| παρ ' οὐδέν . ὁ δ ' ὑπ ' αὐτὸν πεντάγωνος ὁ κβʹ σύστημα τοῦ ὑπὲρ αὐτὸν τετραγώνου τοῦ ιϚʹ | ||
| ἐστιν , ὁ δὲ δ τετράγωνος , ὁ δὲ ε πεντάγωνος , ὁ δὲ Ϛ ἑξάγωνος , ὁ δὲ ζ |
| αἱ ἡμέραι πολυπλασιασθεῖσαι ἀποτελοῦσιν ὅλας ἡμέρας καὶ ὅλους μῆνας : ὀκτάκις δὲ πολυπλασιασθεῖσαι ἀποτελοῦσιν ἡμέρας μὲν Ϛ , μῆνας δὲ | ||
| ὑπεροχὴ τοῦ ἡλιακοῦ ἐνιαυτοῦ ἡμερῶν ια δʹ : αὗται δὲ ὀκτάκις πολυπλασιασθεῖσαι συνεπλήρουν ἂν τοὺς γ μῆνας τοὺς ἐμβολίμους . |
| ; εἰ γὰρ μετρήσει αὐτὸν περισσάκις , ἔσται ὁ Α περισσάκις περισσός , πᾶς δὲ περισσάκις περισσὸς ἥμισυ οὐκ ἔχει | ||
| τε γὰρ ἀρτίου ἀρτιάκις μετρεῖται καὶ ὁ αὐτὸς ὑπὸ ἀρτίου περισσάκις , οὐδετέρῳ δὲ τῶν προτέρων τοῦθ ' ἅμα συμβέβηκεν |
| : διὸ καὶ οὐ δύναται εἶναι ὁ θ τοῦ δ τετραπλάσιος , ὡς ὁ ιϚ τοῦ δ καὶ ὁ λϚ | ||
| δὲ ὦσι δύο ἀριθμοὶ ὁ μὲν ἕτερος αὐτῶν τοῦ αὐτοῦ τετραπλάσιος , ὁ δ ' ἕτερος διπλάσιος , ὁ τετραπλάσιος |
| ὅρους καὶ λεκτέον ὅτι ὁ μόνον ὑπ ' ἀρτίου περισσάκις ἀρτιοπέρισσος , ὁ δ ' οὐδέποτε μόνον θάτερον ἀλλ ' | ||
| Εὐκλείδου ῥητὸν προεκθέμενοι περὶ αὐτῶν . λέγει γὰρ οὕτως : ἀρτιοπέρισσος ἀριθμός ἐστιν ὁ ὑπ ' ἀρ - τίου ἀριθμοῦ |
| , ἐπὶ μὲν τῶν περιττῶν ἐκθέσεων ὁ μέσος τῶν ἄκρων ὑποδιπλάσιος ἦν , ἐπὶ δὲ τῶν ἀρτίων ἴσοι οἱ μέσοι | ||
| σνϚʹ πρὸς σμγʹ , καὶ οἱ τούτοις ὑπεναντίοι ὅ τε ὑποδιπλάσιος καὶ ὁ ὑποτριπλάσιος καὶ ὁ ὑποτετραπλάσιος καὶ ὁ ὑφημιόλιος |
| τῶν τετραπλασίων α δ ιϚ σνϚ : μετρεῖται γὰρ ὁ σνϚ καὶ ὑπὸ ἑτέρων ἀριθμῶν , οὐ μὴν ὑπὸ πρώτων | ||
| ٣ ١٠ ٤١ ἡ Θ ١٦ τὸ ἀπὸ τῆς Θ σνϚ ἡ ΚΛ ٨ ٢٦ ٥٤ ἡ ΖΒ ١٠ ١٨ |
| τῆς μονάδος ὂν λεπτῶν τριῶν . ἐπεὶ πάλιν ὁ μ πενταπλάσιός ἐστι τοῦ η , πολλαπλασιάζω τὸν τρία τὸ εἰκοστὸν | ||
| τῆς μονάδος ὂν λεπτῶν τριῶν . ἐπεὶ πάλιν ὁ μ πενταπλάσιός ἐστι τοῦ η , πολλαπλασιάζω τὸν τρία τὸ εἰκοστὸν |
| τὸ πρῶτον αʹ . ὁ δ ' ὑπ ' αὐτὸν ἑπτάγωνος ὁ ιηʹ ἐκ τοῦ ὑπὲρ αὐτὸν ἑξαγώνου τοῦ ιεʹ | ||
| τρίγωνον τὸν γʹ . ὁ δ ' ὑπ ' αὐτὸν ἑπτάγωνος ὁ λδʹ σύστημά ἐστι τοῦ ὑπὲρ αὐτὸν ἑξαγώνου τοῦ |
| οὕτως , οἱ δὲ Πυθαγόρειοι τὸ μὲν σημεῖον ἀνάλογον ἐλάμβανον μονάδι , δυάδι δὲ τὴν γραμμὴν καὶ τριάδι τὸ ἐπίπεδον | ||
| πρὸ γὰρ τοῦ ζ ὁ Ϛ , ὃς ἄρτιος : μονάδι οὖν διαφέρει τοῦ ἀρτίου . ὡσαύτως καὶ ὁ ἄρτιος |
| συντετάχθωσαν οὕτως . λόχους μὲν καὶ ἐν τοῖς ψιλοῖς τάξομεν ͵ακδ , τοὺς ἴσους τοῖς ἐν τῇ φάλαγγι , ὥστε | ||
| ἱππέων φιβ : αἱ δὲ δύο ἱππαρχίαι ἐφιππαρχία , ἱππέων ͵ακδ : αἱ δὲ δύο ἐφιππαρχίαι τέλος , ἱππέων ͵βμη |
| ἴσον καὶ μεμετρημένον ὀργυιᾷ . * περιβάλλεται : εἰκάζεται , μετρεῖται ἔχει εἰκάζεται * ὅσσον : πλάτος αἰγανέη δὲ τὸ | ||
| ἀπὸ τῆς πυγμῆς : ἐπεὶ μὴ ὥσπερ ὁ πῆχυς προτεταμένους μετρεῖται δακτύλους , οὕτω καὶ ὁ πυγὼν , ἀλλὰ συνεστρωμμένη |
| β μο α . ↑ οὖν τοῦ δευτέρου , ἤτοι Ϟῶν β μο α , γίνεται δυ μία , τουτέστι | ||
| β : ἔσται Ϛ δʹ . Ὁ δὲ ἕτερος ταχθεὶς Ϟῶν ι ἔσται λ δʹ . Καὶ ποιοῦσι τὰ τῆς |
| ποιείτω τὸν εζ , τὸν δὲ αὐτὸν αβ καὶ ὁ γβ πολλαπλασιάσας ποιείτω τὸν ζη . ἐπεὶ τοίνυν ὁ αγ | ||
| ἀπὸ δὲ τοῦ αγ ὁ εζ , ἀπὸ δὲ τοῦ γβ ὁ ηθ , ἐκ δὲ τῶν αγ , γβ |
| ἀπὸ τῶν ρκ μονάδων καὶ τὰς ρ μονάδας . Ἐναπελείφθησαν Ϟοὶ ε ἴσοι μονάσιν κ . . Ἐπεὶ ἡ λεῖψις | ||
| ιβ . Κοινