| μοίρας μθ μη , καὶ ἐπεζεύχ - θωσαν ἥ τε ΚΔΗ καὶ ἡ ΑΔΘ , καὶ ἔτι ἀπὸ τοῦ Α | ||
| δοθείσης τῆς ΓΔ περιφερείας . . . ἐπεζεύχθωσαν ἥ τε ΚΔΗ καὶ ἡ ΑΔΘ . ἤχθω παράλληλος τῇ ΚΗ ἡ |
| διαγομένη εὐθεῖα μήτε τὴν τομὴν τέμνῃ κατὰ δύο σημεῖα μήτε παράλληλος ᾖ τῇ ἀσυμπτώτῳ , συμπεσεῖται μὲν τῇ ἀντικειμένῃ τομῇ | ||
| κατὰ μῆκος τῆς φάλαγγος δεύτερον ζυγόν , καὶ ὁ τούτῳ παράλληλος ὑπ ' αὐτὸν τρίτον , καὶ τέταρτόν ἐστι τὸ |
| τῷ ἀπὸ ΓΧ : ἐὰν γὰρ ἀπὸ τοῦ Ε τῇ ΚΧ παράλληλον ἄγωμεν , τὸ ὑπὸ τῆς ΤΧ καὶ τῆς | ||
| καὶ ἡ ΣΧ τῇ ΟΦ , ἡ δὲ ΒΦ τῇ ΚΧ . παράλληλος ἄρα . , ] ἐὰν γὰρ δύο |
| τὴν ἔγγιον τῆς ἀπωτέρω , ἐλαχίστην δὲ τὴν πρὸς τῇ ἐφαπτομένῃ , καθ ' ἣν ἡ μέση κίνησίς ἐστιν , | ||
| συμπτώσει τῶν ἐφαπτομένων διαφέρει τῷ ἀπολαμβανομένῳ τριγώνῳ πρός τε τῇ ἐφαπτομένῃ καὶ τῇ διὰ τῆς ἁφῆς ἀγομένῃ διαμέτρῳ . ἔστωσαν |
| ἴση ἄρα καὶ ἡ ΒΜ τῇ ΜΘ . ὧν ἡ ΕΜ τῇ ΜΚ ἴση ἐστίν : λοιπὴ ἄρα ἡ ΒΕ | ||
| ἐπικύκλων εὐθεῖαι , ἐπὶ μὲν τὰ ἀπόγεια αἱ ΕΗ καὶ ΕΜ , ἐπὶ δὲ τὰ περίγεια αἱ ΕΚ καὶ ΕΞ |
| ὄμμα ἐγγυτέρω καὶ ἔστω τὸ Η , ἀφ ' οὗ προσπιπτέτω ἀκτὶς διὰ τοῦ Γ ἡ ΗΘ . ἐπεὶ οὖν | ||
| ἐπιγνῶναι ὕψος , πόσον ἐστί , τὸ ΒΓ , καὶ προσπιπτέτω ἀκτὶς ἡλίου διὰ τοῦ Β ἡ ΒΔ . οὐκοῦν |
| δέδοται τῷ μεγέθει . δῆλον δ ' ὅτι καὶ ἡ συζυγὴς αὐτῇ : δέδοται γὰρ ὁ τῆς ΕΖ πλαγίας πρὸς | ||
| οὖσα καὶ τὸν τῆς ὕλης λόγον ἀναδεδεγμένη , καὶ ἐπεὶ συζυγὴς οὖσα τῇ μονάδι δι ' ἐκείνην ἐκωλύθη τῆς εἰρημένης |
| ἐπεὶ δύο αἱ ΑΒ , ΒΓ δυσὶ ταῖς ΚΘ , ΘΛ ἴσαι εἰσίν , καὶ γωνία ἡ πρὸς τῷ Β | ||
| καὶ ὡς ἡ ΕΘ πρὸς τὴν ΓΗ , οὕτως ἡ ΘΛ πρὸς τὴν ΗΚ : ἴσων μὲν ἄρα οὐσῶν τῶν |
| ΖΕ ἴσαι εἰσὶν ἑκατέρα ἑκατέρᾳ . καὶ βάσις ἡ ΒΕ βάσει τῇ ΕΔ ἐστιν ἴση : τὸ γὰρ Ε σημεῖον | ||
| ὑπὸ ΔΗΖ ἴση : καὶ βάσις μὲν ἄρα ἡ ΒΖ βάσει τῇ ΔΖ ἴση ἐστίν , γωνία δὲ ἡ ὑπὸ |
| τουτέστι ΔΕ , ΕΖ , ἐλάττους ἔσονται τῶν ΜΞ , ΞΛ , τουτέστι τῆς ΜΝ : ἀλλ ' ἡ ΜΝ | ||
| τουτέστιν αἱ ΔΕ , ΕΖ , δύο ταῖς ΜΞ , ΞΛ , τουτέστι τῇ ΜΝ , ἴσαι εἰσίν . ἀλλὰ |
| γὰρ ἐκ τοῦ πόλου αὐτοῦ ἴση ἐστὶ τῇ τοῦ τετραγώνου πλευρᾷ τοῦ ἐγγραφομένου εἰς τὸν μέγιστον κύκλον . καὶ ἐπεζεύχθωσαν | ||
| ἡμῶν δὲ εἷς [ καὶ ] ὁ κυβερνήτης , τρίγλης πλευρᾷ διαπαρεὶς τὸ μετάφρενον . ἐκείνην μὲν οὖν τὴν ἡμέραν |
| : καὶ τῆς ὑπὸ ΓΗΑ ἄρα μείζων ἐστὶν ἡ ὑπὸ ΑΔΘ γωνία : ὥστε μεῖζόν ἐστιν τὸ ὑπὸ ΔΒΓ τοῦ | ||
| κοιναὶ τομαὶ ἡ ΑΒ καὶ ἡ ΗΖ , τοῦ δὲ ΑΔΘ κύκλου καὶ τοῦ ΑΗΒΖ κοινὴ τομὴ ἡ ΑΘ , |
| ΚΜ κάθετός ἐστιν ἡ ΕΛ . ἐκβεβλήσθω τὸ διὰ τῶν ΚΜ ΕΛ ἐπίπεδον καὶ ποιείτω τομὴν ἐν τῇ σφαίρᾳ κύκλον | ||
