σημείων : ὅπερ ἔδει δεῖξαι . Ἐὰν ἐν τμήματι κύκλου κλασθῶσιν εὐθεῖαι , μεγίστη μὲν ἔσται ἡ πρὸς τὴν διχοτομίαν
. καὶ χεῖρον μέν ἐστιν πρόδηλον , εἰ τὰ δύο κλασθῶσιν : ἧττον δέ , εἰ τὸ ἔμπαλιν : τοῦ
5773988 δεδομενης
εἴτε ὑπὸ πάθους ὡς πρὸς οἰκείους ἄνδρας , ἀκρατεῖς τῆς δεδομένης σφίσι τάξεως γενόμενοι , προσιοῦσι τοῖς Λευκιανοῖς οἷα συνεστρατευμένοις
τήν τε ἐσθῆτα τὴν στρατηγικὴν ἀπεδύσατο , ὡς παρὰ τυράννου δεδομένης ὑπερορῶν , καὶ τὸν Καίσαρα τύραννον ἐκάλει καὶ τοὺς
5315615 ἰσοπλευρῳ
, Γ στερεὸν ἴσον ἐστὶ τῷ ἀπὸ τῆς Β στερεῷ ἰσοπλεύρῳ μέν , ἰσογωνίῳ δὲ τῷ προειρημένῳ . Ἐκκείσθω στερεὰ
στερεὸν παραλληλεπίπεδον ἴσον ἐστὶ τῷ ἀπὸ τῆς μέσης στερεῷ παραλληλεπιπέδῳ ἰσοπλεύρῳ μέν , ἰσογωνίῳ δὲ τῷ προειρημένῳ . Ἔστωσαν τρεῖς
5167376 ἀχθωσιν
ἀπὸ τῶν ἴσων γωνιῶν ἐπὶ τὰς βάσεις κάθετοι εὐθεῖαι γραμμαὶ ἀχθῶσιν , ᾖ δέ , ὡς ἡ τοῦ πρώτου τριγώνου
τομῶν β σημεῖα ληφθῇ , καὶ ἀφ ' ἑκατέρου παράλληλοι ἀχθῶσιν , ὁμοίως ἴσα ἔσται τὰ γινόμενα ὑπ ' αὐτῶν
5098739 συννευουσαι
αὐτῶν τῶν γωνιῶν ἀνεγειρόμεναι καὶ εἰς ἓν καὶ τὸ αὐτὸ συννεύουσαι σημεῖον πυραμίδα ἀποκορυφοῦσιν ὀνομαζομένην ἀπὸ πενταγώνου βάσεως ἢ ἑξαγώνου
' ἄπειρον γενέσθαι , κατὰ τὰ λοιπὰ δὲ οὔ . συννεύουσαι γὰρ ἐπὶ τάδε τὰ μέρη πλέον ἀφίστανται ἀλλήλων κατὰ
5025509 δοθεντι
τε ὅλῳ καὶ ἀλλήλοις : ὅπερ ἔδει δεῖξαι . Τῷ δοθέντι εὐθυγράμμῳ ὅμοιον καὶ ἄλλῳ τῷ δοθέντι ἴσον τὸ αὐτὸ
δὴ τὸ πλῆθος τῶν ΑΖ ΖΗ ΗΘ ΘΒ ἴσον τῷ δοθέντι , καὶ ἡ ἐκ πασῶν συγκειμένη εὐθεῖα ἴση τῇ
4973804 ΚΒΟΣ
καὶ παράλληλοί εἰσιν διὰ τὸ λγʹ τοῦ αʹ . τὸ ΚΒΟΣ ἄρα τετράπλευρον . , . ] τετράπλευρόν ἐστιν ,
κύκλος . Ἤχθω ἀπὸ τοῦ Α σημείου ἐπὶ τὸ τοῦ ΚΒΟΣ τετραπλεύρου ἐπίπεδον κάθετος ἡ ΑΨ καὶ συμβαλλέτω τῷ ἐπιπέδῳ
4919169 ηκις
ΘΜ ἐπὶ τὸν ἀπὸ τοῦ ΚΒ ⃞ον , μετὰ τοῦ ηκις ὑπὸ ΗΘ . ΚΒ , καὶ ὁ ἀπὸ τοῦ
ΒΔ , τῷ ἴσῳ ἀλλήλων ὑπερεχέτωσαν : δεικτέον ὅτι ὁ ηκις ὑπὸ ΑΒ . ΒΓ , προσλαβὼν τὸν ἀπὸ τοῦ
4749263 εὐθειαι
: ὅπερ ἄτοπον . οὐκ ἄρα αἱ ΔΕΒ , ΔΖΒ εὐθεῖαί εἰσιν . ὁμοίως δὴ δείξομεν , ὅτι οὐδὲ ἄλλη
ἐγκεφάλου γνωρίϲματα περιττώματα πλείω κατὰ τὰϲ οἰκείαϲ ἐκροὰϲ καὶ τρίχεϲ εὐθεῖαί τε καὶ πυρραὶ καὶ μόνιμοι : καὶ ῥᾳδίωϲ ὑπὸ
4677381 ἐκβαλλομενας
ἐκβαλλόμεναι μείναιεν ἂν ἀσύμπτωτοι , τὸ δ ' εἰς ἄπειρον ἐκβαλλομένας μὴ συμπίπτειν χαρακτηρίζει τὰς παραλλήλους , καὶ οὐδὲ τοῦτο
τῆς σφαίρας σχῆμα πανταχόθεν ἴσον καὶ ἀπὸ τοῦ μέσου κέντρου ἐκβαλλομένας εὐθείας εἰς τὴν ἐπιφάνειαν ἴσας ἔχον , ὥσπερ οἶνος
4654437 δεδομενων
ΑΒΓ ὅλῳ τῷ ΔΕΖ ἐστὶν ὅμοιον . ηʹ . Θέσει δεδομένων τῶν ΑΒ ΑΓ , ἀγαγεῖν παρὰ θέσει τὴν ΔΕ
Ἕρμαρχος ζῇ . “ Ἐκ δὲ τῶν γινομένων προσόδων τῶν δεδομένων ἀφ ' ἡμῶν Ἀμυνομάχῳ καὶ Τιμοκράτει κατὰ τὸ δυνατὸν
4638729 ἑνι
Ἄντιφον ἐξεναρίξων υἷε δύω Πριάμοιο νόθον καὶ γνήσιον ἄμφω εἰν ἑνὶ δίφρῳ ἐόντας : ὃ μὲν νόθος ἡνιόχευεν , Ἄντιφος
τοιοῦτος ὤν . βάδιζε παρά τινα λημῶσαν ἄγροικον γραῦν ἐπὶ ἑνὶ γομφίῳ σαλεύουσαν , ἀληλιμμένην τῷ ἐκ τῆς πίττης ἐλαίῳ
4634881 ἀναστησωμεν
τὴν ΔΑΓ καὶ διὰ τοῦ Α τῇ ΔΓ πρὸς ὀρθὴν ἀναστήσωμεν τὴν ΑΒ , δηλαδὴ ἴσης μενούσης τῆς μὲν ΔΑ
, ΓΔ , ΔΑ παραλληλόγραμμα , καὶ ἀπ ' αὐτῶν ἀναστήσωμεν στερεὰ παραλληλεπίπεδα ἰσοϋψῆ τῷ κυλίνδρῳ , ἑκάστου τῶν ἀνασταθέντων
4624602 συσταθησεται
Λέγω δή , ὅτι παρὰ τὰ εἰρημένα πέντε σχήματα οὐ συσταθήσεται ἕτερον σχῆμα περιεχόμενον ὑπὸ ἰσοπλεύρων τε καὶ ἰσογωνίων ἴσων
ἐπὶ τῆς αὐτῆς εὐθείας δύο τμήματα κύκλων ὅμοια καὶ ἄνισα συσταθήσεται ἐπὶ τὰ αὐτὰ μέρη : ὅπερ ἔδει δεῖξαι .
