| καί , ἐν ᾧ χρόνῳ ἡ ΔΕ ἐξαλλάσσει τὸ ἀφανὲς ἡμισφαίριον , ἡ ΖΒ τὸ φανερόν . Τοῦ τῶν ζῳδίων | ||
| , ὅτι ἐν ᾧ χρόνῳ ἡ ΑΕ ἐξαλλάσσει τὸ φανερὸν ἡμισφαίριον , ἡ ΓΖ τὸ ἀφανές , καὶ ἀνάπαλιν , |
| ἡμισφαίριον , ἀλλ ' ἐν ᾧ χρόνῳ ἡ ΚΘΛ περιφέρεια ἐξαλλάσσει τὸ φανερὸν ἡμισφαίριον , τὸ μὲν Κ ἀρξάμενον ἀπὸ | ||
| ΘΚ ἐξαλλάσσει τὸ φανερὸν ἡμισφαίριον . Ἐν ᾧ ἄρα χρόνῳ ἐξαλλάσσει τὸ φανερὸν ἡμισφαίριον ἡ ΘΚ περιφέρεια , ὁ ἥλιος |
| ὁρίζοντι . Τὸ Θ ἄρα τοῖς πρὸς ἀνατολὰς οἰκοῦσι πρότερον ἀνατέλλει καὶ πρότερον δύνει . Λέγω δή , ὅτι καί | ||
| τὸ πρότερον ἀνατέλλον πρότερον δύνει καὶ τὸ πρότερον δῦνον πρότερον ἀνατέλλει . ἔστω ἀνατολικὰ μὲν τὰ Γ μέρη , δυτικὰ |
| ἐγίνωσκεν οὐδὲ εἷς , καὶ πρὸς τί τὴν παῖδα ἐξεθείαζον ἀφανὲς ἦν καὶ τοῖς πάνυ βουλομένοις εἰδέναι . ὁ δὲ | ||
| ἡ δὲ ΚΛ αἰεὶ ἐν τῷ αὐτῷ χρόνῳ ἐξαλλάσσει τὸ ἀφανὲς ἡμισφαίριον , καὶ ἔτι τὴν ΚΛ αἰεὶ ἐν ἴσῳ |
| ἐπρέσβευσεν , ὕβρις διὰ σοῦ τε καὶ τῶν Ἑλλήνων ἁπάντων διέρχεται . ἡ γὰρ ἀτιμία τοῦ πρεσβευτοῦ πάντων ὑπάρχει τῶν | ||
| λέγω ὅτι ἐν μείζονι χρόνῳ ὁ ἥλιος τὴν ΔΘ περιφέρειαν διέρχεται ἤπερ ἡ ΔΘ δύνει . Γεγράφθω γὰρ διὰ τοῦ |
| φανερὸν ἡμισφαίριον , ὁ χρόνος ἐστίν , ἐν ᾧ ἡ ΖΕΚ ἐξαλλάττει τὸ φανερὸν ἡμισφαίριον : αἱ ΖΕΚ , ΕΚΛ | ||
| ΖΕΚ ἐξαλλάσσει τὸ φανερὸν ἡμισφαίριον . Ἐν ᾧ ἄρα ἡ ΖΕΚ ἐξαλλάσσει τὸ φανερὸν ἡμισφαίριον , ὁ ἥλιος μείζονά τινα |
| φαινόμενα . οἷον ἐνηνέχθω τὸ μὲν κέντρον τοῦ ἐπικύκλου τεταρτημοριαίαν περιφέρειαν περὶ ἔγκεντρον κύκλον τὴν μο , καὶ μετενηνοχέτω τὸν | ||
| ἴσαι εὐθεῖαι ὑποτείνουσιν : ὅπερ ἔδει δεῖξαι . Τὴν δοθεῖσαν περιφέρειαν δίχα τεμεῖν . Ἔστω ἡ δοθεῖσα περιφέρεια ἡ ΑΔΒ |
| . Ὁ δ ' Ὠρίων ἀνατέλλει μὲν ἐν ἀρχῇ ὀπώρας δύνει δ ' ἐν ἀρχῇ χειμῶνος , ὥστε διὰ τὸ | ||
| τοῦ ἄρα ἡλίου ἐπὶ τοῦ κʹ ὄντος τὸ ηʹ ἑσπέριον δύνει . Πάλιν ἐπεὶ τοῦ ἡλίου ὄντος ἐπὶ τοῦ λʹ |
| διαπορευομένου ἐν τῷ ὑπὸ γῆν , τὸ βʹ ἄστρον καὶ δύσεται καὶ ἀνατελεῖ . Τοῦ ζῳδιακοῦ ἓν δωδεκατημόριον ἐν ᾧ | ||
| ὥστε τοῦ Ζ ἀνατέλλοντος κατὰ τὸ Κ σημεῖον τὸ Θ δύσεται κατὰ τὸ Ν καὶ ὁ τῶν ζῳδίων κύκλος θέσιν |
| : ἀπὸ ἄρα τῆς ἑσπερίας δύσεως ἐπὶ τὴν ἑσπερίαν ἀνατολὴν παραγίγνεται ὕστερον , καὶ ἀπὸ τῆς ἑσπερίας ἀνατολῆς ἐπὶ τὴν | ||
| χρόνῳ τὸ δʹ τὴν δκαʹ περιφέρειαν διελθὸν ἐπὶ τὸ αʹ παραγίγνεται , καὶ τὸ ζʹ τὴν ζηʹ διελθὸν ἐπὶ τὸ |
| ἂν ἐκλείψῃ αὕτη ποτέ , μέχρις αὐτὸ τῇδε πᾶν συνεστηκὸς περίγειον ἐκλείψῃ . ὃς νοῦς νικήσας τὸν χρόνον πάντα καλῶς | ||
| δοξάζει ποδιαῖον τὸν ἥλιον ἢ εἴ τις τὴν σελήνην τὸ περίγειον καταλάμπουσαν ἀφ ' ἑαυτῆς ἔχειν οἴεται πᾶσαν τὴν λαμπρότητα |
| κύκλου καὶ τοῦ ἰσημερινοῦ , πλείονα χρόνον ὑπὲρ τὸν ὁρίζοντα ἐνεχθήσεται τοῖς πρὸς μεσημβρίαν ἢ τοῖς πρὸς ἄρκτον οἰκοῦσιν . | ||
| ἄνωθεν ἀρχὴν μόνην ἀποτέμοις τοῦ μυός , ἐπὶ τὸ πέρας ἐνεχθήσεται , καὶ εἰ τὴν κάτω τελευτήν , ἐπὶ τὴν |
