καὶ ἐπεζεύχθω ἡ ΒΖ . ἔσται δὴ ἡ ὑπὸ τῶν ΖΒΕ γωνία ἡμίσεια ὀρθῆς . τετμήσθω ἡ ὑπὸ τῶν ΖΒΕ | ||
κβ διὰ τὸ ἴσην αὐτὴν εἶναι συναμφοτέραις τῇ τε ὑπὸ ΖΒΕ δεδειγμένῃ τῶν αὐτῶν ιϚ μδ καὶ τῇ ὑπὸ ΓΖΒ |
ἐφαπτομένη παράλληλός ἐστι τῇ ΑΓ . ἔστω οὖν ἐφαπτομένη ἡ ΘΒΚ : συμπεσεῖται δὴ ταῖς ΕΔ , ΔΖ . ἐπεὶ | ||
καθέτου διάμετρος ἡ ΔΓΒΕ , διήχθωσαν δὲ αἱ ΖΒΗ , ΘΒΚ ἴσας περιφερείας ἀπολαμβάνουσαι πρὸς τῇ ΕΔ τὰς ΚΔ , |
ἐδείχθη δὲ καὶ ἡ ΘΣ τῆς ΝΒ διπλῆ . καὶ συναμφότεραι ἄρα αἱ ΘΣ , ΠΡ τῆς ΝΒΜ ὅλης διπλασίους | ||
δ ' ἐπὶ τοῦ τριγώνου τῆς βάσεως αἱ εὐθεῖαι συνίστανται συναμφότεραι μείζους τῶν ἐκτὸς αἱ ἐντός , ἀλλὰ καὶ ἐπὶ |
τετραγώνοις , ὧν τὸ ὑπὸ ΖΒΔ ἴσον ἐστὶν τῷ ὑπὸ ΕΒΗ , λοιπὸν ἄρα τὸ ὑπὸ ΒΖΔ ἴσον ἐστὶν τῷ | ||
. ἀλλὰ ἡ ὑπὸ ΑΒΖ γωνία ἴση ἐστὶν τῇ ὑπὸ ΕΒΗ , ἡ δὲ Γ τῇ Δ ἐναλλὰξ ἴση ἐστίν |
ΒΓΖ τῇ ὑπὸ ΓΒΗ . ἐπεὶ οὖν ὅλη ἡ ὑπὸ ΑΒΗ γωνία ὅλῃ τῇ ὑπὸ ΑΓΖ γωνίᾳ ἐδείχθη ἴση , | ||
ΑΒΗ τρίγωνον : καὶ τὸ ΑΒΓ ἄρα τρίγωνον πρὸς τὸ ΑΒΗ διπλασίονα λόγον ἔχει ἤπερ ἡ ΒΓ πρὸς τὴν ΕΖ |
ἡ δὲ ΝΧ τῆς ΔΦ διπλῆ , καὶ λοιπὴν τὴν ΧΓ ἕξομεν τοιούτων νε λδ , οἵων ἐστὶν ἡ ΝΧ | ||
ἐπεὶ δύο αἱ ΒΥ , ΥΦ δυσὶ ταῖς ΒΧ , ΧΓ ἴσαι εἰσίν , καὶ βάσις ἡ ΒΦ βάσει τῇ |
ἴσον ἐστὶ τῷ ὑπὸ τῶν ΞΝΖ . τὸ δὲ ὑπὸ ΞΝΖ ἐστι τὸ ΞΖ παραλληλόγραμμον . ἡ ἄρα ΜΝ δύναται | ||
τὸ ἀπὸ τῆς ΜΝ ἄρα ἴσον ἐστὶ τῷ ὑπὸ τῶν ΞΝΖ . τὸ δὲ ὑπὸ ΞΝΖ ἐστι τὸ ΞΖ παραλληλόγραμμον |
δυσὶν ὀρθαῖς ἴσαι εἰσίν : καὶ αἱ ὑπὸ ΑΓΕ , ΑΓΒ ἄρα δυσὶν ὀρθαῖς ἴσαι εἰσίν . πρὸς δή τινι | ||
: ἡ ἄρα ὑπὸ ΒΓΔ μετὰ τῶν ὑπὸ ΓΒΔ , ΑΓΒ οὐ μείζονές εἰσι δυεῖν ὀρθῶν , ὅ ἐστιν αἱ |
ἀλλήλων οἱ κύκλοι : ἐφάψεται ἄρα ὁ ΑΒ κύκλος τοῦ ΕΒΖ κύκλου . διὰ ἄρα τοῦ δοθέντος σημείου τοῦ Β | ||
τὸ ΓΑΔ πρὸς τὸ ΕΚΖ . εἶχε δὲ καὶ τὸ ΕΒΖ πρὸς τὸ ΕΚΖ διπλασίονα λόγον ἤπερ τὸ ΓΑΔ πρὸς |
ἄρα ἐστὶν ἡ ΥΛ τῇ ΟΛΚ . Κοινὴ ἀφῃρήσθω ἡ ΟΛ : λοιπὴ ἄρα ἡ ΥΟ λοιπῇ τῇ ΚΛ ἐστὶν | ||
ἡ μὲν ΠΟ τῆς ΟΚ , ἡ δὲ ΞΟ τῆς ΟΛ , ἴση ἐστὶ τῇ ΚΟ ἡ ΟΛ . διὰ |
ΘΝΖ πρὸς τὸ ὑπὸ τῶν ΞΝΖ . τὸ ἄρα ὑπὸ ΣΝΡ ἴσον ἐστὶ τῷ ὑπὸ ΞΝΖ . τὸ δὲ ἀπὸ | ||
ὡς ἄρα τὸ ὑπὸ τῶν ΘΝΖ πρὸς τὸ ὑπὸ τῶν ΣΝΡ , οὕτως ἡ ΘΖ πρὸς ΖΛ , τουτέστιν ἡ |
νικᾷ καὶ ὁ νεώτερος . ζηʹ αἱ ηʹ νικῶσιν . ζθʹ αἱ ζʹ νικῶσιν . ηηʹ ὁ ἐγκαλούμενος νικᾷ καὶ | ||
καὶ ἡ μξʹ τῇ λνʹ ἴση , ἐπεὶ καὶ ἡ ζθʹ τῇ ζηʹ [ διὰ τὸ ὑποκεῖσθαι τὰ ἄστρα ἐν |
ἡμικυκλίου . ἀλλ ' ὑπὸ τῶν Β , Γ τὸ ΕΗΔ βλέπεται . μεῖζον ἄρα ἢ τὸ ἥμισυ ὀφθήσεται τοῦ | ||
αἱ πρὸ τῆς Ν ἀνατολῆς μείζονές εἰσιν τῶν ἐν τῷ ΕΗΔ ἡμικυκλίῳ ἡμερῶν τῶν μετὰ τὴν Π δύσιν , νύκτες |
, ΘΣ ἐστι μείζων , μείζων ἄρα ἐστὶ καὶ ἡ ΡΘ περιφέρεια τῆς ΘΣ περιφερείας . ἀλλ ' ἡ μὲν | ||