4587521 ἐλασσονος
ιϚ , ὅπερ ἴσον ἐστὶ τῷ δʹ τοῦ ἀπὸ τῆς ἐλάσσονος κατὰ μῆκος . καὶ τὰ λοιπὰ τὰ ἐκ τῆς
διποδίας : τὸ δεύτερον ἐκ διιάμβου καὶ ἰωνικοῦ ἀπ ' ἐλάσσονος δίμετρον ἀκατάληκτον ἢ ἰαμβικὸν ἑφθημιμερές : τὸ τρίτον ἰαμβικὸν
4575363 δεδομενῳ
, τίς σοι δέδωκεν ; οὐ θέλεις μελετᾶν ἀρκεῖσθαι τῷ δεδομένῳ ; Διὰ τοῦτο γὰρ Ἀγριππῖνος τί ἔλεγεν ; ὅτι
τρίγωνον δοθείς . Ἐὰν δύο τριγώνων αἵ τε βάσεις ἐν δεδομένῳ λόγῳ ὦσι καὶ αἱ ἐπ ' αὐτὰς ἠγμέναι ἀπὸ
4566212 δυο
ὑπὸ τὸν ὁρίζοντα . Εἰσὶ δὲ τῶν ἑῴων δύσεων διαφοραὶ δύο : αἱ μὲν γάρ εἰσιν ἀληθιναί , αἱ δὲ
ὅπως οὐ τήμερον λήψεται ” τρίμετρος καταληκτικὸς ἐξ τρίτων ἐπιτρίτων δύο – – ˘ – καὶ κρητικοῦ ἤτοι ἀμφιμάκρου –
4485167 ἐνηρμοσθω
ἐναρμοσθῇ , μεταξὺ πεσεῖται τῶν Β καὶ Ε σημείων . ἐνηρμόσθω ἡ ΑΖ ἴση τῇ ἐκ τοῦ κέντρου , καὶ
εὐθειῶν ἐναρμόσαι τῷ ΑΚΓΗ κύκλῳ εὐθεῖαν ἴσην τῇ ΔΖ . ἐνηρμόσθω ἡ ΑΛΜ , καὶ ἐπεζεύχθω ἡ ΑΗ : ἴση
4421261 ἐπιζευξαι
ἀπὸ τοῦ τῆς συμβολῆς τῶν περιφερειῶν σημείου ἐπὶ τὰ κέντρα ἐπιζεῦξαι εὐθείας περιεχούσας τὴν λείπουσαν εἰς τὰς δύο ὀρθὰς τῆς
Θ , καθ ' ὃ τέμνει τὴν τετραγωνίζουσαν , καὶ ἐπιζεῦξαι τὴν ΘΗ , καὶ δίχα τεμόντα τὴν ΑΒ καὶ
4401860 περιεχομενῳ
τοῦ ἀπὸ ΑΘ πρὸς τὸ ἀπὸ ΑΕ ἴση ἐστὶν τῷ περιεχομένῳ ὀρθογωνίῳ ὑπό τε τῆς ΕΘ καὶ τῆς ὑπεροχῆς ᾗ
ἀσυμπτώτων πρὸς τῷ κέντρῳ τῆς τομῆς εὐθείας ἴσον περιεχούσας τῷ περιεχομένῳ ὑπὸ τῶν ἀποτεμνομένων εὐθειῶν ὑπὸ τῆς ἐφαπτομένης κατὰ τὴν
4397669 παραβολης
καὶ ἐὰν μὲν ὁ λόγος ᾖ ἴσος πρὸς ἴσον , παραβολῆς , ἐὰν δὲ ἐλάσσων πρὸς μείζονα , ἐλλείψεως ,
ΓΔ τῇ ΔΕ . δεῖξαι , ὅτι τὸ Δ ἅπτεται παραβολῆς . ἤχθω κάθετος ἡ ΓΖ : θέσει ἄρα ἐστί
4377096 πλευρων
ἔκστασιν ἐπὶ τὸν Ἀδὰμ καὶ ὕπνωσιν καὶ ἔλαβεν μίαν τῶν πλευρῶν αὐτοῦ καὶ ἀνεπλήρωσεν σάρκα ἀντ ' αὐτῆς . καὶ
τοῦ ἀπὸ τῆς γδ . τὰ ἄρα ἀπὸ τῶν τριῶν πλευρῶν τετράγωνα τῆς τε αγ καὶ γδ καὶ δβ ἐλάττονά
4370004 ἀπολαμβανομενῳ
τὸ φανερὸν ἐξαλλάσσει . Τῶν δὲ ἐν τῷ ἡμικυκλίῳ τῷ ἀπολαμβανομένῳ ὑπὸ τοῦ ἰσημερινοῦ πρὸς τῷ θερινῷ τροπικῷ ἴσων περιφερειῶν
δὲ ΑΓ ἐλάσσων ἐστὶν ἑκατέρας αὐτῶν τῷ ὑπὸ τῆς ἐπισκοτήσεως ἀπολαμβανομένῳ μέρει τῆς τοῦ ἐκλείποντος διαμέτρου . Ἔστω τὸ τῆς
4346885 ἀνθυφαιρουμενου
τὰ ἀφαιρούμενα . Ἐὰν δύο μεγεθῶν [ ἐκκειμένων ] ἀνίσων ἀνθυφαιρουμένου ἀεὶ τοῦ ἐλάσσονος ἀπὸ τοῦ μείζονος τὸ καταλειπόμενον μηδέποτε
ὄντων ἀνίσων τῶν ΑΒ , ΓΔ καὶ ἐλάσσονος τοῦ ΑΒ ἀνθυφαιρουμένου ἀεὶ τοῦ ἐλάσσονος ἀπὸ τοῦ μείζονος τὸ περιλειπόμενον μηδέποτε
4345823 ἐπιζευξαντες
ἐφ ' ἑαυτόν , οὑτωσὶ καὶ τὸ τρίγωνον , ἀλλαχόθεν ἐπιζεύξαντες ἐπὶ τὰ πέρατα τῆς εὐθείας συγκροτοῦμεν ἐκ τούτων ἓν
ὑφ ' ἣν ὑποτείνει ἡ τοῦ τετραγώνου πλευρά , καὶ ἐπιζεύξαντες καὶ τὰ αὐτὰ τοῖς πρότερον κατασκευάσαντες δείξομεν τὸν διὰ
4335073 ἐγκελευσιν
παρθένοι καὶ ἶσοι νέοι ἀκμαῖοι ἐξ Ἀθηνῶν ἐδασμολογοῦντο κατ ' ἐγκέλευσιν αὐτοῦ , καὶ παρεβάλλοντο τῷ θηρίῳ . Ὡς οὖν
, τὴν μὲν Ἰσμήνην προσομιλοῦσαν Θεοκλυμένωι ὑπὸ Τυδέως κατὰ Ἀθηνᾶς ἐγκέλευσιν τελευτῆσαι . ταῦτα μὲν οὖν ἐστιν τὰ ξένως περὶ
