: ἀπὸ ἄρα τῆς ἑσπερίας δύσεως ἐπὶ τὴν ἑσπερίαν ἀνατολὴν παραγίγνεται ὕστερον , καὶ ἀπὸ τῆς ἑσπερίας ἀνατολῆς ἐπὶ τὴν | ||
χρόνῳ τὸ δʹ τὴν δκαʹ περιφέρειαν διελθὸν ἐπὶ τὸ αʹ παραγίγνεται , καὶ τὸ ζʹ τὴν ζηʹ διελθὸν ἐπὶ τὸ |
τὸ μὲν Κ ἀρξάμενον ἀπὸ τοῦ Ο τὴν ΟΨ περιφέρειαν διελθὸν ἐπὶ τὸ Ψ παραγίγνεται , τὸ δὲ Λ ἀρξάμενον | ||
' ἐν ᾧ μὲν χρόνῳ τὸ Ν τὴν ΝΒ περιφέρειαν διελθὸν ἐπὶ τὸ Β παραγίγνεται , ἡ ΑΕ περιφέρεια δύνει |
ἡμισφαίριον , ἀλλ ' ἐν ᾧ χρόνῳ ἡ ΚΘΛ περιφέρεια ἐξαλλάσσει τὸ φανερὸν ἡμισφαίριον , τὸ μὲν Κ ἀρξάμενον ἀπὸ | ||
ΘΚ ἐξαλλάσσει τὸ φανερὸν ἡμισφαίριον . Ἐν ᾧ ἄρα χρόνῳ ἐξαλλάσσει τὸ φανερὸν ἡμισφαίριον ἡ ΘΚ περιφέρεια , ὁ ἥλιος |
ἡ ἡμέρα , ἐν ᾗ ὁ ἥλιος τὴν ΖΕΗ περιφέρειαν διαπορεύεται , μακροτάτη ἐστὶν πασῶν τῶν ἐν τῷ ἐνιαυτῷ ἡμερῶν | ||
μὲν ἡμέρα , ἐν ᾗ ὁ ἥλιος τὴν ΥΤ περιφέρειαν διαπορεύεται , μείζων ἐστὶν πασῶν τῶν πρὸ αὐτῆς ἡμερῶν τῶν |
ἐν τῇσι μήτρῃσιν ἐγγένηται , οἴδημα γίνεται ἀπὸ τῶν ποδῶν ἀρξάμενον ἐς τὰ σκέλεα καὶ τὴν ὀσφύν : ὅσῳ δ | ||
μὲν παλαιόν ἐστι καὶ ὡς σύ που φῂς ἀπὸ Θησέως ἀρξάμενον , ἴσως δὲ καὶ ἔτ ' ἄνωθεν , καὶ |
ἡ ΘΑ δύνει , ἐν ᾧ ἄρα τότε Υ τὴν ΥΞ περιφέρειαν διαπορεύεται καὶ τὸ Φ τὴν ΒΦ , ἡ | ||
ΡΟ πρὸς ΟΤ ἐλάσσονα λόγον ἔχει ἤπερ ἡ ΣΥ πρὸς ΥΞ . καὶ τῶν ἡγουμένων τὰ διπλάσια : ἡ ἄρα |
πρὸς τῷ θʹ τὸ εʹ ἄστρον οὐ φαίνεται ἀνατέλλον : προανατέλλει γὰρ αὐτοῦ τὸ θʹ [ τουτέστιν ὁ ἥλιος ] | ||
εἰς τὰ ἑπόμενα μετέβη , ὁ δ ' ἀστὴρ τοσοῦτον προανατέλλει τοῦ ἡλίου , ὅσον ὁ ἥλιος ἐν ταῖς δυσὶν |
, καλεῖται δὲ ἐκ δύο μέσων πρώτη . Ἡ ἄρα ΜΞ ἐκ δύο μέσων ἐστὶ πρώτη : ὅπερ ἔδει δεῖξαι | ||
μέσον λόγον , καί εἰσι μείζονα τμήματα αἱ ΗΓ , ΜΞ , ὡς ἄρα ἡ ΔΗ πρὸς τὴν ΗΓ , |
] [ ] ΗΤ ? ? [ ] [ ] ΡΩ [ ] [ ] ΑΡΚ [ ] [ ] | ||
[ ] ! ϹΑ ! [ ] [ ] ! ΡΩ ! [ ] [ ] ΜΕΝ ? ? ! |
παράλληλος ἤχθω ἡ ΧΨ . καὶ ἐπεὶ ἴση ἐστὶν ἡ ΗΞ τῇ ΦΧ , ἴσον ἄρα καὶ τὸ ἀπὸ τῆς | ||
ἀπὸ τῆς ΔΓ τῷ ΑΠ , τὸ δὲ ἀπὸ τῆς ΗΞ τῷ ΑΟ . καὶ ἐπεί ἐστιν , ὡς ἡ |
καί , ἐν ᾧ χρόνῳ ἡ ΔΕ ἐξαλλάσσει τὸ ἀφανὲς ἡμισφαίριον , ἡ ΖΒ τὸ φανερόν . Τοῦ τῶν ζῳδίων | ||
, ὅτι ἐν ᾧ χρόνῳ ἡ ΑΕ ἐξαλλάσσει τὸ φανερὸν ἡμισφαίριον , ἡ ΓΖ τὸ ἀφανές , καὶ ἀνάπαλιν , |
. Ὁ δ ' Ὠρίων ἀνατέλλει μὲν ἐν ἀρχῇ ὀπώρας δύνει δ ' ἐν ἀρχῇ χειμῶνος , ὥστε διὰ τὸ | ||
τοῦ ἄρα ἡλίου ἐπὶ τοῦ κʹ ὄντος τὸ ηʹ ἑσπέριον δύνει . Πάλιν ἐπεὶ τοῦ ἡλίου ὄντος ἐπὶ τοῦ λʹ |
