τριγώνου . ἐδείχθη δὲ καὶ ἡ ὑπὸ ΖΒΓ τῇ ὑπὸ ΗΓΒ ἴση : καί εἰσιν ὑπὸ τὴν βάσιν . Τῶν
διὰ τῶν Γ Ζ [ ἐρχέσθω , καὶ ἔστω τὰ ΗΓΒ ΕΖΘ ] : ἤτοι δὴ ἐφάπτονται αἱ ΑΓ ΔΖ
5105811 ΑΚΘ
. ὥστε καὶ γωνίαι ἡ ὑπὸ ΑΔΒ καὶ ἡ ὑπὸ ΑΚΘ καὶ ἡ ὑπὸ ΑΝΜ ἴσαι εἰσί . καὶ ἐπεὶ
τὴν ΔΗΘ καὶ ἀγάγωμεν τῇ ΕΖ πρὸς ὀρθὰς γωνίας τὴν ΑΚΘ , ἴσαι μὲν γίνονται ἥ τε ὑπὸ ΚΑΗ γωνία
5102387 ΚΒΟΣ
καὶ παράλληλοί εἰσιν διὰ τὸ λγʹ τοῦ αʹ . τὸ ΚΒΟΣ ἄρα τετράπλευρον . , . ] τετράπλευρόν ἐστιν ,
κύκλος . Ἤχθω ἀπὸ τοῦ Α σημείου ἐπὶ τὸ τοῦ ΚΒΟΣ τετραπλεύρου ἐπίπεδον κάθετος ἡ ΑΨ καὶ συμβαλλέτω τῷ ἐπιπέδῳ
5100492 ἰση
ἐν τῇ νυκτὶ περιφέρεια ἡ εκʹ , καὶ τῇ εκʹ ἴση ἀπειλήφθω ἡ δλʹ , καὶ κοινὴ ἡ λεʹ :
. μείζων ἄρα ἡ ΓΔ τῆς ΑΒ φαίνεται . Τὰ ἴση μεγέθη καὶ παράλληλα ἄνισον διεστηκότα ἀπὸ τοῦ ὄμματος οὐκ
4832975 ἀπειραχως
ὅτι δὲ ταῦτα οὐ μοναχῶς ἀλλ ' ὀλίγου δέω λέγειν ἀπειραχῶς ἐν τοῖς οὖσιν ἔστι , πάλαι καὶ πρόπαλαι θεολόγων
ΗΛ , τουτέστιν συναμφοτέρῳ τῇ ΕΒΓ ἴση , καὶ γίνεται ἀπειραχῶς . κϚʹ . Ἔστω δὴ νῦν ἰσοσκελὲς τὸ ΑΒΓ
4770044 ΣΚ
μετὰ τοῦ ἀπὸ ΣΚ . ᾧ ἄρα διαφέρει τὸ ἀπὸ ΣΚ τοῦ ἀπὸ ΚΡ , τούτῳ διαφέρει τὸ ὑπὸ ΜΡΝ
ἑκατέρας τῶν ΣΚ , ΚΨ , μείζων ἄρα καὶ ἡ ΣΚ τῆς ΚΨ . ἀλλ ' ἡ μὲν ΣΚ τῇ
4760160 ἰσαι
ἔσται ἅπαντα κατὰ τὰ αὐτά . Κείσθωσαν τῇ ΕΗ περιφερείᾳ ἴσαι περιφέρειαι αἱ ΗΘ , ΘΚ , ΚΛ , ἡ
, ΗΘ , ΘΚ ἐπὶ τῆς τοῦ λοξοῦ κύκλου περιφερείας ἴσαι ἑξῆς ἐπὶ τὰ αὐτὰ μέρη τοῦ μεγίστου τῶν παραλλήλων
4664681 τοσαυταπλασιων
δὴ καὶ ὁσαπλασίων ἐστὶν ἡ ΝΕ περιφέρεια τῆς ΕΖ , τοσαυταπλασίων ἐστὶ καὶ ἡ ὑπὸ ΝΘΕ γωνία τῆς ὑπὸ ΕΘΖ
ὁσαπλασίων ἄρα ἐστὶν ἡ ΛΒ περιφέρεια τῆς ΒΓ περιφερείας , τοσαυταπλασίων ἐστὶ καὶ ὁ ΗΒΛ τομεὺς τοῦ ΗΒΓ τομέως .
4623290 ὑπερπεσειται
οὔτε ἐφάψεται οὔτε τεμεῖ τὸ ΖΘΗ τμῆμα , ἀλλ ' ὑπερπεσεῖται . ὑπερπιπτέτω οὖν , εἰ δύνατον , καὶ ἔστω
διὰ τοῦ Κ ἐλεύσεται [ ὁ ΕΗΘ κύκλος ] ἢ ὑπερπεσεῖται τὸ Κ ὡς ἐπὶ τὰ Β μέρη : οὐδὲν
4597527 λειπουσα
ἐκείνῳ ὑπεράνω ὄντι ἀφώτιστος ἂν εἴη τῷ ἑτέρῳ ἡμισφαιρίῳ , λείπουσα δὲ ἡμῖν ἐκείνῳ πλησίφως : ὥστε τὰ ἐναντία ποιεῖν
τῆς ΜΛ . τῆς ἄρα ὑπὸ ΜΚΛ γωνίας δοθείσης ἡ λείπουσα εἰς τὰς δύο ὀρθὰς ἡ κλίσις ἔσται τῶν ἐπιπέδων
4555775 ΑΔΘ
: καὶ τῆς ὑπὸ ΓΗΑ ἄρα μείζων ἐστὶν ἡ ὑπὸ ΑΔΘ γωνία : ὥστε μεῖζόν ἐστιν τὸ ὑπὸ ΔΒΓ τοῦ
κοιναὶ τομαὶ ἡ ΑΒ καὶ ἡ ΗΖ , τοῦ δὲ ΑΔΘ κύκλου καὶ τοῦ ΑΗΒΖ κοινὴ τομὴ ἡ ΑΘ ,
4551074 ΒΑΕ
ΑΕ : ἀκολούθως δὲ αὐταῖς καὶ αἱ ὑπὸ ΒΑΔ καὶ ΒΑΕ γωνίαι . τῆς δὲ τοῦ ζῳδιακοῦ θέσεως ἐγκεκλιμένης ,
ἡ ΔΕ , ἴση ἐστὶν ἡ ὑπὸ ΔΑΒ τῇ ὑπὸ ΒΑΕ . ἀλλ ' ἡ ὑπὸ ΔΑΒ τῇ ἐν τῷ
4546002 συμπιπτουσιν
μέσην πάροδον τοῦ ἡλίου κατὰ μιᾶς καὶ τῆς αὐτῆς εὐθείας συμπίπτουσιν ἀμφό - τεραι , ἐπὶ δὲ τῶν ἄλλων πασῶν
. προσήκει μέντοι μηδὲ τοῦτ ' ἀγνοεῖν , ὅτι καιροὶ συμπίπτουσιν ἀβούλητοι πολλάκις , ἐν οἷς ἀνδροφονεῖ τις οὐκ ἐπὶ
4488903 ΑΕΖΓ
νοήσωμεν μεσημβρινὸν κύκλον τὸν ΑΒΓΔ καὶ ζῳδιακοῦ μὲν ἡμικύκλιον τὸ ΑΕΖΓ , ὁρίζοντος δὲ τὸ ΒΕΔ περὶ πόλον τὸ Η