4312665 ἀντιστρεφοντων
Στησαγόραν βʹ , Σύγκρισις τῶν τροπικῶν ἀξιωμάτων αʹ , Περὶ ἀντιστρεφόντων λόγων καὶ συνημμένων αʹ , Πρὸς Ἀγάθωνα ἢ περὶ
ὡσαύτως . Ὅτι μέν , φησίν , οὔτε διὰ τῶν ἀντιστρεφόντων οὔτε διὰ τῆς διαιρέσεως τὸν ὁρισμὸν ἐνδέχεται συλλογίζεσθαι ,
4309617 συστησονται
καὶ ὁμοίως πλαττομένων οἱ ἐπιμόριοι λόγοι καὶ αἱ ἐν τούτοις συστήσονται ἀναλογίαι , ἐκ μὲν τῶν διπλασίων ἡμιόλιοι , ἐκ
κατὰ αὐθάδειαν δρᾶν ἕκαστα , ἀλλὰ συνέθεντο ἐφ ' οἷς συστήσονται τὸν ἀγῶνα . δηλοῖ δὲ καὶ τοῦτο ἐν τῷ
4302145 τριγωνου
τμημάτων ὁ μηνίσκος . ἔσται οὖν ἐλάττων ὁ μηνίσκος τοῦ τριγώνου τοῖς ὑπὸ τοῦ ἑξαγώνου ἀφαιρουμένοις τμήμασιν . ὁ ἄρα
καταγίνεται , ὡς γεωμετρία ἀποδεικνύουσα ἀεὶ τὰς τρεῖς γωνίας τοῦ τριγώνου δυσὶν ὀρθαῖς ἴσας εἶναι , ἢ ὡς ἐπὶ τὸ
4268918 ΧΦΨ
κέντρου τῆς σφαίρας ἤπερ ὁ ΠΗΡ , μείζων ἄρα ὁ ΧΦΨ κύκλος τοῦ ΠΗΡ κύκλου . ἐπεὶ οὖν δύο κύκλοι
Ε , Β μέρη . παράλληλος δὲ ὁ ΒΖ τῷ ΧΦΨ : καὶ ὁ ΧΦΨ ἄρα πρὸς τὸν ΞΚΟ κέκλιται
4263583 κατηγμενων
γωνίαις εὐθεῖαι , καὶ λόγος ᾖ δοθεὶς τοῦ ὑπὸ δύο κατηγμένων περιεχομένου ὀρθογωνίου πρὸς τὸ ἀπὸ τῆς λοιπῆς τετράγωνον ,
τοῦ ὑπὸ δύο κατηγμένων πρὸς τὸ ὑπὸ τῶν λοιπῶν δύο κατηγμένων , ὁμοίως τὸ σημεῖον ἅψεται θέσει δεδομένης κώνου τομῆς
4258278 ἑτερομηκει
, ἐὰν πρὸς πάσας τὰς ἐπιφανείας πᾶς ὁπλίτης παρατάσσηται ἐν ἑτερομήκει σχήματι : πλινθίον δέ , ἐὰν ἴσαις ταῖς φάλαγξι
τὸ γοῦν ἀπὸ ταύτης ἀναγραφὲν τετράγωνον ἴσον ἔσται τῷ προρρηθέντι ἑτερομήκει . δὶς γὰρ ηʹ ιϚʹ : οὕτω γὰρ ἐκείνῳ
4258063 παραβαλωμεν
ΓΖ περιεχόμενον ὀρθογώνιον τῶν αὐτῶν ωξε ε λβ , ἐὰν παραβάλωμεν παρὰ τὸν ἀριθμὸν τῶν ωξε ε λβ τὰ ͵γφνζ
πρὸς κείμενόν τι πλῆθος ἐφαρμόζειν τὰς τῶν ἀποχῶν εἰκασίας , παραβάλωμεν τὸν ἀπὸ τῆς Χρυσῆς Χερσονήσου μέχρι Καττιγάρων πλοῦν ,
4256517 ΚΜΝ
τουτέστιν οἱ κινοῦντες ἔστωσαν ἄνθρωποι μʹ , ἡ δὲ ὑπὸ ΚΜΝ γωνία , τουτέστιν ἡ ὑπὸ ΕΘΛ , διμοίρου ὀρθῆς
, καὶ τῇ ὑπὸ ΑΘΔ γωνίᾳ ἴση συνεστάτω ἡ ὑπὸ ΚΜΝ , καὶ ἀπὸ τῶν Κ Λ κάθετοι αἱ ΛΟ
4238944 ἀλληλων
δ ' ὑποδεικτέον , ὅτι καὶ εἰς τὸν δι ' ἀλλήλων τρόπον ἐμπέπτωκεν , ὅ ἐστιν ἀπορώτερον . ὅτι μὲν
εἴδει ταὐτὰ διαφορὰς ἔχοντα , ἀλλ ' οὐ διὰ ταύτας ἀλλήλων τῷ εἴδει ἕτερά εἰσι , διὰ τὸ μὴ οὐσιώδεις
4231433 ἀκρων
ιβʹ καὶ ηʹ ιγʹ καὶ ζʹ ιδʹ καὶ Ϛʹ ἐξ ἄκρων ἐάν . τετραγωνιζομένη ἀεὶ περιέχει καὶ λήγει εἰς ἑαυτήν
: ἁρμονικὴ γάρ ἐστιν ἡ μεσότης ἡ ταὐτῷ μέρει τῶν ἄκρων αὐτῶν ὑπερέχουσά τε καὶ ὑπερεχομένη , ὅπερ ἄλλῃ οὐ
4214305 ἀποτελεσθησονται
τέσσαρα καὶ μέχρις οὗ βουλόμεθα , τρίγωνοι ἐφεξῆς ἀπὸ μονάδος ἀποτελεσθήσονται οἱ αʹ γʹ Ϛʹ ιʹ ιεʹ καʹ κηʹ λϚʹ
καθ ' ἕκαστον ἐπινοήσομεν πέρατα , τριῶν δὲ ὄντων ἓξ ἀποτελεσθήσονται , δι ' ἣν αἰτίαν καὶ αἱ λεγόμεναι σωματικαὶ
4201932 εὐθυγραμμοι
μὲν οὖν περιφερόγραμμοι τὰς συνελισσούσας αἰτίας ἀπομιμοῦνται , αἱ δὲ εὐθύγραμμοι τὰς τῶν αἰσθητῶν , αἱ δὲ μικταὶ τὰς τὴν