ἐπὶ τὰ Ζ , Ν μέρη , ὁμοία ἐστὶν ἡ ΝΡ περιφέρεια τῇ ΓΣ περιφερείᾳ : ἡ ΝΡ ἄρα τῆς | ||
Μ Ν , καὶ κάθετοι ἤχθωσαν αἱ ΜΞ ΜΟ ΝΠ ΝΡ , καὶ ἐπεζεύχθωσαν αἱ ΜΒ ΝΔ : ἴση ἄρα |
χρόνῳ ὁ ἥλιος τήν τε ΥΖ περιφέρειαν διαπορεύεται καὶ τὴν ΗΦ : ἴση ἄρα ἐστὶν καὶ ἡ πρὸ τῆς Ζ | ||
μείζων τῆς ἀπὸ τοῦ Χ ἐπὶ τὸ Ψ , ἡ ΗΦ ἄρα περιφέρεια τῆς ΧΨ περιφερείας μείζων ἐστὶν ἢ ὁμοία |
ΥΚ , ΦΧ . ὥστε ἐν ᾧ τὸ Θ τὴν ΘΝ διέρχεται , ἐν τούτῳ τότε Υ τὴν ΥΞ διαπορεύεται | ||
ΚΖ , ΖΛ , ΛΗ , ΗΜ , ΜΘ , ΘΝ , ΝΕ . δύο οὖν μεγεθῶν ἀνίσων ἐκκειμένων τοῦ |
φαινόμενα . οἷον ἐνηνέχθω τὸ μὲν κέντρον τοῦ ἐπικύκλου τεταρτημοριαίαν περιφέρειαν περὶ ἔγκεντρον κύκλον τὴν μο , καὶ μετενηνοχέτω τὸν | ||
ἴσαι εὐθεῖαι ὑποτείνουσιν : ὅπερ ἔδει δεῖξαι . Τὴν δοθεῖσαν περιφέρειαν δίχα τεμεῖν . Ἔστω ἡ δοθεῖσα περιφέρεια ἡ ΑΔΒ |
ἴσαι ἀλλήλαις εἰσίν , ὧν αἱ τέσσαρες αἱ ΕΚ , ΚΗ , ΖΛ , ΛΘ ἴσαι ἀλλήλαις εἰσίν [ ὁμοίως | ||
πρὸς τὸ ΓΔΛ τρίγωνον , οὕτως ἡ ΘΚ πρὸς τὴν ΚΗ , ἀλλ ' ὡς τὸ παραλληλόγραμμον πρὸς τὸ τρίγωνον |
. καὶ ἐπεὶ ὡς ἡ ΜΑ πρὸς ΑΒ , ἡ ΜΛ πρὸς ΛΚ , ὡς δὲ ἡ ΜΛ πρὸς ΛΚ | ||
ὡς ἡ ΖΗ πρὸς ΗΕ , οὕτως ἡ ΝΜ πρὸς ΜΛ . Δέδοται ἄρα . , ] ἐπεὶ οὖν δεδομέναι |
τῆς τοῦ ὀκταέδρου πλευρᾶς . Ἐπεὶ γὰρ αἱ τρεῖς αἱ ΛΚ , ΚΜ , ΚΕ ἴσαι ἀλλήλαις εἰσίν , τὸ | ||
τοῦ μὲν ΕΚ ἄξονος καὶ τοῦ ΒΗ κυλίνδρου ὅ τε ΛΚ ἄξων καὶ ὁ ΠΗ κύλινδρος , τοῦ δὲ ΚΖ |
ἡ ΓΖ , καὶ ὁ ζῳδίων κύκλος θέσιν ἐχέτω τὴν ΖΕΗ . καὶ ἐπεὶ ἴση ἐστὶν ἡ ΑΒ τῇ ΒΓ | ||
τῶν Ε Γ ἀνεστάτωσαν ὀρθαὶ τῷ ἐπιπέδῳ τοῦ κύκλου αἱ ΖΕΗ ΓΛ , καὶ ἑκατέρα μὲν τῶν ΕΘ ΓΛ ἑξαγώνου |
ἡ μὲν ΘΥ τῆς ΥΤ , ἡ δὲ ΥΤ τῆς ΤΞ , καὶ τῶν παραλλήλων ἄρα τῷ μεγίστῳ αἱ περιφέρειαι | ||
ἄρα ἴσον ἐστὶ τῷ ΝΣ . ἀλλὰ τὸ ΤΥ τῷ ΤΞ ἐστιν ἴσον , κοινὸν δὲ τὸ ΤΣ : ὅλον |
κάθετος ἡ ΕΝ : ἴση ἄρα ἐστὶν ἡ ΖΝ τῇ ΝΘ . ἦν δὲ καὶ ἡ ΜΞ τῇ ΞΘ : | ||
αὐτῶν ρκ ἔγγιστα : ὥστε καί , οἵων ἐστὶν ἡ ΝΘ εὐθεῖα ξδ ι , τοιούτων καὶ ἡ ΘΗ ἔσται |
ΑΒ πρὸς τὴν ΓΔ , οὕτως ἡ ΕΖ πρὸς τὴν ΠΡ , ἴση δὲ ἡ ΠΡ τῇ ΗΘ , ἔστιν | ||
περιφερείας , ἡ δὲ κατὰ τὸ Ο βορεία παράλλαξις τῆς ΠΡ , ἡ δὲ κατὰ τὸ Μ βορεία τῆς ΛΚ |
τοῦ δὲ Φ τῆς φαινομένης αὐτῶν ἐποχῆς . ἡ δὲ ΥΗ ἔσται # δ τῆς ἡλίου κινήσεως ἀπὸ τοῦ Υ | ||
ΡΥ τῶν αὐτῶν # μβ . καὶ λοιπὴ ἡ ὑπὸ ΥΗ # δ : ἐν ᾧ γὰρ ἡ σελήνη τὴν |
ὀρθία τοῦ παρὰ τὴν ΒΤ εἴδους . δίχα τετμήσθω ἡ ΜΝ κατὰ τὸ Π : ἔστιν ἄρα , ὡς ἡ | ||
