ὀλίγων τῶν αὐγῶν προσπιπτουσῶν καὶ διασπωμένου τοῦ φωτός , τὸ σκιερὸν μέλαν φαίνεται . καὶ τὸ νέφος ὅταν ᾖ πυκνὸν
κύκλος ἐν τῇ σελήνῃ ὁ παρὰ τὸν διορίζοντα τό τε σκιερὸν καὶ τὸ λαμπρὸν ὁ ΗΘΚ . καὶ ἐπεὶ διχοτόμου
8184045 διοριζοντος
νόσους εἰκὸς εἶναι πολλάς . Τοῦ δὲ Ἅληκος ποταμοῦ τοῦ διορίζοντος τὴν Ῥηγίνην ἀπὸ τῆς Λοκρίδος βαθεῖαν φάραγγα διεξιόντος ἴδιόν
ΓΔ . ἡ ΓΔ ἄρα διάμετρός ἐστι τοῦ κύκλου τοῦ διορίζοντος ἐν τῇ σελήνῃ τὸ σκιερὸν καὶ τὸ λαμπρόν .
7128999 διοριζων
ἐπιδειχθῇ : καλεῖται τοίνυν πρῶτος ὅρος ὁ ἐν τοῖς χωρίοις διορίζων τό τε οἰκεῖον καὶ τὸ ἀλλότριον : καλεῖται δὲ
αὐτοὺς ποιῶν διὰ τὴν τῶν ἀκτίνων βολήν , οὕτω δὲ διορίζων τὸ ἄρρεν καὶ τὸ θῆλυ , ἐπεὶ καὶ θερμότερον
7049668 κωνος
ΕΖ ὕψος . λέγω , ὅτι ἴσος ἐστὶν ὁ ΑΒΞ κῶνος ἢ κύλινδρος τῷ ΓΘΔ κώνῳ ἢ κυλίνδρῳ . πάλιν
ὁ ὑπὸ τοῦ ΒΓΖ τριγώνου γινόμενος ἀπὸ τῆς αὐτῆς βάσεως κῶνος , ὕψος ἔχων τήν τε ΒΔ καὶ ἅπαξ τὴν
6978059 νοτιον
βόρειον γένηται , τὸ δὲ φθινό - πωρον ἔπομβρον καὶ νότιον , κεφαλαλγίαι ἐς τὸν χειμῶνα γίνονται , καὶ βῆχες
ἤτοι τὸ ἀνατολικώτερον , ὁ Ἰνδικὸς ὠκεανός : τὸ δὲ νότιον ἡ Ἐρυθρὰ θάλασσα ἢ τὸ κῦμα τῆς Ἐρυθρᾶς θαλάσσης
6967259 δυτικον
τὸ ἀνατολικὸν αὐτοῦ ἡμικύκλιον Καρκίνου ἀνατολικόν , κατὰ δὲ τὸ δυτικὸν Καρκίνου δυτικόν . τουτέστι , σημειωσώμεθα ἐπὶ τῶν ἡμικυκλίων
περὶ τοῦ γάμου νόει : πάντοτε δ ' Ἀφρογενὴς κέντρον δυτικὸν κατέχουσα . . . . ἐὰν δὲ ᾖ Ἀφροδίτη
6963387 ἑσπεριον
, τοῦ ἄρα ἡλίου ἐπὶ τοῦ κʹ ὄντος τὸ εʹ ἑσπέριον ἀνατέλλει : ἀπὸ ἄρα ἑῴας ἐπιτολῆς ἐπὶ ἑσπερίαν ἐπιτολὴν
εὐρυνθεῖσα τιταίνεται Ἀδριὰς ἅλμη πρὸς βορέην , αὖτις δὲ πρὸς ἑσπέριον μυχὸν ἕρπει , ἥντε καὶ Ἰονίην περιναιέται ηὐδάξαντο .
6948094 κυλινδρος
αἱ βάσεις . ἔστιν ἄρα ὡς ὁ ΑΒΖ κῶνος ἢ κύλινδρος πρὸς τὸν ΓΔΘ κῶνον ἢ κύλινδρον , οὕτως ἡ
ΑΞ κύλινδρος πρὸς τὸν ΕΣ κύλινδρον , οὕτως ὁ ΕΟ κύλινδρος πρὸς αὐτὸν τὸν ΕΣ κύλινδρον . τὰ δὲ πρὸς
6819587 ἀξων
, οὗ βάσεις μὲν οἱ Α , Β κύκλοι , ἄξων δὲ ἡ ΑΒ εὐθεῖα , καὶ εἰλήφθω τι σημεῖον
. ἔστω ἡ δοθεῖσα κώνου τομὴ πρότερον παραβολή , ἧς ἄξων ὁ ΑΒ , ἡ δὲ δοθεῖσα γωνία ἡ Θ
6814923 τμημα
περιφέρεια τῆς ΒΑΔ περιφερείας , καὶ ἐπὶ τῆς ΒΔ ὀρθὸν τμῆμα κύκλου ἐφεστάτω τὸ ΒΕΔ μὴ μεῖζον ἡμικυκλίου , καὶ
τῆς ΕΖ ἄκρον καὶ μέσον λόγον τεμνομένης , μεῖζον ἔσται τμῆμα ἡ ΑΓ : ἡ ἄρα ΕΖ πρὸς τὴν ΑΓ
6812200 ἀνατελλων
ἢ τὸν ἥλιον αὐτὸν οὐχ ὁρᾷς , ὅτι τἀναντία καὶ ἀνατέλλων καὶ δυόμενος ἐργάζεται ; ἐπειδὰν γὰρ ἀνίσχῃ , τὰ
, ἐπὶ δὲ τῶν χειμερινῶν ἐναντίως τοῖς προειρημένοις , ἐὰν ἀνατέλλων ἢ δυόμενος τὰς τροπὰς ποιήσηται . ιγʹ Ἐὰν πρὸ
6810675 ἀνατολικον
τὸ φρουρεῖν τὴν ὁδόν : τὸ τῆς Ἑλένης : τὸν ἀνατολικόν φησιν : καὶ μὴν ἐγὼ τόνδ ' : ἡνιοχεῖ
καὶ εἰς δύο τινὰ ἡμικύκλια διαιροῦντος , ὧν τὸ μὲν ἀνατολικόν , τὸ δὲ δυτικὸν ὀνομάζεται , συμβαίνει τὰς μεσημβρίας
6672949 σφαιρα
καὶ τὸ τίκτεται , διότι καὶ πρὸ τοῦ παχυνθῆναι ἡ σφαῖρα , ἦσαν πνεύματα , ἀλλὰ ταῦτα διεφοροῦντο . ἐπειδὰν