παραλληλόγραμμον τῷ ΔΖ παραλληλογράμμῳ . καὶ ἐπεὶ δύο γωνίαι ἐπίπεδοι εὐθύγραμμοι ἴσαι εἰσὶν αἱ ὑπὸ ΔΕΖ , ΝΛΜ , καὶ
4199673 γεωμετρικῳ
εἰς τοσαῦτα μέρη διῃρημένης καλῶς ἔχειν ἐνόμισα τά τε λόγῳ γεωμετρικῷ θεωρούμενα [ καὶ ἀναγκαιότατα περὶ τὴν τῶν βαρῶν κίνησιν
γὰρ τῷ μουσικῷ , καθὸ μουσικός ἐστιν , οὐδὲ τῷ γεωμετρικῷ . οὐκοῦν ὠφελῆσαι θέλεις ; πρὸς τί ; εἰπὲ
4196646 συλλογιζου
ταπεινοῦται μικρόν , σὺ δὲ κατὰ τὸ τῆς ἀποστάσεως ἀνάλογον συλλογίζου περὶ τῆς τοῦ μεγέθους πηλικότητος . οἷον ἔστω ὁ
ταπεινοῦται μικρόν , σὺ δὲ κατὰ τὸ τῆς ἀποστάσεως ἀνάλογον συλλογίζου περὶ τῆς τοῦ μεγέθους πηλικότητος . οἷον ἔστω ὁ
4183719 ἀτμητου
ὑπὸ τῶν δύο εὐθειῶν ἴσον ἐστὶ τοῖς ὑπό τε τῆς ἀτμήτου καὶ ἑκάστου τῶν τμημάτων περιεχομένοις ὀρθογωνίοις : ὅπερ ἔδει
δὲ κατὰ τὸ α , γίνεται τὸ ὑπό τε τῆς ἀτμήτου τῆς βα καὶ ἑκάστου τῶν τμημάτων τῶν δα ,
4177037 καταγομεναι
ἡ ΓΑ , ὀρθία δὲ ἡ ΓΛ , αἱ δὲ καταγόμεναι ἀπὸ τῶν τομῶν ἐπὶ τὴν ΓΑ καταχθήσονται ἐν τῇ
καὶ φανοῦνται παράλληλοι , αἱ δ ' ἐπὶ τὴν ΑΓ καταγόμεναι διαχθήσονται μὲν ἀπὸ τοῦ Κ , φανοῦνται δὲ τῇ
4173891 σημειων
παύονται , ἢ πρόσθεν : οἵ τε κακοηθέστατοι καὶ ἐπὶ σημείων δεινοτάτων γιγνόμενοι τεταρταῖοι κτείνουσιν , ἢ πρόσθεν . Ἡ
ἐστὶν ἡμῖν , ὅτι οὐ παράδοξον εἰ τὰ τοιαῦτα τῶν σημείων πλειόνων ἐστὶ δηλωτικά : θεμένων γὰρ νόμους , ὥς
4171752 ἐπιταξῃ
δὴ ἀριθμοὺς εὑρεῖν ἑξῆς ἀνάλογον ἐλαχίστους , ὅσους ἄν τις ἐπιτάξῃ , ἐν τῷ τοῦ Α πρὸς τὸν Β λόγῳ
, ἵνα μὴ ἐκκεχολωμένῳ καὶ ζέοντι τῷ σώματι τοιοῦτον βρασμὸν ἐπιτάξῃ , μετὰ τροφὴν δὲ , ἵνα μήπως ὠμὴ ἐξελκομένη
4160104 πενταπλασιου
μεταξὺ τῶν Ρ Θ , πάντες δὲ οἱ μείζους τοῦ πενταπλασίου ποιοῦσι τὸ σημεῖον τῆς τομῆς μεταξὺ τῶν Ρ Τ
τοῦ εἰκοσαέδρου καθέτου τὸ δυνάμει δωδεκαπλάσιον μεῖζόν ἐστιν τοῦ δυνάμει πενταπλασίου τῆς πλευρᾶς τοῦ εἰκοσαέδρου . Ἐκκείσθω κύκλος ὁ ΑΒΓ
4151714 ἑπταγωνου
πενταγωνισμὸν ἀπὸ πενταγώνου βάσεως , εἶτα ἀνάλογον ἀπὸ ἑξαγώνου καὶ ἑπταγώνου καὶ ὀκταγώνου καὶ ἀεὶ ἐπ ' ἄπειρον . καθάπερ
η ∠ ʹ ιδʹ . τοσοῦτον ἔσται ἡ πλευρὰ τοῦ ἑπταγώνου . Ἐὰν θέλῃς τὴν διάμετρον εὑρεῖν ἀπὸ τῆς πλευρᾶς
4142444 συγκεκροτησθαι
παιδὶ ὄντι τῷ Ζήνωνι : ὅθεν καὶ ἐν τῇ πατρίδι συγκεκροτῆσθαι . καὶ οὕτως ἐλθόντα εἰς Ἀθήνας Κράτητι παραβαλεῖν .
ἀνδρὸς καὶ γυναικός , ἐν ᾧ λέγει ἐκ τεσσάρων σχέσεων συγκεκροτῆσθαι τὸν εὖ ἔχοντα οἶκον , πατρὸς πρὸς τέκνα ,
4133886 τετραγωνου
τῶν ρπ μοιρῶν τῆς ἀναφορᾶς συμπληρουμένης ἢ καὶ ἕως ἑτέρας τετραγώνου ἢ συμπληρουμένου παντὸς τοῦ κύκλου , ἢν δὲ καὶ
πλευρὰ μονὰς ἔσται πανταχόθι , ὅσηπερ καὶ ἡ τῆς δυνάμει τετραγώνου μονάδος . καθόλου δὲ ἕκαστος τετράγωνος ἓν μὲν ἐπίπεδόν
4132305 ἐδαφουϲ
ὑπαίθρῳ ἐπὶ μ ἡμέραϲ καὶ τότε ἀποτίθεϲο μὴ ἐπ ' ἐδάφουϲ ἀλλ ' ἐπὶ ϲανίδοϲ . τινὲϲ δὲ ἀντὶ τῆϲ
ξύλον ἕτερον ἐπίμηκεϲ ὑπεροειδὲϲ ὀρθὸν ϲτῆϲαί τε τοῦτο ἐπὶ τοῦ ἐδάφουϲ πρὸϲ τῷ πέρατι τοῦ ὑποκειμένου ξύλου ἢ βάθρου καὶ
4131986 κειμενων
. * ὡς γὰρ τῶν κατ [ ' εὐθυωρίαν ] κειμένων ποταμῶν τὰ ῥεύματά [ οὐκ ] ἀνάσχετα ? ?