διαστήματι δὲ ὁποτερῳοῦν τῶν ΒΑ , ΒΓ γεγράφθω κύκλος ὁ ΑΕΖΓ , καὶ ἐκβεβλήσθωσαν αἱ ΑΒΕ , ΑΔΖ , ΑΗΘ
4482356 ἐπιζευχθεισῃ
γραφεῖσα ἡ ΖΗΘ τεμνέτω τὴν ΘΚΛ κατὰ τὸ Θ καὶ ἐπιζευχθείσῃ τῇ ΔΘ παράλληλος ἤχθω ἡ ΕΛ . δῆλον δ
] . καὶ ἔσται παράλληλος ἡ μὲν ΑΓ τῇ ΕΖ ἐπιζευχθείσῃ , ἡ δὲ ΕΖ τῇ ΚΘ , ἡ δὲ
4478151 ΒΚΘ
Η , διαστήματι δὲ τῷ ΗΒ , κύκλος γεγράφθω ὁ ΒΚΘ : παράλληλος ἄρα ἐστὶν ὁ ΓΔΕ κύκλος τῷ ΒΚΘ
τῇ ΖΞ , ὅμοιόν ἐστι τὸ μὲν ΛΚΕ τρίγωνον τῷ ΒΚΘ , τὸ δὲ ΒΚΘ τῷ ΒΔΖ , καὶ ἔτι
4459434 ὀρθογωνιος
τρίγωνον ὀρθογώνιον ὄν : ὥστε καὶ ἡ τοῦ κώνου κορυφὴ ὀρθογώνιός ἐστιν . εἰ δὲ μείζων ἐστὶν ἡ ΒΓ τῆς
κύκλος , ἀλλὰ τεταρτημορίου σφαίρας ἐστὶν ἐπιφάνεια , εἴπερ γε ὀρθογώνιός ἐστιν ὁ τῆς ὄψεως κῶνος ὡς ἐδείξαμεν . ἐπιβάλλομεν
4457942 Ϛγʹ
, πρὶν παθεῖν , διδαχθῆναι , πηλίκον ἐστὶν ἡσυχία . Ϛγʹ . Νουμηνίῳ . Οὐ θρηνητέον οἵων φίλων ἐστερήθημεν ,
γʹʹ , τῶν αὐτῶν ἔσται καὶ ἡ μὲν ΒΖ ὑποτείνουσα Ϛγʹ δεκάτου , ἡ δὲ ὑπὸ ΒΖΕ γωνία τοιούτων ρνʹ
4446124 προδεδεικται
ἐστὶν ἡ διὰ τῶν Η Μ Κ : τοῦτο γὰρ προδέδεικται . ιγʹ . Ἀλλὰ δὴ μὴ ἔστωσαν αἱ ΑΒ
ΕΑ , ἐλαχίστη δὲ ἡ ΑΖ : ταῦτα γὰρ ἅπαντα προδέδεικται . ἡ ΕΑ ἄρα πρὸς τὴν ΑΖ μείζονα λόγον
4412238 ὁσαπλασιων
ἀλλήλοις , καί ἐστιν ἴσον τὸ πλῆθος τῷ πλήθει , ὁσαπλασίων ἄρα ἐστὶν ὁ ΛΚ ἄξων τοῦ ΕΚ ἄξονος ,
γωνία τῆς ὑπὸ ΒΗΓ . διὰ τὰ αὐτὰ δὴ καὶ ὁσαπλασίων ἐστὶν ἡ ΝΕ περιφέρεια τῆς ΕΖ , τοσαυταπλασίων ἐστὶ
4407589 παραλληλοι
. ἐπεὶ γὰρ αἱ ΑΓ , ΒΔ ἐφαπτόμεναι τῶν τομῶν παράλληλοί εἰσι , διάμετρος μὲν ἡ ΑΒ , τεταγμένως δὲ
κατὰ πᾶσαν θέσιν ἀσύμπτωτοί εἰσιν ἀλλήλαις καὶ οὐ διὰ τοῦτο παράλληλοί εἰσιν . ἓν οὖν ἔστω τὸ ἐπίπεδον , καὶ
4397315 παραπληρωματα
ἔψαλλε . . , : Βλίτυρι καὶ σκινδαψός : ταῦτα παραπληρώματα λόγων , εἰσὶ δὲ καὶ παροιμιώδη . Ἰόβας δὲ
ΡΖ . ἀλλὰ τὸ ΜΠ τῷ ΠΛ ἐστιν ἴσον : παραπληρώματα γὰρ τοῦ ΜΛ παραλληλογράμμου : καὶ τὸ ΑΗ ἄρα
4366996 ΖΔΘ
λέγω ὅτι μείζων ἐστὶν ἡ ὑπὸ ΚΔΛ τῆς ὑπὸ τῶν ΖΔΘ . προγράφεται δὲ τάδε . ληʹ . Ἔστω κύκλος
ΖΔΘ : ἡ ἄρα ὑπὸ ΚΔΛ μείζων ἐστὶν τῆς ὑπὸ ΖΔΘ . μαʹ . Ἐὰν ἡ ἀπὸ τοῦ ὄμματος προσπίπτουσα
4363522 γραμμαι
που τοιόνδε : ποικίλαι κατὰ τοῦ νώτου παντὸς αὐτοῦ διήκουσι γραμμαί : ἔπειτα ἐὰν προσάψηται ἀνθρώπου σώματι , φρίκην τε
καὶ αἱ στιγμαί , δηλονότι καὶ αἱ ἐπιφάνειαι καὶ αἱ γραμμαί , οὐσίαι ὑπάρχουσιν ἢ οὐχ ὑπάρχουσιν : εἰ γὰρ
4363372 ΤΝ
, ΒΕΓ τρίγωνα . ἔστιν ἄρα , ὡς τὸ ἀπὸ ΤΝ πρὸς τὸ ἀπὸ ΤΟ , οὕτως τὸ ἀπὸ ΒΕ
διελθὸν ἐπὶ τὸ Ξ παραγίγνεται : ὁμοία ἄρα ἐστὶν ἡ ΤΝ τῇ ΞΡ . Ἔστω τῆς μὲν ΤΜ ἡμίσεια ἡ
4257919 ΒΗΔ
ΩΒ τῇ ΒΨ . καί ἐστι μέγιστος τῶν παραλλήλων ὁ ΒΗΔ , καὶ παράλληλοι κύκλοι οἱ ΩΚ , ΨΛ :
ΓΔ . ὁμοίως δὴ τοῖς πρὸ τούτου ὅτι ἡ ὑπὸ ΒΗΔ γωνία ἡ λείπουσά ἐστιν εἰς τὰς δύο ὀρθὰς τῆς
4246848 ΓΖΒ
κζʹ . Γεγράφθω περὶ τὰς ΑΕ ΓΒ ἡμικύκλια τὰ ΑΖΕ ΓΖΒ , καὶ ἐπεζεύχθωσαν αἱ ΑΖ ΓΖ ΔΖ ΕΖ ΒΖ
ὑπὸ ΖΒΕ δεδειγμένῃ τῶν αὐτῶν ιϚ μδ καὶ τῇ ὑπὸ ΓΖΒ ὑποκειμένῃ τῶν αὐτῶν πε λη , εἴη ἂν καὶ