| τῶν ὑπὸ ΟΚΛ ΟΚΜ , ἴση ἄρα καὶ ἡ μὲν ΚΜ τῇ ΚΛ , μείζων δὲ ἡ ΚΞ πολλῷ τῆς |
| διὰ τῶν ἐπιπέδων εὑρεῖν ἔστιν εὐθεῖαν ἴσην τῇ τοῦ κύκλου περιφερείᾳ χρησάμενον τοῖς ἐπὶ τῆς ἕλικος εἰρημένοις θεωρήμασιν . Σοφίας | ||
| πάλιν , ἐπεὶ ὁμοία ἐστὶν ἡ ΘΗ περιφέρεια τῇ ΠΝ περιφερείᾳ , ἐν ᾧ ἄρα χρόνῳ τὸ Θ ἐπὶ τὸ |
| ] ἐστὶν ἡ μὲν ΟΦ τῇ ΣΧ , ἡ δὲ ΒΦ τῇ ΚΧ . ἔστι δὲ καὶ ὅλη ἡ ΒΑ | ||
| ΗΑ ἴση . Ἔστω ἡ ΒΔ ιβ , ἡ δὲ ΒΦ δ , ἡ δὲ ΦΔ η . ἡ οὖν |
| κεκλιμένοι . πάλιν , ἐπεὶ ἡ ἀπὸ τοῦ Ψ κάθετος ἀγομένη ἐπὶ τὸ τοῦ ΑΒΓ κύκλου ἐπίπεδον μείζων ἐστὶ τῆς | ||
| ταπεινότατός ἐστιν . ἐπεὶ γὰρ ἡ ἀπὸ τοῦ Ϡ κάθετος ἀγομένη ἐπὶ τὸ τοῦ ΑΒΓ κύκλου ἐπίπεδον μείζων ἐστὶ τῆς |
| ἴση ἡ ΔΕ , τῇ δὲ ΓΖ ἡ ΖΗ τῆς ΒΔΓ περιφερείας κατὰ τὸ Δ δίχα τετμημένης . λέγω , | ||
| ΒΑΓ . ἀλλὰ τῆς ὑπὸ ΓΕΒ μείζων ἐδείχθη ἡ ὑπὸ ΒΔΓ : πολλῷ ἄρα ἡ ὑπὸ ΒΔΓ μείζων ἐστὶ τῆς |
| ἐπὶ τῆς ἐκκειμένης ἀποχῆς τῶν Ϙ λ μοιρῶν ἐδείξαμεν τὴν ΖΜ περιφέρειαν μοιρῶν οὖσαν ιβ α , ἵνα , ἐπειδήπερ | ||
| τῆς διχοτομίας τῆς μείζονος τῆς ΓΜ , ἐπεὶ ἔσται ἡ ΖΜ τῇ ΓΜ ἴση . οὐ μὴν οὐδὲ μεταξὺ τῶν |
| τὰ μὲν οὖν πλεῖστα τούτων φύσει ἔχουσι , τὰ δὲ ἠγμέναι ἀνεπιστημόνως δύσχρηστοί εἰσιν : αἱ τοιαῦται μὲν οὖν κύνες | ||
| καὶ ἐπεὶ ἐν κύκλῳ τῷ ΑΒΓΔ [ ] δύο παράλληλοι ἠγμέναι εἰσὶν αἱ ΕΖ , ΓΔ , ἴση ἄρα ἐστὶν |
| ἐπὶ κλίνης τὰς φυσικὰς ἀνάγκας ἐπλήρου . Ἑνδεκάτῃ ἐπὶ τῇ ἐπιφανείᾳ τὸ παρυφιστάμενον ἐνήχετο λευκὸν μέν , ὑπόγλισχρον δὲ καὶ | ||
| ὀρθὰς οὖσαν τῇ ΒΓ , καὶ πεποίηκε τομὴν ἐν τῇ ἐπιφανείᾳ τὴν ΔΕΖ , ἡ δὲ διάμετρος ἡ ΜΕ ἐκβαλλομένη |
| τὸν αὐχένα κατὰ νῶτα δαφοινὸς καὶ γένεια καθιεὶς ὑπ ' ὀρθῇ καὶ πριονωτῇ τῇ λοφιᾷ βλέπων τε δεινῶς δεδορκὸς καὶ | ||
| ποιεῖν ἐμφερὲϲ ταῖϲ τοῦ Κ δύο κεραίαιϲ ταῖϲ πρὸϲ τῇ ὀρθῇ γραμμῇ ϲημαίνουϲι δραχμήν , ⋖ , τὴν ϲυνωνύμωϲ καὶ |
| , καὶ ἐφαπτόμεναι μὲν αἱ ΑΔΓ , ἀσύμπτωτοι δὲ αἱ ΕΖΗ , καὶ ἐπεζεύχθω ἡ ΑΓ , καὶ διὰ τοῦ | ||
| ἔστω ὁ ΒΖΓ , ἀπὸ δὲ τοῦ λοξοῦ κύκλου τοῦ ΕΖΗ ἴσαι περιφέρειαι ἀπειλήφθωσαν αἱ ΛΚ , ΚΘ ἑξῆς ἐπὶ |
| τὰς αἰσθήσεις . ̈ . , Π . , Ἐμπεδοκλῆς ἐλλείψει τροφῆς τὴν ὄρεξιν [ . γίνεσθαι ] . . | ||
| : μὴ σπεῖραι παίδων ἄλοκα : παρὰ τὸ αὖλαξ : ἐλλείψει τοῦ υ : καὶ τροπῆ τοῦ α εἰς ο |
| δύναμιν θέσθαι τὴν ἡμετέραν σπουδάσωμεν καὶ ὥσπερ ὑπ ' ὄψιν ἀγάγωμεν . Δείκνυσι γάρ σου περιφανῶς τὴν ψυχήν , περὶ | ||
| , καὶ γίνονται πεντάκις ε κε . ἐὰν τοίνυν διάμετρον ἀγάγωμεν ἐν τῷ τετραγώνῳ , ὅ ἐστι διαγώνιον , τὸ |
| ΒΓ ΕΖ τοῖς Η Θ , καὶ ἐπεζεύχθωσαν αἱ ΑΗ ΔΘ , καὶ ἔστωσαν ἴσαι , καὶ μηδετέρα τῶν ΑΗ | ||