καὶ οὐδὲ τοῦτο ἁπλῶς : οὐδὲ γὰρ ἁπλῶς ἡ ἐξωτάτω σφαῖρα ἐν τόπῳ , ἀλλ ' ὡς ὅλη ἐν τόπῳ
6669165 ζῳδιακος
ὁ μέσος γὰρ ὁ ἐν αὐτῇ στέφανος τῇ ἀράχνῃ ὁ ζῳδιακὸς προσκέκληται κύκλος ὁ ἐν τῷ πόλῳ , μεμέρισται εἰς
ΜΓ . ὅταν μὲν δὴ ἡ ΜΓ ἀνατέλλῃ , ὁ ζῳδιακὸς ἕξει θέσιν τινά : ἐχέτω τὴν ΠΝΞ . ὅταν
6665001 πεφωτισμενον
εἴπερ ἀποβλέψειας εἰς τὸν ὑπὲρ τοῦτον ἀέρα , οὐκ ὄψει πεφωτισμένον , εἰ μή τι στερεὸν ἀντιβαίνοι οἷον ὄροφος ἢ
αὐτὸ ἐν τῷ αὐτῷ χρόνῳ θερμόν τε καὶ ψυχρόν , πεφωτισμένον τε καὶ ἀφώτιστον . ὑποκείσθω γὰρ διπηχυαῖον διάστημα ,
6622970 ἑῳον
, τοῦ ἄρα ἡλίου ἐπὶ τοῦ θʹ ὄντος τὸ εʹ ἑῷον δύνει . Πάλιν ἐπεὶ τοῦ ἡλίου ἐπὶ τοῦ λʹ
Αἰθίοπας τοὺς ἄνω Αἰγύπτου καὶ δι ' Ἀράβων ἐπὶ τὸν ἑῷον ὠκεανὸν ἡ ἀρχὴ διεξέρχεται , καὶ ὅρος ἐστὶν αὐτοῖς
6610145 αβʹ
κέκλιται ὁ γδʹ κύκλος πρὸς τὸν αβγδʹ κύκλον : οἱ αβʹ γδʹ ἄρα κύκλοι ὁμοίως εἰσὶ κεκλιμένοι πρὸς τὸν αβγδʹ
ἑσπέριαι ἀνατολαὶ προηγοῦνται τῶν ἑσπερίων δύσεων . Ἔστω ὁρίζων ὁ αβʹ καὶ ὁ τῶν ζῳδίων κύκλος ὁ γδʹ , καὶ
6608649 σκιασμα
ἐχούσης . τὴν δὲ σελήνην ἐμπίπτουσαν εἰς τὸ τῆς γῆς σκίασμα : ὅθεν καὶ ταῖς πανσελήνοις ἐκλείπειν μόναις , καίπερ
γῆς . Ἀεὶ δὲ τὸ ἐμπίπτον αὐτῆς μέρος εἰς τὸ σκίασμα τῆς γῆς ἀφώτιστον γίνεται τοῦ ἡλίου διὰ τὴν ἐπιπρόσθησιν
6604942 πολον
τῶν ὅλων μέση , περὶ τὸν διὰ παντὸς τεταμένον σφιγγομένη πόλον , ἡμέρας φύλαξ καὶ νυκτός , πρεσβυτάτη τῶν ἐντὸς
τὴν ἐνέργειαν , τὰ δὲ ἐπέκεινα πρὸς αὐτὸν τὸν βόρειον πόλον ἔτι λύει καὶ θάλπει καὶ ἀνορθοῖ πρὸς ἀναθυμίασιν ,
6595655 ΒΕΔ
τεταρτημορίου , διὰ τὸ τὸ Α σημεῖον πόλον εἶναι τοῦ ΒΕΔ ὁρίζοντος . ὀρθῆς δὲ οὔσης ἀεὶ διὰ τὴν αὐτὴν
προσκείσθω τὸ ἀπὸ ΔΕ τετράγωνον : ὅλον ἄρα τὸ ὑπὸ ΒΕΔ ἴσον τῷ ἀπὸ ΓΕ τετραγώνῳ . ἀνάλογον καὶ ἀναστρέψαντι
6587264 ΑΒΓΔ
δὴ τοῦτο τὸ ὄργανον ἐὰν ἐκθώμεθα παραλληλόγραμμον ἁπλῶς ὡς τὸ ΑΒΓΔ καὶ νοήσωμεν τὰς μὲν ΑΒ καὶ ΓΔ κατὰ τὰ
διὰ τοῦ κέντρου εἰσὶν ὥστε τὸ Ε κέντρον εἶναι τοῦ ΑΒΓΔ κύκλου , φανερόν , ὅτι ἴσων οὐσῶν τῶν ΑΕ
6561756 ζοφωδες
πείσει δὲ Ἱπποκράτης καὶ ἐκ τῶν φαινομένων : οὕτω γὰρ ζοφῶδες ἦν τὸ ἐκ τῆς κεφαλῆς πεμπόμενον πνεῦμα , ὅτι
ταπεινὰ τὰ δὲ κοῖλα . καὶ παραμεμῖχθαι τῷ πυροειδεῖ τὸ ζοφῶδες , ὧν τὸ πάθος ὑποφαίνει τὸ σκιερόν : ὅθεν
6542173 ΜΝΞ
μείζονος τμήματος ἤπερ ὁ ΟΠΡ . λέγω , ὅτι οἱ ΜΝΞ , ΒΖΓ , ΟΠΡ , ΣΤ , ΥΘ κύκλοι
ὀρθῷ πρὸς τὸ ΜΖΝ τρίγωνον , καὶ ποιεῖ τομὴν τὸν ΜΝΞ κύκλον , τέτμηται δὲ καὶ ἑτέρῳ ἐπιπέδῳ τῷ ὑποκειμένῳ
6538853 ΟΠΡ
ΜΝΞ ἴσον ἐστὶ τῷ ὑπὸ γῆν τοῦ ΟΕΡΠ κύκλου τῷ ΟΠΡ . πάλιν ἐπεὶ αἱ ΖΘ , ΕΗ ἴσαι τε
ΝΖ περιφέρεια τῇ ΖΠ περιφερείᾳ : οἱ ἄρα ΜΝΞ , ΟΠΡ κύκλοι ἴσον ἀπέχουσιν ὁποτερασοῦν τῶν διχοτομιῶν . οἱ δὲ
6533510 ὁριζων
δὲ πρὸς μεσημβρίαν δι ' ἐλάσσονος . Ἔστω ἐν κόσμῳ ὁρίζων κύκλος ὁ αβγδʹ , ὁ δὲ τοῦ ἡλίου κύκλος
σφαίρᾳ μέγιστος κύκλος τῶν αὐτῶν ἅπτηται , ὧν καὶ ὁ ὁρίζων ἅπτεται , στρεφομένης τῆς σφαίρας ἐφαρμόσει ἐπὶ τὸν ὁρίζοντα
6532518 τροπικον
ἐν μετανοίᾳ γενόμενος εἰς ἑτέραν ἔννοιαν ἥξει , ἐὰν δὲ τροπικὸν ἀσυντέλεστος αὐτοῦ γίνεται ἡ ὁρμή . ἐὰν δὲ τὸν