4246633 ἡμισειᾳ
ἐκβεβλήσθω ἡ ΑΒΕ , καὶ κείσθω ἡ ΒΕ ἴση τῇ ἡμισείᾳ τῆς ἐκ τοῦ κέντρου , καὶ ἐν τῷ ὀρθῷ
αὐτὰς ἐνθέρμους καταβάπτομεν εἰς γλεῦκος καὶ θάλασσαν ἑψημένην ἐφ ' ἡμισείᾳ , καὶ ἀνελόμενοι ἐπιτιθέμεθα εἰς τὴν ληνὸν νύκτα καὶ
4184710 ΓΠ
ἐπεί ἐστιν , ὡς ἡ ΓΞ πρὸς ΞΑ , ἡ ΓΠ πρὸς ΑΟ , καί ἐστιν ἡ μὲν ΓΠ τῆς
δευτέρας καταγραφῆς , καὶ ἐπεζεύχθωσαν αἱ ΒΞ , ΞΓ , ΓΠ . ἐπεὶ οὖν αἱ ΒΞΓ τῆς ΒΓ μείζους εἰσίν
4179874 Συμπεπληρωσθω
ἀλλήλαις κείμεναι , ὧν δεῖ δύο μέσας ἀνάλογον εὑρεῖν . Συμπεπληρώσθω τὸ ΑΒΓΔ παραλληλόγραμμον , καὶ ἐκβεβλήσθωσαν αἱ ΔΓ ΔΑ
ΔΑ δύο μέσαι κατὰ τὸ συνεχὲς λαμβάνονται τρόπῳ τοιῷδε . Συμπεπληρώσθω τὸ ΑΒΓΔ παραλληλόγραμμον , καὶ τετμήσθω δίχα ἑκατέρα τῶν
4177385 ΓΖΘ
καὶ ΔΛ , κάθετοι δ ' ἤχθωσαν ἐπὶ μὲν τὴν ΓΖΘ ἐκβληθεῖσαν ἀπὸ τῶν Η καὶ Δ ἥ τε ΗΜ
καὶ τῷ μεγέθει ἡ ΓΠ , καὶ διηγμέναι αἱ ΠΖΚ ΓΖΘ , ὥστε παράλληλον εἶναι τῇ ΓΠ τὴν ΚΘ ,
4160318 καταγομεναι
ἡ ΓΑ , ὀρθία δὲ ἡ ΓΛ , αἱ δὲ καταγόμεναι ἀπὸ τῶν τομῶν ἐπὶ τὴν ΓΑ καταχθήσονται ἐν τῇ
καὶ φανοῦνται παράλληλοι , αἱ δ ' ἐπὶ τὴν ΑΓ καταγόμεναι διαχθήσονται μὲν ἀπὸ τοῦ Κ , φανοῦνται δὲ τῇ
4136061 ἀξων
, οὗ βάσεις μὲν οἱ Α , Β κύκλοι , ἄξων δὲ ἡ ΑΒ εὐθεῖα , καὶ εἰλήφθω τι σημεῖον
. ἔστω ἡ δοθεῖσα κώνου τομὴ πρότερον παραβολή , ἧς ἄξων ὁ ΑΒ , ἡ δὲ δοθεῖσα γωνία ἡ Θ
4129527 ΛΥ
δοθὲν ἄρα καὶ τὸ ὑπὸ ΛΥΦ : καὶ δοθέντα τὰ ΛΥ : δοθὲν ἄρα τὸ Φ : ἀπῆκται οὖν εἰς
ΛΖ βάσις τῇ ΝΖ βάσει , ἴσον ἐστὶ καὶ τὸ ΛΥ στερεὸν τῷ ΝΥ στερεῷ , καὶ εἰ ὑπερέχει ἡ
4118648 ΗΖΛ
τὴν ΖΛ . δύο δὴ τρίγωνά ἐστι τὰ ΒΑΕ , ΗΖΛ μίαν γωνίαν μιᾷ γωνίᾳ ἴσην ἔχοντα τὴν ὑπὸ ΒΑΕ
πάλιν ἀποκατασταθῇ ὅθεν ἤρξατο φέρεσθαι , τὰ μὲν ΚΓΔ , ΗΖΛ ἡμικύκλια ἐνεχθήσεται κατὰ τῶν σφαιρῶν , τὸ δὲ ΑΖ
4097173 ἀπειλημμεναι
ὅλων , ἀπὸ δὲ τοῦ ἐξ ἀρχῆς κύκλου ἴσαι περιφέρειαι ἀπειλημμέναι εἰσὶν αἱ ΑΛ , ΔΜ : ἡ ἄρα ἀπὸ
ὅλων , ἀπὸ δὲ τῶν ἐξ ἀρχῆς κύκλων ἴσαι περιφέρειαι ἀπειλημμέναι εἰσὶν αἱ ΜΝ , ΠΡ , ἡ ἄρα ἀπὸ
4092201 τομαι
τὸ δὲ μέλαν , τοσαῦται ἔσονται διαφοραὶ ὅσαι καὶ αἱ τομαὶ τοῦ πράγματος ὑπάρχουσιν . ὥστε φανερὸν ὅτι ὁρισμὸς οὐδέν
τῆς ἐκ τοῦ κέντρου τετραγώνῳ . ἔστωσαν κατὰ συζυγίαν ἀντικείμεναι τομαὶ αἱ Α , Β , Γ , Δ ,
4087471 ΘΡ
ΘΚ , σύμμετρος δὲ τῇ ΗΘ , καὶ κείσθω τῇ ΘΡ ἴση ἡ ΣΗ , καὶ διὰ τῶν Σ ,
ΞΖ , ΖΟ , ΟΗ , ΗΠ , ΠΘ , ΘΡ , ΡΕ τριγώνων πυραμὶς ἰσοϋψὴς τῷ κώνῳ . ἑκάστη
4077935 ΝΗΞ
περιφέρειαν . γεγράφθω γὰρ διὰ τοῦ Η παράλληλος κύκλος ὁ ΝΗΞ , καὶ ἔστωσαν κοιναὶ τομαὶ τῶν ἐπιπέδων αἱ ΑΚ
ὁ ΑΒΓ κύκλος ὀρθός ἐστι πρὸς ἕκαστον τῶν ΔΛΜ , ΝΗΞ , ΒΕΓ κύκλων . ἐπεὶ οὖν ἐν σφαίρᾳ παράλληλοι
4065691 σκαληνον
ὡς τὰ πολλαχῶς καὶ ἀορίστως γινόμενα : δύναται γὰρ καὶ σκαληνὸν τρίγωνον μετρεῖσθαι ὑπὸ τοῦ προτεθέντος καὶ ὁρισθέντος ῥητοῦ μέτρου
τοῦ τρίγωνον εἶναι καθ ' αὑτὸ μᾶλλον ἢ ἐκ τοῦ σκαληνὸν ἀποδείκνυται . καὶ ὄντος τοῦ καθόλου γίνεται ἡ ἀπόδειξις
4058008 νοητοι