καὶ πανσελήνους . ἐὰν γὰρ γράψωμεν περὶ τὸ Α τὸν ΜΝ ἐπίκυκλον , ὁ τῆς ΑΕ πρὸς τὴν ΑΜ λόγος |
ἐξαλλάσσουσι τὸ φανερὸν ἡμισφαίριον . ἐν πλείονι δὲ χρόνῳ ἡ ΛΘ ἐξαλλάσσει τὸ φανερὸν ἡμισφαίριον ἤπερ ἡ ΘΝ : ἐδείχθη | ||
ἐστίν , ὡς δὲ ἡ ΛΝ πρὸς ΝΞ , ἡ ΛΘ πρὸς ΘΜ : ἴση ἄρα ἡ ὑπὸ ΛΖΘ γωνία |
ΑΔ τῇ ΗΓ , λοιπὴ ἄρα ἡ ΔΛ λοιπῇ τῇ ΛΗ ἐστὶν ἴση . καὶ εἰσὶ τρεῖς παράλληλοι αἱ ΔΕ | ||
ἴση , ἡ δὲ ΑΛ τῇ ΔΕ , ἡ δὲ ΛΗ , τουτέστιν ἡ ΛΜ , τῇ ΕΖ , ὡς |
τὸ τρίγωνον τὸ ΑΖΕ κύκλος περιγεγράφθω , καὶ ἐκβεβλήσθωσαν ἡ ΑΛ καὶ ἡ ΑΚ . εἴτε δὲ ὀξεῖα εἴη ἡ | ||
τῆς ΔΑ πρὸς ΑΖ δοθήσεται καὶ ὁ τῆς ΖΑ πρὸς ΑΛ , διὰ δὲ τοῦτο καὶ ἥ τε ὑπὸ ΑΖΔ |
ἡ ὑπὸ ΒΑΞ τῇ ὑπὸ ΕΔΖ ἴση , ἡ δὲ ΞΟ τῇ ΘΚ , ἡ δὲ ΟΠ τῇ ΜΝ . | ||
περὶ διάμετρον τὴν ΚΝ κύκλος γραφόμενος ὀρθὸς ὢν πρὸς τὴν ΞΟ ὁρίζων ἐστὶ τοῖς πρὸς τῷ Ε οἰκοῦσιν . Ἐπεὶ |
ΒΓ , ΝΞ , ΔΜ , ΘΟ , ΗΠ , ΟΗ , ΗΡ . ἐπεὶ οὖν ἐν σφαίρᾳ μέγιστος κύκλος | ||
ΘΝΟΗ . λέγω , ὅτι ἴση ἐστὶν ἡ ΝΟ τῇ ΟΗ . κατήχθωσαν γὰρ τεταγμένως αἱ ΞΝΖ , ΒΛ , |
ΚΜ κάθετός ἐστιν ἡ ΕΛ . ἐκβεβλήσθω τὸ διὰ τῶν ΚΜ ΕΛ ἐπίπεδον καὶ ποιείτω τομὴν ἐν τῇ σφαίρᾳ κύκλον | ||
τῶν ὑπὸ ΟΚΛ ΟΚΜ , ἴση ἄρα καὶ ἡ μὲν ΚΜ τῇ ΚΛ , μείζων δὲ ἡ ΚΞ πολλῷ τῆς |
ἑκατέρα μὲν τῶν ΑΒ , ΑΖ ἑκατέρας τῶν ΑΗ , ΑΜ τῇ ἐκ τοῦ κέντρου τῆς σελήνης , ἴση δὲ | ||
ἐστὶ καὶ ἡ ὑπὸ ΓΝΗ . καὶ παράλληλός ἐστιν ἡ ΑΜ τῇ ΝΒ , καὶ δύο διηγμέναι εἰσὶν αἱ ΑΒ |
τὴν ΟΛ : δι ' ἴσου ἄρα ἐστὶν ὡς ἡ ΒΞ πρὸς ΞΚ , οὕτως ἡ ΕΟ πρὸς ΟΛ . | ||
ἡ ΒΝ ἴση τῇ ΒΚ καὶ τῇ ΠΒ καὶ αἱ ΒΞ , ΞΑ ἴσαι ταῖς ΒΛ , ΛΑ καὶ ταῖς |
χρόνω δύνουσιν . ὁμοίως δὴ δείξομεν , ὅτι καὶ αἱ ΜΓ , ΑΗ περιφέρειαι ἐν ἴσῳ χρόνῳ δύνουσιν . καὶ | ||
τοῦ ζῳδιακοῦ κύκλου ] . δεῖ δὲ τὴν ἴσην τῇ ΜΓ ἀνατέλλουσαν μεταξὺ πάλιν εἶναι τῶν αὐτῶν παραλλήλων , διότι |
τριγώνων ἡ ΕΗ , ἴση ἐστὶν ἡ μὲν ΝΗ τῇ ΞΗ , ἡ δὲ ΕΝ κάθετος τῇ ΕΞ . αἱ | ||
ἡ ΜΠ πρὸς ΒΓ . πεποιήσθω δή , ὡς ἡ ΞΗ πρὸς ΤΒ , ἡ ΤΒ πρὸς Ρ : ἔσται |
παρὰ τὴν ΗΘ εὐθεῖαν τῷ ΔΒΓ τριγώνῳ ἴσον παραλληλόγραμμον τὸ ΗΜ ἐν τῇ ὑπὸ ΗΘΜ γωνίᾳ , ἥ ἐστιν ἴση | ||
συγκείμενον ἔχει λόγον ἐκ τοῦ ὃν ἔχει ἡ ΘΗ πρὸς ΗΜ καὶ ἐκ τοῦ ὃν ἔχει ἡ ΖΗ πρὸς ΗΛ |
ἀπὸ τῶν ΚΖ , ΖΕ , τουτέστι τοῦ ἀπὸ τῆς ΕΚ : ἡ ΓΕ ἄρα ἐλάσσων ἐστὶ τῆς ΕΚ . | ||
τῶν ΕΚ ΚΒ : ἔστιν ἄρα ὡς τὸ ἀπὸ τῆς ΕΚ πρὸς τὸ ἀπὸ τῆς ΚΛ , οὕτως ἡ ΕΚ |
ὁμοίως ἤχθωσαν : γίνεται δὴ διπλῆ ἡ μὲν ΓΔ τῆς ΓΡ , ἡ δὲ ΗΘ τῆς ΘΣ διὰ τὸ προκείμενον | ||