ἣ καλεῖται διακεκαυμένη . οἰκοῦμεν δὲ ἡμεῖς τὴν παρὰ θερινὸν τροπικὸν τεκμαιρόμενοι , ὅτι ἡμεῖς ταύτην ἔχοντες τὴν οἰκουμένην ἐν
6515725 μεσαιτατον
ὑπάρχειν , ὑφ ' ᾧ πυρώδης στεφάνη : καὶ τὸ μεσαίτατον πασῶν περὶ ὃ πάλιν πυρώδης : τῶν δὲ συμμιγῶν
τὸν ὁρίζοντα καὶ νυχθήμερον ἀποτελεῖ : τὸ ἥμισυ ἄρα καὶ μεσαίτατον τῆς γῆς ιβʹ ὡρῶν ἔχει διάστημα . Ἐπὶ δὲ
6510034 κεντρον
γωνίας ἀπό τινος ὁρωμένου ἀφεθῇ τις εὐθεῖα , πρὸς τὸ κέντρον τοῦ ἐνόπτρου πεσεῖται . Οὐκέτι ὁρᾶται . , ]
ἐξ ἀμοιβῆς γὰρ ἄλλοτε ἄλλῃ συγκοιμῶνται . μέτρον : γράφεται κέντρον : ζῆλος . Περί : ἕνεκα . ὀλέκονται :
6509592 στρεφομενης
δὲ καὶ τοῦτο , ποῖον τῶν φώτων ἐν τῇ γενέσει στρεφομένης τῆς τοῦ παντὸς φορᾶς πρῶτον ἔρχεται εἰς τὸ ὑπόγειον
. καὶ οἱ μὲν διὰ τῶν πόλων τῆς σφαίρας πάντες στρεφομένης τῆς σφαίρας ἐφαρμόζουσιν ἑαυτοῖς , οἱ δὲ λοξοὶ πάντες
6508437 ἀνατελλετω
, ἐν ᾗ τὴν τροπὴν ἐποιήσατο πρὸς τῷ Ε , ἀνατελλέτω κατὰ τὸ Ζ , καὶ ἔστω , καθ '
τῆς ἀρχῆς τῶν Διδύμων ἔγγιστα χρόνων ἰσημερινῶν ιζ , καὶ ἀνατελλέτω πρῶτον ἡ ἀρχὴ τοῦ Κριοῦ , ἵνα μεσου -
6506589 πολος
μοῖρα μέρος τὸ δῦνον : οὗτος δ ' ἀνακυκλούμενος ὁ πόλος ἅπας πάλιν προσενυψοῖ τὴν πρώτιστον τὴν τοῦ Κριοῦ μοιρίτζαν
κέντρον ἐστὶ τοῦ ΑΒΓ , τὸ δὲ Ζ ὁ ἕτερος πόλος . Ἐὰν ᾖ ἐν σφαίρᾳ κύκλος , ἡ διὰ
6503394 ΣΤ
καὶ ἀπεναντίον περιφέρεια ἡ ΣΤ καὶ μεταξὺ τῶν ΞΗ , ΣΤ ὁ ἰση - μερινὸς ἔστω ὁ ΥΧΦ . καὶ
ΠΗΡ , ΣΘ , ΤΥΚ : μείζων ἄρα ἐστὶν ἡ ΣΤ περιφέρεια τῆς ΣΠ περι - φερείας . ἀλλ '
6500649 ΥΘ
ὀρθότατος μὲν αὐτῶν ἐστιν ὁ ΒΖΓ , ταπεινότατος δὲ ὁ ΥΘ , οἱ δὲ ΜΝΞ , ΟΠΡ ὁμοίως εἰσὶ κεκλιμένοι
ὅτι οἱ ΜΝΞ , ΒΖΓ , ΟΠΡ , ΣΤ , ΥΘ κύκλοι κεκλιμένοι ἔσονται πρὸς τὸν ΑΒΓ κύκλον , καὶ
6484353 ἡμικυκλιον
, ὥστ ' εἰς δύο γενέσθαι . οὐκοῦν οὐδ ' ἡμικύκλιον ἔσται , ἀλλὰ τὸ κέντρον ἀεὶ θατέρῳ μέρει τοῦ
δὲ καὶ κύκλος καὶ ἡμικύκλιον ἔχουσιν : ὁριζόμενοι γὰρ τὸ ἡμικύκλιον κεχρήμεθα τῷ κύκλῳ , οὐκέτι ἀνάπαλιν . ὁμοίως καὶ
6476380 ἀειφανες
' αὐτοῖς ὁρίζοντος ὁ ἄξων διάμετρος γίνεται , καὶ οὔτε ἀειφανὲς οὔτε ἀφανές τι τῶν ἄστρων παρ ' αὐτοῖς ἐστιν
στήθεα γυμνώσας καὶ γαστέρα σήματα φαίνει , ὅττι γένος περίφοιτον ἀειφανὲς οὐρανιώνων οὔτε πολυρραφέος μεθέπει σπείρημα χιτῶνος οὔτε χαμαιγενέων ἐπιδεύεται
6471010 ἐπικυκλος
δ ' ἐν τῷ αὐτῷ ἐπιπέδῳ φερόμενος ἐπ ' αὐτοῦ ἐπίκυκλος ὁ ΕΖΗ περὶ κέντρον τὸ Α , καὶ ὑποκείσθω
τῷ ΑΒΓ ὁ ΗΘΚ , καὶ κέντρῳ τῷ Θ γεγράφθω ἐπίκυκλος ὁ ΛΜ , καὶ ἐπεζεύχθω ἡ ΛΘΜΔ . ὑποτιθέμεθα
6470596 ὠκεανος
' ἀπὸ τῶν ἄρκτων καὶ τῆς μεσημβρίας τὰ μὲν ὁ ὠκεανὸς περιείληφεν ἀρξάμενος ἀπὸ τῶν βορείων ἄκρων τῆς Πυρήνης μέχρι
βόρειος λέγεται , ἤδη δὲ αὐτοῦ τὸ μὲν ἀνατολικώτερον Σκυθικὸς ὠκεανὸς , τὸ δὲ δυτικώτερον Γερμανικός τε καὶ Βρεττανικὸς καλεῖται
6458009 νοτιος
ʹ γʹ γʹ ἐλς τῆς ἑπομένης τοῦ ῥόμβου πλευρᾶς ὁ νότιος . . . . . . . . Αἰγόκερω
εἰς ω . καὶ παρ ' Ὁμήρῳ : κατὰ δὲ νότιος ῥέεν ἱδρώς . ἀντὶ τοῦ κατὰ νῶτον ἐφέρετο .