| . Ὁμοίως δὴ δείξομεν τοῖς πρότερον καὶ ἐπὶ τοῦ ἀφανοῦς ἡμισφαιρίου . Φανερὸν δέ , ὅτι , ἐὰν μέσου ἡμέρας | ||
| νουμηνίαν , τότε μηνοειδὴς ἡ σελήνη θεωρεῖται : τοῦ γὰρ ἡμισφαιρίου τοῦ πεφωτισμένου μικρὸν μέρος παρακλίνεται πρὸς τὴν ἡμετέραν ὅρασιν |
| ἐστὶ τοιαύτη , ὥστε ἔχειν μεσουρανοῦντα Καρκίνον ἐπὶ τοῦ θερινοῦ τροπικοῦ , ἀνατολικὰς Χηλὰς ἐπὶ τοῦ ἰσημερινοῦ , δυτικὸν Κριόν | ||
| ' αἵρεσιν ἐκπτώσεων ἢ μετοικισμῶν αἴτιος ἢ φυγῶν , πλὴν τροπικοῦ ὄντος τοῦ ζῳδίου ἢ δισώμου ἐπανέρχεται εἰς τὴν προτέραν |
| , ἐν ᾗ τὴν τροπὴν ἐποιήσατο πρὸς τῷ Ε , ἀνατελλέτω κατὰ τὸ Ζ , καὶ ἔστω , καθ ' | ||
| τῆς ἀρχῆς τῶν Διδύμων ἔγγιστα χρόνων ἰσημερινῶν ιζ , καὶ ἀνατελλέτω πρῶτον ἡ ἀρχὴ τοῦ Κριοῦ , ἵνα μεσου - |
| , ὥστ ' εἰς δύο γενέσθαι . οὐκοῦν οὐδ ' ἡμικύκλιον ἔσται , ἀλλὰ τὸ κέντρον ἀεὶ θατέρῳ μέρει τοῦ | ||
| δὲ καὶ κύκλος καὶ ἡμικύκλιον ἔχουσιν : ὁριζόμενοι γὰρ τὸ ἡμικύκλιον κεχρήμεθα τῷ κύκλῳ , οὐκέτι ἀνάπαλιν . ὁμοίως καὶ |
| ἀναφερομένης : ἡλίκη γάρ ἐστιν ἡ μεταξὺ τῶν μερῶν τούτων περιφέρεια τούτου ἐπὶ τοῦ ὁρίζοντος , τηλικαύτη ἐστὶν ἡ κατὰ | ||
| νβ , εἴη ἂν καὶ ἡ μὲν ἐπὶ τῆς ΒΛ περιφέρεια τοιούτων β νβ , οἵων ἐστὶν ὁ περὶ τὸ |
| , ὁ δὲ τοῦ ἡλίου κύκλος θέσιν ἐχέτω ὡς τὴν αεγζʹ , καὶ ἔστω ὑπὸ γῆν τὸ αεγʹ ἡμικύκλιον , | ||
| , ὁ δὲ τοῦ ἡλίου κύκλος θέσιν ἐχέτω ὡς τὴν αεγζʹ , καὶ τοῦ ἡλίου ἀνατέλλοντος κατὰ τὸ αʹ ἄστρον |
| μεγέθη , προσιόντος μὲν τοῦ ὄμματος ἐλάσσονι μεῖζον φαίνεται τὸ ὑπερφαινόμενον , ἀπιόντος δὲ μείζονι . ἔστω ἄνισα μεγέθη τὰ | ||
| τε καὶ ἀφισταμένου τοῦ ὄμματος τῷ ἴσῳ αἰεὶ δόξει τὸ ὑπερφαινόμενον τοῦ ἐλάσσονος ὑπερέχειν . ὑπερεχέτω γὰρ τὸ ΒΔ τοῦ |
| ὅλῃ τῇ εγζʹ ἐστὶν ἴση : ἡμικύκλιον δέ ἐστιν τὸ αεγʹ : ἡμικύκλιον ἄρα ἐστὶ καὶ τὸ εγζʹ . Καὶ | ||
| τὸ εγζʹ ἡμικύκλιον ἐν ἡμίσει ἐνιαυτοῦ , ἐπειδήπερ καὶ τὸ αεγʹ : τῷ ἄρα αʹ ἄστρῳ ἀπὸ ἑῴας φαινομένης ἐπιτολῆς |
| τὴν ὥραν , ἐὰν αὐτῶν τι τῶν δώδεκα ζῳδίων θεωρῶμεν ἀνατέλλον . τὸν γὰρ γινώσκοντα , ἐν ᾧ ἐστι ζῳδίῳ | ||
| τῶν ἀπλανῶν ἄστρων ἀπὸ ἑῴας φαινομένης ἐπιτολῆς ἑκάστης νυκτὸς ὁρᾶται ἀνατέλλον ἕως τῆς ἑσπερίας φαινομένης ἐπιτολῆς , τὸ ηʹ ἄρα |
| γδʹ κμʹ λνʹ : ἐπεὶ ὁ ηζθʹ κύκλος τοὺς αβʹ γδʹ αβδγʹ κύκλους διὰ τῶν πόλων τέμνει , καὶ πρὸς | ||
| τῶν λνθʹ γωνία ἐστὶν ἡ κλίσις ἐν ᾗ κέκλιται ὁ γδʹ κύκλος πρὸς τὸν αβγδʹ κύκλον . Καὶ ἐπεὶ δύο |
| τὸ μὲν ἀπὸ τῆς Συήνης , ἥπερ ἐστὶν ὅριον τοῦ θερινοῦ τροπικοῦ , εἰς Μερόην εἰσὶ πεντακισχίλιοι , τὸ δ | ||
| [ τὰς ] ἄρκτους αὐτοῦ κείμενος μικρῷ βορειότερός ἐστι τοῦ θερινοῦ τροπικοῦ : καὶ τῶν ἐν τοῖς μηροῖς καὶ σκέλεσι |
| ἡ ἡμέρα , ἐν ᾗ ὁ ἥλιος τὴν ΖΕΗ περιφέρειαν διαπορεύεται , μακροτάτη ἐστὶν πασῶν τῶν ἐν τῷ ἐνιαυτῷ ἡμερῶν | ||
| μὲν ἡμέρα , ἐν ᾗ ὁ ἥλιος τὴν ΥΤ περιφέρειαν διαπορεύεται , μείζων ἐστὶν πασῶν τῶν πρὸ αὐτῆς ἡμερῶν τῶν |