ΣΓ ἄρα τῆς ΓΡ ἐλάσσων ἐστὶν ἢ τριπλασίων : ἡ ΓΡ ἄρα πρὸς τὴν ΓΣ μείζονα λόγον ἔχει ἢ ὃν |
φανερὸν ἡμισφαίριον , ὁ χρόνος ἐστίν , ἐν ᾧ ἡ ΖΕΚ ἐξαλλάττει τὸ φανερὸν ἡμισφαίριον : αἱ ΖΕΚ , ΕΚΛ | ||
ΖΕΚ ἐξαλλάσσει τὸ φανερὸν ἡμισφαίριον . Ἐν ᾧ ἄρα ἡ ΖΕΚ ἐξαλλάσσει τὸ φανερὸν ἡμισφαίριον , ὁ ἥλιος μείζονά τινα |
, διότι ἡ τῆς ΜΓ ἀναφορὰ ἡ αὐτὴ λαμβάνεται τῇ ΝΞ οὐ προοδεύεται δὲ τὸ θεώρημα τοῦτο οὐκ - έτι | ||
τουτέστιν τὰς καὶ ΠΝ , καὶ τὰς ἴσας αὐταῖς τὰς ΝΞ καὶ ΕΞ . καὶ πάλιν , ἐπεὶ δέδοται ἡ |
ἄρα αὐτῶν τομαὶ παράλληλοί εἰσιν : παράλληλος ἄρα ἐστὶν ἡ ΗΠ τῇ ΘΟ . ἐπεὶ οὖν δύο εὐθεῖαι ἁπτόμεναι ἀλλήλων | ||
ἔστω τὸ ἐπιταχθὲν μέρος τοῦ ΑΒΓ τριγώνου τὸ ὑπὸ ΚΜ ΗΠ [ τοῦτο γὰρ προδέδεικται ] , καὶ τῇ ΚΜ |
, ἐκεῖνον τὸν λόγον ἔδει ἔχειν καὶ τὴν ΑΓ πρὸς ΛΞ , καὶ τὰ λοιπὰ ὁμοίως κατασκευάζειν . [ καὶ | ||
, ἐπεὶ μέσον ἐστὶ τὸ ΔΘ καί ἐστιν ἴσον τῷ ΛΞ , μέσον ἄρα ἐστὶ καὶ τὸ ΛΞ . ἐπεὶ |
, τεταγμένως δὲ ἐπ ' αὐτὴν κατηγμέναι αἱ ΚΛ , ΞΝ , ΗΖ : ἔσται οὖν , ὡς ἡ ΑΒ | ||
, ΜΛ . καί ἐστι τὰ ἀπὸ τῶν ΚΞ , ΞΝ μείζονα τῶν ἀπὸ τῶν ΚΜ , ΜΛ : ἡ |
ὀκταέδρου δὲ τρίγωνον τὸ ΣΡΠ ἔστω , καὶ ὁμοίως ἡ ΧΨ κάθετος , ἣν δεῖ ἐλάσσονα δεῖξαι τῆς ΥΩ καθέτου | ||
ἀπὸ τῆς ΚΓ μείζονα λόγον ἔχει ἤπερ ιβʹ τὰ ἀπὸ ΧΨ πρὸς ιεʹ τὰ ἀπὸ ΩΦ : ὥστε καὶ λϚʹ |
τουτέστιν ἡ ὑπὸ ΗΚΘ τῇ ὑπὸ ΟΛΗ , τουτέστιν ἡ ΠΘ περιφέρεια τῇ ΟΗ . ἀλλὰ καὶ ἡ ΘΣ τῇ | ||
ἀπὸ ΕΘ , ΘΗ : καὶ λοιπὸν ἄρα τὸ ἀπὸ ΠΘ λοιπῷ τῷ ἀπὸ ΘΡ ἴσον ἐστίν : ἴση ἄρα |
τὸ ἀπὸ ΜΚ τοῦ ὑπὸ ΜΚΘ , τὸ ἄρα ἀπὸ ΜΚ πρὸς τὸ ἀπὸ ΚΗ μείζονα λόγον ἔχει ἤπερ τὸ | ||
οὕτως ἡ ΝΠ πρὸς ΟΠ , ἔσται καὶ ὡς ἡ ΜΚ πρὸς τὴν ΚΑ , τουτέστιν ὡς ἡ ΜΑ μετὰ |
κατὰ τὸ Ρ , καὶ τὸ μεῖζον τμῆμά ἐστιν ἡ ΡΟ , τὰ ἄρα ἀπὸ τῶν ΟΝ , ΝΡ τριπλάσιά | ||
ἡ ΥΡ τῆς ΡΞ . Ἴση δὲ ἡ ΥΡ τῇ ΡΟ : μείζων ἄρα ἡ ΟΡ τῆς ΡΞ . Τετμήσθω |
Ψ , Ω , Ι σημεῖα , καὶ ἐπεζεύχθωσαν αἱ ΞΤ , ΞΥ , ΥΦ , ΤΦ , ΧΨ , | ||
. ἀλλ ' ὡς ἡ ΑΥ πρὸς ΥΗ , ἡ ΞΤ πρὸς ΤΣ , ὡς δὲ ἡ ΘΥ πρὸς ΥΑ |
δὴ ὑποκείσθω τὸ αὐτὸ σχῆμα , καὶ ἔστω τετραγώνου ἡ ΚΖ , καὶ ἴσαι ἀπειλήφθωσαν ἐπὶ τὰ Ζ Δ μέρη | ||
ΔΖ πρὸς τὴν ΘΖ , οὕτως ἡ ΓΚ πρὸς τὴν ΚΖ . Ὡς γὰρ αἱ γωνίαι , δι ' ὧν |
ΓΜ τῇ ΞΛ . ἔστι δὲ καὶ ἡ ΣΞ τῇ ΜΡ παράλληλος : ὅμοιον ἄρα ἐστὶ τὸ ΛΞΣ τρίγωνον τῷ | ||
τριγώνῳ : ἔστιν ἄρα , ὡς ἡ ΣΞ πρὸς τὴν ΜΡ , οὕτως ἡ ΣΛ πρὸς τὴν ΡΓ . ἀλλ |