τοὺς δὲ αἰσθητοὺς φθαρτούς , ἤδη διὰ τὸ ἀίδιον οἱ νοητοὶ παρακτικοὶ ὑπάρχουσι τῶν αἰσθητῶν , ὡς ἐν τῇ θεωρίᾳ
ἐκ τῆς αὐτῶν φύσεως κατασκευάσαι ἐδίδασκεν ἡμᾶς τὸ ὅτι εἰσὶ νοητοὶ τῆς σαρκὸς πόροι , κατά τινα τοιαύτην ἔφοδον :
4046380 ΓΔΚ
ΚΛ ἄξονα , οὕτως ὅ τε ΑΒΗ κῶνος πρὸς τὸν ΓΔΚ κῶνον καὶ ὁ ΕΒ κύλινδρος πρὸς τὸν ΖΔ κύλινδρον
καὶ ὡς ἄρα ὁ ΑΒΖ κῶνος ἢ κύλινδρος πρὸς τὸν ΓΔΚ κῶνον ἢ κύλινδρον , οὕτως ὁ ΓΔΘ κῶνος ἢ
4044531 ΒΛΓ
, τὸ ΜΛΓ πρὸς τὸ ΜΑΓ , καὶ τὸ διπλάσιον ΒΛΓ πρὸς τὸ ΒΑΓ : καὶ συνθέντι ἄρα πρὸς συγκείμενον
δὲ τὸ ΔΛ τετράπλευρον τῷ ΑΕΗ τριγώνῳ , τὸ δὲ ΒΛΓ τῷ ΑΓΘ : ὡς ἄρα τὸ ὑπὸ ΖΕΔ πρὸς
4011935 ΘΛΖ
ΒΓ τῇ ΣΛ , καὶ ὅμοιον τὸ ΘΓΒ τρίγωνον τῷ ΘΛΖ , καί ἐστιν , ὡς ἡ ΘΒ πρὸς ΓΒ
ἡ ΣΥ . λέγω , ὅτι τὸ ΣΛΥ τρίγωνον τοῦ ΘΛΖ τριγώνου μεῖζόν ἐστι τῷ ΘΓΒ . ἤχθω γὰρ διὰ
4003424 τεμνουσιν
, καὶ ἀπὸ τοῦ Μ σημείου , καθ ' ὃ τέμνουσιν ἀλλήλους οἱ κύκλοι , ἐπεζεύχθωσαν αἱ ΜΑ , ΜΒ
ἐπεὶ γὰρ ἐν σφαίρᾳ δύο κύκλοι οἱ ΩΒΓ , ΗΘΚ τέμνουσιν ἀλλήλους , διὰ δὲ τῶν πόλων αὐτῶν γέγραπται μέγιστος
3989068 ρπαʹ
, οὕτω καὶ νῦν εἰς τύχην ἀνάγει τὸν λόγον . ρπαʹ Τέχνῃ λαβεῖν Ἵνα τεχνικῶς τις διέλῃ πρῶτον εἰς δύο
ὁ λόγος ἐστὶ τῆς ΗΖ πρὸς τὴν ΖΘ ὁ τῶν ρπαʹ ∠ ʹʹγʹʹ πρὸς τὰ μϚʹ ∠ ʹʹ καὶ κʹʹ
3974153 ΚΛΘ
καὶ ὑφ ' ἡμῶν διχῶς . Ἔστω γὰρ κύκλου τοῦ ΚΛΘ περιφέρεια ἡ ΛΘ , καὶ δέον ἔστω τεμεῖν αὐτὴν
τοῦ ΔΖ , τὸ δὲ ΗΘ τοῦ ΖΗ καὶ ὁ ΚΛΘ κύκλος μείζων τοῦ ΚΛΔ . Ἐπὶ τὰ προβλήματα πάλιν
3972678 καθετῳ
εὐθείας κέντροις τοῖς πέρασιν αὐτῆς , διαστήματι δὲ τῇ ἀγομένῃ καθέτῳ ἀπὸ τῆς διχοτομίας αὐτῆς ἐπὶ τὴν παράλληλον αὐτῇ πλευρὰν
ὅπερ ἄτοπον . Ἐδείχθη γὰρ ἡ ΘΚ κάθετος τῇ ΜΝ καθέτῳ ἴση , αἵτινες κάθετοι ἤχθησαν ἀπὸ τῶν ἐπισταθεισῶν μετεώρων
3972145 ἐκβληθεισαι
ἀπέχουσα ἐν ἀρχῇ τοῦ Σκορπίου ὥρας ἰσημερινὰς δ , καὶ ἐκβληθεῖσαι αἱ ΓΔ , ΑΒ περιφέρειαι τεμνέτωσαν ἀλλήλας μὲν κατὰ
καὶ ἐπιζευχθεῖσαι αἱ ΚΕ , ΚΖ , ΚΗ , ΚΘ ἐκβληθεῖσαι προσπιπτέτωσαν ἐπιπέδῳ τινὶ παραλλήλῳ ὄντι τῷ ΑΒΓΔ κατὰ τὰ
3965282 ΝΕ
τὸ θεώρημα τῆς δὲ ΑΒ ἐξ ἑτέρας παραλλήλους διὰ τὸ ΝΕ , ΖΔ σημεῖον . Ἡ ΑΒ Ϛ , ἡ
τομέως . διὰ τὰ αὐτὰ δὴ καὶ ὁσαπλασίων ἐστὶν ἡ ΝΕ περιφέρεια τῆς ΕΖ περιφερείας , τοσαυταπλασίων ἐστὶ καὶ ὁ
3955775 ἐκκρινοντες
τοῖς ἐκκρινομένοις ἔσται : τεινεσμοὶ βίαιοι καὶ διεγείρονται πολλάκις μηδὲν ἐκκρίνοντες : οὔτε δὲ σφόδρα πυρέττουσιν οὔτε πεινῶσιν οὔτε διψῶσιν
: τέμνοντες γὰρ ᾗ λεπτότατον τὸ δέρμα καὶ τὸ ὑγρὸν ἐκκρίνοντες , διαιροῦμεν καὶ ἄλλαις ταὐτὸ σχῆμα ἐχούσαις τῇ προτέρᾳ
3952621 βασει
ΖΕ ἴσαι εἰσὶν ἑκατέρα ἑκατέρᾳ . καὶ βάσις ἡ ΒΕ βάσει τῇ ΕΔ ἐστιν ἴση : τὸ γὰρ Ε σημεῖον
ὑπὸ ΔΗΖ ἴση : καὶ βάσις μὲν ἄρα ἡ ΒΖ βάσει τῇ ΔΖ ἴση ἐστίν , γωνία δὲ ἡ ὑπὸ
3928413 ΔΚΕ
ΕΒ , ΒΝ πίπτουσιν . ἔστιν δὲ καὶ ἡ ὑπὸ ΔΚΕ ὀρθή : καὶ λοιπὴ ἄρα ἡ ὑπὸ ΚΔΕ ἐστὶν
ΘΓ ἐν τῷ ΑΠΘΓ τετραπλεύρῳ . κἂν τυχοῦσα κλασθῇ ἡ ΔΚΕ , αἱ τρεῖς ὁμοῦ αἱ ΔΚ ΚΕ ΕΖ τῶν
3922697 ΔΨ
ΖΚ βάσις πρὸς τὴν ΞΡ βάσιν , οὕτως τὸ τοῦ ΔΨ στερεοῦ ὕψος πρὸς τὸ τοῦ ΒΤ στερεοῦ ὕψος .