| τὸ ἀφανὲς ἡμισφαίριον ὁ ἥλιος μείζονά τινα περιφέρειαν τῆς ΜΝ διελεύσεται . Διερχέσθω τὴν ΝΞ : τοῦ ἄρα Ν ἐπὶ | ||
| τῷ ἡμίσει τῆς ἡμέρας χρόνῳ ὁ ἥλιος τὴν ΞΧ περιφέρειαν διελεύσεται : μέσου ἄρα ἡμέρας ἔσται πρὸς τῷ Χ : |
| ὀλίγων τῶν αὐγῶν προσπιπτουσῶν καὶ διασπωμένου τοῦ φωτός , τὸ σκιερὸν μέλαν φαίνεται . καὶ τὸ νέφος ὅταν ᾖ πυκνὸν | ||
| κύκλος ἐν τῇ σελήνῃ ὁ παρὰ τὸν διορίζοντα τό τε σκιερὸν καὶ τὸ λαμπρὸν ὁ ΗΘΚ . καὶ ἐπεὶ διχοτόμου |
| ὁ ΑΖΓΘ τοῦ μὲν ΑΘΓ ὄντος τοῦ μετὰ τὸν καρκίνον ἡμικυκλίου , τοῦ δὲ ΓΖΑ τοῦ μετὰ τὸν αἰγόκερω , | ||
| ὅλη ἄρα ἡ ΓΒ ὅλῃ τῇ ΕΖ ἐστιν ἴση . ἡμικυκλίου δέ ἐστιν ἡ ΓΒ : ἡμικυκλίου ἄρα καὶ ἡ |
| τεταρτημορίου , διὰ τὸ τὸ Α σημεῖον πόλον εἶναι τοῦ ΒΕΔ ὁρίζοντος . ὀρθῆς δὲ οὔσης ἀεὶ διὰ τὴν αὐτὴν | ||
| προσκείσθω τὸ ἀπὸ ΔΕ τετράγωνον : ὅλον ἄρα τὸ ὑπὸ ΒΕΔ ἴσον τῷ ἀπὸ ΓΕ τετραγώνῳ . ἀνάλογον καὶ ἀναστρέψαντι |
| τὸ μὲν Κ ἀρξάμενον ἀπὸ τοῦ Ο τὴν ΟΨ περιφέρειαν διελθὸν ἐπὶ τὸ Ψ παραγίγνεται , τὸ δὲ Λ ἀρξάμενον | ||
| ' ἐν ᾧ μὲν χρόνῳ τὸ Ν τὴν ΝΒ περιφέρειαν διελθὸν ἐπὶ τὸ Β παραγίγνεται , ἡ ΑΕ περιφέρεια δύνει |
| πρὸς τῷ θʹ τὸ εʹ ἄστρον οὐ φαίνεται ἀνατέλλον : προανατέλλει γὰρ αὐτοῦ τὸ θʹ [ τουτέστιν ὁ ἥλιος ] | ||
| εἰς τὰ ἑπόμενα μετέβη , ὁ δ ' ἀστὴρ τοσοῦτον προανατέλλει τοῦ ἡλίου , ὅσον ὁ ἥλιος ἐν ταῖς δυσὶν |
| ἢ ἐκείνως . μέρους μὲν γὰρ μέρος κατὰ τὸ ὑποκείμενον ἐξαλλάττει , δύναμις δὲ δυνάμεως τῷ διάφορα ἐνεργεῖν διενήνοχε : | ||
| τῆς ΠΡ ὁ χρόνος ἐστίν , ἐν ᾧ ἡ ΠΡ ἐξαλλάττει τὸ φανερὸν ἡμισφαίριον . πάλιν τοῦ Ζ κατὰ τὸ |
| ΥΚ , ΦΧ . ὥστε ἐν ᾧ τὸ Θ τὴν ΘΝ διέρχεται , ἐν τούτῳ τότε Υ τὴν ΥΞ διαπορεύεται | ||
| ΚΖ , ΖΛ , ΛΗ , ΗΜ , ΜΘ , ΘΝ , ΝΕ . δύο οὖν μεγεθῶν ἀνίσων ἐκκειμένων τοῦ |
| τῇ λκʹ ἴση ἐστίν : ἡμίσους δὲ ζῳδίου ἐστὶν ἡ δεʹ : ἡμίσους ἄρα καὶ ἡ λκʹ : τοῦ ἄρα | ||
| δλʹ , καὶ κοινὴ ἡ λεʹ : ὅλη ἄρα ἡ δεʹ ὅλῃ τῇ λκʹ ἴση ἐστίν : ἡμίσους δὲ ζῳδίου |
| τὸν Καρκίνον οἰκοῦσιν , ἀντίχθονες δὲ οἱ ἐν τῶι κάτω ἡμισφαιρίωι κατὰ κάθετον οἰκοῦντες τοῖς ἐν τῶι θερινῶι ἢ χειμερινῶι | ||
| . καὶ οἱ μὲν ἐκεῖ οἰκοῦντες ἐν τῶι ἄνω εἰσὶν ἡμισφαιρίωι καὶ πρὸς τοῖς δεξιοῖς , ἡμεῖς δ ' ἐν |
| . Λέγω , ὅτι , ὅταν ὁ ἥλιος τὸ ΑΕ τεταρτημόριον διαπορεύηται , νὺξ καὶ ἡμέρα τὸ συναμφότερον νυκτὶ καὶ | ||
| ὑπογείου μέχρι τοῦ ὡροσκόπου ἐστὶ βόρειον καὶ δηλοῖ τὸ δʹ τεταρτημόριον τοῦ ἔτους . δεῖ δὲ ὁρᾶν τὸν χρονοκράτορα καὶ |
| μὲν χρόνῳ ὁ ἥλιος τὴν ΖΕΗ περιφέρειαν διαπορεύεται καὶ τὴν ΦΠ : ἴσαι γάρ εἰσιν : ἐν πλείονι δὲ χρόνῳ | ||
| ΜΞΝ κύκλον προσπιπτουσῶν εὐθειῶν , καὶ αἰεὶ ἡ ἔγγιον τῆς ΦΠ τῆς ἀπώτερον ἐλάσσων ἐστί : ἐλάσσων ἄρα ἡ ΡΠ |
| . Τέμνει δὲ τοῦτον Ἥλιος ἀφ ' ἑπτακαιδεκάτης Τυβὶ μηνὸς χειμερινοῦ , τοῦ τῶν Καλάνδων λέγω , ἕως Μεχὶρ τῶν | ||
| ἐν τῇ ἡμετέρᾳ εὐκράτῳ . Ὁπόταν δ ' ἐφαψάμενος τοῦ χειμερινοῦ πρὸς ἡμᾶς πάλιν ὑποστρέφῃ , ἐπὶ τὰ ὑψηλότερα τοῦ |