διαμέτρου τῆς ἀπὸ τοῦ Ρ τμῆμα κύκλου ὀρθὸν ἐφέσταται τὸ ΡΘ καὶ τὸ τούτῳ συνεχές , καὶ ἀπείληπται περιφέρεια ἡ |
ἡ ὑπὸ ΚΡΓ , καὶ λοιπὴ ἄρα ἡ ὑπὸ ΡΑΚ ζητουμένη γωνία δοθεῖσά ἐστιν . κατὰ τὰ αὐτὰ δὲ δοθεῖσά | ||
παρὰ τῶν ἐπιτρόπων οὐδὲν πέπρακται , ἀλλὰ φήμη ἐστὶν ἡ ζητουμένη , καὶ οἱ μὲν ἀληθῆ εἶναι κατασκευάζουσιν , οἱ |
. γνωριμώταται δὲ τῶν ὁδῶν ἥ τε Ἀππία καὶ ἡ Λατίνη καὶ ἡ Ὀυαλερία , ἡ μὲν τὰ πρὸς θάλατταν | ||
τῇ Σαβίνῃ μέχρι Μαρσῶν , μέση δ ' αὐτῶν ἡ Λατίνη ἡ συμπίπτουσα τῇ Ἀππίᾳ κατὰ Κασιλῖνον , πόλιν διέχουσαν |
ἐπὶ τὸ Γ καὶ διὰ τοῦ κέντρου αἱ ΒΖΚ , ΓΖΕ , καὶ ἀπὸ τῶν Ε , Κ ἡ ΚΕ | ||
φησι τὰς ὑπὸ ΑΕΖ καὶ ΔΖΕ καὶ πάλιν τὰς ὑπὸ ΓΖΕ καὶ ΒΕΖ . οὕτως δὲ καλεῖ αὐτὰς ὡς ἐνηλλαγμένως |
τῇ κόνει . κατεσποδημένοι ] σποδῷ κεκονιαμένοι . κατεσποδημένοι ] κεκονιαμένοι . κατεσποδημένοι ] πεπτωκότες . θ κατεσποδημένοι ] ἐπὶ | ||
δυσχερῶς , ἀλλ ' ἀληθῶς καὶ ἀναμφιβόλως εἰσὶ τῇ σποδῷ κεκονιαμένοι , κατακεχωσμένοι , ἀνῃρημένοι . . ἀμφιλέκτως ] ἀμφιβόλως |
τῇ ΓΔ ἐστιν ἴση : ὥστε καὶ γωνία ἡ ὑπὸ ΓΔΑ γωνίᾳ τῇ ὑπὸ ΔΑΓ ἐστιν ἴση : αἱ ἄρα | ||
δυσὶ ταῖς ὑπὸ ΓΔΑ , ΔΑΓ . ἀλλὰ ταῖς ὑπὸ ΓΔΑ , ΔΑΓ ἴση ἐστὶν ἡ ἐκτὸς ἡ ὑπὸ ΒΓΔ |
τὸν ΓΔ κῶνον ἢ κύλινδρον . καὶ ὡς ἄρα ὁ ΑΒΖ κῶνος ἢ κύλινδρος πρὸς τὸν ΓΔΚ κῶνον ἢ κύλινδρον | ||
δὲ καὶ ἡ ὑπὸ ΑΒΖ ὀρθή : ἡ ἄρα ὑπὸ ΑΒΖ ἴση ἐστὶ ταῖς ὑπὸ ΒΑΔ , ΑΒΔ . κοινὴ |
ἴση ἑκατέρα τῶν ΞΛ , ΛΟ , καὶ συμπεπληρώσθω τὸ ΛΠ στερεόν . καὶ ἐπεί ἐστιν ὡς ἡ Α πρὸς | ||
ἄρα ἀπὸ τῆς ΕΛ ἴσον ἐστὶ τῷ ὑπὸ ΟΛ , ΛΠ . ἐπεὶ δὲ οὔκ ἐστιν ἡ τομὴ ὑπεναντία , |
σαφῆ καὶ ἀπεραντολογίας οὐ δεῖται . . ΤΟΝ ΔΕ ΓΑΡ ΑΝΘΡΩΠΟΙΣΙΝ . Ἐπαγγειλάμενος οὐκ εἶπε ποῖον νόμον . Λέγει δὲ | ||
ταύτην , ἐνίοτε δὲ ταύτην . . ΝΟΥΣΟΙ Δ ' ΑΝΘΡΩΠΟΙΣΙΝ . Τὰς νόσους αὐτομάτως φοιτᾷν σιγώσας εἶπεν , ὡς |
γιεʹ : καὶ διέστηκεν Ἀλεξανδρείας πρὸς δύσεις ὥραις γ ∠ ʹιβ : ἡ δὲ Οὐολουβιλὶς ἔχει τὴν μεγίστην ἡμέραν ὡρῶν | ||
. . . . . ογ ∠ ʹ κη ∠ ʹιβ Φαράθα . . . . . . . . |
. διὰ τὰ αὐτὰ ἔσται , ὡς μὲν τὸ ἀπὸ ΜΥ πρὸς τὸ ἀπὸ ΥΙ , τὸ ὑπὸ ΞΡΓ πρὸς | ||
δὲ ΛΤ τὰ ἴσα ἔγγιστα ὡσαύτως κη , τῆς δὲ ΜΥ ἑξηκοστὰ μ . ὧν τὰ μὲν τῆς αʹ καὶ |
ΒΑ τῆς ΑΓ μείζων : μείζων ἄρα καὶ ἡ ὑπὸ ΒΔΑ γωνία τῆς ὑπὸ ΑΔΓ . ἐκβεβλήσθω ἡ ΑΔ , | ||
, ὡς δὲ ἡ ὑπὸ ΓΔΒ γωνία πρὸς τὴν ὑπὸ ΒΔΑ , οὕτως ἡ ΓΒ περιφέρεια πρὸς τὴν ΒΑ : |
τὸ Κ . ἐπεὶ οὖν αἱ μὲν ὑπὸ ΑΖΗ καὶ ΓΗΖ δύο ὀρθῶν εἰσιν ἐλάσσους , αἱ δὲ ὑπὸ ΑΖΗ | ||
τῶν Η , Θ παρὰ τὴν ΑΔ αἱ ΒΘΕ , ΓΗΖ , παρὰ δὲ τὴν ΘΚ διὰ τοῦ Λ ἡ |
δεδειγμένα ἄρα ἐν τῷ μγʹ θεωρήματι ἴσον ἐστὶ τὸ μὲν ΘΝΖ τρίγωνον τῷ ΛΒΖΞ τετραπλεύρῳ , τὸ δὲ ΗΘΚ τρίγωνον | ||