6448830 ζωνη
τὴν ἡμέραν τε καὶ τὴν ὁδόν . μία τε οἷον ζώνη διὰ παντὸς τοῦ ἀέρος ἦγεν εἰς τὸ ἱερὸν κατ
ἐπεζεύχθωσαν αἱ ΚΞ ΞΜ . Ἐν μὲν ἄρα κόσμῳ μέση ζώνη ἐστὶν ἡ ΚΑΜ , ἐν δὲ γῇ ἡ ΟΕΠ
6446615 ΗΘΚ
πρὸς ΖΘ , ὡς δὲ ὁ ΗΕΚ τομεὺς πρὸς τὸν ΗΘΚ τομέα , οὕτως ἡ ὑπὸ ΔΚΖ γωνία πρὸς τὴν
τοῦ ἐπικύκλου καὶ τὸ Θ κέντρον φερόμενον πάντοτε διὰ τοῦ ΗΘΚ ἐκκέντρου , καὶ τὸν ἀστέρα δὲ αὐτὸν κινούμενον ἐπὶ
6436672 κυκλος
ᾖ , μείζων φαίνεται ἡ ΔΚ τῆς ΓΖ . Ἔστω κύκλος , οὗ κέντρον τὸ Α , ὄμμα δὲ τὸ
ἄρα χρόνῳ ἀνατέλλει τὰ ΜΔΝ , ΕΒΖ ἡμικύκλια . ἔστω κύκλος ὁρίζων ὁ ΑΒΔΓ , καὶ θερινὸς μὲν τροπικὸς ὁ
6427093 ἀπηλιωτικον
νότιον , συνοικοδεσποτεῖται δὲ καὶ ὑπὸ τοῦ Κρόνου διὰ τὸ ἀπηλιωτικόν : τὸ δὲ κατὰ τοὺς Διδύμους καὶ τὰς Χηλὰς
ἐστι καὶ οἰκοδεσποτεῖται μὲν προηγουμένως ὑπὸ τοῦ Κρόνου διὰ τὸ ἀπηλιωτικόν , συνοικοδεσποτεῖται δὲ καὶ ὑπὸ τοῦ Διὸς διὰ τὸ
6418664 λιβα
τῷ τόπῳ ἀνίσταται τὸ κῦμα , καὶ μάλιστα περὶ τὸν λίβα , ὁπόταν ἐπιλάβῃ καὶ τοῦ νότου : κατ '
ὅμοιον καὶ τὸ ἀνιηρέστερον καὶ παρ ' Αἰσχύλῳ τὸ ἀφθονέστερον λίβα . καὶ Ἐπίχαρμος δὲ εὐωνέστερον ἔφη . καὶ Ὑπερίδης
6416766 ἀφοριζων
ἐλπίδος πεποίηται . ὁ δὲ ἐν τοῖς δημιουργικοῖς μέτροις ἕκαστα ἀφορίζων καὶ γινώσκων τὰ ὄντα , ᾗ γέγονε , καὶ
μεσημβρινὸν ἐπιπέδου νοείσθω ὁ μέγιστος κύκλος ὁ τὸ φαινόμενον ἡμισφαίριον ἀφορίζων ὁ ΑΒΓΔ , καὶ τοῦ μὲν διχοτομοῦντος τὸ ἡμισφαίριον
6414320 βορειον
Ἰβηρία τε πᾶσα καὶ Κελτίβηρες , ἐπὶ τὸν ἑσπέριον καὶ βόρειον ὠκεανὸν καὶ τὰς Ἡρακλέους στήλας τελευτῶντες . καὶ τούτων
μὴ ἁλμυρὸν τοῖς γευομένοις . Καὶ ὅλως ἔτος βέλτιον νοτίου βόρειον καὶ ὑγιεινότερον . Καὶ ὅταν ὀχεύωνται πρόβατα ἢ αἶγες
6413289 κωνον
μήτε καλαθοειδῶς τῆς σκιᾶς πίπτειν δυναμένης , ἀλλὰ τὸν λεγόμενον κῶνον ἀποτελούσης . Ὃ δὴ πρῶτος Ὅμηρος ἐκ μιᾶς λέξεως
ἂν ὑπεραίροι , οὔτε ἐλλείποι . ἐναρμόσει ἄρα εἰς τὸν κῶνον , καὶ περιληφθήσεται ὑπὸ τοῦ κώνου τοῦ περιλαμβάνοντος τὴν
6398812 ΛΜΝ
ΛΜΝ γνώμων ἐστὶ καὶ τὸ ΓΚ τετράγωνον : ὁ ἄρα ΛΜΝ γνώμων καὶ τὸ ΓΚ τετράγωνον διπλάσιά ἐστι τοῦ ΑΚ
ΑΒ πρὸς ΑΛ , καὶ τῇ ΑΓ παράλληλος ἤχθω ἡ ΛΜΝ , καὶ ἐπὶ τῆς ΛΜΝ σημεῖον εἰλήφθω τὸ Μ
6387649 ἀστρου
καὶ τὸν σπόρον καὶ τὰ λοιπά . σκοτεινοῦ δὲ τοῦ ἄστρου ἀνατείλαντος πᾶν τοὐναντίον ἔσται καὶ τὰ γεννήματα ἐν σπάνει
τι τῶν ἀπλανῶν συνανατελλέτω τὸ δʹ : τοῦ ἄρα δʹ ἄστρου ἡ ἀληθινή ἐστιν ἑῴα ἀνατολή : λέγω ὅτι ἡ
6369854 δυνειν
νῆσον ἐπακτῆρες : τῇσι δὲ βουκόλιαί τε βοῶν χάλκειά τε δύνειν τεύχεα πυροφόρους τε διατμήξασθαι ἀρούρας ῥηίτερον πάσῃσιν Ἀθηναίης πέλεν
τῷ δύπτειν ἐπὶ κεφαλὴν κατενεχθέντες . δύπτειν δέ ἐστι τὸ δύνειν , δύπται δὲ αἴθυιαι , ὡς παρὰ Καλλιμάχῳ :
6361088 ἐξαρμα
ὡρῶν ἰσημερινῶν ιδʹ καὶ τριῶν ἔγγιστα πεμπτημορίων , τὸ δὲ ἔξαρμα τοῦ πόλου μοιρῶν λζʹ ὡς ἔγγιστα . ὅπου δὲ