, καὶ τὰ καθ ' ἕκαστα τῶν ἐν τῷ ἱερῷ κειμένων ἐξαριθμησάμενος αὐτῷ καὶ πίστιν ἱκανὴν παρασχών , ὡς οὐκ
4128222 ἀμφοτερων
; Πῶς γὰρ οὐκ ἐθελήσω ; Εἴ τι ἄρα περὶ ἀμφοτέρων διανοῇ , οὐκ ἂν διά γε τοῦ ἑτέρου ὀργάνου
τὸ τῶν ἀλόγων ἦθος ἀπομιμούμενον , μικτὸν δὲ τὸ ἐξ ἀμφοτέρων , ἀλόγου καὶ λογικοῦ . Τὴν δὲ παραίνεσιν ,
4120535 ἐπιζευχθεισων
τὸ Η , ἐπειδὴ περὶ τὸ περίγειόν ἐστιν , καὶ ἐπιζευχθεισῶν τῆς τε ΕΗ καὶ τῆς ΒΗ , ἵνα ἡ
Γ ση μείων ἐν τῇ περιφερείᾳ τοῦ ἐκκέντρου ὄντων . ἐπιζευχθεισῶν τοίνυν τῶ ΖΓ , ΖΑ , ἑκατέρα τῶν Α
4106400 μεσοτησιν
ἁρμονίαν μέχρι τῶν στερεῶν προάγειν . ἀριθμῶν καὶ δυσὶ συναρμόζεσθαι μεσότησιν , ὅπως διὰ παντὸς ἐλθοῦσα τοῦ τελείου στερεοῦ κοσμικοῦ
οὕτως διακειμένων τῶν τεσσάρων ἐπιφαίνεσθαι τὴν γεωμετρικὴν ἐμπλέγδην ἀμφοτέραις ταῖς μεσότησιν ἀντεξεταζομένην , ὡς ὁ μέγιστος πρὸς τὸν τρίτον ἀπ
4101812 περιεξουσι
' ὃ συμβάλλουσιν ἀλλήλαις , ἐπὶ τὰ κέντρα ἐπιζευγνύμεναι ὁμοίως περιέξουσι τὴν λείπουσαν εἰς τὰς δύο ὀρθὰς τῆς κλίσεως τῶν
αἱ ἀπὸ τῆς κοινῆς τομῆς ἐπὶ τὰ κέντρα ἐπιζευγνύμεναι εὐθεῖαι περιέξουσι τὴν λείπουσαν εἰς τὰς δύο ὀρθὰς τῆς ἐπιζητουμένης κλίσεως
4088356 δοθεισων
καὶ ἡ ΑΕ τῇ Γ ἐστιν ἴση . Δύο ἄρα δοθεισῶν εὐθειῶν ἀνίσων τῶν ΑΒ , Γ ἀπὸ τῆς μείζονος
μείζων ἐστὶν τῆς ΕΒ ἡμισείας . ] Ἔστω δὲ νῦν δοθεισῶν τῶν ΖΒ ΒΓ τὴν μείζονα ἄκραν εὑρεῖν . Ἤχθω
4087781 πολυπλασιασωμεν
ἡμερῶν κβʹ δύο τρίτων , ταύτας ἐπὶ τὸν ζʹ ἥμισυ πολυπλασιάσωμεν : εὑρήσομεν ροʹ : τοσαύτας Ἀφροδίτη ἕξει ἐκ τῶν
πρὸς τέταρτον τὸ Γ . ἐὰν ἄρα τὸ ὑπὸ μέσων πολυπλασιάσωμεν , τουτέστι τὸν δέκα καὶ πέντε , καὶ παραβάλωμεν
4069728 ἑκατερῳ
ἡ δ ' ἐν γράμμασιν ἀμφοτέρους πρὸς τὸν παῖδα συνέστησεν ἑκατέρῳ νίκην αἰτοῦσα : οὕτω χρηστὸν εἶχε καὶ ἄκακον καὶ
. φίλος δέ μοι γέγονεν Ἀλέξανδρος μετὰ μακρὸν πόλεμον ἐν ἑκατέρῳ τὸ τοῦ δικαίου μέρος τηρῶν . ἐμάχετό τε γάρ
4068720 ὀρθογωνιῳ
ΑΓ τετραγώνων τῷ δὶς ὑπὸ τῶν ΓΑ , ΑΔ περιεχομένῳ ὀρθογωνίῳ . Ἐπεὶ γὰρ εὐθεῖα ἡ ΓΑ τέτμηται , ὡς
ὀρθογώνιον ἴσον ἐστὶν τῷ ὑπὸ τῶν ΛΔ , ΔΜ περιεχομένῳ ὀρθογωνίῳ , ἕξομεν καὶ τὸ ὑπὸ τῶν ΛΔ , ΔΜ
4061326 εὐθειας
κύκλον . ποιείτω τὸν ΕΓΔΖ , ἐν δὲ τῷ κώνῳ εὐθείας τὰς ΑΓ , ΑΔ , ΔΓ : ὁ ἄρα
πάλιν ἐπεὶ ἀπὸ τοῦ αὐτοῦ σημείου τοῦ Δ εἰς τρεῖς εὐθείας τὰς ΒΝ ΒΓ ΒΖ δύο εἰσὶν διηγμέναι αἱ ΔΕ
4056317 στοιχῳ
τοῦ κατὰ πρόσωπον μέρους τοῦ πρὸς μεσημβρίαν βλέποντος τριπλῷ περιλαμβανόμενος στοίχῳ κιόνων , ἐκ δὲ τῶν πλαγίων ἁπλῷ : ἐν
καθ ' ἣν μέμαρπται καὶ συνείληπται πάντα ἐν τάξει καὶ στοίχῳ μὴ ἔχοντι πέρας τὰ γινόμενα [ σύλληψιν ἡ ει
4018060 ἐπιτιθημι
τροχίσκον διαλύσας καὶ ἀναλαβὼν μέλιτι κατέφθῳ ἢ φοινίκων λιπαρῶν σαρκὶ ἐπιτίθημι , οὐδὲ γὰρ φειστέον ἀναλώματος ἐπὶ τῶν περὶ τὴν
† βεβαιοτάτης ψήφου ἡ παροιμία ἐτίθετο , οἷον τὸν Κολοφῶνα ἐπιτίθημι ἢ τὸν Κολοφῶνα ἀναγκάζω προσβιβάζων . ἄνω κάτω πάντα
4010256 ἀφαιρειτωσαν
τινὸς κύκλου τοῦ ΑΔ περιφερείας τὰς ΑΕ , ΕΔ ἴσας ἀφαιρείτωσαν πρὸς τὸν μέγιστον τῶν παραλλήλων τὸν ΖΕΗ , καὶ
, ὦ θεοί , ἢ ἀκροάσασθαι ἐπικύψαντας αὐτῶν ; ὥστε ἀφαιρείτωσαν αἱ Ὧραι τὸν μοχλὸν ἤδη καὶ ἀπάγουσαι τὰ νέφη
4007496 ἐπιπεδου
διὰ τῆς εὐθείας διδάσκουσι τήν τ ' εὐθεῖαν διὰ τοῦ ἐπιπέδου : εὐθεῖαν γὰρ εἶναί φασιν ἥτις εἰς πάντα τὰ
τοῖς στερεοῖς ἡ σφαιρική : τοῦ δὲ αἰθέρος μὴ ὄντος ἐπιπέδου , ἀλλὰ στερεοῦ , καταλείπεται αὐτὸν εἶναι σφαιροειδῆ .