στερεοῦ ὕψος . τὰ δ ' αὐτὰ ὕψη ἐστὶ τῶν ΔΨ , ΒΤ στερεῶν καὶ τῶν ΔΓ , ΒΑ :
3908773 ΚΡ
ἴση ἐστὶν ἡ μὲν ΚΜα τῇ ΒΔ , ἡ δὲ ΚΡ τῇ ΑΒ , ἡ δὲ ΒΕ τῇ ΚΘ ,
τῇ μὲν ΑΓ ἴσην θῶμεν τὴν ΓΔ , τῇ δὲ ΚΡ ἴσην τὴν ΡΧ , καὶ τὰ αὐτὰ κατασκευάσωμεν ,
3907956 διαμετρος
ἡ διὰ τῆς ιʹ μοίρας τῶν Χηλῶν καὶ τοῦ Κριοῦ διάμετρος ἡ ΑΖΒΓ , καὶ ὑποκείσθω καθάπερ ἐπὶ τῆς προτέρας
τετμημένον τῷ ἐπιπέδῳ , ὑφ ' οὗ γέγονεν ἡ ΕΔ διάμετρος τῆς τοῦ κυλίνδρου τομῆς , ἔσται καὶ ἐν τῷ
3905076 ΣΤ
καὶ ἀπεναντίον περιφέρεια ἡ ΣΤ καὶ μεταξὺ τῶν ΞΗ , ΣΤ ὁ ἰση - μερινὸς ἔστω ὁ ΥΧΦ . καὶ
ΠΗΡ , ΣΘ , ΤΥΚ : μείζων ἄρα ἐστὶν ἡ ΣΤ περιφέρεια τῆς ΣΠ περι - φερείας . ἀλλ '
3902899 γωνια
δὲ τοῦ ὀϲτέου καὶ τοῦ ὄνυχοϲ ἀπαθῶν μεινάντων ἡ ἐκτὸϲ γωνία τοῦ ὄνυχοϲ ὑποδυομένη καὶ νύττουϲα τὴν ἐπιπεφυκυῖαν αὐτῇ ϲάρκα
βάσει τοῦ κυλίνδρου , καὶ ὑποκείσθω ἡ πρὸς τῷ Α γωνία ὀξεῖα , καὶ διὰ τοῦ Γ ἤχθω κάθετος ἐπὶ
3902705 ΔΛΜ
Σ , Π , Ο ἄρα σημεῖα κέντρα ἐστὶ τῶν ΔΛΜ , ΝΗΞ , ΒΕΓ κύκλων . καὶ ἐπεὶ ἐπίπεδα
ΔΕΖ , οὗ δὲ ἐφάπτεται ὁ ΔΕΖ , ἔστω ὁ ΔΛΜ . λέγω , ὅτι ἡ τῆς σφαίρας διάμετρος πρὸς
3888625 ἠρωτηκα
σε πρῶτον , οὐχὶ καὶ οἱ ἀστέρες ἄρτιοί εἰσιν ; ἠρώτηκα δὲ τί σε πρῶτον : οὐκ ἄρα οἱ ἀστέρες
ἐρωτηθῆναι τὸ ἀποφατικὸν τῆς συμπλοκῆς , τῆς προσλήψεως ἀληθοῦς γενομένης ἠρώτηκα δέ τί σε πρῶτον , διὰ τὸ ἠρωτῆσθαι πρὸ
3883293 ΕΖΓ
καὶ τῶν γωνιῶν ἡ ὑπὸ ΕΒΓ καὶ οὐχὶ ἡ ὑπὸ ΕΖΓ . ἔνθεν καὶ πρὸς τὸ ποιήσασθαί τινα κἂν μερικὴν
τῇ ὑπὸ ΗΖΑ γωνίᾳ : ὅλη ἄρα ἡ ὑπὸ τῶν ΕΖΓ ὅλῃ τῇ ὑπὸ τῶν ΓΖΗ γωνίᾳ ἴση ἐστίν :
3881100 ΓΝ
τῆς αὐτῆς βάσεως τῆς ΑΒ στερεὰ παραλληλεπίπεδα τὰ ΓΜ , ΓΝ ὑπὸ τὸ αὐτὸ ὕψος , ὧν αἱ ἐφεστῶσαι αἱ
ὧν αὐτὸ ἔσται βαρύτατον , τὰ ΑΒ καὶ ΒΓ καὶ ΓΝ . Ὅτι μὲν οὖν παρακειμένης τοῖς διεζευγμένοις τελείοις συστήμασι
3875384 συμπιπτουσι
ἄρα ΑΒ , ΓΔ ἐκβαλλόμεναι εἰς ἄπειρον συμπεσοῦνται : οὐ συμπίπτουσι δὲ διὰ τὸ παραλλήλους αὐτὰς ὑποκεῖσθαι : οὐκ ἄρα
πρὸς ἀλλήλας αἱ ἑκατέρωθεν ἀκταί : προϊοῦσαι δὲ πλέον τελέως συμπίπτουσι κατὰ τὸ Ῥίον καὶ τὸ Ἀντίρριον , ὅσον δὴ
3870568 παραλληλογραμμα
ἀεὶ παρὰ τὴν τοῦ συσταθέντος πλευρὰν τοῖς τριγώνοις ἴσα παραβάλλων παραλληλόγραμμα . ἐκ τούτου δέ φασι καὶ εἰς ζήτησιν τοῦ
εἰς δύο ποιεῖσθαι χρὴ τὴν πρώτην καὶ τὰ μὲν αὐτῶν παραλληλόγραμμα λέγειν , τὰ δ ' οὐ παραλληλόγραμμα , τῶν
