὰ τεσσάρων ἐν συναφῇ , ὡς ὁ διπλάσιος λόγος ἡμιολίου τε |
οἱ καταλαμβάνοντες Ὠρεόν , οὗτοί εἰσιν οἱ κατασκάψαντες Πορθμόν . γενῶν δέ , ἂν ποτὲ μὲν ἀρσενικὸν ὄνομα προθῇς , | ||
ἐν γὰρ τῷ λέγειν αἱ διαι - ρέσεις γίνονται τῶν γενῶν εἰς τὰ εἴδη δηλοῖ τὰς διαιρετικάς , ἐν δὲ |
μὲν κατ ' ἀριθμὸν ὑπερέχουσαν , ἴσῳ δὲ ὑπερεχομένην : ἡμιολίων δὲ καὶ ἐπιτρίτων διαστάσεων διὰ πασῶν τῷ τοῦ ἐπογδόου | ||
μαλακὸν χρῶμα : τὸ δὲ τρίτον χαρακτηρίζεται μὲν ἐκ διέσεων ἡμιολίων τῆς ἐναρμονίου διέσεως , καλεῖται δὲ ἡμιολίου χρώματος : |
λέγεται , ὅτ ' ἂν μετὰ τοὺϲ τρεῖϲ πόδαϲ εὑρεθῇ ϲυλλαβὴ ἀπαρτίζουϲα εἰϲ μέροϲ λόγου : καὶ λέγεται ἑφθη - | ||
εἰϲιν Γ . εἰϲ γὰρ μέροϲ λόγου ἀπήρτιϲται ἡ μοι ϲυλλαβὴ καὶ ἑξῆϲ ἄρχεται ἀπὸ τῆϲ † διφθόγγου . ἡ |
μᾶλλον καὶ σφαιρικοὶ λεγέσθωσαν , ἑνὶ πλείονι διαστήματι αὐξηθέντες ἀπὸ κυκλικῶν καὶ αὐτῶν ὁμοκαταλήκτων ὄντων , ὡς ὁ ρκεʹ ἀπὸ | ||
τὸ ζῴδιον λέγω , τυγχάνοντας καὶ ἐκ τῶν δυὸ τῶν κυκλικῶν συνδέσμων , ἐκλείπουσι κατὰ τομὴν πρὸς μοίρας τῶν δακτύλων |
θερινῆς τροπῆς τὰς πβ ∠ ʹ μοίρας : ἐν τοῖς ιβ ἔτεσιν ἄρα τοῖς μεταξὺ τῶν δύο τηρήσεων Ϛʹ ἔγγιστα | ||
ΑΘ ἔσται νθ μδ , ἡ δὲ ΕΘ ὁμοίως ν ιβ . τῶν δ ' αὐτῶν ἐδέδεικτο καὶ ἡ ΕΒ |
θέσεις τῶν κύκλων τε καὶ εὐθειῶν πλείονας οὔσας καὶ πλειόνων διορισμῶν δεομένας . Ταῖς προειρημέναις ἐπαφαῖς ὁμογενὲς πλῆθός ἐστιν προβλημάτων | ||
πρὸς οὓς οὐ δεῖ ἢ κατά τινα ἄλλον τῶν εἰρημένων διορισμῶν . ὁ μὲν οὖν ἅπαντας φυλάττων τοὺς εἰρημένους διορισμοὺς |
ἀρχῆς τὸ ἦθος ἐγέννησεν ἐπὶ τῷ τῆς Ἀθηνᾶς νόμῳ : προσληφθείσης γὰρ μελοποιίας καὶ ῥυθμοποιίας , τεχνικῶς τε μεταληφθέντος τοῦ | ||
τοῦτο ἐν ἐπιτρίτῳ λόγῳ , μεθ ' ὃ μιᾶς χορδῆς προσληφθείσης τὸ μὲν ὅλον διά - στημα παρὰ τὴν αὐτὴν |
πολλοὺϲ οἶδα τελέωϲ αὐτοῦ ἀπαλλαγένταϲ ἐπὶ τοῖϲ ἐμέτοιϲ . Περὶ ἡμιτριταίου . ὁ ἡμιτριταῖοϲ προϲαγορευόμενοϲ πυρετὸϲ μιχθέντοϲ τοῦ ϲηπομένου φλέγματοϲ | ||
διὰ τοὺς παρεμπίπτοντας παροξυσμοὺς , ἀγνοοῦσιν ὅτι τοῦτο ἐστὶ τοῦ ἡμιτριταίου ἴδιον : καὶ γὰρ περὶ τὰς ἕξ που ἢ |
. ἔστι καὶ εἶδος φυτοῦ , περὶ οὗ Βῶλος ὁ Δημοκρίτειος . ὅτι Θεόφραστος ἐν τῷ περὶ φυτῶν ἐνάτῳ , | ||
. . ἔστι καὶ εἶδος φυτοῦ περὶ οὗ Βῶλος ὁ Δημοκρίτειος , ὅτι Θεόφραστος ἐν τῶι Περὶ φυτῶν ἐνάτωι : |
περιέχεσθαι , τὴν τῶν εὐλόγων εἰκαστικὴν καὶ ἀβέβαιον μυθοποιίαν χαίρειν ἐῶντι . τί οὖν καὶ τὸ ἐν τούτοις ἀληθές ; | ||
ἀπὸ θεῶν . καὶ τὸν Ἕκτορα οὐ πεισθέντα Πουλυδάμαντι οὐκ ἐῶντι ἐπελαύνειν ταῖς ναυσὶ τῶν Ἑλλήνων ἐπὶ τῷ δράκοντι τῷ |
ζητουμένην εἰκάδα τοῦ μηνός , γίνονται ἡμέραι λθ . ταύτας μερίζομεν παρὰ τὸν ζʹ , πεντάκις ζ λε . λοιπαὶ | ||
κύκλων λαμβάνομεν τὸ ἐμβαδὸν τοῦ τετραγώνου καὶ ποιοῦμεν ἑνδεκάκις καὶ μερίζομεν παρὰ ιδ , καὶ ἔσται τὸ στερεὸν τοῦ κυλίνδρου |
ἀπιδεῖν πρὸς τὴν ὠφέλειαν , ἣν ἀπώνατο καὶ τάξαι τὴν ἀντευποιΐαν . ζητεῖ δὲ τοῦτο εἰς τὰ λεγόμενα πολλάκις πρὸς | ||
τοιοῦτον ὡς πρώτως ὠφεληθέντα : ὠφεληθεὶς γὰρ καὶ προκερδήσας τὴν ἀντευποιΐαν ἐπάγει πρὸς τὸν προϊέμενον , καὶ εἴη ἂν [ |
εἰς τὸν ἴσον , ἡ δὲ ἐκ πέντε εἰς τὸν ἡμιόλιον : αἱ δὲ τὴν ὀρθὴν περιέχουσαι δηλοῦσι τὸν ἐπίτριτον | ||
λϚ . ὁ γὰρ λϚ πρὸς τὸν κδ ἔχει λόγον ἡμιόλιον , καὶ ὁ κδ πρὸς ιϚ ἔχει λόγον ἡμιόλιον |
. πτιϲάνηϲ , ὀρόβου , λιβάνου Ἰλλυρίδοϲ , ἀφονίτρου ἀνὰ χοίνικαϲ δ , κόϲτου , ἀμυγδάλων πικρῶν ἀνὰ ⋖ κ | ||
δὲ ἡμίεκτον ἔχει χοίνικαϲ δ , ὥϲτε τὸν μέδιμνον ἔχειν χοίνικαϲ μη , ξέϲταϲ ϘϚ . τούτων δὲ τὸν ϲταθμὸν |
ὧν πρῶτον ” βοάσομαί γ ' ἄρα τὰν ὑπέρτονον “ χοριαμβικὸς τρίμετρος καταληκτικὸς ἐκ διιάμβου , διτροχαίου καὶ δακτύλου : | ||
τροχαίου : τὸ ιʹ ” λυσανίας πατρῴων μεγάλων κακῶν “ χοριαμβικὸς τετράμετρος καταληκτικὸς ἐκ χοριάμβου – ˘˘ – , ἀντισπάστου |
: βάσις δὲ ἥ τε τῶν κατ ' ἀρχὰς τριγώνων ὑποτεθέντων ἀσφαλεστέρα κατὰ φύσιν ἡ τῶν ἴσων πλευρῶν τῆς τῶν | ||
σημαίνοντος μὴ ᾖ ἐκ τῶν πολλῶν τῶν κατηγορηθέντων αὐτοῦ ἢ ὑποτεθέντων αὐτῷ ἕν τι συγκείμενον , οὐκέτι μία ἡ πρότασις |
, ἀλλὰ λευκῷ καὶ μέλανι , τὰ δ ' ἄλλα συνθέσεις . Ἢ τῷ μίαν τινὰ ἄλλην ἐπὶ τῶν μεταξύ | ||
αἱ οὐσίαι καὶ αἱ φύσεις . Ὡς δὲ ἐτελειώσαμεν τὰς συνθέσεις τῆς ὕλης , χρόνου τινὸς ἐνστάντος καὶ πανηγύρεως οὔσης |
ταυτὶ μόνον θεωρεῖται σύμφωνα πρὸ τοῦ τελείου συστήματος : τὸ ἐπίτριτον τὸ ἡμιόλιον τὸ διπλάσιον . ἐπεὶ τοίνυν τὸ σύστημα | ||
δὲ ΘΜ ἡμιολίαν καὶ πάλιν τῆς ΔΖ τὴν μὲν ΘΜ ἐπίτριτον , τὴν δὲ ΗΚ ἡμιολίαν καὶ ἔτι τὴν ΗΚ |