3997378 περιφερους
ταύτην τὴν αἰτίαν καὶ ἡ ψυχὴ ἐκ τῶν δύο , περιφεροῦς καὶ εὐθείας , ὑπέστη ἐκ πέρατος καὶ ἀπείρου ,
ψυχροῦ . Κρύσταλλος συντελεῖται καὶ κατ ' ἔκθλιψιν μὲν τοῦ περιφεροῦς σχηματισμοῦ ἐκ τοῦ ὕδατος , σύνωσιν δὲ τῶν σκαληνῶν
3997242 τομων
τε ἀπὸ τῆς ἡμισείας καὶ τοῦ ἀπὸ τῆς μεταξὺ τῶν τομῶν τετραγώνου . Εὐθεῖα γάρ τις ἡ ΑΒ τετμήσθω εἰς
διὰ τοῦ κέντρου τῶν τομῶν , καὶ ἤχθω διάμετρος τῶν τομῶν ἡ ΑΗ , καὶ ἐφαπτομένη τῆς τομῆς ἤχθω ἡ
3996578 καταγομενας
νῆσον τὴν Στυρέων , καλεομένην δὲ Αἰγιλίην , τοῦτο δὲ καταγομένας ἐς τὸν Μαραθῶνα τὰς νέας ὅρμιζε οὗτος , ἐκβάντας
τῆς ΕΖΗΘ τομῆς : πάσας γὰρ τὰς παρὰ τὴν ΚΛ καταγομένας ἐπ ' αὐτὴν δίχα τέμνει , ὥσπερ τὴν ΖΘ
3993228 προβληματος
Ζ Ε σημείοις , ὅπερ : ∼ Ὁ μοναχὸς πρώτου προβλήματος τοῦ τρίτου ἐπιτάγματος . καʹ . Τριῶν δοθεισῶν εὐθειῶν
ἀναγκαζόμεναι δυστυχοῦσιν ἀπαιδίαν αἱ νῆσοι . Διήγησίς ἐστι παντὸς μὲν προβλήματος αὐτὸ τὸ πρᾶγμα , ἐξ οὗ συνέστηκεν ἡ ὑπόθεσις
3991710 ζῳοφορου
καὶ τεσσάρων καὶ πέντε συμπληροῦσιν ἀριθμὸν τὸν δώδεκα , τοῦ ζῳοφόρου κύκλου παράδειγμα , διπλασιασθείσης . . . . .
τόπῳ αὐτῆς περὶ τὸ αὐτὸ στρεφομένης , ἐνεργούσης δὲ τὴν ζῳοφόρου κύκλου . . . , παραδιδοῦσα τὸ πᾶν τοῦτο
3976901 θεωρηματος
καὶ θεωρία ἐκεῖνο . Ἡ ἄρα πρᾶξις ἕνεκα θεωρίας καὶ θεωρήματος : ὥστε καὶ τοῖς πράττουσιν ἡ θεωρία τέλος ,
ἀνεκλείπτου περιφερείας δεδειγμέναις μοίραις ρνζ , ὡς ἐπὶ τοῦ προκειμένου θεωρήματος σελήνης , ἑκατέρα τῶν ΕΓΗ , ΖΑΘ περιφερειῶν [
3973924 τετραγωνῳ
τῆς ὅλης καὶ τοῦ εἰρημένου τμήματος ὡς ἀπὸ μιᾶς ἀναγραφέντι τετραγώνῳ : τεσσαρεσκαιδεκάκι γὰρ ιδ ρϘϚ ποιοῦσι : δεκάκι γὰρ
ἀπὸ τοῦ γβ τετραγώνου ἴσος ἐστὶ τῷ ἀπὸ τοῦ γδ τετραγώνῳ . Ἔστω γὰρ ἀπὸ μὲν τοῦ γδ τετράγωνος ὁ
3972666 περιλαμβανεσθαι
δωδεκάεδρον πρὸς τὸ εἰκοσάεδρον διὰ τὸ ὑπὸ τοῦ αὐτοῦ κύκλου περιλαμβάνεσθαι τό τε τοῦ δωδεκαέδρου πεντάγωνον καὶ τὸ τοῦ εἰκοσαέδρου
πάντας ἁπλῶς ἀκούοιμεν τοὺς ποιητὰς ὥστε καὶ Ὅμηρον καὶ Ὀρφέα περιλαμβάνεσθαι , δῆλον ὅτι καὶ ἑαυτὸν συμπεριλαμβάνει , ὡς οὐδὲ
3950564 συμφυσεως
κατὰ φύσιν , εἶτα ἀγκίστρῳ ἀνατείνας τὰ χείλη τῆς διακοπείσης συμφύσεως παρ ' ἑκάτερα τὰ μέρη περίκοπτε , ὡς τετράγωνον
τρισίν . ἡ δὲ ἀναπλήρωσις οὐ τοῦ ξύλου καὶ τῆς συμφύσεως ἀλλὰ τῆς πίττης ἐστίν : ἐπεὶ τὸ ξύλον ἀδύνατον
3941228 κωλυσοι
δύο . Αἱ μεταπεπλασμέναι δοτικαὶ προπαροξύνονται , εἰ μὴ δισυλλαβία κωλύσοι , διχόμηνι πολυπάταγι μελίκρατι : τὸ γὰρ μελικρᾶτι ἀρσενικὸν
ὅτι βουληθεὶς δυνατὸς θεωρεῖν καὶ ἐνεργεῖν , ἂν μή τι κωλύσοι τῶν ἔξωθεν . τρίτος δὲ παρὰ τούτους ὁ καθ
3938806 θεσει
δεδομένου κύκλου ἐφαπτομένη εὐθεῖα ἀχθῇ , δέδοται ἡ ἀχθεῖσα τῇ θέσει καὶ τῷ μεγέθει . ἀπὸ γὰρ δεδομένου σημείου τοῦ
τῆς βελονοειδοῦς ἐκφύσεως ἡκόντων . . . . ἀνάλογον τῇ θέσει , λοξαὶ μὲν τῶν λοξῶν , εὐθεῖαι δὲ τῶν
3932723 κυβῳ
προσλαβὼν τὸν ἐλάσσονα ἀριθμὸν ἴσος ᾖ τῷ ἀπὸ τοῦ ἐλάσσονος κύβῳ προσλαβόντι τὸν μείζονα ἀριθμόν . Ἔστω ὁ μὲν ʂ
β ἐν μορίῳ τῷ ἀπὸ ΔΥ α # Μο β κύβῳ . καὶ ἔστιν τὸ μόριον κυβικόν : ἔστω ΔΥ
3920442 ἀναγραφομενου
ὥστε καὶ οὕτως ἔσται ἔλαττον δηλονότι τοῦ ἀπὸ τῆς ἡμισείας ἀναγραφομένου . εἰ δὲ μὴ τοὺς προσεχεῖς τετραγώνους ἀριθμοὺς τῷ
πρὸς τὸ ὑπὸ [ τῶν ] ΔΩ , ΩΒ , ἀναγραφομένου ἀπὸ τῆς ΒΩ τετραγώνου καὶ συμπληρουμένου τοῦ ἐπὶ τῆς
3916226 προσπεσουνται