3866288 ΘΑΒ
ἐπεὶ οὖν ἡ ὑπὸ ΝΘΒ οὐ μείζων ἐστὶ τῆς ὑπὸ ΘΑΒ , ἡ ἄρα ΝΘ πρὸς ΘΒ ἐλάττονα λόγον ἔχει
. καί ἐστιν ἡ ΘΑ τῇ ΕΚΛ παράλληλος : ἡ ΘΑΒ διάμετρος ἄρα ἐστὶ τῆς τομῆς , αἱ δὲ ἐπ
3858427 παραλληλος
διαγομένη εὐθεῖα μήτε τὴν τομὴν τέμνῃ κατὰ δύο σημεῖα μήτε παράλληλος ᾖ τῇ ἀσυμπτώτῳ , συμπεσεῖται μὲν τῇ ἀντικειμένῃ τομῇ
κατὰ μῆκος τῆς φάλαγγος δεύτερον ζυγόν , καὶ ὁ τούτῳ παράλληλος ὑπ ' αὐτὸν τρίτον , καὶ τέταρτόν ἐστι τὸ
3854798 καταχθησονται
πλευρὰ ἡ ΔΖ , αἱ δὲ καταγόμεναι ἀπὸ τῶν τομῶν καταχθήσονται ἐπὶ τὴν ΔΕ ἐν τῇ δοθείσῃ γωνίᾳ : ἔσται
ἡ ΕΚ , αἱ δὲ καταγόμεναι ἀπὸ τῆς τομῆς τεταγμένως καταχθήσονται ἐν τῇ ἐφεξῆς γωνίᾳ τῇ Η . φανερὸν δή
3842301 ἐξελασαντα
, ἢ σὲ τὸν ἀτιμαστῆρα ἐκείνου τὸν ἀνδρηλάτην καὶ τὸν ἐξελάσαντα ἐκεῖνον ἀπὸ τῆς ἰδίας πατρίδος ζῶντα τίσασθαι καὶ τιμωρῆσαι
καὶ ἑαυτὸ συμφθείρει , καὶ ὃν τρόπον τὰ καθαρτικά , ἐξελάσαντα τῶν σωμάτων τὰ ὑγρά , καὶ αὑτὰ συνεκτίθησιν ,
3825705 ΛΚΜ
, κοινὴ προσκείσθω ἡ ΝΚΜ περιφέρεια : ὅλη ἄρα ἡ ΛΚΜ περιφέρεια ὅλῃ τῇ ΝΚΜΞ περιφερείᾳ ἐστὶν ἴση . ἡμικυκλίου
, καὶ διὰ τοῦ Κ ἤχθω πλευρὰ τοῦ κυλίνδρου ἡ ΛΚΜ εὐθεῖα πίπτουσα ἐπὶ τὰς ΕΗ , ΖΘ περιφερείας ἐκβαλλομένη
3819967 ὁδοι
κτίσμα ἐν τῷ τόπῳ ἱδρυμένον τούτῳ , ὃς καλεῖται Ἐννέα ὁδοί : εἶτα Γαληψὸς καὶ Ἀπολλωνία , κατεσκαμμέναι ὑπὸ Φιλίππου
, ἐσχισμέναι πέτραι , κεχαραγμένοι τόποι , φωλεαὶ ἢ διεσχισμέναι ὁδοί . Ῥωγάδες : διεσχισμέναι , ἐκ παραλλήλου , ἐσχισμένοι
3819368 περιφερειᾳ
διὰ τῶν ἐπιπέδων εὑρεῖν ἔστιν εὐθεῖαν ἴσην τῇ τοῦ κύκλου περιφερείᾳ χρησάμενον τοῖς ἐπὶ τῆς ἕλικος εἰρημένοις θεωρήμασιν . Σοφίας
πάλιν , ἐπεὶ ὁμοία ἐστὶν ἡ ΘΗ περιφέρεια τῇ ΠΝ περιφερείᾳ , ἐν ᾧ ἄρα χρόνῳ τὸ Θ ἐπὶ τὸ
3807706 γωνιαι
τρίγωνον τῷ ΑΛΣ τριγώνῳ ἴσον ἔσται , καὶ αἱ λοιπαὶ γωνίαι ταῖς λοιπαῖς γωνίαις ἴσαι ἔσονται , ὑφ ' ἃς
ἐπειδὴ δεδομέναι μέν εἰσιν αἱ ὑπὸ ΑΕΚ καὶ ὑπὸ ΒΕΞ γωνίαι , δέδοται δὲ καὶ ὁ τῆς ὑπὸ ΓΕΚ πρὸς
3807273 ἰσοτητες
τὰς ἐλλείψεις ὡς κακίας οὔσας μισεῖ . Καὶ αἱ ἀρεταὶ ἰσότητες λέγονται : μέσαι γὰρ δύο κακιῶν οὖσαι , ἑκάστη
εἰδὼς κωλύειν Ταράχου μακρὰν ἔσῃ καὶ κακῆς πλάνης . Ἀκρότητες ἰσότητες . Ἑρμηνεία . Πλοῦτος ὁ πολὺς καὶ πενία ?