πρὸς τὸ ὑπὸ τῶν ΣΝΡ , οὕτως τὸ ὑπὸ τῶν ΘΝΖ πρὸς τὸ ὑπὸ τῶν ΞΝΖ . τὸ ἄρα ὑπὸ |
ΒΕ , ΓΖ : ὅμοια ἄρα ἐστὶ τὰ ΕΒΔ , ΓΖΔ ὀρθογώνια διὰ τὸ παραλλήλους εἶναι τὰς ΒΕ , ΖΓ | ||
καὶ θερινὸς μὲν τροπικὸς ὁ ΒΕΑ , χειμερινὸς δὲ ὁ ΓΖΔ , ὁ δὲ τοῦ ἡλίου κύκλος θέσιν ἐχέτω ὡς |
ὥστε καὶ ὡς ἡ ΑΞ πρὸς ΞΗ , οὕτως ἡ ΔΠ πρὸς ΠΘ . ἐπεζεύχθωσαν αἱ ΑΜ ΔΝ . ἀλλ | ||
, οὕτως ἡ ΑΜ πρὸς ΜΣ , ὡς δὲ ἡ ΔΠ πρὸς ΠΘ , οὕτως ἡ ΔΝ πρὸς ΝΤ : |
καὶ τοῦ σώματος , ὡς φθόαι . αἱ γὰρ ἕξεις ἀμετακίνητοι ὑπὸ λόγου οὖσαι οὐκ ἤδη ἐπιστῆμαι . ἴδιον γὰρ | ||
] αἱ ὠιδαί . φυλάσσοι . . . τιμὰς ] ἀμετακίνητοι εἶεν αὐτοῖς αἱ τιμαί . προμηθεὺς ] ἡ γὰρ |
αἰτεῖν τοὺς θεούς ; Καὶ μάλα , ὦ Σώκρατες . Ἐπιστήμη ἄρα αἰτήσεως καὶ δόσεως θεοῖς ὁσιότης ἂν εἴη ἐκ | ||
ἐν ποιότητι ἢ τοῦ ἐν μεγέθει καὶ τοῖς ἑξῆς . Ἐπιστήμη μὲν οὖν πᾶσα ἐκ πεπερασμένων ἀρχομένη [ τῶν ἰδίων |
ὑπὸ ΓΔΕ ἡμίσεια ἡ ὑπὸ ΓΔΖ , καὶ ἡ ὑπὸ ΖΓΔ ἄρα τῇ ὑπὸ ΖΔΓ ἐστιν ἴση : ὥστε καὶ | ||
οὗ ἡ ἐκ τοῦ κέντρου δύναται τὸ δὶς ὑπὸ τῶν ΖΓΔ . λϚʹ . Ἐὰν μέντοι τὸ Β μεταξὺ ᾖ |
, ἀλλ ' οὐ κύκλος , καὶ κατῆκται τεταγμένως ἡ ΔΟ , ὡς ἄρα ἡ ΛΓ πρὸς τὴν ΓΜ , | ||
θερινὸς μὲν τροπικὸς ἔστω ὁ ΑΞ , χειμερινὸς δὲ ὁ ΔΟ , ἰσημερινὸς δὲ κύκλος ἔστω ὁ ΒΕΓ , ὁ |
- ταράκοντα τὸν ἀριθμόν : εἶτ ' ἄλλαι νῆσοι , γνωριμώταται δ ' Ἴσσα , Τραγούριον , Ἰσσέων κτίσμα , | ||
' ὑπερβάλλουσαι τὸ πλῆθος : καὶ γὰρ διακοσίας φασί : γνωριμώταται δὲ αἱ ἐπὶ τοῖς ποταμοῖς ἱδρυμέναι καὶ ταῖς ἀναχύσεσι |
διεκβεβλήσθω τὸ διὰ τῶν ΘΚ , ΗΑ ἐπίπεδον ποιοῦν τὸ ΑΘΚ τρίγωνον . λέγω , ὅτι τὸ ΑΘΚ τρίγωνον ἴσον | ||
, τὸ ΑΕΚ τρίγωνον μετὰ τοῦ ΚΗΓ ἴσον ἐστὶ τῷ ΑΘΚ τριγώνῳ μετὰ τοῦ ΚΖΓ : ἔστι δὲ καὶ ὅλον |
καρδίᾳ , καὶ τῆς Ἀργοῦς ὁ βορειότερος τῶν ἐν τῇ ἀποτομῇ , μικρὸν προηγούμενος τοῦ μεσημβρινοῦ : ἔσχατον δὲ μεσουρανοῦσι | ||
καὶ πρῶτος μὲν ἀστὴρ ἀνατέλλει ὁ νοτιώτατος τῶν ἐν τῇ ἀποτομῇ τεσσάρων , ἔσχατος δὲ ὁ ἐν ἄκρῳ τῷ δεξιῷ |
δὲ τοῦ ὀϲτέου καὶ τοῦ ὄνυχοϲ ἀπαθῶν μεινάντων ἡ ἐκτὸϲ γωνία τοῦ ὄνυχοϲ ὑποδυομένη καὶ νύττουϲα τὴν ἐπιπεφυκυῖαν αὐτῇ ϲάρκα | ||
βάσει τοῦ κυλίνδρου , καὶ ὑποκείσθω ἡ πρὸς τῷ Α γωνία ὀξεῖα , καὶ διὰ τοῦ Γ ἤχθω κάθετος ἐπὶ |
ἀπὸ ΞΑ πρὸς τὸ ἀπὸ ΑΥ , ὡς δὲ τὸ ΜΔΝ πρὸς τὸ ΠΔΟ , τὸ ἀπὸ ΜΝ πρὸς τὸ | ||
ἴση , γωνία ἄρα ἡ ὑπὸ ΘΑΚ γωνίᾳ τῇ ὑπὸ ΜΔΝ ἐστιν ἴση . Ἐὰν ἄρα ὦσι δύο γωνίαι ἐπίπεδοι |
καὶ ἐπεζεύχθω ἡ ΛΖ . ἐπεὶ οὖν αἱ ΑΗΒ , ΑΜΒ τομαὶ κατὰ τὰ Α , Β ἐφάπτονται , κατ | ||
πλαγία πρὸς τὴν ὀρθίαν : καὶ ὡς ἄρα τὸ ὑπὸ ΑΜΒ πρὸς τὸ ἀπὸ ΜΝ , ἡ πλαγία πρὸς τὴν |
. ὅτι μείζων ἐστὶν ἡ ὑπὸ ΑΓΕ γωνία τῆς ὑπὸ ΕΓΖ . Ἐπεὶ γὰρ μείζων ἐστὶν ἡ ΕΒ τῆς ΖΗ | ||