| ΓΘ τῇ Ε : τὸ ἄρα ΒΗ ἴσον ἐστὶ τῷ ΔΘ . καί ἐστιν ἰσογώνια . τῶν δὲ ἴσων καὶ |
| τοῦ ἀπὸ τῆς τὰς ἁφὰς ἐπιζευγνυούσης τετραγώνου . ἔστω κώνου τομὴ ἢ κύκλου περιφέρεια ἡ ΑΒΓ καὶ ἐφαπτόμεναι αἱ ΑΔ | ||
| ἐπίπεδα ἐπιπέδῳ τινὶ πρὸς ὀρθὰς ᾖ , καὶ ἡ κοινὴ τομὴ αὐτῶν τῷ ἐπιπέδῳ πρὸς ὀρθὰς ἔσται : καὶ ἡ |
| ΖΔΜ ὀρθογώνιον κύκλος τξ : ὥστε καὶ ἡ μὲν ὑπὸ ΒΖΔ γωνία τοιούτων ἐστὶν β μδ , οἵων αἱ β | ||
| εἰσὶν αἱ ΒΖ , ΖΔ περιέχουσαι ἀμβλεῖαν , ἡ ὑπὸ ΒΖΔ ἄρα γωνία ἡ λείπουσά ἐστιν εἰς τὰς δύο ὀρθὰς |
| πλαγία πρὸς τὴν ὀρθίαν , ὡς δὲ ἡ Κ πρὸς ΗΖ , ἡ ΘΗ πρὸς ΗΑ διὰ τὸ ἴσον εἶναι | ||
| τῇ ΚΖ : ὅπερ ἀδύνατον : ἡ γὰρ ΕΗ τῇ ΗΖ ἐστιν ἴση . οὐκ ἄρα διάμετρός ἐστιν ἡ ΑΘ |
| : ὁμοίως καὶ ἐὰν ὁ τοῦ μητρικοῦ κλῆρος ἐν τῷ διαμέτρῳ εὑρεθῇ καὶ ὁ τοῦ διαμέτρου τοῦ κλήρου τῆς μητρὸς | ||
| ἐστὶ τῷ ΑΖ . Ἐὰν παραβολῆς εὐθεῖα ἐπιψαύουσα συμπίπτῃ τῇ διαμέτρῳ , καὶ ἀπὸ τῆς ἁφῆς εὐθεῖα καταχθῇ ἐπὶ τὴν |
| μετὰ τοῦ ἀπὸ ΣΚ . ᾧ ἄρα διαφέρει τὸ ἀπὸ ΣΚ τοῦ ἀπὸ ΚΡ , τούτῳ διαφέρει τὸ ὑπὸ ΜΡΝ | ||
| ἑκατέρας τῶν ΣΚ , ΚΨ , μείζων ἄρα καὶ ἡ ΣΚ τῆς ΚΨ . ἀλλ ' ἡ μὲν ΣΚ τῇ |
| τῶν ΔΖΕ , περὶ δὲ τὰς ὑπὸ τῶν ΒΑΓ , ΔΖΕ γωνίας τὰς πλευρὰς ἀνάλογον , ὅμοιον ἄρα ἐστὶ τὸ | ||
| τῷ ὑπὸ ΝΞΕ τὸ ὑπὸ ΘΜΕ , καὶ τὸ ὑπὸ ΔΖΕ ἄρα μεῖζόν ἐστιν τοῦ ὑπὸ ΘΜΕ , ὥστε καὶ |
| τὴν ΜΖ : καὶ περὶ ὀρθὰς γωνίας τὰς ὑπὸ τῶν ΔΚ , ΚΒ , ΜΝ , ΜΖ αἱ πλευραὶ ἀνάλογόν | ||
| ΚΜΔ γωνίᾳ τῇ ὑπὸ ΒΜΔ ἴση : βάσις ἄρα ἡ ΔΚ βάσει τῇ ΔΒ ἴση ἐστίν . λέγω [ δή |
| ἀδιάφορος οὖσα ὥσπερ καὶ ἡ κάθετος . διττὴ δὲ ἡ κάθετός ἐστιν , ἡ μὲν ἐπίπεδος , ἡ δὲ στερεά | ||
| ὅλως τὸ τῆς ὀρθῆς εἶδος . σύμβολον γὰρ καὶ ἡ κάθετός ἐστιν ἀρρεψίας καὶ ἀχράντου καθαρότητος καὶ μέτρου θείου καὶ |
| ἡ ΖΗ , καὶ προσαναπεπληρώσθω ὁ ΔΕΖΚ κύκλος , καὶ διήχθω ἡ ΕΒΚ , καὶ ἀπὸ τοῦ Η ἐπ ' | ||
| πρὸς ὀρθὰς ἀλλήλαις διαμέτρων καὶ τοῦ ΕΖ ἄξονος , καὶ διήχθω τινὸς τῶν νοτιωτέρων τοῦ ἰσημερινοῦ μηνιαίων παραλλήλων διάμετρος ἡ |
| καὶ γυναῖκα παθεῖν ἐν Ἤλιδι λόγος ἀνδρὶ μὲν κατὰ νόμον ἠγμένην , Αἰθίοπι δὲ τὴν εὐνὴν κλέπτουσαν . κόρην μὲν | ||
| οἱ Πυθαγόρειοι λέγουσιν , ὥσπερ ἱκέτιν καὶ ἀφ ' ἑστίας ἠγμένην ὡς ἥκιστα δεῖν [ δοκεῖν ] ἀδικεῖν . . |
| ΒΖ τῷ ΧΦΨ : καὶ ὁ ΧΦΨ ἄρα πρὸς τὸν ΞΚΟ κέκλιται ὡς ἐπὶ τὰ Ξ μέρη . καὶ ἐπεὶ | ||
| , ΒΖ κοινῇ τομῇ . ἡ δὲ κοινὴ τομὴ τῶν ΞΚΟ , ΒΖ ἐστιν ἡ ἀπὸ τοῦ Ο σημείου διάμετρος |
| ἀπεδείχθη μοιρῶν ρνζ ι ἔγγιστα : καὶ λοιπὴ ἄρα ἡ ΛΒ τοῦ ἐπικύκλου περιφέρεια , ἣν ἀπεῖχεν ἡ σελήνη τοῦ | ||
| μείζων ἐστί , καί ἐστιν , ὡς ἡ ΕΛ πρὸς ΛΒ , οὕτως ἡ ΕΑ πρὸς ΑΒ , καὶ συνθέντι |