Διομήδης διέφθαρτο καὶ αὐτὸς ὑπὸ τῆς συνουσίας καὶ οὐδὲν ἔχων ἔξαρμα φύσεως ἔτι ταπεινότερος ἐγεγόνει πρὸς τὰ ἐπιταττόμενα . καίτοι
6360848 γδʹ
γδʹ κμʹ λνʹ : ἐπεὶ ὁ ηζθʹ κύκλος τοὺς αβʹ γδʹ αβδγʹ κύκλους διὰ τῶν πόλων τέμνει , καὶ πρὸς
τῶν λνθʹ γωνία ἐστὶν ἡ κλίσις ἐν ᾗ κέκλιται ὁ γδʹ κύκλος πρὸς τὸν αβγδʹ κύκλον . Καὶ ἐπεὶ δύο
6351451 κυλινδροειδης
κωνοειδῆ ἀναγκαῖον ἀποπέμπεσθαι τὴν τῆς γῆς σκιάν : οὔτε δὲ κυλινδροειδὴς οὔτε καλαθοειδής ἐστι : κωνοειδὴς ἄρα : εἰ δὲ
φωτίζηται σφαιροειδοῦς σφαιροειδές , ἐὰν μὲν ἴσα ᾖ ἀλλήλοις , κυλινδροειδὴς ἀποπέμπεται ἡ τοῦ φωτιζομένου σκιά , ὁπόταν δὲ μεῖζον
6334769 ταπεινοτατος
, ἐν πλείστῳ δὲ χρόνῳ δύνειν Κριόν . Πάλιν ἐπεὶ ταπεινότατος γίνεται ὁ τῶν ζῳδίων κύκλος Αἰγόκερω αης μοίρας μεσουρανούσης
κύκλον , καὶ ὀρθότατος μὲν αὐτῶν ἔσται ὁ ΒΖΓ , ταπεινότατος δὲ ὁ ΥΘ , οἱ δὲ ΜΝΞ , ΟΠΡ
6317978 συμφυες
, ἡμικυκλίου ὄντος τοῦ ΞΟΠ , περὶ μέσον τὸ Ο συμφυὲς τῷ κανόνι μοιρογνωμόνιον ἔστω , ὥστε τὸ ἄκρον αὐτοῦ
ἄλλου , παρὰ τίνος ψυχὴ καὶ τὸ ἐπακτὸν καὶ τὸ συμφυὲς τῇ οὐσίᾳ αὐτῆς κάλλος ἔχει ; Ἐπεὶ καί ,
6312376 κωνου
τοῦ κώνου . εἰ γὰρ μή ἐστιν ὁ κύλινδρος τοῦ κώνου τριπλάσιος , ἔσται ἄρα ἤτοι μείζων ἢ τριπλάσιος ἢ
εἰ γάρ ἐστιν ἐκείνη γωνία , καὶ ἡ κορυφὴ τοῦ κώνου γωνία ἐστίν . ὥστε καὶ ὑπὸ δύο ἐπιφανειῶν καὶ
6302089 διχοτομος
τὴν διχομηνίαν : καὶ πάλιν ἀμφίκυρτος μετὰ τὴν διχομηνίαν , διχότομος δὲ περὶ τὴν κγην , μηνοειδὴς δὲ περὶ τὰ
ἐπιδέχεται καὶ ὅτι ἐδυάσθη καὶ ἐδιχοτομήθη : ἡμίτομος γὰρ καὶ διχότομος λέγεται . Ὅτι ἡ τριὰς ἐξαίρετόν τι παρὰ πάντας
6300344 Ἀραβιῃ
δὴ λέγεται , ῥηθῆναι . Ποταμός ἐστι μέγας ἐν τῇ Ἀραβίῃ τῷ οὔνομα Κόρυς , ἐκδιδοῖ δὲ οὗτος ἐς τὴν
τόδε μὲν οὐκ ὄπωπεν , ὄπωπεν δὲ φοινικοβατέοντας ἢ ἐν Ἀραβίῃ ἢ ἐν Αἰγύπτῳ ἢ ἄλλοθί κου , οἶδε τὸ
6298562 γραψωμεν
ἐπειδήπερ ἐὰν κέντρῳ τῷ Β καὶ διαστήματι τῷ ΑΒ κύκλον γράψωμεν , αἱ διάμετροι ἀνίσους ἀπολήψονται τοῦ κύκλου περιφερείας .
ἐὰν διὰ τοῦ Κ πόλου τοῦ ὁρίζοντος καὶ τοῦ Ε γράψωμεν τὸ ΚΘ τεταρτημόριον , γίνεται ἡ ὑπὸ ΚΕΘ γωνία
6297361 ἀνατολικωτερον
ἀρκτικὸς καὶ βόρειος λέγεται , ἤδη δὲ αὐτοῦ τὸ μὲν ἀνατολικώτερον Σκυθικὸς ὠκεανὸς , τὸ δὲ δυτικώτερον Γερμανικός τε καὶ
δυτικώτερον πλεῦρον ὑπαρχέτω : τὸ δὲ ἑῷον , ἤτοι τὸ ἀνατολικώτερον , ὁ Ἰνδικὸς ὠκεανός : τὸ δὲ νότιον ἡ
6283542 περιλαμβανων
προσδοκῶσα σαρκικῶς αὐτῷ συμμιγῆναι , αὐτὸς δὲ ὡς ἰδίαν μητέρα περιλαμβάνων , καὶ τοῖς ὀφθαλμοῖς περιλάμπων οὓς ἐθήλασε μασθούς ,
μὲν τοῦ φάναι ὃν ἀριθμὸς πρὸς ἀριθμὸν ἐπλεόναζεν ὁ ὅρος περιλαμβάνων καὶ τὰ μὴ συμμέτρους ἔχοντα τὰς πλευράς , διὰ
6281021 βορειος
. . . Ἰχθύων κγ # βο λβ δʹ ὁ βόρειος αὐτῶν . . . . . . . .