3801049 ΚΦ
ΛΟ , ἴση ἄρα ἔσται καὶ ἡ ΕΗ περιφέρεια τῇ ΚΦ , ὥστε καὶ γωνία ἡ ὑπὸ ΕΣΤ τῇ ὑπὸ
αἱ ΘΜ , ΜΝ , καὶ συμπεπληρώσθω τὰ ΛΟ , ΚΦ , ΘΧ , ΜΣ παραλληλόγραμμα καὶ τὰ ΛΠ ,
3797716 ΔΜ
δύναται τῷ ἀπὸ ἀσυμμέτρου ἑαυτῇ μήκει . καὶ οὐδετέρα τῶν ΔΜ , ΜΗ σύμμετρός ἐστι τῇ ἐκκειμένῃ ῥητῇ τῇ ΔΕ
πρὸς τὸ ἀπὸ τῆς ΔΖ , οὕτως ἡ ΕΔ πρὸς ΔΜ . ἀλλ ' ἦν ὡς τὸ ἀπὸ τῆς ΕΔ
3789800 καταλαμβανομενα
, ἃ δὲ ὑπομνηστικῶς , ὡς τὰ διὰ σημείων τινῶν καταλαμβανόμενα : ἐνδεικτικῶς δὲ οὐδὲν καταλαμβάνεται , οὔθ ' ἑτέρῳ
τοῦτο σύμμετρον καὶ ἄμετρον μὴ φαινόμενον , τὰ ἐκ τούτου καταλαμβανόμενα φαίνοιτ ' ἄν ; εἰ δὲ δὴ καὶ πρὸς
3786573 ἰσοπλευρα
τρίγωνον ἐξ ἓξ τὸν ἀριθμὸν ὄντων γέγονεν . τρίγωνα δὲ ἰσόπλευρα συνιστάμενα τέτταρα κατὰ σύντρεις ἐπιπέδους γωνίας μίαν στερεὰν γωνίαν
ὡς τὰ ῥομβοειδῆ , τὰ δὲ ὀρθογώνια μέν , οὐκ ἰσόπλευρα δέ , ὡς τὰ ἑτερομήκη , τὰ δὲ ἔμπαλιν
3786431 ΒΔΓ
ἴση ἡ ΔΕ , τῇ δὲ ΓΖ ἡ ΖΗ τῆς ΒΔΓ περιφερείας κατὰ τὸ Δ δίχα τετμημένης . λέγω ,
ΒΑΓ . ἀλλὰ τῆς ὑπὸ ΓΕΒ μείζων ἐδείχθη ἡ ὑπὸ ΒΔΓ : πολλῷ ἄρα ἡ ὑπὸ ΒΔΓ μείζων ἐστὶ τῆς
3782236 δεδομενοι
ὑπὲρ ἡμᾶς . μεσημβρινὸς δὲ καὶ ὁρίζων τῷ μὲν μεγέθει δεδομένοι , μέγιστοι γάρ , τῇ δὲ θέσει μεταπίπτοντες καθ
. καὶ δῆλον , ὅτι καὶ οἱ λόγοι τῶν πλευρῶν δεδομένοι εἰσίν : ὁ γὰρ τῆς ΑΒ πρὸς ΒΓ λόγος
3768594 τριγωνα
ἴσαι , ἴσαι δὲ καὶ αἱ γωνίαι , καὶ τὰ τρίγωνα ἴσα ἂν εἴη , καὶ αἱ πλευραὶ καὶ αἱ
μὲν πυραμίδος ἐκ τεττάρων ἰσοπλεύρων τριγώνων συνεστώσης , εἰς ἓξ τρίγωνα σκαληνὰ τὰ εἰρημένα ἑκάστου διαιρουμένου : τοῦ δὲ ὀκταέδρου
3768228 γνωμων
ΛΘ , ΘΒ . ἐδείχθη δὲ καὶ ὅλος ὁ ΜΝΞ γνώμων ὅλῳ τῷ ΓΗ ἴσος : καὶ λοιπὸν ἄρα τὸ
γνώμων τετραπλάσιός ἐστι τοῦ ΖΗ τετραγώνου . ὁ ΞΟΠ ἄρα γνώμων καὶ τὸ ΖΗ τετράγωνον πεντα - πλάσιός ἐστι τοῦ
3767648 ΛΚΕ
ἡ ΛΚ τῇ ΚΕ , καί ἐστιν ὀρθὴ ἡ ὑπὸ ΛΚΕ γωνία , τὸ ἄρα ἀπὸ τῆς ΕΛ διπλάσιόν ἐστι
τὸ μὲν ΘΚΕ ὅμοιόν ἐστι τῷ ΜΔΕ , τὸ δὲ ΛΚΕ τῷ ΞΔΕ : ἰσογώνιον ἄρα ἕκαστον ἑκάστῳ . ἔστιν
3765751 ἀχθωσιν
ἀπὸ τῶν ἴσων γωνιῶν ἐπὶ τὰς βάσεις κάθετοι εὐθεῖαι γραμμαὶ ἀχθῶσιν , ᾖ δέ , ὡς ἡ τοῦ πρώτου τριγώνου
τομῶν β σημεῖα ληφθῇ , καὶ ἀφ ' ἑκατέρου παράλληλοι ἀχθῶσιν , ὁμοίως ἴσα ἔσται τὰ γινόμενα ὑπ ' αὐτῶν
3758470 ζηʹ
ὄντος πρὸς τῷ νʹ [ διὰ τὸ ἴσην εἶναι τὴν ζηʹ περιφέρειαν τῇ λνʹ περιφερείᾳ ] : καὶ ἔσται ὁ
τῷ ηʹ ] : λέγω ὅτι τοῦ ἡλίου διαπορευομένου τὴν ζηʹ περιφέρειαν τὸ εʹ ἄστρον οὐ φαίνεται . Ἔστω γὰρ
3753837 πενταγωνα
δὲ τὸ κέντρον τῆς σφαίρας . καὶ ὡς ἄρα δώδεκα πεντάγωνα πρὸς εἴκοσι τρίγωνα , οὕτως δώδεκα πυραμίδες πενταγώνους βάσεις
ἄρα εἰσὶν αἱ πυραμίδες αἱ βάσεις ἔχουσαι τὰ τοῦ δωδεκαέδρου πεντάγωνα καὶ αἱ βάσεις ἔχουσαι τὰ τοῦ εἰκοσαέδρου τρίγωνα .