| τομῆς κατὰ τὸ πέρας τῆς διαμέτρου παράλληλος ἔσται τῇ δίχα τεμνομένῃ εὐθείᾳ . ἔστωσαν ἀντικείμεναι τομαὶ αἱ Α , Β | ||
| συζυγὴς αὐτῇ ἡ ἀπὸ τοῦ κέντρου ἀγομένη παράλληλος τῇ δίχα τεμνομένῃ . ἔστωσαν ἀντικείμεναι τομαὶ αἱ Α , Β , |
| καὶ τῆς ἀπολαμβανομένης ὑπὸ τῆς παραλλήλου ἴσον ἔσται τῷ ἀπὸ ΓΧ . διὰ δὲ τοῦτό ἐστιν , ὡς ἡ ΤΧ | ||
| τοῦ Χ πρὸς ὁποιανοῦν τῶν τομῶν προσπιπτέτω τις εὐθεῖα ἡ ΓΧ , καὶ τῇ ΓΧ παράλληλος ἤχθω τέμνουσα τὰς ἐφεξῆς |
| καὶ διάμετρος ἐκβληθεῖσα ἡ ΑΓΔ , καὶ ἀπὸ τοῦ Δ διῆκται πρὸς τὴν κοίλην περιφέρειαν ἡ ΔΛΞ , περιφέρεια ἄρα | ||
| καὶ ἀπὸ τῆς κατὰ τὸ Α ἐπαφῆς εἰς τὸν κύκλον διῆκται εὐθεῖα ἡ ΑΓ , ἡ ἄρα ὑπὸ ΘΑΓ ἴση |
| ἐστιν , ἔστιν ἄρα , ὡς ἡ ΕΚ πρὸς τὴν ΚΞ , οὕτως ἡ ΕΑ πρὸς τὴν ΑΖ . ἐπεὶ | ||
| ΡΤ . ἐπεὶ δὲ ζητῶ τίς περιφέρεια ἡ ΕΚ τῇ ΚΞ , ζητήσω ἄρα τίς γωνία ἡ ὑπὸ ΕΟΚ τῇ |
| , καὶ τῇ κοινῇ τομῇ αὐτῶν τῇ ΓΔ πρὸς ὀρθὰς ἦκται ἐν τῷ ΓΝΔ ἐπιπέδῳ ἡ ΟΦ , ἡ ΟΦ | ||
| : τὸ μετεωρίζεσθαι καὶ ἐπαίρεσθαι καὶ γαυριᾶν : παρὰ τὸ ἦκται ἀκτός καὶ ῥῆμα ἀκτῶ , ἀφ ' οὗ ἀκταίνω |
| . Ποιείσθω οὖν κατὰ τὸ Λ , καὶ κείσθω τῇ ΛΖ περιφερείᾳ ἴση περιφέρεια ἡ ΜΗ . Ἐπεὶ οὖν ὁ | ||
| καὶ ἡμέρας χρόνος ἐστίν , ἐν ᾧ ὁ ἥλιος τὴν ΛΖ περιφέρειαν διαπορεύεται , καὶ ἔστιν ἴση ἡ ΛΖ τῇ |
| ἐφάψεται δὴ τῶν δύο τομῶν καὶ συμπεσεῖται τῇ ΓΒ . συμπιπτέτω κατὰ τὸ Λ , καὶ γινέσθω , ὡς ἡ | ||
| Ε τῇ Δ οὐ συμπεσεῖται . εἰ γὰρ δυνατόν , συμπιπτέτω κατὰ τὸ Δ , καὶ ἐπεζεύχθω ἡ ΒΓ καὶ |
| τὸ ὀρθὸν ἑστάναι τὸν κύλινδρον . πιπτέτω καὶ ἔστω ἡ ΚΙ , καὶ ἡ ἀπὸ τοῦ Ι ἐπὶ τὸ Α | ||
| . ὑπερπιπτέτω οὖν , εἰ δύνατον , καὶ ἔστω ἡ ΚΙ , καὶ τετμήσθω ἡ ΖΗ τῇ ΒΓ ὁμοίως κατὰ |
| τὸ τρίγωνον τὸ ΑΖΕ κύκλος περιγεγράφθω , καὶ ἐκβεβλήσθωσαν ἡ ΑΛ καὶ ἡ ΑΚ . εἴτε δὲ ὀξεῖα εἴη ἡ | ||
| τῆς ΔΑ πρὸς ΑΖ δοθήσεται καὶ ὁ τῆς ΖΑ πρὸς ΑΛ , διὰ δὲ τοῦτο καὶ ἥ τε ὑπὸ ΑΖΔ |
| διατί καὶ ἐνταῦθα ἡ Ἀφροδίτη εὑρίσκεται συμπροπέμπουσα τὸν Ἀπόλλωνα καὶ ἐφαπτομένη τοῦ δίφρου . καὶ ἤτοι ὅτι μετέρχεται τὰ γαμήλια | ||
| , καὶ ἤχθω διάμετρος τῶν τομῶν ἡ ΑΗ , καὶ ἐφαπτομένη τῆς τομῆς ἤχθω ἡ ΘΚ : ἡ ΘΚ ἄρα |
| ἀπὸ τῶν Δ καὶ Ν σημείων - ἐπὶ τὴν ΑΘ ἐκβληθεῖσαν αἱ ΔΦ καὶ ΝΧ . ἐπεὶ τοίνυν ἡ ΞΕ | ||
| ἐσχατιὰς τῆς Ἀττικῆς . Ἀριστοφάνης Γήρᾳ ἔδει δέ γ ' ἐκβληθεῖσαν εἰς Ἁλμυρίδας τῇ θυγατρὶ τῇδε μὴ παρέχειν σε πράγματα |
| ὡς ἡ ΒΞ πρὸς ΞΗ , οὕτως ἡ ΕΟ πρὸς ΟΘ . ἀλλὰ καὶ ὡς ἡ ΗΞ πρὸς ΞΚ , | ||
| κύκλων ἐπιπέδῳ οὖσα , καὶ ἤχθω διὰ τῶν ΟΠ , ΟΘ εὐθειῶν ἐπίπεδον : ποιήσει δὴ τομὴν ἐν τῷ κώνῳ |