κατασκευασθέντων , ἐπεί ἐστιν ὡς ἡ ΕΘ βάσις πρὸς τὴν ΝΠ βάσιν , οὕτως τὸ τοῦ ΓΔ στερεοῦ ὕψος πρὸς | ||
δεδύκασιν αἱ ΠΝ ΝΜ περιφέρειαι : ἅμα ἄρα δύνει ἡ ΝΠ περιφέρεια καὶ ἡ ΝΜ . ἐν ᾧ δὲ ἡ |
ΔΟ τοῦ ὑπὸ τῶν ΘΟΚ , ἀνάλογον ἡ Λ πρὸς ΟΚ ἐλάσσονα λόγον ἔχει ἤπερ ἡ ΘΟ πρὸς ΟΔ . | ||
περιφέρεια πρὸς τὴν ΞΟΠ . Καταληφθήσεται δὲ καὶ ἡ μὲν ΟΚ τοῦ μεσημβρινοῦ διάστασις , τουτέστιν ἡ ἀπὸ τοῦ διὰ |
ὅτι τὸ ἀπὸ τῆς ΚΛ ἴσον ἐστὶ τῷ ὑπὸ τῶν ΘΖΛ . ἤχθω γὰρ διὰ τοῦ Λ τῇ ΒΓ παράλληλος | ||
ΛΖΑ . ἴσον ἄρα ἐστὶ τὸ ὑπὸ ΜΛΝ τῷ ὑπὸ ΘΖΛ . τὸ δὲ ὑπὸ ΜΛΝ ἴσον ἐστὶ τῷ ἀπὸ |
τῇ ΚΜ . ἐπεὶ οὖν δύο εὐθεῖαι ἄνισοί εἰσιν αἱ ΓΜ , ΜΖ , καὶ τῷ τετάρτῳ μέρει τοῦ ἀπὸ | ||
λόγος ἐστὶ δοθείς : ὥστε καὶ τοῦ ΓΔ πρὸς τὸ ΓΜ λόγος ἐστὶ δοθείς . ἔστι δὲ τὸ ΓΜ τῷ |
. καὶ ἐπεί ἐστιν , ὡς ἡ ΑΚ πρὸς τὴν ΚΒ , ἡ ΑΔ πρὸς τὴν ΒΝ , ἴση δὲ | ||
ἔτυχεν , εὐθεῖα ἡ ΚΒ , καὶ συνεστάτω πρὸς τῇ ΚΒ εὐθείᾳ καὶ τῷ πρὸς αὐτῇ σημείῳ τῷ Κ τῇ |
ἐπὶ τῆς ἐκκειμένης ἀποχῆς τῶν Ϙ λ μοιρῶν ἐδείξαμεν τὴν ΖΜ περιφέρειαν μοιρῶν οὖσαν ιβ α , ἵνα , ἐπειδήπερ | ||
τῆς διχοτομίας τῆς μείζονος τῆς ΓΜ , ἐπεὶ ἔσται ἡ ΖΜ τῇ ΓΜ ἴση . οὐ μὴν οὐδὲ μεταξὺ τῶν |
ἀπεδείχθη μοιρῶν ρνζ ι ἔγγιστα : καὶ λοιπὴ ἄρα ἡ ΛΒ τοῦ ἐπικύκλου περιφέρεια , ἣν ἀπεῖχεν ἡ σελήνη τοῦ | ||
μείζων ἐστί , καί ἐστιν , ὡς ἡ ΕΛ πρὸς ΛΒ , οὕτως ἡ ΕΑ πρὸς ΑΒ , καὶ συνθέντι |
πρὸς τὴν ΗΛ . καί ἐστι παράλληλος ἡ ΕΘ τῇ ΗΛ : εὐθεῖα ἄρα ἐστὶν ἡ διὰ τῶν Θ , | ||
τοῦ κύκλου ἐπιπέδῳ τῇ ΓΔ πρὸς ὀρθὰς αἱ ΚΒ , ΗΛ , καὶ ἐπεζεύχθω ἡ ΒΛ . ἐπεὶ οὖν δύο |
ΤΞΥ ἰσόπλευρόν ἐστιν . καὶ ἐπεὶ πενταγώνου ἐδείχθη ἑκατέρα τῶν ΠΛ , ΠΟ , ἔστι δὲ καὶ ἡ ΛΟ πενταγώνου | ||
ἐστὶ καὶ τὸ μὲν ΑΗ τῷ ΜΠ , τὸ δὲ ΠΛ τῷ ΡΖ . ἀλλὰ τὸ ΜΠ τῷ ΠΛ ἐστιν |
ΒΓ . , ] ἐπεὶ γὰρ ἡ ΓΠ ἴση τῇ ΠΚ , ἡ ΓΝ μείζων τῆς ΝΚ . ὥστε καὶ | ||
ΟΚ , καὶ ἡ ΠΡ πρὸς ΡΟ , καὶ ἡ ΠΚ πρὸς ΟΛ , καὶ ἡ ΚΡ πρὸς ΡΛ , |
λοξὸν κύκλον περιφέρειαι , ἥ τε ΡΔ ἐστὶν καὶ ἡ ΡΕ : γωνίαι δὲ ἥ τε Ζ καὶ ἡ Η | ||
ΖΟ , ΟΗ , ΗΠ , ΠΘ , ΘΡ , ΡΕ , καὶ ἀνεστάτω ἀφ ' ἑκάστου τῶν ΕΞ , |
ΕΒ λοιπῆς τῆς ΓΕ διπλῆ . ἀλλὰ ἡ ΒΕ τῇ ΕΛ ἐστὶν ἴση διὰ τὸ εἶναι ὡς τὴν ΒΓ πρὸς | ||
οὕτως ἡ ΓΔ πρὸς τὴν ΚΛ . μείζων δὲ ἡ ΕΛ τῆς ΕΔ : μείζων ἄρα καὶ ἡ ΚΛ τῆς |
τῆς ΜΗ μείζων ἐστί . πάλιν ἐπεὶ ἡ ΚΘ τῆς ΜΘ ἐλάττων ἐστίν , ἡ δὲ ΜΘ τῆς ΜΗ ἐλάττων | ||