, ὅτι καὶ δύο μόνον ἴσαι ἀπὸ τοῦ Δ σημείου προσπεσοῦνται πρὸς τὸν κύκλον ἐφ ' ἑκάτερα τῆς ΔΗ ἐλαχίστης
ἐν τῷ ΑΔ διαστήματι , πρὸς ἃ αἱ ὄψεις οὐ προσπεσοῦνται . Δεῖ γὰρ τὰ ὁρώμενα ἀπόστασίν τινα ἔχειν πρὸς
3915259 ἐπιζευχθωσιν
ἀπὸ τῶν Τ , Φ ἐπὶ τὴν κορυφὴν τὴν Δ ἐπιζευχθῶσιν εὐθεῖαι ὡς αἱ ΤΔ , ΦΔ , τὸ διὰ
ἐμπίπτωσιν εὐθεῖαί τινες αἱ ΑΔ ΑΖ ΒΓ ΒΖ , καὶ ἐπιζευχθῶσιν αἱ ΕΔ ΕΓ , [ ὅτι ] γίνεται εὐθεῖα
3903342 ὁρισθηναι
' ἀλλήλων , μᾶλλον δὲ ἀδυνάτως ἔχουσι κατὰ τὸ ἀκριβὲς ὁρισθῆναι αἱ τῶν ζῳδίων μοῖραι , ἀλλ ' εἰκός ἐστιν
εἰδέναι τὰς διαφοράς , ἃς ἔχει τὸ προκείμενον εἰς τὸ ὁρισθῆναι πρὸς ἕκαστον τῶν παρ ' αὐτὸ ὄντων ἄνευ τοῦ
3898335 ὁμοταγων
, καὶ ἄλλο τὸ συναμφότερον τοῦτο ὃ οὐκ ἔστιν ἐξ ὁμοταγῶν , οὐδὲ ἐκ στοιχείων , οὐδὲ ἐκ μερῶν ,
ὑπερέχει τοῦ παραδείγματος ἡ ὁμοιότης . Ἡ μὲν δὴ τῶν ὁμοταγῶν ἐπίσης ἔχει πρὸς τὴν ἀντιστροφήν , ἡ δὲ τοῦ
3888155 ἀνασταθεντος
τετραγώνου : καί ἐστιν ὁ κύλινδρος ἐλάττων τοῦ πρίσματος τοῦ ἀνασταθέντος ἀπὸ τοῦ περὶ τὸν ΑΒΓΔ κύκλον περιγραφέντος τετραγώνου :
ἐπὶ τοῦ ΑΒΓΔ ἄρα τετραγώνου ἀνασταθὲν πρίσμα ἥμισύ ἐστι τοῦ ἀνασταθέντος πρίσματος ἀπὸ τοῦ περὶ τὸν ΑΒΓΔ κύκλον περιγραφέντος τετραγώνου
3885169 ἰσων
πονηρὸς ἔδοξεν , ὥστε μηδ ' ἐκεῖ ⌈ ⌉ τῶν ἴσων ἀξιοῦσθαι τοῖς ἄλλοις , ἀλλὰ κλέπτην ὥς φασι ληφθέντα
δυσὶ πλευραῖς ἴσας ἔχοντα ἑκατέραν ἑκατέρᾳ καὶ τὰς ὑπὸ τῶν ἴσων εὐθειῶν περιεχομένας γωνίας ἴσας : καὶ τὴν βάσιν ἄρα
3883133 Λογικου
παρεμφάσεως πρὸς Στησαγόραν βʹ , Περὶ τῶν προσηγορικῶν βʹ . Λογικοῦ τόπου περὶ τὰς λέξεις καὶ τὸν κατ ' αὐτὰς
πρὸς Ἀρισταγόραν αʹ , Συνημμένων πιθανῶν πρὸς Διοσκουρίδην δʹ . Λογικοῦ τόπου τοῦ περὶ τὰ πράγματα Σύνταξις πρώτη Περὶ ἀξιωμάτων
3880466 ἡμιμοιριον
σμύρνα , σίδιον αὖον . Ἕτερον : ἄνθος χαλκοῦ ὀπτὸν ἡμιμοίριον , σμύρνης δύο ἡμιμοίρια , κρόκου τρεῖς μοῖραι ,
κατήντησεν . ἡ μεταφορὰ ἀπὸ τῶν καθορμιζομένων πλοίων εἴρηται . ἡμιμοίριον : τὸ ἥμισυ τῆς δραγμῆς . ἠρύγγη , πόλιον
3877523 περιεχουσαι
ὅτι τὸν αὐτὸν ἀεὶ τόπον ἐπέχουσιν . ~ αἳ γὰρ περιέχουσαί εἰσιν εὐθεῖαι , τῇ θέσει δεδομέναι εἰσίν . Τὸν
ὅτι τὸν αὐτὸν ἀεὶ τόπον ἐπέχουσιν . ~ αἳ γὰρ περιέχουσαί εἰσιν εὐθεῖαι , τῇ θέσει δεδομέναι εἰσίν . Τὸν
3876955 περιλειπομενων
γῆν . ὅτι μὲν γὰρ φθείρεται , δῆλον ἐκ τῶν περιλειπομένων ἀνθράκων : οὗτοι γὰρ τὸν αὐτὸν ὄγκον διαφυλάττοντες τῷ
κατορθώματι ἐπαρθέντες , τῶν τ ' ἀπολωλότων οἶκτος καὶ τῶν περιλειπομένων ἔλεος , ὡς ἀναρπασθησομένων αὐτίκα μάλα δι ' ἀπορίαν
3872724 ἐκτιθεμενων
μέση καλεῖται : τῶν γὰρ καθ ' ἕκαστον τρόπον φθόγγων ἐκτιθεμένων μεσαιτάτη κεῖται . μετὰ δὲ ταύτην ἡμιτόνιον μὲν ἐπιτείναντι
ὑπεροχῆς γίνονται , καὶ πλευραὶ αὐτῶν εἰσιν οἱ μέγιστοι τῶν ἐκτιθεμένων , καὶ ὁ ὑπὸ τοῦ μεγίστου τῶν ἐκτιθεμένων καὶ
3872557 δοθεντος
καί εἰσιν ὅμοιαι ἀλλήλαις : ὅπερ ἔδει δεῖξαι . Κυλίνδρου δοθέντος εὑρεῖν κῶνον καὶ τεμεῖν ἀμφοτέρους ἑνὶ ἐπιπέδῳ ποιοῦντι διὰ
τῶν ἀριθμῶν εἰσιν ὅμοια . . Ὁμοίως ἐπὶ τῆς προσθήκης δοθέντος μέρους τοῦ μεγίστου ᾧ ὑπερέχει ὁ μέσος τοῦ ἐλαχίστου
3871827 γωνιων
ὑπὸ τὴν κλίσιν διάστημα , οὐ σωθήσονται αἱ τοιαῦται τῶν γωνιῶν διαφοραί , παρόσον ὑπερέχουσί τε ἀλλήλας καὶ ὑπερέχονται ὑπ
' αὐτοῦ τὸν ἀπὸ τοῦ τετράδι ἐλάσσονος τοῦ πλήθους τῶν γωνιῶν , καὶ τὸν λοιπὸν μερίσαντες εἰς τὸν ηπλ .