| συμπίπτουσα τῇ ΗΑ κατὰ τὸ Κ , ἡ δὲ ΗΛ συμπίπτουσα τῇ ΒΚ κατὰ τὸ Μ . ἐπεὶ οὖν ἴση | ||
| ἀχθῇ πρὸς ὁποιανοῦν τῶν τομῶν , καὶ ταύτῃ παράλληλος ἀχθῇ συμπίπτουσα ταῖς ἐφεξῆς τρισὶ τομαῖς , τὸ περιεχόμενον ὑπὸ τῶν |
| ἧς ἔσται τότε δηλονότι διὰ τὴν ἰσοχρόνιον τῶν ΗΘ , ΖΝ εἰς τὰ ἐναντία συναποκατάστασιν τὸ κέντρον τοῦ ἐκκέντρου , | ||
| γὰρ αἵ τε ΛΚ ΚΜ ΜΞ καὶ αἱ ΜΖ ΖΞ ΖΝ ΖΛ καὶ ἔτι ἡ ΖΚ . ἐπεὶ οὖν διὰ |
| καὶ ἀπεναντίον περιφέρεια ἡ ΣΤ καὶ μεταξὺ τῶν ΞΗ , ΣΤ ὁ ἰση - μερινὸς ἔστω ὁ ΥΧΦ . καὶ | ||
| ΠΗΡ , ΣΘ , ΤΥΚ : μείζων ἄρα ἐστὶν ἡ ΣΤ περιφέρεια τῆς ΣΠ περι - φερείας . ἀλλ ' |
| τοῦ κώνου . εἰ γὰρ μή ἐστιν ὁ κύλινδρος τοῦ κώνου τριπλάσιος , ἔσται ἄρα ἤτοι μείζων ἢ τριπλάσιος ἢ | ||
| εἰ γάρ ἐστιν ἐκείνη γωνία , καὶ ἡ κορυφὴ τοῦ κώνου γωνία ἐστίν . ὥστε καὶ ὑπὸ δύο ἐπιφανειῶν καὶ |
| δ ' ὥσπερ ἡγεῖται σχεδόν . τὸ γὰρ παραθεῖναι κἀφελεῖν τεταγμένως ἕκαστα , καὶ τὸν καιρὸν ἐπὶ τούτοις ἰδεῖν , | ||
| ἔφασαν , τίνος ἕνεκα τοὺς παῖδας συνεθίζομεν προσφέρεσθαι τὴν τροφὴν τεταγμένως τε καὶ συμμέτρως , καὶ τὴν μὲν τάξιν καὶ |
| , ὁ δὲ ΒΛ τοῦ ΔΖ ἥμισυ , τοῦ ἄρα ΒΛ ἥμισυ ἔσται ὁ ΔΚ . ἦν δὲ ὁ ΒΛ | ||
| ΒΛ περιφερείᾳ : καὶ ἡ ΔΚ ἄρα ὁμοία ἐστὶ τῇ ΒΛ . Καὶ εἰσὶ τοῦ αὐτοῦ κύκλου : ἴση ἄρα |
| εἰσὶν ἑκατέρα ἑκατέρᾳ , καὶ βάσις ἡ ΑΔ βάσει τῇ ΕΗ ἴση ἐστί , γωνία ἄρα ἡ ὑπὸ ΑΒΔ γωνίᾳ | ||
| τῆς ΔΗ ; ἢ διότι ἡ ΔΗ διπλασία ἐστὶ τῆς ΕΗ : δίχα γὰρ ἐτμήθη ἡ ΔΗ κατὰ τὸ Ε |
| ΘΚ , τῇ δὲ ΡΛ ἴση ἑκατέρα τῶν ΡΜ , ΡΝ : ἑκάστη ἄρα τῶν ΑΒ , ΒΓ , ΔΕ | ||
| : ἐπ ' εὐθείας ἄρα [ ἐστὶ ] καὶ ἡ ΡΝ τῇ ΝΟ . καὶ συμπεπληρώσθω τὸ ΣΠ τετράγωνον : |
| ἡ ΛΚ τῇ ΚΕ , καί ἐστιν ὀρθὴ ἡ ὑπὸ ΛΚΕ γωνία , τὸ ἄρα ἀπὸ τῆς ΕΛ διπλάσιόν ἐστι | ||
| τὸ μὲν ΘΚΕ ὅμοιόν ἐστι τῷ ΜΔΕ , τὸ δὲ ΛΚΕ τῷ ΞΔΕ : ἰσογώνιον ἄρα ἕκαστον ἑκάστῳ . ἔστιν |
| , διότι ἡ τῆς ΜΓ ἀναφορὰ ἡ αὐτὴ λαμβάνεται τῇ ΝΞ οὐ προοδεύεται δὲ τὸ θεώρημα τοῦτο οὐκ - έτι | ||
| τουτέστιν τὰς καὶ ΠΝ , καὶ τὰς ἴσας αὐταῖς τὰς ΝΞ καὶ ΕΞ . καὶ πάλιν , ἐπεὶ δέδοται ἡ |
| Η , διαστήματι δὲ τῷ ΗΒ , κύκλος γεγράφθω ὁ ΒΚΘ : παράλληλος ἄρα ἐστὶν ὁ ΓΔΕ κύκλος τῷ ΒΚΘ | ||
| τῇ ΖΞ , ὅμοιόν ἐστι τὸ μὲν ΛΚΕ τρίγωνον τῷ ΒΚΘ , τὸ δὲ ΒΚΘ τῷ ΒΔΖ , καὶ ἔτι |
| κ , οἵων ἡ ΔΖ ὑποτείνουσα ρκ , ἡ δὲ ΖΗ τῶν αὐτῶν ριγ μγ : ὥστε καί , οἵων | ||
| ὡς μὲν ἡ ΖΔ πρὸς τὴν ΔΕ , οὕτως ἡ ΖΗ πρὸς τὴν ΗΕ , ὡς δὲ ἡ ΜΔ πρὸς |
| πρὸς τὴν ΗΛ . καί ἐστι παράλληλος ἡ ΕΘ τῇ ΗΛ : εὐθεῖα ἄρα ἐστὶν ἡ διὰ τῶν Θ , | ||
| τοῦ κύκλου ἐπιπέδῳ τῇ ΓΔ πρὸς ὀρθὰς αἱ ΚΒ , ΗΛ , καὶ ἐπεζεύχθω ἡ ΒΛ . ἐπεὶ οὖν δύο |