: φανερὸν ὅτι ἐν πλείονι χρόνῳ ἀνατέλλει ἡ ΛΜ τῆς ΜΘ , ὡς προεδείχθη . Τῷ δὲ αὐτῷ τρόπῳ ἐφωδεύσαμεν |
ἀναφερομένης : ἡλίκη γάρ ἐστιν ἡ μεταξὺ τῶν μερῶν τούτων περιφέρεια τούτου ἐπὶ τοῦ ὁρίζοντος , τηλικαύτη ἐστὶν ἡ κατὰ | ||
νβ , εἴη ἂν καὶ ἡ μὲν ἐπὶ τῆς ΒΛ περιφέρεια τοιούτων β νβ , οἵων ἐστὶν ὁ περὶ τὸ |
πρὸς τὴν ΣΤ , καὶ ἀναγεγράφθω ἀπὸ τῆς ΣΤ τῷ ΗΝ ὅμοιον καὶ ὁμοίως κείμενον στερεὸν παραλληλεπίπεδον τὸ ΣΤ . | ||
ἄρα τὸ ΝΛΗ τρίγωνον τῷ εἴδει : λόγος ἄρα τῆς ΗΝ πρὸς ΝΛ δοθείς . καὶ δοθεῖσα ἡ ΗΝ : |
ὁρίζοντι . Τὸ Θ ἄρα τοῖς πρὸς ἀνατολὰς οἰκοῦσι πρότερον ἀνατέλλει καὶ πρότερον δύνει . Λέγω δή , ὅτι καί | ||
τὸ πρότερον ἀνατέλλον πρότερον δύνει καὶ τὸ πρότερον δῦνον πρότερον ἀνατέλλει . ἔστω ἀνατολικὰ μὲν τὰ Γ μέρη , δυτικὰ |
ιη με , ἡ δὲ λοιπὴ εἰς τὸ τεταρτημόριον ἡ ΘΑ τῶν αὐτῶν οα ιε . ἐπειδὴ οὖν κατὰ τὰ | ||
τετράγωνον Μβ ͵εωμε νε , τὸ δ ' ἀπὸ τῆς ΘΑ ὁμοίως ͵γφξη δ , ἃ συντεθέντα ποιεῖ τὸ ἀπὸ |
, ἡ δὲ ΜΓ ὁμοίως # ιϚ , ἡ δὲ ΜΖ ὅλη ξ ιϚ , διὰ τοῦτο δὲ καὶ ἡ | ||
. ἐπεὶ οὖν δύο εὐθεῖαι ἄνισοί εἰσιν αἱ ΓΜ , ΜΖ , καὶ τῷ τετάρτῳ μέρει τοῦ ἀπὸ τῆς ΖΜ |
καὶ ΕΡ καὶ ΕΣΥ καὶ ΕΤΦ . ἡ μὲν τοίνυν ΖΛ περιφέρεια ἴση οὖσα τῇ τοῦ ἑκτημορίου καὶ ἔτι τῇ | ||
ἐστιν ] ἴσον τῷ ΖΛ , ῥητὸν ἄρα ἐστὶ τὸ ΖΛ . καὶ παρὰ ῥητὴν τὴν ΕΖ παράκειται πλάτος ποιοῦν |
: δοθεῖσα ἄρα καὶ ἡ ΨΚ . ἀλλὰ καὶ ἡ ΨΣ δοθεῖσά ἐστιν , ἐπεὶ καὶ ὡς ἡ ΦΚ πρὸς | ||
τῷ ΡΣ κύκλῳ : ἴση ἄρα ἐστὶν ἡ ΠΩ τῇ ΨΣ περιφερείᾳ . ἐπεὶ δὲ ἀσύμπτωτόν ἐστι τὸ ἀπὸ τοῦ |
Ἠγείρετο δὲ πολὺς κτύπος τούτων μαχομένων . . . ΙΔΕΙ ΕΝ ΑΙΝΟΤΑΤΩι . Τὸν καιρὸν λέγει τῆς μάχης . Ἴδει | ||
, ] πῶς ἔλασσον τὸ Ξ στερεὸν τῆς ἐν τῷ ΕΝ κώνῳ πυραμίδος ; δείξομεν οὕτως : ἐπεὶ ὁ ΕΝ |
ἡ ΠΜ πρὸς τὴν ΒΛ , οὕτως ἡ ΜΑ πρὸς ΛΑ . μείζων δὲ ἡ ΜΑ τῆς ΛΑ : μείζων | ||
ὡς ἄρα ἡ ΖΓ πρὸς ΓΑ , ἡ ΖΛ πρὸς ΛΑ . Τῶν αὐτῶν ὄντων ἐὰν ἡ ἀπὸ τοῦ σημείου |
! ΠΡ ? [ ] [ ] ! ! ! ΩΑ ! ! ! ? [ ] [ ] ΚΟΝ | ||
τοῦ ἀπὸ τῆς ΒΨ : λοιπὸν ἄρα τὸ ἀπὸ τῆς ΩΑ ἔλασσόν ἐστι τοῦ ἀπὸ τῆς ΨΑ . μείζων ἄρα |
: ὁ δὲ χρόνος , ἐν ᾧ τὸ Ψ τὴν ΨΧ διαπορεύεται , ὁ χρόνος ἐστίν , ἐν ᾧ τὸ | ||
ὁ ἥλιος τὴν ΨΧ περιφέρειαν διαπορεύεται , καὶ ἔστιν τῆς ΨΧ ἡμίσεια ἡ Ψ͵Β , ἐν ἄρα τῷ ἡμίσει τῆς |
τὸ ὑπὸ ΜΛΝ τῷ ὑπὸ ΘΖΛ . τὸ δὲ ὑπὸ ΜΛΝ ἴσον ἐστὶ τῷ ἀπὸ τῆς ΚΛ : καὶ τὸ | ||
ἡ ΔΕ ἐπὶ τὴν ΒΓ : τὸ ἄρα ὑπὸ τῶν ΜΛΝ ἴσον ἐστὶ τῷ ἀπὸ τῆς ΚΛ . καὶ ἐπεί |