3747583 διαστατοι
καὶ οἱ ἰσάκις ἶσοι ἰσάκις ἅπαντες , τουτέστι κύβοι τριχῆ διαστατοὶ ὄντες καὶ ταυτότητος ἐπὶ πλεῖον δοκοῦντες μετέχειν ἔργον εἰσὶ
λϚ , μθ , ξδ καὶ οἱ ἑξῆς διχῆ ὄντες διαστατοὶ καὶ ἐν τῇ ἐπιπέδῳ σχηματογραφίᾳ μῆκος καὶ πλάτος μόνον
3744809 ΖΒΕ
καὶ ἐπεζεύχθω ἡ ΒΖ . ἔσται δὴ ἡ ὑπὸ τῶν ΖΒΕ γωνία ἡμίσεια ὀρθῆς . τετμήσθω ἡ ὑπὸ τῶν ΖΒΕ
κβ διὰ τὸ ἴσην αὐτὴν εἶναι συναμφοτέραις τῇ τε ὑπὸ ΖΒΕ δεδειγμένῃ τῶν αὐτῶν ιϚ μδ καὶ τῇ ὑπὸ ΓΖΒ
3744000 ἐλασσονες
. πρόλογοι οἱ μείζονες , οἷον τριπλάσιος , ὑπόλογοι οἱ ἐλάσσονες , οἷον τριτημόριος . παρ ' οὐδὲν ἀντὶ τοῦ
οὐδεμίαν οὐδ ' οὗτοι , ὅτι ἀριθμῷ τε καὶ ἰσχύι ἐλάσσονες ἐμοὶ δοκεῖν ἢ κατὰ πόλεως ἦσαν οἰκισμόν . μετὰ
3737135 καταγεγραφθωσαν
λόγον ἔχει ἤπερ ἡ βάσις πρὸς τὴν βάσιν ἀντιπεπονθότως . καταγεγράφθωσαν οἱ κῶνοι , καὶ ἔστω , ὡς ὁ ΑΗΓΔ
σε τούτων διαλανθάνῃ καὶ ἵνα σαφέστερον ἡμῖν ὁ λόγος γένηται καταγεγράφθωσαν πρῶτον πάντα τὰ δεκαεπτὰ σύμφωνα : Β . Γ
3736897 κωνικῃ
, Ε , Α , Ο ἔν τε γὰρ τῇ κωνικῇ ἐπιφανείᾳ ἐστὶ καὶ ἐν τῷ διὰ τοῦ ἄξονος ἐπιπέδῳ
ἴσος ἐστὶν τῇ ὑπὸ τῆς ΑΒ ἐν τῇ στροφῇ γινομένῃ κωνικῇ ἐπιφανείᾳ διὰ τὸ ιεʹ πάλιν Ἀρχιμήδους θεώρημα [ παντὸς
3734922 συμπενθειν
ἥμισυ πᾶν ὅσσων καρπὸν ἄρουρα φέρει . ὅτι δὲ καὶ συμπενθεῖν ἔκειτο αὐτοῖς ἀνάγκη , δεδήλωκεν ἐν τῷδε : δεσπότας
ταῖς ἐξόδοις συνέπεσθαι χωλοὺς ὁμοίως : ἄτοπον γὰρ εἶναι τὸ συμπενθεῖν μὲν καὶ [ τὸ ] συλλυπεῖσθαι καὶ τῶν ἄλλων
3730046 ΚΖΗ
τὸ ἄρα ὑπὸ τῶν ΕΖΔ ἴσον ἐστὶ τῷ ὑπὸ τῶν ΚΖΗ . ἀλλὰ τῷ ὑπὸ τῶν ΕΖΔ ἴσον ἐδείχθη τὸ
ἡ ΛΝ τῇ ΝΖ . ἤχθωσαν τεταγμένως αἱ ΒΘ , ΚΖΗ , ΛΜΔ . ἐπεὶ οὖν διὰ τὰ δεδειγμένα ἐν
3720455 ἀμβλεια
ἡ μὲν ὑπὸ ΓΝΗ ὀξεῖα , ἡ δὲ ὑπὸ ΔΜΖ ἀμβλεῖα , ἐλάσσων ἄρα ἐστὶν ἡ ΗΓ περιφέρεια τῆς ΔΖ
. στραγγεύομαι : τί ἐστιν ἡ ἐμὴ προθυμία νωθρὰ καὶ ἀμβλεῖα καὶ τρόπον τινὰ κατὰ στράγγα ; ἡ γὰρ μεταφορὰ
3714926 ἡμικυκλια
. Φέρεται ἔν τισιν ἀρχαία πρότασις τοιαύτη : ὑποκείσθω τρία ἡμικύκλια ἐφαπτόμενα ἀλλήλων τὰ ΑΒΓ ΑΔΕ ΕΖΓ , καὶ εἰς
περιφέρειαν ἴσαι εἰσίν . ἀλλὰ εἰ μιᾶς οὔσης διαμέτρου δύο ἡμικύκλια γίνεται , ἄπειροι δὲ αἱ διάμετροι , συμβήσεται τῶν
3713610 ἠγμεναι
τὰ μὲν οὖν πλεῖστα τούτων φύσει ἔχουσι , τὰ δὲ ἠγμέναι ἀνεπιστημόνως δύσχρηστοί εἰσιν : αἱ τοιαῦται μὲν οὖν κύνες
καὶ ἐπεὶ ἐν κύκλῳ τῷ ΑΒΓΔ [ ] δύο παράλληλοι ἠγμέναι εἰσὶν αἱ ΕΖ , ΓΔ , ἴση ἄρα ἐστὶν
3706423 βδ
τετράγωνος , τουτέστιν ὁ ε , ἴσος τοῖς ἀπὸ τῶν βδ , δγ τετραγώνοις μετὰ τοῦ δὶς ἐκ τῶν βδ
οὕτως ἔχει , καθὼς εἴρηται , φανερόν : ἡ γὰρ βδ ὑπερέχει τῆς γα τῇ γδ : ἡ δὲ γα
3701299 ΑΛΚ
Ζ , τοῦ δὲ ΕΘΗ διχοτομία τὸ Θ : ὁ ΑΛΚ ἄρα προσαναπληρούμενος ἥξει καὶ διὰ τῶν Ζ , Θ
τὸ ΞΓΠΔ . ἴσον δὲ τὸ μὲν ΛΓΡΖ τετράπλευρον τῷ ΑΛΚ τριγώνῳ , τὸ δὲ ΞΓΠΔ τῷ ΑΝΞ : ὡς
3699137 ΕΒΓΖ
ΗΒΓ τρίγωνον : ὅλον ἄρα τὸ ΑΒΓΔ παραλληλόγραμμον ὅλῳ τῷ ΕΒΓΖ παραλληλογράμμῳ ἴσον ἐστίν . Τὰ ἄρα παραλληλόγραμμα τὰ ἐπὶ
ΒΓ : λέγω , ὅτι ἴσον ἐστὶ τὸ ΑΒΓΔ τῷ ΕΒΓΖ παραλληλογράμμῳ . Ἐπεὶ γὰρ παραλληλόγραμμόν ἐστι τὸ ΑΒΓΔ ,
3691783 ῥητῃ
ἐφ ' ἧς τὸ μεῖζον ὄνομα σύμμετρόν ἐστι τῇ ἐκκειμένῃ ῥητῇ , δευτέραν δέ , ἐφ ' ἧς τὸ ἔλασσον
ἄλλαι εὐθεῖαι , αἳ μήκει μὲν ἀσύμμετροί εἰσι τῇ ἐκκειμένῃ ῥητῇ , δυνάμει δὲ μόνον σύμμετροι , καὶ διὰ τοῦτο
3691561 ΘΑΛ
μὲν ΛΘ ἔσται γ νζ , ἡ δ ' ὑπὸ ΘΑΛ γωνία τῆς κατὰ τὸ πλάτος ἀποστάσεως , οἵων μέν
ἐστιν ἴση . διὰ τὰ αὐτὰ δὴ καὶ ἡ ὑπὸ ΘΑΛ τῇ ὑπὸ ΖΔΓ ἐστιν ἴση [ ἐπειδήπερ ἐὰν ἀπολάβωμεν
3686632 ὀρθαις
διδάσκει ἡμᾶς , ὅτι περὶ ἓν σημεῖον τόπος εἰς τέτρασιν ὀρθαῖς ἴσας γωνίας διανέμεται . Τὰς ἐφεξῆς γωνίας τῶν κατὰ
ΔΕΖ . Εἰ γὰρ παντὸς τριγώνου αἱ γ γωνίαι δυσὶν ὀρθαῖς ἴσαι εἰσίν , ὡς ἐν τῷ λβʹ θεωρήματι τοῦ

Back