, ἄξων δὲ τῆς σφαίρας ὁ ΒΓ , πόλος δὲ βόρειος ἔστω τὸ Γ , οἴκησις δὲ πρὸς τῷ Ζ
6277329 ἡμισφαιριον
καί , ἐν ᾧ χρόνῳ ἡ ΔΕ ἐξαλλάσσει τὸ ἀφανὲς ἡμισφαίριον , ἡ ΖΒ τὸ φανερόν . Τοῦ τῶν ζῳδίων
, ὅτι ἐν ᾧ χρόνῳ ἡ ΑΕ ἐξαλλάσσει τὸ φανερὸν ἡμισφαίριον , ἡ ΓΖ τὸ ἀφανές , καὶ ἀνάπαλιν ,
6275697 χειμερινον
, λήγων δὲ ἀνεμώδης . τὸ ἔαρ ἔνυδρον καὶ μᾶλλον χειμερινὸν καὶ παχνῶδες . τὸ δὲ θέρος ἔμπνουν , διὰ
χιτών . . . . . . . τὸ μέντοι χειμερινὸν ἱμάτιον χείμαστρον ἂν λέγοις , καὶ χλαῖναν δὲ παχεῖαν
6270637 ΒΟ
ΨΣ , κοινὴ δὲ ἡ ΨΟ , βάσις δὲ ἡ ΒΟ βάσεως τῆς ΣΟ μείζων ἐστίν , καὶ γωνία ἡ
ἐστὶ τῷ ΜΠ . καὶ κοινοῦ προστεθέντος ἢ ἀφαιρουμένου τοῦ ΒΟ τὸ ΒΠ ἴσον ἐστὶ τῷ ΞΣ . Ἐὰν ἐν
6253367 ΑΒΓΔΕ
τε καὶ ἰσογώνιον ἐγγράψαι . Ἔστω ὁ δοθεὶς κύκλος ὁ ΑΒΓΔΕ : δεῖ δὴ εἰς τὸν ΑΒΓΔΕ κύκλον πεντάγωνον ἰσόπλευρόν
. ἐδείχθη δὲ καὶ ἰσόπλευρον , καὶ περιγέγραπται περὶ τὸν ΑΒΓΔΕ κύκλον . [ Περὶ τὸν δοθέντα ἄρα κύκλον πεντάγωνον
6245039 σεληνῃ
τι σῶμα ὅμοιον ἀεὶ διὰ παντὸς φαίνεται ἡμῖν ἐν τῇ σελήνῃ . τί δὲ καὶ τὸ συνεχὲς τοῦ σώματος τούτου
, πάντα δὲ ἀέρα ἀνιπταμένη , συνθέουσα ἡλίῳ , συμπεριφερομένη σελήνῃ , συνδεδεμένη τῷ τῶν ἄλλων ἄστρων χορῷ , καὶ
6236111 περιφερεια
ἀναφερομένης : ἡλίκη γάρ ἐστιν ἡ μεταξὺ τῶν μερῶν τούτων περιφέρεια τούτου ἐπὶ τοῦ ὁρίζοντος , τηλικαύτη ἐστὶν ἡ κατὰ
νβ , εἴη ἂν καὶ ἡ μὲν ἐπὶ τῆς ΒΛ περιφέρεια τοιούτων β νβ , οἵων ἐστὶν ὁ περὶ τὸ
6230958 ἀξονα
μένοντι ὡς οἱ κινούμενοι κῶνοι καὶ σφαῖραι περὶ τὸν ἴδιον ἄξονα . τῆς δ ' εἰς εὐθὺ φορᾶς πλείονά ἐστιν
. καὶ ὡς ἄρα ὁ ΗΘ ἄξων πρὸς τὸν ΚΛ ἄξονα , οὕτως ὅ τε ΑΒΗ κῶνος πρὸς τὸν ΓΔΚ
6219186 Θηριον
Ἀργώ , Ὕδρος , Κρατήρ , Κόραξ , Κένταυρος , Θηρίον , ὃ κρατεῖ ὁ Κένταυρος καθ ' Ἵππαρχον ,
τῆς Ἀργοῦς τὸ ἔδαφος καὶ τὸ πηδάλιον : εἶτα τὸ Θηρίον καὶ τὸ Θυμιατήριον : ἔτι δὲ τοῦ Τοξότου τὰ
6212907 θερινος
ΑΒΓΔ , μέγιστος δὲ τῶν ἀεὶ φανερῶν ὁ ΕΖ , θερινὸς δὲ τροπικὸς ὁ ΒΗΑ , καὶ ἔστω τὸ μετὰ
' αὐτῶν ὁ μὲν ἀρκτικὸς καὶ ἀειφανής , ὁ δὲ θερινὸς τροπικός , ὁ δὲ ἰσημερινός , ὁ δὲ χειμερινὸς
6202447 ἀστρον
ἔστω παράλληλος κύκλος , καθ ' οὗ φέρεται τὸ Θ ἄστρον , ὁ ΔΚΘΛΒ : τὸ Θ ἄρα , ὅταν
τὸν ἥλιον ἄστρον φησίν . οὐ καινὸν εἰ τὴν σελήνην ἄστρον ὁ Αἰσχύλος ἐνταῦθα καλεῖ : καὶ Πίνδαρος γὰρ τὸν
6195790 ἐξωτατω
τριήρεσι πολλαῖς ὁρῶν πεφραγμένον τὸν ἔσπλουν , τρεῖς δὲ τὰς ἐξωτάτω ἐφορμούσας τῷ στόματι τριήρεις προσπεσόντες οἱ Φοίνικες καὶ ἀντίπρωροι
κατὰ τὸν χειμερινόν . Ἀναξιμένης καὶ Παρμενίδης τὴν περιφορὰν τὴν ἐξωτάτω τῆς γῆς εἶναι τὸν οὐρανόν . Ἐμπεδοκλῆς στερέμνιον εἶναι
6190868 τροπικος
ποεῖ , τὴν δὲ νύκτα * βραχυτάτην . Χειμερινὸς δὲ τροπικός , καθ ' ὃν ὁ ἥλιος φερόμενος τὴν μὲν
, τρίτος δὲ ὁ ἰσημερινός , τέταρτος δὲ ὁ χειμερινὸς τροπικός , πέμπτος δὲ ὁ ἀνταρκτικός . Τοῖς δὲ πρὸς
6186211 βορεαν
λεγόμενον βωσαρὴ , καὶ μετ ' αὐτὴν , εἰς τὸν βορέαν ἤδη ἀπονεύοντος τοῦ πλοὸς , βάρβαρα πολλὰ ἔθνη ,
] παραθαλάσσια μέρη τῆς Σκυθίας παρ ' αὐτὸν κειμένης τὸν βορέαν , ταπεινὰ λίαν , ἐξ ὧν ποταμὸς Σίνθος ,
6186137 πολυγωνον
περιεχόντων τὴν πυραμίδα , ἧς βάσις μέν ἐστι τὸ ΕΟΖΠΗΡΘΣ πολύγωνον , κορυφὴ δὲ τὸ Ν σημεῖον , ἓν τρίγωνον
[ . ] παρελάβομεν , διὰ τὸ ἴσον ὑποκεῖσθαι τὸ πολύγωνον τῶι κύκλωι ἐφαρμόζον αὐτῶι , ἐσόμεθα καὶ κύκλωι ἴσον
6179687 αεγʹ
ὅλῃ τῇ εγζʹ ἐστὶν ἴση : ἡμικύκλιον δέ ἐστιν τὸ αεγʹ : ἡμικύκλιον ἄρα ἐστὶ καὶ τὸ εγζʹ . Καὶ
τὸ εγζʹ ἡμικύκλιον ἐν ἡμίσει ἐνιαυτοῦ , ἐπειδήπερ καὶ τὸ αεγʹ : τῷ ἄρα αʹ ἄστρῳ ἀπὸ ἑῴας φαινομένης ἐπιτολῆς
6176615 ἐξηρται
, τουτέστιν καθ ' ἣν ὁ βόρειος πόλος τοῦ ὁρίζοντος ἐξῆρται μοίρας λϚ , τὴν ἀρχὴν τοῦ Καρκίνου λόγου χάριν
ἀρκτικὸς αὐτοῖς κέκρυπται κύκλος , ὁ δ ' ἐναντίος ἴσον ἐξῆρται . Τούτων δὲ οὕτως ἐχόντων , ὁ ἥλιος ,
6174551 χειμερινος
κατὰ τοῦτον γινομένου τὸν κύκλον πρὸς αἴσθησιν , ὁ δὲ χειμερινὸς διὰ τὸ τὸν ἥλιον κατὰ τοῦτον γινόμενον τὸν κύκλον
, καὶ ὁ ἔσχατος τοῦ Ποταμοῦ ἑσπέριος ἀνατέλλει . Εὐδόξῳ χειμερινὸς ἀήρ . κεʹ . ὡρῶν ιγ ∠ ʹ :
6173625 ἀντιφραξις
. ἔστι δὲ τῆς μὲν σεληνιακῆς ἐκλείψεως ἡ τῆς γῆς ἀντίφραξις αἴτιον , τῆς δὲ βροντῆς τὸ ἀποσβέννυσθαι πῦρ ἐναπειλημμένον
οἷον τὸ πήγνυσθαι τὸν ὀπόν , καὶ τῆς ἐκλείψεως ἡ ἀντίφραξις , καὶ ἔστιν ἐν ταῖς ἀποδείξεσιν οὗ μὲν αἴτιον
6168837 περιγειον
ἂν ἐκλείψῃ αὕτη ποτέ , μέχρις αὐτὸ τῇδε πᾶν συνεστηκὸς περίγειον ἐκλείψῃ . ὃς νοῦς νικήσας τὸν χρόνον πάντα καλῶς
δοξάζει ποδιαῖον τὸν ἥλιον ἢ εἴ τις τὴν σελήνην τὸ περίγειον καταλάμπουσαν ἀφ ' ἑαυτῆς ἔχειν οἴεται πᾶσαν τὴν λαμπρότητα
6163715 ΥΦ
ΦϘΤ πεντάγωνον ἠγμένη , καὶ ἐπεζεύχθωσαν αἱ ΩΦ ΩϘ ΩΤ ΥΦ , ὀκταέδρου δὲ τρίγωνον τὸ ΣΡΠ ἔστω , καὶ
ἀγομένης ἐπὶ τὴν ΘΗ . ἀλλ ' ἡ ἴση τῇ ΥΦ καὶ πρὸς ἴσας γωνίας ἐπ ' αὐτὴν ἀγομένη κατὰ
6158768 ΖΗΘ
δὲ τῇ τοῦ τετραγώνου πλευρᾷ γεγράφθω μεγίστου κύκλου τμῆμα τὸ ΖΗΘ . καὶ προσαναπεπληρώσθω τό τε ΕΓΗ τεταρτημόριον καὶ τὸ
πρὸς τὸν ΖΗΘ κύκλον καὶ ἐξ οὗ ὃν ἔχει ὁ ΖΗΘ κύκλος πρὸς τὸ ὑπὸ τῶν ΖΒΘ εὐθειῶν καὶ τῆς
6156071 Ἡμερα
τὸ μέγιστον . Χρόνος ἡλίου κίνησις , μέτρον φορᾶς . Ἡμέρα ἡλίου πορεία ἀπ ' ἀνατολῶν ἐπὶ δυσμάς : φῶς
φησι : Νυκτὸς δ ' αὖτ ' Αἰθήρ τε καὶ Ἡμέρα ἐξεγένοντο : καθὸ ἐκ τῆς ἐπιτολῆς αὐτοῦ ἡ ἡμέρα
6153425 ΞΓΔ
ΑΒ κάθετοι . ἐὰν δὴ μενούσης τῆς ΚΞ τά τε ΞΓΔ , ΗΖΝ ἡμικύκλια καὶ τὰ ΚΓΛ , ΚΖΜ τρίγωνα
κατὰ τὴν ἐπιφάνειαν , ἐπειδὴ καὶ ἡ ΚΖΓ ἐφάπτεται τῶν ΞΓΔ , ΗΖΝ ἡμικυκλίων κατὰ πᾶσαν μετακίνησιν . Ἐὰν σφαῖρα
6151751 ἀμαυρον
ἐμπεσὼν ἑτέρων δεῖται λόγων , καὶ εἴ τῳ ἐκεῖθεν φῶς ἀμαυρὸν δοκεῖ καὶ ἥκιστα μετέχον αὐγῆς σαφοῦς , οὗτος οὐδ
† . λαβοῦ χερῶν καὶ πέπλων , ὅτου λέλοιπε ποδὸς ἀμαυρὸν ἴχνος . γέρων γέροντα παρακόμιζ ' , ὧι ξύνοπλα
6150243 δωδεκαεδρον
δώδεκα πενταγώνων ἰσοπλεύρων τε καὶ ἰσογωνίων περιεχόμενον , ὃ καλεῖται δωδεκάεδρον . Δεῖ δὴ αὐτὸ καὶ σφαίρᾳ περιλαβεῖν τῇ δοθείσῃ
ἡ ΥΩ ἀπὸ τοῦ κέντρου τῆς σφαίρας τῆς περιλαμβανούσης τὸ δωδεκάεδρον ἐπὶ τὸ ΦϘΤ πεντάγωνον ἠγμένη , καὶ ἐπεζεύχθωσαν αἱ
6129128 δηʹ
χρόνῳ τὸ δʹ τὴν δζʹ διαπορεύεται καὶ τὸ δʹ τὴν δηʹ : καὶ εἰσὶν τοῦ αὐτοῦ κύκλου : ἴση ἄρα
ἀνατέλλουσα οὐχ ὁρᾶται . Στρεφομένου δὲ τοῦ κόσμου ἡ μὲν δηʹ περιφέρεια ἑῴαν ἀνατολὴν ποιεῖται , ἡ δὲ δεʹ οὐχ
6128467 μεταρσιον