, Α , Μ σημεῖα παράλληλοι κύκλοι οἱ ΝΞ , ΟΠ , ΡΣ , ΤΥ . ἐπεὶ ἡ ΖΗ τῆς | ||
ΛΞ τῆς ΞΟ : μείζων ἄρα καὶ ἡ ΛΜ τῆς ΟΠ . ἀλλὰ ἡ ΛΜ κεῖται τῇ ΑΓ ἴση : |
ἔχει λόγον ἔκ τε τοῦ ὃν ἔχει ἡ ΘΒ πρὸς ΜΠ καὶ ἡ ΠΜ πρὸς ΒΓ , ἀλλ ' ὡς | ||
τῷ ὑπὸ ΤΒ , ΜΝ , καὶ τὸ μὲν ὑπὸ ΜΠ , ΒΘ τέταρτον τοῦ ὑπὸ ΤΒ , ΜΝ , |
ΖΡΜ , ὡς δὲ τὸ ἀπὸ ΘΣ πρὸς τὸ ἀπὸ ΞΜ , τὸ ΔΘΣ τρίγωνον πρὸς τὸ ΞΜΔ : καὶ | ||
πρὸς τῷ Β γωνίας . ἀλλ ' ἡ ΞΖ τῇ ΞΜ ἴση ἐστὶ διὰ τὸ ἀπὸ μέσου τοῦ Ξ φέρεσθαι |
ΒΛ πρὸς ΛΝ . ] ὡς δὲ ἡ ΓΛ πρὸς ΛΝ , οὕτως τὸ ἀπὸ τῆς ΓΛ τετράγωνον πρὸς τὸ | ||
ὁ μὲν ΓΜ κύλινδρος τῷ ΕΒ κυλίνδρῳ , ὁ δὲ ΛΝ ἄξων τῷ ΗΘ ἄξονι : ἔστιν ἄρα ὡς ὁ |
καὶ ἤχθω διὰ τοῦ Ε κέντρου τῇ ΜΝ παράλληλος ἡ ΕΘ , καὶ κάθετος ἐπ ' αὐτὴν ἀπὸ τοῦ Λ | ||
ἡ μὲν ΘΗ τῇ ΗΖ ἐστιν ἴση , ἡ δὲ ΕΘ τῆς ΔΗ διπλῆ , καὶ λοιπὴν τὴν ΓΘ ἕξομεν |
τὸ ἀπὸ τῆς ΕΗ διαμέτρου , οὕτως τὸ ὑπὸ τῶν ΦΝ , ΝΖ πρὸς τὸ ἀπὸ τῆς ΜΝ : ὃ | ||
τῇ ἀνατολῇ τμήματα ὅμοια εἶναι : ὁμοία ἄρα ἔσται ἡ ΦΝ τῇ ͵ΑΟ . Ἀλλ ' ἡ ΦΝ τῇ ΨΡ |
τίς ἄρα ἡ ΤΠ τῇ ΠΕ ; ἀλλ ' ἡ ΠΕ τῇ ΠΗ ἴση : ἔχει δὴ σύγκρισιν : ἔστιν | ||
πρὸς ὀρθάς ἐστιν , παράλληλος ἄρα ἐστὶν ἡ ΦΧ τῇ ΠΕ . εἰσὶ δὲ καὶ ἴσαι : καὶ αἱ ΕΦ |
ΧΕ πρὸς τὴν ΕΔ , οὕτως ἡ ΚΘ πρὸς τὴν ΘΗ . ἔστι δὲ καί , ὡς ἡ ΧΕ πρὸς | ||
καὶ τοῦ ἐπικύκλου καταγραφῆς ἀποληφθείσης ἀπὸ τοῦ Θ περιγείου τῆς ΘΗ περιφερείας τῶν αὐτῶν μοιρῶν λ ἐπεζεύχθωσαν μὲν ἥ τε |
. ἐν ᾧ δὲ χρόνῳ ἀπὸ τοῦ Α ἐπὶ τὸ ͵Δ παραγίνεται ἡ σελήνη , ἐν τούτῳ καὶ ἡ Α͵Δ | ||
τούτῳ καὶ ἡ Α͵Δ παραλλάξει τὸν μεσημβρινόν , καὶ τὸ ͵Δ ἐπὶ τὸ Ε σημεῖον ἥξει , καὶ ἡ σελήνη |
. ἴσον ἄρα τὸ ἀπὸ τῆς ΝΜ τῷ ἀπὸ τῆς ΞΖ , τουτέστι τὸ ὑπὸ ΑΛ , ΛΜ μετὰ τοῦ | ||
τὴν τῶν ΞΖ , ΖΜ ἀποστημάτων ὑπεροχὴν πρὸς τὴν τῶν ΞΖ , ΖΘ ὑπεροχήν , οὕτως τὴν τῶν κατὰ τοὺς |
μεγίστης τῆς ΛΡ : μείζων ἄρα ἐστὶν ἡ ΛΡ τῆς ΡΜ : ἡ ἄρα ΛΜ τῆς ΜΡ μείζων ἐστὶν ἢ | ||
ἴση ἐστὶν ἡ ΗΠ τῇ ΗΘ , μείζων ἐστὶν ἡ ΡΜ τῆς ΜΚ : πολλῷ ἄρα μείζων ἐστὶν ἡ ΞΜ |
ΤΠ . ἐπεὶ οὖν τὸ ἀπὸ ΟΕ πρὸς τὸ ἀπὸ ΟΤ μείζονα λόγον ἔχει ἤπερ τὸ ἀπὸ ΕΠ πρὸς τὸ | ||
ἡμέρας χρόνῳ τὸ μὲν Κ ἀρξάμενον ἀπὸ τοῦ Ο τὴν ΟΤ περιφέρειαν διελθὸν ἐπὶ τὸ Τ παραγίγνεται , τὸ δὲ |
ἐπρέσβευσεν , ὕβρις διὰ σοῦ τε καὶ τῶν Ἑλλήνων ἁπάντων διέρχεται . ἡ γὰρ ἀτιμία τοῦ πρεσβευτοῦ πάντων ὑπάρχει τῶν | ||
λέγω ὅτι ἐν μείζονι χρόνῳ ὁ ἥλιος τὴν ΔΘ περιφέρειαν διέρχεται ἤπερ ἡ ΔΘ δύνει . Γεγράφθω γὰρ διὰ τοῦ |