| ἐγγεγράφθω τὸ ΑΒΓΔΕ . λέγω , ὅτι ἡ τοῦ ΑΒΓΔΕ πενταγώνου πλευρὰ δύναται τήν τε τοῦ ἑξαγώνου καὶ τὴν τοῦ | ||
| καὶ ἐγγεγράφθω εἰς αὐτὸν τριγώνου μὲν πλευρὰ ἡ ΒΕ , πενταγώνου δὲ ἡ ΓΔ , καὶ ἔστωσαν παράλληλοι , καὶ |
| γωνιῶν μείζων ἐστίν . Ἔστω τρίγωνον τὸ ΑΒΓ , καὶ προσεκβεβλήσθω αὐτοῦ μία πλευρὰ ἡ ΒΓ ἐπὶ τὸ Δ : | ||
| μὴ ὑπάρχοντος ἡλίου . κείσθω κάτοπτρον τὸ ΔΖ , καὶ προσεκβεβλήσθω τῇ ΕΔ ἐπ ' εὐθείας ἡ ΔΒ , ἄχρις |
| ἐλάττονές εἰσιν , ἴση δὲ ἡ ὑπὸ ΑΓΒ τῇ ὑπὸ ΔΕΓ , αἱ ἄρα ὑπὸ ΑΒΓ , ΔΕΓ δύο ὀρθῶν | ||
| ὑπὸ ΑΕΒ πρὸς τὸ ἀπὸ ΕΒ , οὕτως τὸ ὑπὸ ΔΕΓ πρὸς τὸ ἀπὸ ΕΓ . ἀλλὰ καὶ ὡς τὸ |
| ἔθεσιν Ἀριστόξενός φησιν , ἐν δὲ τῇ ποιήσει τῇ μόνῃ δοκούσῃ κατ ' ἀλήθειαν ὑπ ' αὐτοῦ γεγράφθαι τοῖς ὅλοις | ||
| τοιαύτη οἵα οὐκ ἂν γένοιτο ψευδής , ἀλλὰ πάσῃ τῇ δοκούσῃ ἀληθεῖ καθεστάναι εὑρίσκεταί τις ἀπαράλλακτος ψευδής , γενήσεται τὸ |
| τῇ ὑπὸ ΕΓΖ , τὴν δὲ ὑπὸ ΒΑΚ τῇ ὑπὸ ΕΓΗ , τὴν δὲ ὑπὸ ΚΑΘ τῇ ὑπὸ ΗΓΖ : | ||
| περὶ τὸ ΓΕΗ ὀρθογώνιον κύκλος τξ , ἡ δὲ ὑπὸ ΕΓΗ γωνία , οἵων μέν εἰσιν αἱ β ὀρθαὶ τξ |
| τι ἢ ἀπ ' ἄλλου τὸ αὐτό , οὐχ ἡ ἀντικειμένη , ἀλλ ' ἔσται ἐκείνης ἑτέρα , τοῦτο δέ | ||
| φερόμενον : ἡ γὰρ ὅλη φορὰ οὐθὲν ἧττον ἑκατέρα ἑκατέρᾳ ἀντικειμένη ἐπ ' ἄπειρον νοεῖται . Καὶ μὴν καὶ ἰσοταχεῖς |
| τὸ ΜΖ : πολλῷ ἄρα τὸ ΜΖ μεῖζόν ἐστι τοῦ ΞΚ . καὶ ἐπεὶ τὰ ΞΝ , ΝΛ , ΛΚ | ||
| , ἡ δὲ ΞΛ τῆς ΠΡ , ὅλη ἄρα ἡ ΞΚ ὅλης τῆς ΚΡ ἐστὶ διπλῆ . Πάλιν ἐπεὶ διπλῆ |
| Α , καὶ τῇ ΓΔ παράλληλος ἤχθω ἐν τῇ ἑτέρᾳ τομῇ ἡ ΕΖ , καὶ τετμήσθω δίχα κατὰ τὸ Η | ||
| τυχόντα σημεῖα , καὶ ἀπ ' αὐτῶν ἀχθῶσιν ἐν τῇ τομῇ παρὰ τὰς ἐφαπτομένας τέμνουσαι ἀλλήλας τε καὶ τὴν γραμμήν |
| λοξὸν κύκλον περιφέρειαι , ἥ τε ΡΔ ἐστὶν καὶ ἡ ΡΕ : γωνίαι δὲ ἥ τε Ζ καὶ ἡ Η | ||
| ΖΟ , ΟΗ , ΗΠ , ΠΘ , ΘΡ , ΡΕ , καὶ ἀνεστάτω ἀφ ' ἑκάστου τῶν ΕΞ , |
| ἴση ἐστὶν ἡ μὲν ΚΜα τῇ ΒΔ , ἡ δὲ ΚΡ τῇ ΑΒ , ἡ δὲ ΒΕ τῇ ΚΘ , | ||
| τῇ μὲν ΑΓ ἴσην θῶμεν τὴν ΓΔ , τῇ δὲ ΚΡ ἴσην τὴν ΡΧ , καὶ τὰ αὐτὰ κατασκευάσωμεν , |
| , κοινὴ προσκείσθω ἡ ΝΚΜ περιφέρεια : ὅλη ἄρα ἡ ΛΚΜ περιφέρεια ὅλῃ τῇ ΝΚΜΞ περιφερείᾳ ἐστὶν ἴση . ἡμικυκλίου | ||
| , καὶ διὰ τοῦ Κ ἤχθω πλευρὰ τοῦ κυλίνδρου ἡ ΛΚΜ εὐθεῖα πίπτουσα ἐπὶ τὰς ΕΗ , ΖΘ περιφερείας ἐκβαλλομένη |
| ἡ ΚΒΛ . λέγω , ὅτι ἐστίν , ὡς ἡ ΑΚ πρὸς ΚΘ , οὕτως ἡ ΑΗ πρὸς ΗΘ . | ||
| ἴση ἡ ΚΛ τῇ ΚΗ . ἐπεὶ οὖν τὰ ἀπὸ ΑΚ , ΚΗ τοῖς ἀπὸ ΑΒ , ΒΗ ἴσα ἐστί |
| . καὶ ἐπεὶ ὡς ἡ ΜΑ πρὸς ΑΒ , ἡ ΜΛ πρὸς ΛΚ , ὡς δὲ ἡ ΜΛ πρὸς ΛΚ | ||
| ὡς ἡ ΖΗ πρὸς ΗΕ , οὕτως ἡ ΝΜ πρὸς ΜΛ . Δέδοται ἄρα . , ] ἐπεὶ οὖν δεδομέναι |