| νόσους εἰκὸς εἶναι πολλάς . Τοῦ δὲ Ἅληκος ποταμοῦ τοῦ διορίζοντος τὴν Ῥηγίνην ἀπὸ τῆς Λοκρίδος βαθεῖαν φάραγγα διεξιόντος ἴδιόν | ||
| ΓΔ . ἡ ΓΔ ἄρα διάμετρός ἐστι τοῦ κύκλου τοῦ διορίζοντος ἐν τῇ σελήνῃ τὸ σκιερὸν καὶ τὸ λαμπρόν . |
| , ὥστε παραλλάξει τυχούσῃ ἅμα ἓξ ζῴδια καὶ δύσεται καὶ ἀνατελεῖ . Τοῖς ὑπὸ τὸν ἰσημερινὸν οἰκοῦσιν ὁ μεσημβρινὸς δίχα | ||
| πρὸς τῷ Ε οἰκοῦσι πάντα τὰ ἄστρα καὶ δύσεται καὶ ἀνατελεῖ καὶ τὸν ἴσον χρόνον ἐνεχθήσεται ὑπέρ τε τὸν ὁρίζοντα |
| τρόπον . Ἀνατελλέτω γὰρ ὁ ἥλιος πρὸς τῷ Ζ , δυνέτω δὲ πρὸς τῷ Η , καὶ ἔστω ἐλάσσων ἡ | ||
| διέρχεται τὸν μεσημβρινὸν ὅ τε Κριὸς καὶ ὁ Ταῦρος . δυνέτω δὲ τὸν αὐτὸν τρόπον ἡ ἀρχὴ τοῦ Κριοῦ , |
| . καὶ αὐτὸ δὲ καθ ' ἑαυτὸ κνῆκος ἐν τῷ ἴσῳ πλήθει ἢ πλεῖστον ὁλκαὶ δ ἱκανῶς κινεῖ . καταλληλότατον | ||
| δίκαιον μὴ ὑπερβαίνειν . ἐπί τε χοίνικος μὴ καθίζειν ἐν ἴσῳ τῷ φροντίδα ποιεῖσθαι καὶ τοῦ μέλλοντος : ἡ γὰρ |
| κέκλιται ὁ γδʹ κύκλος πρὸς τὸν αβγδʹ κύκλον : οἱ αβʹ γδʹ ἄρα κύκλοι ὁμοίως εἰσὶ κεκλιμένοι πρὸς τὸν αβγδʹ | ||
| ἑσπέριαι ἀνατολαὶ προηγοῦνται τῶν ἑσπερίων δύσεων . Ἔστω ὁρίζων ὁ αβʹ καὶ ὁ τῶν ζῳδίων κύκλος ὁ γδʹ , καὶ |
| ΑΒ πρὸς τὴν ΓΔ , οὕτως ἡ ΕΖ πρὸς τὴν ΠΡ , ἴση δὲ ἡ ΠΡ τῇ ΗΘ , ἔστιν | ||
| περιφερείας , ἡ δὲ κατὰ τὸ Ο βορεία παράλλαξις τῆς ΠΡ , ἡ δὲ κατὰ τὸ Μ βορεία τῆς ΛΚ |
| τῆς ΜΗ μείζων ἐστί . πάλιν ἐπεὶ ἡ ΚΘ τῆς ΜΘ ἐλάττων ἐστίν , ἡ δὲ ΜΘ τῆς ΜΗ ἐλάττων | ||
| : φανερὸν ὅτι ἐν πλείονι χρόνῳ ἀνατέλλει ἡ ΛΜ τῆς ΜΘ , ὡς προεδείχθη . Τῷ δὲ αὐτῷ τρόπῳ ἐφωδεύσαμεν |
| λοιπαὶ ἄρα αἱ ΑΔ , ΓΕ περιφέρειαι ἐν ἀνίσῳ χρόνῳ ἀνατέλλουσι καὶ αἱ αὐταὶ διαφοραί εἰσι τῶν χρόνων , ἐν | ||
| , ἐπειδὴ κατὰ διάμετρον τοῦ Ἡλίου τυχόντες μετὰ δύσιν αὐτοῦ ἀνατέλλουσι . μόνος δὲ ὁ τοῦ Ἄρεως ἀστὴρ ἀνω - |
| περιφέρεια τῆς ΒΑΔ περιφερείας , καὶ ἐπὶ τῆς ΒΔ ὀρθὸν τμῆμα κύκλου ἐφεστάτω τὸ ΒΕΔ μὴ μεῖζον ἡμικυκλίου , καὶ | ||
| τῆς ΕΖ ἄκρον καὶ μέσον λόγον τεμνομένης , μεῖζον ἔσται τμῆμα ἡ ΑΓ : ἡ ἄρα ΕΖ πρὸς τὴν ΑΓ |
| : αἱ ΜΛ , ΘΚ ἄρα περιφέρειαι ἐν ἴσῳ χρόνῳ ἐξαλλάσσουσι τὸ φανερὸν ἡμισφαίριον : ἀλλ ' ἐν ᾧ χρόνῳ | ||
| τῶν ζῳδίων κύκλου αἱ ἴσαι περιφέρειαι οὐκ ἐν ἴσῳ χρόνῳ ἐξαλλάσσουσι τὸ ἀφανὲς ἡμισφαίριον , ἀλλ ' ἐν πλείονι χρόνῳ |
| χρόνῳ τὸ δʹ τὴν δζʹ διαπορεύεται καὶ τὸ δʹ τὴν δηʹ : καὶ εἰσὶν τοῦ αὐτοῦ κύκλου : ἴση ἄρα | ||
| ἀνατέλλουσα οὐχ ὁρᾶται . Στρεφομένου δὲ τοῦ κόσμου ἡ μὲν δηʹ περιφέρεια ἑῴαν ἀνατολὴν ποιεῖται , ἡ δὲ δεʹ οὐχ |
| τοῖς Διδύμοις λέγει αὐτὸν ἀντικαταδύνειν : τοῦ δὲ Καρκίνου ἀρχομένου ἀνατέλλειν , ὅς ἐστι λοιπὸς τῶν τεσσάρων ζῳδίων , οἷς | ||
| κʹ μοίρᾳ τοῦ Τοξότου συναναφέρεται . Τοῦ δὲ Ὑδροχόου ἀρχομένου ἀνατέλλειν φησὶ συνανατεταλκέναι τῷ Αἰγόκερῳ τοῦ Ἵππου τήν τε κεφαλὴν |