λέγεται τὸ λευκοπέλιον ἀπὸ τῆς ἀφύης τοῦ ἰχθυδίου ὠνομασμένον . μετάρσιον δὲ κυρίως μὲν τὸ ὑψηλὸν λέγεται , καταχρηστικῶς δὲ
ἡμῖν ἀνοίξῃ ὁ θεὸς τὸν ἑαυτοῦ θησαυρὸν „ καὶ τὸν μετάρσιον καὶ ἐγκύμονα θείων φώτων λόγον , ὃν δὴ κέκληκεν
6119720 κυλινδρον
, ἔστιν ἄρα ὡς ὁ ΑΞ κύλινδρος πρὸς τὸν ΕΣ κύλινδρον , οὕτως ὁ ΕΟ κύλινδρος πρὸς τὸν ΕΣ κύλινδρον
ἐπὶ τὴν τοῦ κύκλου περιφέρειαν διὰ τὸ ὀρθὸν ἑστάναι τὸν κύλινδρον . πιπτέτω καὶ ἔστω ἡ ΚΙ , καὶ ἡ
6114164 ΣΘ
ΜΟ , ΕΣ . καί ἐστιν ἡ μὲν ΣΕ τῇ ΣΘ ἴση , ἡ δὲ ΣΘ τῇ ΟΠ : ἴσον
ὁμοίως δὴ δείξομεν , ὅτι καὶ ἡ ΝΛ περιφέρεια τῇ ΣΘ ἐστιν ἴση : ἴση ἄρα ἐστὶν ἡ μὲν ΝΟ
6113427 ΕΖΗΘ
τῆς ΖΘ τετράγωνον , οὕτως ὁ ΑΒΓΔ κύκλος πρὸς τὸν ΕΖΗΘ κύκλον , ἀλλὰ μὴν καὶ ὡς τὸ ἀπὸ τῆς
ΕΖΗΘ πυραμίς : καὶ ἡ ΑΒΓΔ ἄρα πυραμὶς πρὸς τὴν ΕΖΗΘ πυραμίδα τριπλασίονα λόγον ἔχει ἤπερ ἡ ΒΓ πρὸς τὴν
6106278 ΞΒ
ἐστιν ὡς ἡ ΟΞ πρὸς τὴν ΨΧ , οὕτως ἡ ΞΒ πρὸς ΒΧ : καὶ ὡς ἄρα ἡ ΧΑ πρὸς
ἄρα ἴση ἐστὶν τῇ ΛΜ . ἔστι δὲ καὶ ἡ ΞΒ ἴση τῇ ΒΛ , διὰ τὸ τὸ Β σημεῖον
6106120 δυσις
, ἤπερ κόσμου τέ ἐστι περιστροφὴ καὶ τῆς ΛΜ περιφερείας δύσις : ἐν ἄρα κόσμου περιστροφῇ καὶ τῆς ΛΜ περιφερείας
διφυές , κάθυγρον , ἡμιτελές , κυρτοειδές , χωλόν , δύσις κόσμου , μόχθων καὶ πόνων δηλωτικόν , λαοξοϊκόν ,
6103044 πενταγωνον
κάθετον ἀπὸ τοῦ κέντρου τῆς σφαίρας ἐπὶ τὸ τοῦ δωδεκαέδρου πεντάγωνον καὶ τὸ τοῦ εἰκοσαέδρου τρίγωνον . γραπτέον δὲ καὶ
, ΥΦ εὐθείας διὰ ιηʹ τοῦ ιαʹ τελέως ἀποδεῖξαι τὸ πεντάγωνον ἐν ἑνὶ ὂν ἐπιπέδῳ ἢ διὰ αʹ τοῦ ιαʹ
6094831 ΒΜΖ
τῇ ΒΖ κατὰ τὸ Θ , ἡ δὲ ΑΛ τῷ ΒΜΖ ἡμικυκλίῳ κατὰ τὸ Μ , ἐπεζεύχθωσαν δὲ καὶ αἱ
αἱ ΚΔ ΜΙ ΜΘ . ἐπεὶ οὖν ἑκάτερον τῶν ΔΚΑ ΒΜΖ ἡμικυκλίων ὀρθόν ἐστι πρὸς τὸ ὑποκείμενον ἐπίπεδον , καὶ
6093945 ΝΞ
, διότι ἡ τῆς ΜΓ ἀναφορὰ ἡ αὐτὴ λαμβάνεται τῇ ΝΞ οὐ προοδεύεται δὲ τὸ θεώρημα τοῦτο οὐκ - έτι
τουτέστιν τὰς καὶ ΠΝ , καὶ τὰς ἴσας αὐταῖς τὰς ΝΞ καὶ ΕΞ . καὶ πάλιν , ἐπεὶ δέδοται ἡ
6092188 ἰσοπεδον
τὸ ὕψος διαθέσεως , ὥστε τὸ παραβαλλόμενον τοῦ τείχους μέγεθος ἰσόπεδον εἶναι τῷ ἐγκλίματι τοῦ ὑποκειμένου ὕψους τοῦ πύργου :
: ὃ δ ' ἀσφαλέως θέει ἔμπεδον , εἷος ἵκηται ἰσόπεδον , τότε δ ' οὔ τι κυλίνδεται ἐσσύμενός περ
6090167 διαμετρος
ἡ διὰ τῆς ιʹ μοίρας τῶν Χηλῶν καὶ τοῦ Κριοῦ διάμετρος ἡ ΑΖΒΓ , καὶ ὑποκείσθω καθάπερ ἐπὶ τῆς προτέρας
τετμημένον τῷ ἐπιπέδῳ , ὑφ ' οὗ γέγονεν ἡ ΕΔ διάμετρος τῆς τοῦ κυλίνδρου τομῆς , ἔσται καὶ ἐν τῷ
6087457 ἰσημερινος
ἀπὸ τοῦ νότου . Καλοῖτο δ ' ἂν ἡ γραμμὴ ἰσημερινὸς , ὡς ἐπὶ ταύτῃ ἀεὶ ἰσημερίας γινομένης , καὶ
δὲ τοῦ ἡλίου κύκλος θέσιν ἐχέτω ὡς τὴν ΖΕΗ , ἰσημερινὸς δὲ κύκλος ἔστω ὁ ΖΘΗ : τὸ ἄρα ἀπολαμβανόμενον
6081012 κυρτον
σπαίρουσι καὶ ἐκδῦναι μεμάασι , νήπιοι , οὐδ ' ἔτι κύρτον ὁμῶς εὔοικον ἔχουσιν . Ἄδμωσιν δ ' ἐπὶ κύρτον
αὐτὰρ ἔπειτα ἐς μυχὸν ἠΐχθησαν : ὁ δ ' αὐτίκα κύρτον ἀνέλκει ῥίμφα μεταπλώσας : σιγῇ δέ οἱ ἄνυται ἔργον
6077330 τετραπλευρον
ΘΚ ἐστιν ἴση ] , ἰσόπλευρον ἄρα ἐστὶ τὸ ΖΗΘΚ τετράπλευρον . λέγω δή , ὅτι καὶ ὀρθογώνιον . ἐπεὶ
ἐστιν , ὡς μὲν τὸ ὑπὸ ΚΖΕ πρὸς τὸ ΖΞ τετράπλευρον , τὸ ἀπὸ ΑΓ πρὸς ΓΠΒ , διὰ δὲ

Back