| ΑΒ παραλληλόγραμμον . ἔστω δ ' ἐν αὐτῷ διὰ τῆς ΠΟ εὐθείας κατὰ μέσον σωλήν , ὥστε πελεκυνάριον ἐν αὐτῷ | ||
| ἤχθωσαν διὰ τῶν Κ , Λ παράλληλοι αἱ ΞΟ , ΠΟ . ἐπεὶ οὖν διπλῆ ἐστιν ἡ μὲν ΠΟ τῆς |
| τὸ λίθον ἔχειν ἐν τῇ κύστει τὴν τίκτουσαν καὶ τῇ θλίψει τοῦ τραχήλου τῆς ὑστέρας δυσχέρεια γίνεται , ἢ παρὰ | ||
| ἐγὼ πλησίον σου εὑρεθήσομαι ἑστώς , ὑπερασπιστής σου ἐν πάσηι θλίψει καὶ κινδύνωι γενησόμενος . τὰ δὲ σημεῖα ταῦτα ἅπερ |
| , ἐκεῖνον τὸν λόγον ἔδει ἔχειν καὶ τὴν ΑΓ πρὸς ΛΞ , καὶ τὰ λοιπὰ ὁμοίως κατασκευάζειν . [ καὶ | ||
| , ἐπεὶ μέσον ἐστὶ τὸ ΔΘ καί ἐστιν ἴσον τῷ ΛΞ , μέσον ἄρα ἐστὶ καὶ τὸ ΛΞ . ἐπεὶ |
| Ψ τῇ ΚΞ παράλληλος ἡ ΨΩ , καὶ ἔστω ὡς ΛΜ πρὸς ΜΩ , οὕτως ἡ ΩΜ πρὸς ΜΑ͵ . | ||
| . ἀλλὰ καὶ διὰ τὸ τρεῖς εἶναι παραλλήλους τὰς ΔΕ ΛΜ ΗΘ ἴση γίνεται ἡ ΕΜ τῇ ΜΚ . εἴη |
| , οὕτως ἡ ΚΔ πρὸς ΔΘ . ὡς δὲ ἡ ΚΔ πρὸς ΔΘ , οὕτως ἡ ΚΖ πρὸς ΘΗ : | ||
| ἐπεὶ οὖν διὰ τὰς ἐφαπτομένας ἐστὶν ὡς ἡ ΒΚ πρὸς ΚΔ , ἡ ΒΘ πρὸς ΘΔ , καὶ ἔστιν ἡ |
| γὰρ ἀπὸ τῶν Κ , Β παρὰ τὴν ΑΖ αἱ ΚΠ , ΒΡ . ἐπεὶ οὖν ἐστιν , ὡς τὸ | ||
| καὶ τῇ μὲν ΚΝ παράλληλος ἡ ΡΤ , τῇ δὲ ΚΠ ἡ ΩΜ , καὶ περὶ τὸ Β κέντρον περιφέρεια |
| μέγιστοι κύκλοι γεγράφθωσαν οἱ ΟΤ , ΠΥ , ΡΦ , ΣΧ . ἐπεὶ οὖν αἱ ΖΟ , ΟΗ , ΗΠ | ||
| ΧΦ τῇ ΚΒ . καὶ ἐπεὶ ἑκατέρα τῶν ΟΦ , ΣΧ ὀρθή ἐστι πρὸς τὸ τοῦ ΒΓΔΕ κύκλου ἐπίπεδον , |
| , καὶ παράλληλος τῇ ΖΔ ἡ ΑΜ , καὶ τῶν ΒΜ , ΜΓ μέση ἀνάλογον ἔστω ἡ ΜΗ , καὶ | ||
| : διάμετρος ἄρα ἐστὶν ἡ ΒΘ , ὀρθία δὲ ἡ ΒΜ . λέγω , ὅτι τὸ ὑπὸ ΔΑΖ ἴσον ἐστὶ |
| ὧν ὁ μῦθος . Μέλος ἀγρέως : ἐπὶ τῶν τῇ εὐμουσίᾳ κηλόντων ⋮ Ὁ δὲ ἀγρεύς ἐστι ζῷον πτηνόν , | ||
| σιδήρῳ εὐηνίους ποιεῖν , ἀλλὰ τῇ τῆς ψυχῆς καλλονῇ καὶ εὐμουσίᾳ . τῆς δὲ Γρατιανοῦ ἀγλαΐας οὐχ οἱ φιλόσοφοι μόνον |
| καὶ ἤχθω διὰ τοῦ Ε κέντρου τῇ ΜΝ παράλληλος ἡ ΕΘ , καὶ κάθετος ἐπ ' αὐτὴν ἀπὸ τοῦ Λ | ||
| ἡ μὲν ΘΗ τῇ ΗΖ ἐστιν ἴση , ἡ δὲ ΕΘ τῆς ΔΗ διπλῆ , καὶ λοιπὴν τὴν ΓΘ ἕξομεν |
| ὑπὸ ΕΑΒ . ἐπεὶ οὖν δύο τρίγωνα τὰ ΖΕΒ , ΖΑΒ ἐπὶ μιᾶς βάσεως συνέστηκε , καὶ ἡ ἀπὸ τοῦ | ||
| ΕΑΒ τομεὺς πρὸς τὸν ΒΑΗ τομέα , οὕτως ἡ ὑπὸ ΖΑΒ πρὸς τὴν ὑπὸ ΒΑΓ : καὶ ἡ ὑπὸ ΖΑΒ |
| πρὸς τὴν ΜΚ : ὡς ἄρα ἡ ΓΚ πρὸς τὴν ΝΜ , οὕτως ἐστὶν ἡ ΝΜ πρὸς τὴν ΚΜ : | ||
| ᾧ τότε Ρ τὴν ΝΜ διέρχεται καὶ τὸ Η τὴν ΝΜ . Ἐκ περισσοῦ . τῶν αὐτῶν ὑποκειμένων ἀπειλήφθω ἡ |
| ἄρα ἡ ὑπὸ ΖΔΗ . ὀρθὴ δὲ καὶ ἡ ὑπὸ ΖΒΗ : ἐν κύκλῳ ἄρα τὸ ΒΖΔΗ τετράπλευρον . καὶ | ||
| καὶ διὰ μὲν τοῦ Β παρὰ τὴν ΓΔ ἤχθω ἡ ΖΒΗ , διὰ δὲ τοῦ Γ τῇ ΔΕ ἡ ΓΑΗ |
| δύναται τῷ ἀπὸ ἀσυμμέτρου ἑαυτῇ μήκει . καὶ οὐδετέρα τῶν ΔΜ , ΜΗ σύμμετρός ἐστι τῇ ἐκκειμένῃ ῥητῇ τῇ ΔΕ | ||