| νῆσον ἐπακτῆρες : τῇσι δὲ βουκόλιαί τε βοῶν χάλκειά τε δύνειν τεύχεα πυροφόρους τε διατμήξασθαι ἀρούρας ῥηίτερον πάσῃσιν Ἀθηναίης πέλεν | ||
| τῷ δύπτειν ἐπὶ κεφαλὴν κατενεχθέντες . δύπτειν δέ ἐστι τὸ δύνειν , δύπται δὲ αἴθυιαι , ὡς παρὰ Καλλιμάχῳ : |
| ἡ ΓΖ , καὶ ὁ ζῳδίων κύκλος θέσιν ἐχέτω τὴν ΖΕΗ . καὶ ἐπεὶ ἴση ἐστὶν ἡ ΑΒ τῇ ΒΓ | ||
| τῶν Ε Γ ἀνεστάτωσαν ὀρθαὶ τῷ ἐπιπέδῳ τοῦ κύκλου αἱ ΖΕΗ ΓΛ , καὶ ἑκατέρα μὲν τῶν ΕΘ ΓΛ ἑξαγώνου |
| ἐχούσης . τὴν δὲ σελήνην ἐμπίπτουσαν εἰς τὸ τῆς γῆς σκίασμα : ὅθεν καὶ ταῖς πανσελήνοις ἐκλείπειν μόναις , καίπερ | ||
| γῆς . Ἀεὶ δὲ τὸ ἐμπίπτον αὐτῆς μέρος εἰς τὸ σκίασμα τῆς γῆς ἀφώτιστον γίνεται τοῦ ἡλίου διὰ τὴν ἐπιπρόσθησιν |
| ἔστω παράλληλος κύκλος , καθ ' οὗ φέρεται τὸ Θ ἄστρον , ὁ ΔΚΘΛΒ : τὸ Θ ἄρα , ὅταν | ||
| τὸν ἥλιον ἄστρον φησίν . οὐ καινὸν εἰ τὴν σελήνην ἄστρον ὁ Αἰσχύλος ἐνταῦθα καλεῖ : καὶ Πίνδαρος γὰρ τὸν |
| ἄρα αὐτῶν τομαὶ παράλληλοί εἰσιν : παράλληλος ἄρα ἐστὶν ἡ ΗΠ τῇ ΘΟ . ἐπεὶ οὖν δύο εὐθεῖαι ἁπτόμεναι ἀλλήλων | ||
| ἔστω τὸ ἐπιταχθὲν μέρος τοῦ ΑΒΓ τριγώνου τὸ ὑπὸ ΚΜ ΗΠ [ τοῦτο γὰρ προδέδεικται ] , καὶ τῇ ΚΜ |
| , καλεῖται δὲ ἐκ δύο μέσων πρώτη . Ἡ ἄρα ΜΞ ἐκ δύο μέσων ἐστὶ πρώτη : ὅπερ ἔδει δεῖξαι | ||
| μέσον λόγον , καί εἰσι μείζονα τμήματα αἱ ΗΓ , ΜΞ , ὡς ἄρα ἡ ΔΗ πρὸς τὴν ΗΓ , |
| τε καὶ ἠελίοιοκατ ' ἰθύ . οὐκ ἐκλείπει δὲ ὁ ἥλιος , ἀλλ ' ἡμῖν δοκεῖ : κατὰ κάθετον γὰρ | ||
| τὸ Κ σημεῖον Ὑδροχόου κ λε , ἐν ᾧ ὁ ἥλιος κατὰ τὸ τέλος τῆς μέσης πενταμήνου παραγίγνεται : καὶ |
| ἡ μὲν δηʹ περιφέρεια ἑῴαν ἀνατολὴν ποιεῖται , ἡ δὲ εθʹ ἑσπερίαν δύσιν . Ἡ μὲν γὰρ δηʹ περιφέρεια ὑπὲρ | ||
| τοῦ ἡλίου ἔστω δωδεκατημόριον τὸ δηʹ , ἀκολουθοῦν δὲ τὸ εθʹ : λέγω ὅτι ἡ μὲν δηʹ περιφέρεια ἑῴαν ἀνατολὴν |
| τροπῶν θερινῶν ἐπὶ τροπὰς χειμερινὰς ἴσαι ἔσονται αἱ ἴσον ἀπέχουσαι ὁποτερασοῦν ἡμέρας . Ἔστω ὁρίζων ὁ ΑΒΓΕ , θερινὸς δὲ | ||
| , , ] διὰ τὸ ιεʹ : ἴσον γὰρ ἀπέχουσιν ὁποτερασοῦν τῶν συναφῶν ἀπὸ τοῦ σχολίου τοῦ ζ ∻ . |
| , τοῦ ἄρα ἡλίου ἐπὶ τοῦ κʹ ὄντος τὸ εʹ ἑσπέριον ἀνατέλλει : ἀπὸ ἄρα ἑῴας ἐπιτολῆς ἐπὶ ἑσπερίαν ἐπιτολὴν | ||
| εὐρυνθεῖσα τιταίνεται Ἀδριὰς ἅλμη πρὸς βορέην , αὖτις δὲ πρὸς ἑσπέριον μυχὸν ἕρπει , ἥντε καὶ Ἰονίην περιναιέται ηὐδάξαντο . |
| τῆς τοῦ ὀκταέδρου πλευρᾶς . Ἐπεὶ γὰρ αἱ τρεῖς αἱ ΛΚ , ΚΜ , ΚΕ ἴσαι ἀλλήλαις εἰσίν , τὸ | ||
| τοῦ μὲν ΕΚ ἄξονος καὶ τοῦ ΒΗ κυλίνδρου ὅ τε ΛΚ ἄξων καὶ ὁ ΠΗ κύλινδρος , τοῦ δὲ ΚΖ |
| καὶ τὸν σπόρον καὶ τὰ λοιπά . σκοτεινοῦ δὲ τοῦ ἄστρου ἀνατείλαντος πᾶν τοὐναντίον ἔσται καὶ τὰ γεννήματα ἐν σπάνει | ||
| τι τῶν ἀπλανῶν συνανατελλέτω τὸ δʹ : τοῦ ἄρα δʹ ἄστρου ἡ ἀληθινή ἐστιν ἑῴα ἀνατολή : λέγω ὅτι ἡ |
| τὸ ἀπὸ ΜΚ τοῦ ὑπὸ ΜΚΘ , τὸ ἄρα ἀπὸ ΜΚ πρὸς τὸ ἀπὸ ΚΗ μείζονα λόγον ἔχει ἤπερ τὸ | ||
| οὕτως ἡ ΝΠ πρὸς ΟΠ , ἔσται καὶ ὡς ἡ ΜΚ πρὸς τὴν ΚΑ , τουτέστιν ὡς ἡ ΜΑ μετὰ |