⋖ β , μάλιϲτα τοῦ φλοιοῦ ϲὺν οἴνῳ , γεντιανὴ κεκομμένη καὶ γλήχων ἐπικαθηψημένη , καὶ δαφνίδεϲ ἀριθμῷ δέκα λεῖαι | ||
. ταῦτ ' ἄρα καταμήνια κινεῖ , ὅϲον μέγεθοϲ ἀμυγδάλου κεκομμένη καὶ ϲεϲηϲμένη ϲὺν μελικράτῳ πινομένη . ἐκκαθαίρει δὲ καὶ |
, μάλιστα δὲ τῶν τῆς σελήνης , ἀπὸ τῶν αὐτῶν λαμβανομένων , τὰς κατὰ μῆκος αὐτῶν ἀκριβεῖς ἐποχὰς διακρινοῦμεν ἀπό | ||
δύο προτάσεων δείκνυταί τι , λέγειν καὶ διὰ πλειόνων προσεχῶν λαμβανομένων καὶ μηδὲν ἄλλο ἀλλ ' ἢ τὸ προκείμενον συμπέρασμα |
καθαίρει μὲν οὖν διὰ ῥινὸϲ ἀναγαλλίδοϲ ἑκατέραϲ ὁ χυλόϲ , ἀνεμώνηϲ τε πάϲηϲ καὶ τεύτλου καὶ ϲικύου ἀγρίου φύλλων ὁ | ||
προγεγραμμένοιϲ ἄριϲτα ποιεῖ ἐπ ' αὐτῶν καὶ ἡ δι ' ἀνεμώνηϲ κατὰ τῆϲ κεφαλῆϲ ἐπιτιθεμένη καὶ αὕτη δέ : ϲμύρνηϲ |
, ἢ διάμετρος τῇ πλευρᾷ ἢ σύμμετρος ἢ ἀσύμμετρος , ἐμμέσων δὲ ὡρισμένων ὡς ὅταν λαβόντες δύο μεγέθη λέγομεν , | ||
μέν ἐστιν ἔμμεσα τὰ δὲ ἄμεσα , εἰ μὲν τῶν ἐμμέσων ἐναντίων εἴη τὰ κατηγορούμενα , οὐκ ἂν ἀκολουθήσαι τῇ |
διὰ καλαμίνθου : εἰ δὲ μή , τοῦ διὰ τριῶν πεπερέων : μηδετέρου δὲ τούτων παρόντος , καὶ πεπέρεως λευκοῦ | ||
ἐμοῦσιν αὐτίκα παύονται λύζοντες . πολλοὶ καὶ τὸ διὰ τριῶν πεπερέων πιόντες ἢ αὐτὸ τὸ πέπερι , ἐὰν εὐθέως ἐπιπίωσιν |
γὰρ ἰσημερίας ἐαρινῆς ἐπὶ τροπὴν θερινὴν ἐν ἡμέραις παραγίνεται Ϟδʹ ςʹ , ἀπὸ δὲ θερινῆς τροπῆς ἐπὶ ἰσημερίαν μετοπωρινὴν ἡμέραις | ||
ἀνήλισκον δὲ ἡμιτάλαντον : οἱ δὲ τὸ ζευγίσιον τελοῦντες ἀπὸ ςʹ μέτρων διελέγοντο , ἀνήλισκον δὲ μνᾶς ιʹ : οἱ |
τῶν δέκα πληρώσει ἀριθμόν : ὥστε ὁ ἀριθμὸς κατὰ μὲν μονάδα ἐν τοῖς δέκα κατὰ δὲ δύναμιν ἐν τοῖς τέσσαρσι | ||
εὑρίσκεται ἔχων ὁλοκλήρως τὰς δ μονάδας καὶ ἐπέκεινα τούτων μίαν μονάδα , ἥ ἐστιν τῶν δ δʹ , καὶ διὰ |
Σελήνην : ἔμπαλιν , οἱ δὲ ἀνάπαλιν , ἀπὸ ὡροσκόπου ἰσότητας ποι - εῖν καὶ τὸν ἀποβάντα κύριον τόπον συνορᾶν | ||
ὡς εἶναι τελεσφόρον ὄντως τὸν ἕβδομον ἀριθμόν , ἀμφοτέρας τὰς ἰσότητας καταγγέλλοντα τήν τ ' ἐπίπεδον διὰ τετραγώνου κατὰ τὴν |
φύσιν , οἷον δὲ ὁρισμὸν αὐτοῦ ποιούντων , τὰς διαφορὰς ἐκθώμεθα . συγκεφαλαιούμενοι δὲ καὶ τούτων οἱ τρόποι εὐαρίθμητοι γίνονται | ||
τὴν τοῦ ὅρου ἐξήγησιν ἡμῖν ἰτέον . καὶ πρῶτον αὐτὸν ἐκθώμεθα , εἶτα δείξομεν ὅτι οὐδὲν οὔτε περισσὸν ἔχει οὔτε |