εἶναι τὴν ΑΔ τῇ ΑΕ , καὶ ἐπεζεύχθωσαν αἱ ΒΔ ΕΓΖ , καὶ ἀπὸ τοῦ Ζ κάθετος ἐπὶ τὴν ΓΒ |
ΥΦ . ὁμοίως δὴ δειχθήσεται , ὅτι καὶ ἑκάστη τῶν ΒΧ , ΧΓ , ΓΦ ἑκατέρᾳ τῶν ΒΥ , ΥΦ | ||
ἄρα ἡ ΧΑ πρὸς ΑΞ , οὕτως ἡ ΞΒ πρὸς ΒΧ . καὶ διελόντι ὡς ἡ ΧΞ πρὸς ΞΑ , |
. ὅϲα γὰρ ἐν ταύτῃ διαφθείρεται τῶν τροφῶν , νοϲημάτων ϲηπεδονωδῶν ὑπόθεϲιϲ γίγνεται παντὶ τῷ ϲώματι . διὸ πρὸ τροφῆϲ | ||
ὃ τοῖϲ κακοήθεϲι τῶν ἑλκῶν ἁρμόζει : ἐπὶ δὲ τῶν ϲηπεδονωδῶν μετ ' ὄξουϲ ἢ οἴνου ἢ ὀξυμέλιτοϲ αὐτοῖϲ χρηϲτέον |
ἔστι δὲ καὶ ἡ ὑπὸ τῶν ΔΗΒ ἴση τῇ ὑπὸ ΔΗΓ : ἡ μὲν γὰρ ΔΗ διὰ τοῦ κέντρου οὖσα | ||
ὑπὸ ΑΗΔ γωνία , ἐφαπτομένη δὲ διὰ τοῦτο καὶ ἡ ΔΗΓ εὐθεῖα τοῦ ΕΖΗ ἐπικύκλου . ἡ ΑΓ ἄρα περιφέρεια |
δυσὶ ταῖς ὑπὸ ΖΒΓ , ΖΓΒ , τουτέστι τῇ ὑπὸ ΔΖΒ . Ὡς ἄρα συναμφότερος ἡ ΑΓΒ . , ] | ||
αὐτοῖς , μείζονά ἐστιν . Ἔστω ὅμοια ἰσοσκελῆ τρίγωνα τὰ ΔΖΒ ΒΑΓ , καὶ ἐπὶ τῶν αὐτῶν βάσεων ἄλλα ἰσοσκελῆ |
δύο ὀρθαῖς ἴσαι εἰσίν , εἰσὶ δὲ καὶ αἱ ὑπὸ ΑΗΘ , ΒΗΘ δυσὶν ὀρθαῖς ἴσαι , αἱ ἄρα ὑπὸ | ||
κοινὴ ἀφῃρήσθω ἡ ὑπὸ ΒΗΘ : λοιπὴ ἄρα ἡ ὑπὸ ΑΗΘ λοιπῇ τῇ ὑπὸ ΗΘΔ ἐστιν ἴση : καί εἰσιν |
ἴσοι ἀλλήλοις εἰσίν : ἴσος ἄρα ἐστὶν ὁ δ τῷ εη . καί ἐστιν ὁ μὲν δ ὁ ἐκ τῶν | ||
: ταῦτα ἴσα Μο ιγ : καὶ γίνεται ὁ ʂ εη / . ἐπὶ τὰς ὑποστάσεις : ἔταξα τὴν τοῦ |
' ἀκμῆτες ἄνδρες ἀϋτῇ ὤσαιμεν . ” ἀκάκητα ἀντὶ τοῦ ἀκακήτης , τῇ κλητικῇ ἀντὶ τῆς εὐθείας . λέγεται δὲ | ||
ὁ γυμνήτης καὶ Οἰδίπους Οἰδίποδος Οἰδιπόδης , οὕτως καὶ ἀκάκητος ἀκακήτης , . , . Ἀκαλήφη : ἔστιν οὖν 〚 |
, τεταγμένως δὲ ἐπ ' αὐτὴν κατηγμέναι αἱ ΚΛ , ΞΝ , ΗΖ : ἔσται οὖν , ὡς ἡ ΑΒ | ||
, ΜΛ . καί ἐστι τὰ ἀπὸ τῶν ΚΞ , ΞΝ μείζονα τῶν ἀπὸ τῶν ΚΜ , ΜΛ : ἡ |
, οἱ δὲ τὴν ἴυγγα , ὡς κεῖται ἐν τῇ κωμικῇ λέξει , λέγουσιν . ἢ καὶ ἄλλως : μίνθος | ||
εἰς σπονδὰς καὶ διαλλαγάς . ὅθεν ὁρᾶται τόδε τὸ δρᾶμα κωμικῇ καταλήξει χρησάμενον : διαλλαγαὶ γὰρ πρὸς Μενέλαον καὶ Ὀρέστην |
: τὸ Ζ ἄρα σημεῖον ἐντὸς ἔσται τῶν ἀσυμπτώτων τῆς ΑΒΔ τομῆς . καί ἐστιν αὐτῆς ἀντικειμένη ἡ ΓΕ : | ||
κύκλου , διὰ δὲ τοῦ Β εὐθεῖά τις ἦκται ἡ ΑΒΔ , ἡ ΑΒΔ ἄρα διάμετρός ἐστι τοῦ ΑΕΖ κύκλου |
ἤγουν αὐθαίρετοι : λεληθότως γὰρ ἐπέρχεται τὰ κακά . . ΕΠΕΙ ΦΩΝΗΝ . Ἀθετεῖται δὲ ὁ στίχος ὁ λέγων , | ||
ποιοῦντες τὴν μετὰ τῶν σωμάτων αὐτῶν ζωήν . . ΑΥΤΑΡ ΕΠΕΙ ΚΕΝ . Ἐπειδὴ δέ . Τὸ ΚΕ δὲ μακρὸν |
Μ , Λ , ΘΚ καὶ Ε . τὰ γὰρ σμη καὶ ρκδ καὶ ξβ καὶ λα ποιοῦσι πάλιν συντεθέντα | ||
σμϚ Λειμώνιον ἢ κυνόγλωϲϲον σμζ Λειχὴν ὁ ἐπὶ τῶν πετρῶν σμη Λεοντοπόδιον ἢ λεοντοπέταλον σμθ Λεπίδιον σν Λευκόϊον σνα Λεύκη |
τι ἢ ἀπ ' ἄλλου τὸ αὐτό , οὐχ ἡ ἀντικειμένη , ἀλλ ' ἔσται ἐκείνης ἑτέρα , τοῦτο δέ | ||