| ΟΔ , ὡς δὲ τὸ ἀπὸ ΛΑ πρὸς τὸ ἀπὸ ΑΞ , τὸ ἀπὸ ΖΕ πρὸς τὸ ἀπὸ ΕΔ : | ||
| ὡς ἄρα ἡ ΚΑ πρὸς ΑΔ , ἡ ΗΑ πρὸς ΑΞ . ἔστι δὲ καί , ὡς ἡ ΓΑ πρὸς |
| ὀρθία τοῦ παρὰ τὴν ΒΤ εἴδους . δίχα τετμήσθω ἡ ΜΝ κατὰ τὸ Π : ἔστιν ἄρα , ὡς ἡ | ||
| καὶ πανσελήνους . ἐὰν γὰρ γράψωμεν περὶ τὸ Α τὸν ΜΝ ἐπίκυκλον , ὁ τῆς ΑΕ πρὸς τὴν ΑΜ λόγος |
| ΑΡ ἄρα ἐπὶ τὴν ΡΞ κάθετός ἐστιν , καὶ ἡ ΑΟ ἐπὶ τὴν ΟΜ , καὶ ἡ ΑΠ ἐπὶ τὴν | ||
| , ΨΣ . καὶ ἐπεὶ ἴσον ἐστὶ τὸ ἀπὸ τῆς ΑΟ τῷ ἀπὸ τῆς ΑΣ , ἴσον δέ ἐστι τὸ |
| ἐσπουδακότων ὡς ὅτι μάλιστα οὖσι θεοῖς εὐχαῖς προσδιαλεγομένων καὶ ἱκετείαις ἀνατέλλοντός τε ἡλίου καὶ σελήνης καὶ πρὸς δυσμὰς ἰόντων προκυλίσεις | ||
| ὡς ὅτι μάλιστα οὖσιν θεοῖς εὐχαῖς προσδιαλεγομένους καὶ ἱκετείαις , ἀνατέλλοντός τε ἡλίου καὶ σελήνης καὶ πρὸς δυσμὰς ἰόντων προκυλίσεις |
| ΒΓ , ΝΞ , ΔΜ , ΘΟ , ΗΠ , ΟΗ , ΗΡ . ἐπεὶ οὖν ἐν σφαίρᾳ μέγιστος κύκλος | ||
| ΘΝΟΗ . λέγω , ὅτι ἴση ἐστὶν ἡ ΝΟ τῇ ΟΗ . κατήχθωσαν γὰρ τεταγμένως αἱ ΞΝΖ , ΒΛ , |
| κάθετος ἡ ΕΝ : ἴση ἄρα ἐστὶν ἡ ΖΝ τῇ ΝΘ . ἦν δὲ καὶ ἡ ΜΞ τῇ ΞΘ : | ||
| αὐτῶν ρκ ἔγγιστα : ὥστε καί , οἵων ἐστὶν ἡ ΝΘ εὐθεῖα ξδ ι , τοιούτων καὶ ἡ ΘΗ ἔσται |
| , τοῦ ἄρα ἡλίου ἐπὶ τοῦ θʹ ὄντος τὸ εʹ ἑῷον δύνει . Πάλιν ἐπεὶ τοῦ ἡλίου ἐπὶ τοῦ λʹ | ||
| Αἰθίοπας τοὺς ἄνω Αἰγύπτου καὶ δι ' Ἀράβων ἐπὶ τὸν ἑῷον ὠκεανὸν ἡ ἀρχὴ διεξέρχεται , καὶ ὅρος ἐστὶν αὐτοῖς |
| ἡ ὑπὸ ΒΑΞ τῇ ὑπὸ ΕΔΖ ἴση , ἡ δὲ ΞΟ τῇ ΘΚ , ἡ δὲ ΟΠ τῇ ΜΝ . | ||
| περὶ διάμετρον τὴν ΚΝ κύκλος γραφόμενος ὀρθὸς ὢν πρὸς τὴν ΞΟ ὁρίζων ἐστὶ τοῖς πρὸς τῷ Ε οἰκοῦσιν . Ἐπεὶ |
| ἐν ᾧ δὲ τὸ Ν ἀρξάμενον ἀπὸ τοῦ Κ τὴν ΚΗΛ περιφέρειαν διαπορεύεται , ἐν τούτῳ καὶ τὸ κατὰ διάμετρον | ||
| ἴσον ἐστὶν τῷ ἀπὸ ΚΗ διὰ τὸ ἰσογώνια εἶναι τὰ ΚΗΛ ΚΗΔ τρίγωνα , ἔστιν ἄρα ὡς τὸ ὑπὸ ΔΗΘ |
| ἔχρῃζον : τὸ γὰρ ὅμως ἐναντιωτικὸν ὂν παρίστησι τὸν Ταλθύβιον πολοῦ τὴν ζωὴν τιμώμενον , ὅσα καὶ φίλαυτον γέροντα : | ||
| ἐν ἱεροῖς βλασφημούντων . Ῥωπικὸν ὤνιον : ἐπὶ τῶν εὐτελῶν πολοῦ πιπρασκομένων . Σαλαμινία ναῦς : ἐπὶ τῶν ταχέων : |
| μὴ ἦι ὁτὲ μὲν ῥικνά , ὁτὲ δὲ πολύσαρκα : ἀνωμάλου γὰρ βίου ὤιοντο εἶναι δεῖγμα . ἀλλὰ ὡσαύτως καὶ | ||
| δυνάμενα ἕδρας ἐνδῦναι , συνωθοῦντα ἡμῶν τὸ νοτερόν , ἐξ ἀνωμάλου κεκινημένου τε ἀκίνητον δι ' ὁμαλότητα καὶ τὴν σύνωσιν |
| ὁ μέσος γὰρ ὁ ἐν αὐτῇ στέφανος τῇ ἀράχνῃ ὁ ζῳδιακὸς προσκέκληται κύκλος ὁ ἐν τῷ πόλῳ , μεμέρισται εἰς | ||
| ΜΓ . ὅταν μὲν δὴ ἡ ΜΓ ἀνατέλλῃ , ὁ ζῳδιακὸς ἕξει θέσιν τινά : ἐχέτω τὴν ΠΝΞ . ὅταν |
| πρότερον ἄμεινον , ὡς τῶν ἀνθρώπων τὸ σῶμα τῶν μὲν ὁμαλῶς κέκρα - ται σύμπαν , ἐνίων δέ , καὶ | ||
| ἴση τῇ ΒΔ , καὶ διαπορευέσθω τὸ μὲν Ν σημεῖον ὁμαλῶς φερόμενον τὴν ΝΘ ἐν ὥραις δέκα , ἡ δὲ |
| δὲ καὶ τοῦτο , ποῖον τῶν φώτων ἐν τῇ γενέσει στρεφομένης τῆς τοῦ παντὸς φορᾶς πρῶτον ἔρχεται εἰς τὸ ὑπόγειον | ||