| πρὸς τὸ ἀπὸ τῆς ΔΖ , οὕτως ἡ ΕΔ πρὸς ΔΜ . ἀλλ ' ἦν ὡς τὸ ἀπὸ τῆς ΕΔ |
| : ὀξεῖα ἄρα ἐστὶν ἡ Α γωνία . βʹ . Θέσει οὐσῶν δύο εὐθειῶν τῶν ΑΒ ΒΓ , καὶ σημείου | ||
| τὸ πρᾶξαν , ὅτι οὐ σὲ χρῆν τοῦτο ποιῆσαι . Θέσει , ποιότητι , καὶ γνώμῃ . Συριανοῦ . Ἡ |
| τῇ ΑΒ , καὶ ἐπεζεύχθωσαν αἱ ΒΓ , ΒΔ , ΒΖ , ΒΚ , ἔστω δὲ πρότερον ἡ ΒΑ τῆς | ||
| ' ἡ ΖΒ τετραπλασία τῆς ΒΘ : καὶ ἔστιν τῆς ΒΖ διπλασίων ἡ ΖΓ : λόγος ἄρα τῆς ΖΓ πρὸς |
| , διὰ δὲ τοῦ Κ τῇ ΑΒ παράλληλος ἤχθω ἡ ΚΝ , καὶ ἐκβεβλήσθω ἡ ΔΘ ἐπὶ τὸ Ν . | ||
| τὸ Α ὄμμα ἐπὶ τὸ Ν , καὶ περὶ τὴν ΚΝ κύκλος γεγράφθω , καὶ ἐπεζεύχθωσαν αἱ ΝΡ , ΡΚ |
| βαρύ , συμπεπηγός , ἀδιάρθρωτον , πρέπον τῷ ὄντι φωλάδι κατεψυγμένῃ . αὕτη πολλάκις , βαθυτάταις κατατρωθεῖσα πληγαῖς , ἑαυτὴν | ||
| μέχρι τοῦ ἐσχάτου χρόνου . Ἡμέραι δ ' ἐπεγίνοντο αὐτῇ κατεψυγμένῃ πλείους ἢ πέντε : μετὰ δὲ τὰς πρώτας διετέλει |
| , οὕτως ἡ ΘΣ πρὸς τὴν ΘΤ , καὶ ἡ ΤΘ πρὸς τὴν ΘΡ , ” αὐτόθεν ἐλέγχεται τὸ ζητούμενον | ||
| ΘΣ , οὕτως ἡ ΣΘ πρὸς τὴν ΘΤ καὶ ἡ ΤΘ πρὸς τὴν ΘΦ , ὡς δὲ ἡ ΛΜ πρὸς |
| ἡ μὲν ὑπὸ ΓΝΗ ὀξεῖα , ἡ δὲ ὑπὸ ΔΜΖ ἀμβλεῖα , ἐλάσσων ἄρα ἐστὶν ἡ ΗΓ περιφέρεια τῆς ΔΖ | ||
| . στραγγεύομαι : τί ἐστιν ἡ ἐμὴ προθυμία νωθρὰ καὶ ἀμβλεῖα καὶ τρόπον τινὰ κατὰ στράγγα ; ἡ γὰρ μεταφορὰ |
| κατασκευασθέντων , ἐπεί ἐστιν ὡς ἡ ΕΘ βάσις πρὸς τὴν ΝΠ βάσιν , οὕτως τὸ τοῦ ΓΔ στερεοῦ ὕψος πρὸς | ||
| δεδύκασιν αἱ ΠΝ ΝΜ περιφέρειαι : ἅμα ἄρα δύνει ἡ ΝΠ περιφέρεια καὶ ἡ ΝΜ . ἐν ᾧ δὲ ἡ |
| δύο σημείων τῶν Β Ε κλάσαι τὴν ΒΝΞΕ καθόλου τῇ δοθείσῃ εὐθείᾳ ἴσην τῶν κλασμάτων τὸ πλῆθος δοθὲν ἔχουσαν . | ||
| ΒΓ . Διὰ τοῦ δοθέντος ἄρα σημείου τοῦ Α τῇ δοθείσῃ εὐθείᾳ τῇ ΒΓ παράλληλος εὐθεῖα γραμμὴ ἦκται ἡ ΕΑΖ |
| ὡς ἂν κάθετος ἀπὸ τῆς κορυφῆς ἐπὶ τὴν βάσιν τοῦ ἀμβλυγωνίου : δῆλον οὖν , φησίν , ἐκ τῆς παιδικῆς | ||
| τὴν ἐπὶ πᾶν διάστασιν αὐτοῖς ἐνδίδωσι , καὶ ὁ τοῦ ἀμβλυγωνίου λόγος εἰς μέγεθος αὔξει καὶ παντοίαν ἔκτασιν τὰ εἴδη |
| ἡ ΚΛ τῆς ὅλης περιφερείας , τὸ αὐτὸ καὶ ἡ ΘΟ τῆς ΘΟΛ . καὶ ἔστιν ἴση ἡ ΘΟΛ τῇ | ||
| ΜΒ τῇ ΒΝ καὶ ἡ ΚΟ τῇ ΟΛ καὶ ἡ ΘΟ τῇ ΟΞ καὶ ἡ ΚΘ τῇ ΞΛ . ἐπεὶ |
| σελήνη κατὰ τὸ Λ σημεῖον , καὶ ἐπεζεύχθωσαν μὲν αἱ ΛΕ καὶ ΛΒ , κάθετοι δ ' ἤχθωσαν ἐπὶ τὴν | ||
| καὶ ἀφῄρηται ἀπ ' αὐτῶν δεδομένα μεγέθη τὰ ΘΑ , ΛΕ . τὰ ΑΒ , ΕΖ ἄρα ἤτοι πρὸς ἄλληλα |
| δὲ τὸ Γ , ἐφαπτομένη δὲ ἡ ΔΕ , καὶ ἐπιζευχθεῖσα - ἡ ΓΕ ἐκβεβλήσθω ἐφ ' ἑκάτερα , καὶ | ||
| ἐπὶ τὸ τοῦ τριγώνου ἐπίπεδον κάθετος ἡ ΔΕ , καὶ ἐπιζευχθεῖσα ἡ ΑΕ ἐκβεβλήσθω : ὅτι ἡ ΑΕ τῆς ΕΖ |