3869519 ΔΖΘ
ἴσας γωνίας : ὅμοιον ἄρα ἐστὶν τὸ ΑΓΗ τρίγωνον τῷ ΔΖΘ τριγώνῳ . ηʹ . Διὰ μὲν οὖν τοῦ συνημμένου
ἴσας γωνίας : ὅμοιον ἄρα ἐστὶν τὸ ΑΓΗ τρίγωνον τῷ ΔΖΘ τριγώνῳ . Ὁμοίως καὶ τὸ ΑΗΒ τῷ ΔΘΕ ,
3861833 δεδομεναις
ἀπό τινος σημείου ἐπὶ θέσει δεδομένας παραλλήλους καταχθῶσιν εὐθεῖαι ἐν δεδομέναις γωνίαις ἤτοι ἀποτεμνοῦσαι πρὸς τοῖς ἐπ ' αὐτῶν δοθεῖσι
, ἤτοι ἐν ἴσαις γωνίαις ἢ ἐν ἀνίσοις μέν , δεδομέναις δέ , ἔσται ὡς ἡ τοῦ πρώτου πλευρὰ πρὸς
3859154 ΑΛΛΩΣ
μεῖζόν ἐστιν : ὅπερ ἔδει δεῖξαι . Ϛʹ , λʹ ΑΛΛΩΣ Ἔστω ἡ δοθεῖσα εὐθεῖα ἡ ΑΒ . δεῖ δὴ
ΚΟΤΕΕΙ . Ζηλοῖ , ὀργίζεται , φθονεῖ , βασκαίνει . ΑΛΛΩΣ . Προτρέπεται πρὸς γεωργίαν διὰ τοῦτο . Ἐν γὰρ
3844924 σχεσεις
δεῖ γάρ με εἶναι ἀπαθῆ ὡς ἀνδριάντα , ἀλλὰ τὰς σχέσεις τηροῦντα τὰς φυσικὰς καὶ ἐπιθέτους ὡς εὐσεβῆ , ὡς
εἶναι πολυώνυμα , ἐφ ' ὧν οὐ κατὰ τὰς διαφόρους σχέσεις τῆς μιᾶς φύσεως διάφορα κεῖται ὀνόματα , ἀλλ '
3841662 κινου
οὔτε ἐμειδίασεν ἄλλος σὺν Ἀφροδίτῃ τοσαύτῃ οὔτε μὴν ἔστησεν ἐρυθήματι κινού - μενον ἤδη τὸν γέλωτα . οὐ τοίνυν οὔτε
ὃν φέρεται . πευσόμεθα γὰρ αὐτῶν , πότε φέρεται τὸ κινού - μενον ἀπὸ τοῦ ἐν ᾧ ἔστι τόπου εἰς
3836893 ἀνισων
καὶ εἰς ἄνισα θ καὶ γ . τὸ ἀπὸ τῶν ἀνίσων τῆς ὅλης τετράγωνον , τουτέστι θ ἐπὶ θ ,
τετράγωνος , ἀλλὰ καὶ ἑτερομήκης λέγεται , ὡς ἂν ἐξ ἀνίσων πλευρῶν συντεθεὶς ἔκ τε τοῦ η καὶ τοῦ β
3824221 γραφομενην
ἁπλᾶς , ἀλλὰ καὶ τρίτην ἄλλην τὴν περὶ κύλινδρον ἕλικα γραφομένην : καὶ αὕτη γάρ , φασίν , ὁμοιομερὴς ὥσπερ
ἀρχαὶ ἀπὸ φωνηέντων ἐγίνοντο , τὴν ου συλλαβὴν ἑνὶ στοιχείῳ γραφομένην . τοῦτο δ ' ἦν ὥσπερ γάμμα διτταῖς ἐπὶ
3819352 ὑποθετικῳ
ὅρος τοῦ συλλογισμοῦ ὁ ἀποδεδομένος ὑπ ' αὐτοῦ καὶ τῷ ὑποθετικῷ , καὶ ἐπ ' ὀλίγον καὶ περὶ ὑποθετικῶν συλλογισμῶν
. τὸ ἀδύνατον οὖν , φησίν , τὸ ἐν τῷ ὑποθετικῷ συλλογισμῷ κατηγορικὸς συλλογισμὸς δείκνυσιν , οἷον ὁ αὐτὸς ἀριθμὸς
3817572 ἀποκηρυσσει
πυνθάνεται ὁ πατὴρ τὸ ἀπόρρητον καὶ οὐ λέγοντα τὸν υἱὸν ἀποκηρύσσει , οἷον ἡμῖν ἐξενήνεκται καὶ περὶ τοῦδε προοίμιον δεύτερον
ἐρῶν ἀπήγξατο : ὁ δεύτερος τῆς αὐτῆς ἐρᾷ : οὐκ ἀποκηρύσσει αὐτὸν ὁ πατὴρ καὶ κρίνεται ὑπὸ τοῦ τρίτου παρανοίας
3814294 σχηματος
μετά τινος , καὶ τὸ τοιόνδε μέγεθος μετὰ τοῦ τοιοῦδε σχήματος λαμβάνειν , λογικῆς ἐστι δυνάμεως . ἄλογος δέ γέ
διορισμοὶ τοῦ συμπεράσματος ἐπὶ τῆς παρούσης μίξεως καὶ τοῦ παρόντος σχήματος : ἄλλος ἐν τῷ πρώτῳ τρόπῳ : ἀεὶ γὰρ
3809747 ὀρθογωνιου
. Ἦν δὲ τὸ προκείμενον ὑγιέστερον προτεῖναι καὶ οὕτως . ὀρθογωνίου τυχόντος ὑποκειμένου τοῦ ΑΒΓ λαβεῖν τι σημεῖον ἐντὸς τοῦ
τὸ δὲ τοῦ ἀμβλυγωνίου ὕψος μὴ ἔλαττον ᾖ τοῦ τοῦ ὀρθογωνίου ὕψους , ἡ πρὸς τῇ κορυφῇ γωνία τοῦ ὀρθογωνίου
3803219 ἐφεσταται
τῶν Κ , Λ σημείων ἴσα καὶ ὀρθὰ τμήματα κύκλων ἐφέσταται τὰ ΚΜ , ΛΜ καὶ τὰ τούτοις συνεχῆ ,
τῶν Θ , Γ σημείων ἴσα καὶ ὀρθὰ τμήματα κύκλων ἐφέσταται τὰ ΕΚ , ΓΘ καὶ τὰ συνεχῆ αὐτοῖς ,

Back