| . καὶ οἱ μὲν διὰ τῶν πόλων τῆς σφαίρας πάντες στρεφομένης τῆς σφαίρας ἐφαρμόζουσιν ἑαυτοῖς , οἱ δὲ λοξοὶ πάντες |
| τοῦ ἰσημερινοῦ πρὸς βοῤῥᾶν μοιρῶν λξ : ἀπὸ δὲ τοῦ ἰσημερινοῦ πρὸς νότον μοιρῶν η ∠ ʹ ἢ θ γίνεται | ||
| τὸ Πράσον ὑπὸ τὸν παράλληλον τὸν ἀπέχοντα πρὸς μεσημβρίαν τοῦ ἰσημερινοῦ μοίρας ιϚʹ γʹʹ ιβʹʹ , διέστηκε δὲ τοῦ ἰσημερινοῦ |
| ἐν νυκτί . ἐπισημαίνεται δὲ τοῦτο Ἄρατος λέγων ἓξ αἰεὶ δύνουσι δυωδεκάδες κύκλοιο : δυωδεκάδες γὰρ εἶπε τὰ δωδεκατημόρια τῶν | ||
| δὲ , τὴν πρώτιστον δὲ ταύτης Ὑάδες σὺν τῷ Λαγωῷ δύνουσι πρὸς τὸν ὄρθρον , καὶ τὴν δευτέραν τὸ αὐτὸ |
| , ἀλλ ' ὡς ἡ ΘΒ πρὸς ΜΠ , ἡ ΤΒ πρὸς ΜΝ καὶ ἡ Ρ πρὸς ΞΗ , ὡς | ||
| ΝΟ πρὸς τὴν ΟΖ . ἐδείχθη δὲ καὶ ὡς ἡ ΤΒ πρὸς τὴν ΒΛ , οὕτως ἡ ΟΖ πρὸς τὴν |
| δὲ πρὸς μεσημβρίαν δι ' ἐλάσσονος . Ἔστω ἐν κόσμῳ ὁρίζων κύκλος ὁ αβγδʹ , ὁ δὲ τοῦ ἡλίου κύκλος | ||
| σφαίρᾳ μέγιστος κύκλος τῶν αὐτῶν ἅπτηται , ὧν καὶ ὁ ὁρίζων ἅπτεται , στρεφομένης τῆς σφαίρας ἐφαρμόσει ἐπὶ τὸν ὁρίζοντα |
| , οὕτως τὸ ἀπὸ τῆς ΖΗ πρὸς τὸ ἀπὸ τῆς ΗΘ , σύμμετρον ἄρα τὸ ἀπὸ τῆς ΖΗ τῷ ἀπὸ | ||
| , οὕτως ἡ ΒΛ πρὸς ΛΗ . ἐπεὶ οὖν ἡ ΗΘ πρὸς ΘΒ μείζονα λόγον ἔχει ἤπερ ἡ ΗΜ πρὸς |
| ιδ ∠ ʹιβ , καὶ διέστηκεν Ἀλεξανδρείας πρὸς δύσεις ὥρας γεʹ . Τῆς δὲ Ἀχαΐας αἱ μὲν Βοιώτιαι Θῆβαι τὴν | ||
| ἐνιαυτοῦ , ὁ χρόνος ἐστὶν ἐν ᾧ ὁ ἥλιος τὴν γεʹ περιφέρειαν διαπορεύεται . Καὶ ἐπεὶ τοῦ δʹ ἄστρου ἀνατέλλοντος |
| περιφέρεια τῇ ΓΔ , ἴση ἐστὶ καὶ γωνία ἡ ὑπὸ ΒΖΓ τῇ ὑπὸ ΓΖΔ . καί ἐστιν ἡ μὲν ὑπὸ | ||
| τετραπλάσιον ἄρα τὸ ἀπὸ ΒΓ , τουτέστιν τὰ ἀπὸ τῶν ΒΖΓ , τοῦ ἀπὸ τῆς ΕΖ . ἐπεὶ οὖν δύο |
| ΑΒ κάθετοι . ἐὰν δὴ μενούσης τῆς ΚΞ τά τε ΞΓΔ , ΗΖΝ ἡμικύκλια καὶ τὰ ΚΓΛ , ΚΖΜ τρίγωνα | ||
| κατὰ τὴν ἐπιφάνειαν , ἐπειδὴ καὶ ἡ ΚΖΓ ἐφάπτεται τῶν ΞΓΔ , ΗΖΝ ἡμικυκλίων κατὰ πᾶσαν μετακίνησιν . Ἐὰν σφαῖρα |
| τὸ φρουρεῖν τὴν ὁδόν : τὸ τῆς Ἑλένης : τὸν ἀνατολικόν φησιν : καὶ μὴν ἐγὼ τόνδ ' : ἡνιοχεῖ | ||
| καὶ εἰς δύο τινὰ ἡμικύκλια διαιροῦντος , ὧν τὸ μὲν ἀνατολικόν , τὸ δὲ δυτικὸν ὀνομάζεται , συμβαίνει τὰς μεσημβρίας |
| μείζονος τμήματος ἤπερ ὁ ΟΠΡ . λέγω , ὅτι οἱ ΜΝΞ , ΒΖΓ , ΟΠΡ , ΣΤ , ΥΘ κύκλοι | ||
| ὀρθῷ πρὸς τὸ ΜΖΝ τρίγωνον , καὶ ποιεῖ τομὴν τὸν ΜΝΞ κύκλον , τέτμηται δὲ καὶ ἑτέρῳ ἐπιπέδῳ τῷ ὑποκειμένῳ |
| κατὰ τοῦτον γινομένου τὸν κύκλον πρὸς αἴσθησιν , ὁ δὲ χειμερινὸς διὰ τὸ τὸν ἥλιον κατὰ τοῦτον γινόμενον τὸν κύκλον | ||
| , καὶ ὁ ἔσχατος τοῦ Ποταμοῦ ἑσπέριος ἀνατέλλει . Εὐδόξῳ χειμερινὸς ἀήρ . κεʹ . ὡρῶν ιγ ∠ ʹ : |
| Ε σημεῖα . ἐπεὶ μεῖζον τὸ ΑΓΒ τμῆμα τοῦ ΒΓ τμήματος , μείζων ἡ Ζ γωνία τῆς Θ γωνίας . | ||
| ὁ αὐτὸς δὲ γίνεται καὶ τοῦ περὶ τὴν γῆν ὁμοίου τμήματος πρὸς τὸν ἐν αὐτῇ μέγιστον κύκλον . Οἱ μὲν |
| οὐρανῷ μὲν τοὺς παραλλήλους κύκλους , τούς τε ἰσημερινούς , ἐαρινὸν καὶ μετοπωρινόν , καὶ τοὺς τροπικούς , θερινόν τε | ||