φερόμενον : ἡ γὰρ ὅλη φορὰ οὐθὲν ἧττον ἑκατέρα ἑκατέρᾳ ἀντικειμένη ἐπ ' ἄπειρον νοεῖται . Καὶ μὴν καὶ ἰσοταχεῖς |
] καλῶν τε καὶ γενναίων γενναίους φησὶ λόγους τοὺς μὴ χαμαιπετεῖς μηδὲ εἰκῇ συγκειμένους καὶ εὐκαταφρονήτους . [ , ] | ||
ψάλιον οἴκων . ἄναγε μὰν δόμοι : πολὺν ἄγαν χρόνον χαμαιπετεῖς ἔκεισθε . τάχα δὲ παντελὴς χρόνος ἀμείψεται πρόθυρα δωμάτων |
αὐτῶν μοιρῶν λ ἐπεζεύχθωσαν μὲν ἥ τε ΑΗ καὶ ἡ ΔΗΒ , κάθετος δὲ ἀπὸ τοῦ Η ἐπὶ τὴν ΑΔ | ||
ΓΕΖ καὶ ἡ ὑπὸ ΓΗΒ δυσὶ ταῖς ὑπὸ ΔΕΖ , ΔΗΒ ἴσαι εἰσίν . ἐπεὶ γὰρ ἡ μὲν ὑπὸ ΔΕΖ |
δεκαγώνου τῶν εἰς τὸν αὐτὸν κύκλον ἐγγραφομένων , τοῦ δὲ ΒΔΖ ὀρθογωνίου τὸ ἀπὸ τῆς ΒΖ τετράγωνον ἴσον ἐστὶν τῷ | ||
τῷ ἀπὸ ΒΝ τετραγώνῳ . ἐπεὶ δὲ ἐν τριγώνῳ τῷ ΒΔΖ κάθετος ἦκται ἡ ΔΝΞ , καὶ κεκλασμέναι πρὸς αὐτῇ |
λέγουσα πᾶς ἄνθρωπος οὐ δίκαιός ἐστιν . αἱ μὲν οὖν διαγώνιοι καθόλου οἷον ἡ ἁπλῆ κατάφασις καὶ ἡ ἐκ μεταθέσεως | ||
ταῖς ἐπιζυγίσιν ἐπικείμεναι διαιρήσουσι τὸ ἔργον ἐκ τοῦ ἑτέρου πλευροῦ διαγώνιοι . Οὕτως γὰρ ἐξ ὀλίγων καὶ μικρῶν αὐξόμενον ξύλων |
τῶν ὑπὸ ΔΕΖ , ἐλάττονες γίνονται συναμφοτέραις τῇ τε ὑπὸ ΔΕΚ καὶ τῇ ὑπὸ ΔΗΓ : αὗται δὲ δυσὶν ὀρθαῖς | ||
ἄρα ἡ ὑπὸ ΚΔΕ ἐστὶν δοθεῖσα . ὥστε καὶ τὸ ΔΕΚ τρίγωνον ὀρθογώνιον τῷ εἴδει δεδομένον ἔσται . δοθεῖσα δὲ |
ἡ ὑπὸ τῶν ἴσων πλευρῶν ἡ ὑπὸ ΒΗΖ τῇ ὑπὸ ΔΗΖ ἴση : καὶ βάσις μὲν ἄρα ἡ ΒΖ βάσει | ||
ΕΗΔ , δυσὶν ὀρθαῖς ἴσαι οὖσαι , ταῖς ὑπὸ ΕΗΔ ΔΗΖ ἴσαι [ ὥστε καὶ ταῖς ὑπὸ ΕΗΔ ΔΗΖ δυσὶν |
πρὸς τὸ ἀπὸ ΔΕ διὰ τὴν ὁμοιότητα τῶν ΒΚΔ , ΕΓΔ , ΝΑΔ τριγώνων , ὡς δὲ τὸ ὑπὸ ΜΒ | ||
. ἐπεὶ οὖν ἴση ἐστὶν ἡ ὑπὸ ΕΔΓ τῇ ὑπὸ ΕΓΔ , τουτέστιν τῇ ὑπὸ ΔΖΓ , καὶ κοινὴ ἡ |
δέδοται τῷ μεγέθει . δῆλον δ ' ὅτι καὶ ἡ συζυγὴς αὐτῇ : δέδοται γὰρ ὁ τῆς ΕΖ πλαγίας πρὸς | ||
οὖσα καὶ τὸν τῆς ὕλης λόγον ἀναδεδεγμένη , καὶ ἐπεὶ συζυγὴς οὖσα τῇ μονάδι δι ' ἐκείνην ἐκωλύθη τῆς εἰρημένης |
ἐν τῷ Καρκίνῳ , ἔσχατος δὲ ὁ ἐν ἄκρᾳ τῇ βορείᾳ χηλῇ τοῦ Καρκίνου . Μεσουρανοῦσι δὲ τῶν ἄλλων ἀστέρων | ||
ἡμιπήχιον , καὶ τοῦ Κήτους ὁ προηγούμενος τῶν ἐν τῇ βορείᾳ σιαγόνι . Δύνει δὲ ὁ Ἀετὸς ἐν τρίτῳ μέρει |
κἀμὲ καὶ σωφροσύνην καὶ τοὺς πάντων γάμους : οὐ γὰρ περιεῖδες ἄνδρα ἰδιώτην ἐπιβουλευθέντα ὑπὸ ἡγεμόνος , ἀλλὰ ἐκάλεσας , | ||
ἦς ἐν τῇ πατρίδι , ἅτε ἐνδομάχης ἀλέκτωρ , οὕτως περιεῖδες ἂν φυλλοροοῦσάν σου τὴν ἀρετὴν , τουτέστι μαραινομένην . |
τῆς Σικελίας χερρόνησόν φησιν : αὐτῆς γὰρ νῆσος οὖσα τοπρότερον συνήφθη ταῖς Συρακούσαις . ποταμίας ἕδος : τῆς Ἀλφειώας . | ||
ἀπὸ τῶν προσδιορισμῶν ζητεῖ τοίνυν , ἆρά γε , ὥσπερ συνήφθη ὁ προσδιορισμὸς τῷ ὑποκειμένῳ πᾶς ἄνθρωπος βαδίζει καὶ ἐποίησεν |