κέντρου δύναται τὸ ὑπὸ ΟΓ ΚΑ ἢ τὸ ὑπὸ Θ ΚΑ ἐλάσσων ἐστὶν τῆς σφαιρικῆς τοῦ τμήματος ἐπιφανείας . ἀλλὰ | ||
, οἵων ἐστὶν ἡ ΑΖ διάμετρος ρκ , ἡ δὲ ΚΑ τῶν αὐτῶν ργ νε : ὥστε καί , οἵων |
ΘΚΛ . λέγω , ὅτι ἡ μὲν ΕΗ περιφέρεια τῆς ΚΛ περιφερείας μείζων ἐστὶν ἢ ὁμοία , ἡ δὲ ΘΚ | ||
ἐπεζεύχθω ἡ ΗΚ : ἐπ ' εὐθείας ἄρα ἐστὶν τῇ ΚΛ πλευρᾷ τοῦ ἑξαγώνου , διὰ τὸ διμοίρου μὲν εἶναι |
Λ , καὶ κείσθω τῇ ΛΖ περιφερείᾳ ἴση περιφέρεια ἡ ΜΗ . Ἐπεὶ οὖν ὁ ἥλιος ἀνατείλας κατὰ τὸ Ζ | ||
ἀπὸ ΜΗ . κοινὸς προσκείσθω λόγος ὁ τῆς ΑΜ πρὸς ΜΗ . ὁ ἄρα συγκείμενος ἔκ τε τοῦ τῆς ΓΜ |
τριγώνῳ ἴσον ἔσται : ἴση ἄρα καὶ ἡ ΣΧ τῇ ΟΦ , ἡ δὲ ΒΦ τῇ ΚΧ . παράλληλος ἄρα | ||
ἀπὸ μὲν τοῦ Ο ἐπὶ τὴν ΓΔ κάθετος ἤχθω ἡ ΟΦ , ἀπὸ δὲ τοῦ Υ ἐπὶ τὴν ΜΞ ἡ |
ἡ ἐνεργοῦσα καὶ διαρθρουμένη καὶ οὐχ ἡ περόνη . [ ΠΕΡΙ ΜΗΡΟΥ ] , , . = , , . | ||
ΙϚʹ . Περὶ μανδάτων διδομένων τοῖς εἰς ἐνέδραν ἐπερχομένοις . ΠΕΡΙ ΕΝΕΔΡΑΣ ΚΕΦΑΛΑΙΑ ΤΟΥ ΤΕΤΑΡΤΟΥ ΛΟΓΟΥ Αʹ . Περὶ ἐνέδρας |
τὸ ΜΖ : πολλῷ ἄρα τὸ ΜΖ μεῖζόν ἐστι τοῦ ΞΚ . καὶ ἐπεὶ τὰ ΞΝ , ΝΛ , ΛΚ | ||
, ἡ δὲ ΞΛ τῆς ΠΡ , ὅλη ἄρα ἡ ΞΚ ὅλης τῆς ΚΡ ἐστὶ διπλῆ . Πάλιν ἐπεὶ διπλῆ |
τὸ ἀπὸ τῆς ΑΤ πρὸς τὸ ὑπὸ τῶν ΑΤ , ΤΡ , τουτέστι πρὸς τὸ ὑπὸ τῶν ΒΤ , ΤΓ | ||
βάσις καὶ τὸ ΨΥ στερεόν . καὶ ἐπεὶ δύο αἱ ΤΡ , ΡΥ δυσὶ ταῖς ΑΛ , ΛΒ ἴσαι εἰσίν |
ἐστιν , ἔστιν ἄρα , ὡς ἡ ΕΚ πρὸς τὴν ΚΞ , οὕτως ἡ ΕΑ πρὸς τὴν ΑΖ . ἐπεὶ | ||
ΡΤ . ἐπεὶ δὲ ζητῶ τίς περιφέρεια ἡ ΕΚ τῇ ΚΞ , ζητήσω ἄρα τίς γωνία ἡ ὑπὸ ΕΟΚ τῇ |
, ἡ δὲ ΚΛ τῆς ΠΟ , ὅλη ἄρα ἡ ΚΛΠΜ ὅλης τῆς ΜΟ ἐστὶ διπλῆ . Καὶ ἐπεὶ ἐν | ||
παραγίγνεται , τὸ δὲ Κ ἀρξάμενον ἀπὸ τοῦ Κ τὴν ΚΛΠΜ περιφέρειαν διελθὸν ἐπὶ τὸ Μ παραγίγνεται , ἐν ᾧ |
πόδας βʹ , ἔστω κανὼν ἔχων τὸ μῆκος πόδας [ δζʹ ] , τὸ δὲ πλάτος καὶ τὸ ὕψος πόδα | ||
. Εἰ γὰρ μὴ ἔστιν ὁμοία ἡ γεʹ περιφέρεια τῇ δζʹ , ἔστω ὁμοία ἡ γεʹ τῇ δηʹ : ἐν |
ἴσας γωνίας τέμνουσιν ἥ τε ΟΞ τὴν ΦΨ καὶ ἡ ΝΤ τὴν ΣΩ , δῆλον : τὰς γὰρ ΨΦ , | ||
μὴ τόπου ἢ ὄρους ὄνομα ὑπάρχοι , ἢ διὰ τοῦ ΝΤ κλίνοιτο , καὶ φυλάττει τὸ Ω τῆς εὐθείας , |
Ψ τῇ ΚΞ παράλληλος ἡ ΨΩ , καὶ ἔστω ὡς ΛΜ πρὸς ΜΩ , οὕτως ἡ ΩΜ πρὸς ΜΑ͵ . | ||
. ἀλλὰ καὶ διὰ τὸ τρεῖς εἶναι παραλλήλους τὰς ΔΕ ΛΜ ΗΘ ἴση γίνεται ἡ ΕΜ τῇ ΜΚ . εἴη |
' ὡς τὸ ὑπὸ ΝΓ , ΖΔ πρὸς τὸ ὑπὸ ΝΔ , ΓΖ , οὕτως ἐδείχθη τὸ ὑπὸ ΓΕ , | ||
ΑΟ , ἴση ἐστὶν ἡ ΝΒ τῇ ΒΟ καὶ ἡ ΝΔ τῇ ΔΑ . ἔστι δὲ καὶ ἡ ΕΚ τῇ |