| ἦλθέ που σίδηρος : ἀλλ ' ἀκήρατον μέλισσα λειμῶν ' ἐαρινὸν διέρχεται : αἰδὼς δὲ ποταμίαισι κηπεύει δρόσοις ὅσοις διδακτὸν |
| . ἡμεῖς δὲ νῦν περὶ τῶν Ὁμηρικῶν συμποσίων λέξομεν . ἀφορίζει γὰρ αὐτῶν ὁ ποιητὴς χρόνους , πρόσωπα , αἰτίας | ||
| κατεγράφησαν εἰς τὴν σφαῖραν . Ὁ μὲν γὰρ ἀρκτικὸς κύκλος ἀφορίζει τὰ ἀεὶ θεωρούμενα τῶν ἄστρων . Ὁ δὲ θερινὸς |
| : ποιήσει δὴ τομὴν κύκλον . Ἔστω αὐτοῦ ἡμικύκλιον τὸ αγβʹ : ἐὰν δὴ μενούσης τῆς αβʹ εὐθείας περιενεχθὲν τὸ | ||
| συμπεριενεχθήσεται αὐτῷ καὶ ἡ γδʹ εὐθεῖα κατὰ πᾶσαν μετακίνησιν τοῦ αγβʹ ἡμικυκλίου διαμένουσα τῇ αβʹ εὐθείᾳ πρὸς ὀρθάς , καὶ |
| , ἤπερ κόσμου τέ ἐστι περιστροφὴ καὶ τῆς ΛΜ περιφερείας δύσις : ἐν ἄρα κόσμου περιστροφῇ καὶ τῆς ΛΜ περιφερείας | ||
| διφυές , κάθυγρον , ἡμιτελές , κυρτοειδές , χωλόν , δύσις κόσμου , μόχθων καὶ πόνων δηλωτικόν , λαοξοϊκόν , |
| βόρειον γένηται , τὸ δὲ φθινό - πωρον ἔπομβρον καὶ νότιον , κεφαλαλγίαι ἐς τὸν χειμῶνα γίνονται , καὶ βῆχες | ||
| ἤτοι τὸ ἀνατολικώτερον , ὁ Ἰνδικὸς ὠκεανός : τὸ δὲ νότιον ἡ Ἐρυθρὰ θάλασσα ἢ τὸ κῦμα τῆς Ἐρυθρᾶς θαλάσσης |
| τοῦ αὐτοῦ σημείου τοῦ ἰσημερινοῦ ἀπό τινος τμήματος ἤτοι τοῦ ὁρίζοντος ἢ τοῦ μεσημβρινοῦ ἐπὶ τὸ αὐτὸ ἀποκατάστασις , νυχθήμερον | ||
| αὐτὰ δειχθήσεται καὶ ὅταν ὁ πόλος τῶν παραλλήλων ἐπὶ τοῦ ὁρίζοντος ᾖ , καὶ γραφομένων διὰ τῶν Κ , Θ |
| ποεῖ , τὴν δὲ νύκτα * βραχυτάτην . Χειμερινὸς δὲ τροπικός , καθ ' ὃν ὁ ἥλιος φερόμενος τὴν μὲν | ||
| , τρίτος δὲ ὁ ἰσημερινός , τέταρτος δὲ ὁ χειμερινὸς τροπικός , πέμπτος δὲ ὁ ἀνταρκτικός . Τοῖς δὲ πρὸς |
| ΘΚΛ . λέγω , ὅτι ἡ μὲν ΕΗ περιφέρεια τῆς ΚΛ περιφερείας μείζων ἐστὶν ἢ ὁμοία , ἡ δὲ ΘΚ | ||
| ἐπεζεύχθω ἡ ΗΚ : ἐπ ' εὐθείας ἄρα ἐστὶν τῇ ΚΛ πλευρᾷ τοῦ ἑξαγώνου , διὰ τὸ διμοίρου μὲν εἶναι |
| , διότι ἡ τῆς ΜΓ ἀναφορὰ ἡ αὐτὴ λαμβάνεται τῇ ΝΞ οὐ προοδεύεται δὲ τὸ θεώρημα τοῦτο οὐκ - έτι | ||
| τουτέστιν τὰς καὶ ΠΝ , καὶ τὰς ἴσας αὐταῖς τὰς ΝΞ καὶ ΕΞ . καὶ πάλιν , ἐπεὶ δέδοται ἡ |
| : ἡ ἄρα ηδʹ ἐλάττων ἐστὶν ἡμίσους ζῳδίου : καὶ ἀπειλήφθω ἡμίσους ζῳδίου περιφέρεια ἡ δθʹ καὶ ἔτι ἡ κγʹ | ||
| χώραν τὴν ὑπὸ τὸν τόνον πίπτουσαν δακτύλων β ⊂ . ἀπειλήφθω δὲ ἀπὸ μὲν τῶν ἄκρων τῆς καταζυγίδος ἐξ ἑκατέρου |
| τότε φαίνεται τὰ ἄστρα , ὅ ἐστιν ὥρας Ϛ . Ἀπόδειξις : δύντος τοῦ ἡλίου , ἄφες ὕδωρ διὰ κλεψύδρας | ||
| καθόλου λόγον , ἐπειδὴ οὐκ ἔχουσι καθόλου ἀποφατικὴν ὑπάρχουσαν . Ἀπόδειξις δ ' ἡ αὐτή , ὅτι δύνανται ὁμοιοσχήμονες γενέσθαι |
| ἄγειν ἀνάλογος : θέμα γὰρ ἴδιόν ἐστιν ὀξύτονον , οὐχὶ ἔγκλιμα τῆς σφῶιν . ποῖον γὰρ ἄλλο μόριον βαρυνόμενον δύναται | ||
| τοῖς περὶ τὴν Ἑλλάδα τόποις τετηρημένων , κατὰ δὲ τὸ ἔγκλιμα τῶν τόπων τούτων διημαρτήκασι . Παραπέμψαντες οὖν τοῦτο τὸ |
| Ψ , Ω , Ι σημεῖα , καὶ ἐπεζεύχθωσαν αἱ ΞΤ , ΞΥ , ΥΦ , ΤΦ , ΧΨ , | ||
| . ἀλλ ' ὡς ἡ ΑΥ πρὸς ΥΗ , ἡ ΞΤ πρὸς ΤΣ , ὡς δὲ ἡ ΘΥ πρὸς ΥΑ |