ΕΛΑΒΕ ] ΜΟΝΟ [ ΔΑΚΤΥΛΙΚΩΙ ] ΣΠΑ [ ΕΠΙ ] ΠΟΛΥ [ ] [ ] ! [ ] Σ ? | ||
τὸ ἀργύριον τῆς γῆς γενεαλογεῖ . . ΔΕΥΤΕΡΟΝ ΑΥΤΕ ΓΕΝΟΣ ΠΟΛΥ ΧΕΙΡΟΤΕΡΟΝ . Γένους τοῦ χρυσοῦ πολὺ χειρότερον , ἤγουν |
τὸ ΒΓ διὰ παντὸς φαίνεται τοῦ ὄμματος μεθισταμένου ἐπὶ τῆς ΒΓΔ περιφερείας . μγʹ . Ἔστι τις τόπος , οὗ | ||
τῇ ὑπὸ ΒΓΖ . δύο δὴ τρίπλευρά ἐστιν τό τε ΒΓΔ καὶ τὸ ΒΓΖ τὰς δύο πλευρὰς ταῖς δυσὶ πλευραῖς |
ἔνδος ἄρτι η ἐὰν ἄρτι πλεύσῃς , ναυαγήσεις θ ἐὰν κοινωνήσῃς ? ? ? ? ? , βλάπτῃ ? ? | ||
ἄρτι ζ οὐκ ἀποδημεῖς μακράν η προκόπτεις ἐξάπινα θ μὴ κοινωνήσῃς τῷ πράγματι ι στρατεύῃ εὐτυχῶς α οὐκ ἀθαρρῶν ἀγωνίζου |
εἶπε ” ψήφοις “ . Γ λόγισαι ] λογαρίασον , ἀρίθμησον . ψήφοις ] λεπτοῖς λίθοις . ἀπὸ χειρός ] | ||
αὐτὸν ἔξω φησίν : „ ἀνάβλεψον εἰς τὸν οὐρανὸν καὶ ἀρίθμησον τοὺς ἀστέρας , ἐὰν δυνηθῇς ἐξαριθμῆσαι αὐτούς . οὕτως |
τμηθήσεται ὑπὸ τῶν τοῦ κύβου διαμέτρων . ἐπεζεύχθωσαν γὰρ αἱ ΓΣ , ΣΑ , ΒΤ , ΤΗ . ἐπεὶ ἴση | ||
τῶν ΑΣ , ΣΠ , τουτέστι πρὸς τὸ ὑπὸ τῶν ΓΣ , ΣΒ , οὕτως τὸ ἀπὸ τῆς ΑΤ πρὸς |
προσηγορεύκασιν Ἀθηναῖοι . μετὰ δὲ τὰς Σκειρωνίδας πέτρας ἄκρα πρόκειται Μινῴα ποιοῦσα τὸν ἐν τῇ Νισαίᾳ λιμένα . ἡ δὲ | ||
περιγραφή : Σαμμώνιον ἄκρον νεʹ ∠ ʹʹγʹʹ λεʹ γʹ ιβʹʹ Μινῴα λιμήν νεʹ γʹʹ λεʹ δʹʹ Καμάρα πόλις νεʹ Ϛʹʹ |
τὰ ἄρα τρίγωνα , ὧν βάσεις μὲν αἱ ΘΚ , ΟΞ , ὕψη δὲ αἱ ΛΑ , ΑΝ , ἴσα | ||
. ἐπεὶ οὖν δύο αἱ ΑΒ , ΒΓ δυσὶ ταῖς ΟΞ , ΞΠ ἴσαι εἰσίν , καὶ βάσις ἡ ΑΓ |
πλαγία πρὸς τὴν ὀρθίαν , ἀλλὰ καὶ ὡς τὸ ὑπὸ ΑΗΒ πρὸς τὸ ἀπὸ ΗΕ , ἡ πλαγία πρὸς τὴν | ||
ἐπὶ τὸ Α ἐπιζευγνυμένη εὐθεῖα ἐκ τοῦ πόλου ἐστὶ τοῦ ΑΗΒ κύκλου , ἡ δὲ ἀπὸ τοῦ Ξ ἐπὶ τὸ |
τὸ ὑπὸ ΠΜΡ τῷ ὑπὸ ΞΜΕ . τὸ δὲ ὑπὸ ΠΜΡ ἴσον ἐδείχθη τῷ ἀπὸ τῆς ΛΜ : καὶ τὸ | ||
ἄρα ὡς τὸ ὑπὸ τῶν ΕΜΔ πρὸς τὸ ὑπὸ τῶν ΠΜΡ , οὕτως ἡ ΔΕ πρὸς τὴν ΕΘ , τουτέστιν |
νʹ [ διὰ τὸ ἴσην εἶναι τὴν ζηʹ περιφέρειαν τῇ λνʹ περιφερείᾳ ] : καὶ ἔσται ὁ χρόνος ἐν ᾧ | ||
ἑκάστης νυκτὸς ὁρᾶται . Κείσθω γὰρ τῇ ζηʹ ἴση ἡ λνʹ , τῇ δὲ ζθʹ ἴση ἡ μξʹ : ἔσται |
[ ] Σ ? ΕΠΕΙ [ ] ΛΟΓΟΝ [ ] ΤΟΙ ? [ ] ΟΥΝ [ ] Υ ! [ | ||
ὕλης χαρακτηρίζει τὸ γένος . . ΕΙ ΔΕ ΘΕΛΕΙΣ ἙΤΕΡΟΝ ΤΟΙ ΕΓΩ ΛΟΓΟΝ . Τὸ σχῆμα προκατάστασις , καὶ προκατασκευὴ |
, καθὼς καὶ γεγεννημέναι εἰσίν . ἐκ τῆς Πίστεως γεννᾶται Ἐγκράτεια , ἐκ τῆς Ἐγκρατείας Ἁπλότης , ἐκ τῆς Ἁπλότητος | ||
τὰ δεινὰ καὶ ἐμπειρία πολέμου : ἕξις ἐμμενητικὴ νόμου . Ἐγκράτεια δύναμις ὑπομενητικὴ λύπης : ἀκολούθησις τῷ ὀρθῷ λογισμῷ : |
ΘΕΩΝ ΟΠΙΝ . Ὁ ΤΕ σύνδεσμος πλεονάζει . . ΟΥΤΕ ΘΕΩΝ ΟΠΙΝ ΕΙΔΟΤΕΣ . Τουτέστιν οὔτε εἰς θεοὺς εἰδότες ἐπιστρέφεσθαι | ||
Νῦν γὰρ θεοὺς τὰς ψυχικὰς δυνάμεις φησίν . . ΟΥΤΕ ΘΕΩΝ ΟΠΙΝ . Ὁ ΤΕ σύνδεσμος πλεονάζει . . ΟΥΤΕ |
καὶ ἕνεκα ἀποδείξεως ἧς προεξεθέμην τοῦ μὴ δύνασθαι μετὰ τῶν συζύγων ῥημάτων ἁπλᾶς ὑπάρχειν τὰς ἀντωνυμίας , ὅ τι μὴ | ||
οὐδὲν ἧττον ὑπάρχει : γνωστικὴ γάρ ἐστι καὶ αὕτη τῶν συζύγων . ιαʹ Περὶ μὲν οὖν ἀθανασίας αὐτῆς Ἱκανῶς καὶ |
καὶ ὁ πολλαπλασιεπιμερής , ὡς τοῦ τρία ὁ ὀκτώ . ὑπόλογοι δέ εἰσιν οἱ ἐλάσσονες τῶν μειζόνων , ὑποπολλαπλάσιος , | ||
πολλαπλάσια τῶν τοῦ δευτέρου καὶ τετάρτου , εἰ δὲ οἱ ὑπόλογοι προτάττονται , ὑπερέχουσι τὰ τοῦ δευτέρου καὶ τετάρτου ἰσάκις |
πλήττεσθαι τὸν ἐν τῇ κεφαλῇ ἀέρα , τοῦτον δ ' ἀνακλᾶσθαι εἰς τὰ ἡγεμονικὰ καὶ γίγνεσθαι τῆς ἀκοῆς τὴν αἴσθησιν | ||
τοῦ ἡλίου ἀκτῖσι διὰ τὸ πρὸς ἴσας τε καὶ αὐτὰς ἀνακλᾶσθαι γωνίας . καὶ ἡ ἀνάκλασις δὲ , ὡς ὕστερον |
ὀφθήσεται διὰ τὸ λαʹ θεώρημα : ὁμοίως καὶ ἐπὶ τῆς ΛΣ . Ὀρθὴ ἂν εἴη . , ] ἐπεὶ γὰρ | ||
ἴσα . ᾧ ἄρα διαφέρει τὸ ἀπὸ ΓΡ τοῦ ἀπὸ ΛΣ , τούτῳ διαφέρει τὸ ἀπὸ ΣΚ τοῦ ἀπὸ ΚΡ |
γνήσιον , πάντες συνομολογοῦσιν : τὸ γὰρ ἀκριβὲς καὶ ἡ εὐκρίνεια καὶ ἡ λέξις βοῶσιν ὡς εἰπεῖν Ἑρμογένους εἶναι τὸ | ||
ἐν αὐτοῖς , εἰ περιβολὴ δύναται διὰ ταὐτοῦ γίνεσθαι καὶ εὐκρίνεια : σχεδὸν γὰρ ταῦτα οὐδὲ ἐναντία ἐστίν , ἀλλὰ |
κυνῶν κόπροϲ ξηρὰ ϲὺν γάλακτι τετυρωμένῳ διὰ τῆϲ τῶν καχλήκων καθέϲεωϲ πινο - μένη μεγάλωϲ ὀνίνηϲι . ϲύνθετα δὲ ὅ | ||
. τὸ δὲ διὰ τῆϲ τῶν πεπυρακτωμένων κοχλάκων ἢ ϲιδήρων καθέϲεωϲ παχυνόμενον γάλα πρόϲ τε δυϲεντερίαϲ καὶ τὰ κατὰ γαϲτέρα |
καὶ τῆς ἀπολαμβανομένης ὑπὸ τῆς παραλλήλου ἴσον ἔσται τῷ ἀπὸ ΓΧ . διὰ δὲ τοῦτό ἐστιν , ὡς ἡ ΤΧ | ||
τοῦ Χ πρὸς ὁποιανοῦν τῶν τομῶν προσπιπτέτω τις εὐθεῖα ἡ ΓΧ , καὶ τῇ ΓΧ παράλληλος ἤχθω τέμνουσα τὰς ἐφεξῆς |
μὲν τὸν τῶν ρκ λόγον ἑκατέρας τῶν ΖΑ καὶ ΑΓ ὑποτεινουσῶν ἡ μὲν ΖΘ γίνεται πβ ιδ η , ἡ | ||
ἐστὶ ταῖς ἑτέραις δύο πλευραῖς τῶν β ἀνὰ ἡμίσειαν ὀρθῆς ὑποτεινουσῶν , ὡς εἶναι τὰς ὑπὸ τῶν β πλευρῶν ὑποτεινομένας |
τοῦ σώματος ὅμοιον , οὔτε κατὰ τὴν γνώμην . . ΑΛΛ ' ἙΚΑΤΟΝ ΜΕΝ ΠΑΙΣ . Ὀρθῶς τοῦ κακοῦ βίου | ||
λογογράφοις ἐφεῖται τῷ γένει χρῆσθαι ἀντὶ τοῦ εἴδους . . ΑΛΛ ' ΕΠΙ ΓΑΙΑΝ . ἀντὶ τοῦ κατὰ τὴν γῆν |
Παρθένου ἐπιτέλλουσι : καὶ ἐτησίαι λήγουσιν . Ἐν δὲ τῇ ιῃ ἡμέρᾳ Εὐκτήμονι Προτρυγητὴρ φαίνεται : ἐπιτέλλει δὲ καὶ Ἀρκτοῦρος | ||
τῇ εῃ Εὐδόξῳ Ἀετὸς ἑῷος δύνει . Ἐν δὲ τῇ ιῃ ἡμέρᾳ Εὐδόξῳ Στέφανος δύνει . Ἐν δὲ τῇ ιβῃ |
ΔΟ τοῦ ὑπὸ τῶν ΘΟΚ , ἀνάλογον ἡ Λ πρὸς ΟΚ ἐλάσσονα λόγον ἔχει ἤπερ ἡ ΘΟ πρὸς ΟΔ . | ||
περιφέρεια πρὸς τὴν ΞΟΠ . Καταληφθήσεται δὲ καὶ ἡ μὲν ΟΚ τοῦ μεσημβρινοῦ διάστασις , τουτέστιν ἡ ἀπὸ τοῦ διὰ |
ΔΕΖ μίαν γωνίαν τὴν ὑπὸ ΒΑΓ μιᾷ γωνίᾳ τῇ ὑπὸ ΕΔΖ ἴσην ἔχοντα , περὶ δὲ τὰς ἴσας γωνίας τὰς | ||
γωνίας , ἴσον δὲ ἔστω τὸ ὑπὸ ΒΑΓ τῷ ὑπὸ ΕΔΖ : ὅτι καὶ τὸ τρίγωνον τῷ τριγώνῳ ἐστὶν ἴσον |
: δοθεῖσα ἄρα καὶ ἡ ΨΚ . ἀλλὰ καὶ ἡ ΨΣ δοθεῖσά ἐστιν , ἐπεὶ καὶ ὡς ἡ ΦΚ πρὸς | ||
τῷ ΡΣ κύκλῳ : ἴση ἄρα ἐστὶν ἡ ΠΩ τῇ ΨΣ περιφερείᾳ . ἐπεὶ δὲ ἀσύμπτωτόν ἐστι τὸ ἀπὸ τοῦ |
γὰρ αὐτῶν ἐκ περαινόντων περαίνοντι , τὰ δ ' ἐκ περαινόντων τε καὶ ἀπείρων περαίνοντί τε καὶ οὐ περαίνοντι , | ||
Ὑπέρου περιτροπή . ἐπὶ τῶν τὰ αὐτὰ ποιούντων καὶ μηδὲν περαινόντων . Ὑπὲρ τὰ ἐσκαμμένα , ὑπὲρ τὰ μέτρα . |
τοῦ κέντρου δύναται τὸ ὑπὸ ΛΑΒ , ὕψος δὲ ἡ ΓΟ , μείζων ἐστὶν τοῦ κώνου , οὗ ἡ μὲν | ||
τὸ ΜΓΟΥ , καὶ τρεῖς αἱ ΥΜ , ΜΓ , ΓΟ ἴσαι ἀλλήλαις εἰσίν , καὶ μείζων ἐστὶν ἡ ΜΓ |
καὶ ἔστω ὀρθὴ ἡ ὑπὸ ΒΔΜ , τῶν ΗΓ ΜΔ ἐκβληθεισῶν καὶ συμπιπτουσῶν κατὰ τὸ Ν . ἐπεὶ οὖν τὸ | ||
συμπτώσεως , τὸ δὲ ΔΕ ἐκτὸς τῆς συμπτώσεως . οὐκοῦν ἐκβληθεισῶν τῶν ὄψεων καθάπερ ἐν τοῖς ἐπιπέδοις καὶ κυρτοῖς ἐνόπτροις |
δὲ πρὸς τὴν ΑΗ , ἥτις ἐνηρμόσθω ὑπὸ τὴν ὑπὸ ΑΖΗ γωνίαν . ἡ ΒΑ ἄρα πρὸς ΑΗ ἐλάττονα λόγον | ||
Δ κατὰ τὸ Κ . ἐπεὶ οὖν αἱ μὲν ὑπὸ ΑΖΗ καὶ ΓΗΖ δύο ὀρθῶν εἰσιν ἐλάσσους , αἱ δὲ |
ἄρα ὁ ζθ τῷ κξ ἐστιν ἴσος . ὁ δὲ κξ ἀπεδείχθη τῷ ε ἴσος : καὶ ὁ ζθ ἄρα | ||
δγ ἑκάτερος τῶν λμ , μν : ὅλος ἄρα ὁ κξ ἴσος ἐστὶ τῷ ε . καὶ ἐπεὶ ὁ βδ |
δὴ ἐπὶ μὲν τῆς παραβολῆς ἴσον τὸ ΑΔΒΖ παραλληλόγραμμον τῷ ΑΓΖ τριγώνῳ , καὶ κοινοῦ ἀφαιρουμένου τοῦ ΑΕΒΖ λοιπὸν τὸ | ||
. ἐπεὶ οὖν ὀρθὴ ἡ ὑπὸ ΓΖΑ , ἡ ὑπὸ ΑΓΖ ἄρα ἐλάσσων ὀρθῆς . τὴν δὲ μείζονα γωνίαν ἡ |
λζʹ ∠ ʹʹγʹʹ ιβʹʹ Κῶπαι ναʹ ∠ ʹʹγʹʹ ληʹ ιβʹʹ Ἁλίαρτος ναʹ ∠ ʹʹγʹʹ ιβʹʹ λζʹ ∠ ʹʹδʹʹ Πλαταιαί νβʹ | ||
λέγουσιν . ἀπὸ δὲ Θεσπίας ἰόντι ἄνω πρὸς ἤπειρον ἔστιν Ἁλίαρτος . ὅστις δὲ Ἁλιάρτου γέγονε καὶ Κορωνείας οἰκιστής , |
διδόαϲιν ἐϲθίειν τοῖϲ πεπονθόϲι τὴν κύϲτιν καὶ τοῖϲ λιθιῶϲιν . Ὕαινα ζῶϲα ἐν ἐλαίῳ ἑψομένη ὅλη , ὥϲπερ ἐπὶ τῶν | ||
, ἃς δεῖ συνάγειν ἐν τοῖς σίμβλοις καὶ ἔχειν . Ὕαινα ζῷόν ἐστι τετράπουν , ἀνήμερον , διφυές . τὸ |
καὶ κακοποιοὶ ἐπιθεωρήσωσιν . ὁμοίως δὲ καὶ τὰ φῶτα ἀλλήλων ἀπόστροφα ἀλλοφύλους ἢ ἀλλοεθνεῖς τοὺς γονεῖς ποιοῦσιν . ὁ Ἥλιος | ||
καὶ ὀκτὼ καὶ δεκαδύο τὸν ἀριθμόν , λέγεται δὲ καὶ ἀπόστροφα πρὸς ἄλληλα τὰ πρὸς τήνδε τὴν διάστασιν τὸν ἀριθμὸν |
δὲ τὸ Β , ὄψεις δὲ ἀνακλώμεναι αἱ ΒΖΔ , ΒΗΕ . λέγω , ὅτι αἱ ΖΔ , ΕΗ οὔτε | ||
ὑπὸ ΔΗΕ γωνίᾳ . ὀρθὴ ἄρα ἐστὶν ἑκατέρα τῶν ὑπὸ ΒΗΕ , ΔΗΕ γωνιῶν : ἡ ΕΗ ἄρα τῇ ΒΔ |
ἔφηβοι μέλλοντες ἐξιέναι εἰς πόλεμον . ; ἱέρεια γέγονεν ἡ Ἄγραυλος Ἀθηνᾶς , ὥς φησιν Φιλόχορος . , , . | ||
; , , . . . . . , : Ἄγραυλος καὶ Ἕρση καὶ Πάνδροσος θυγατέρες Κέκροπος , ὥς φησιν |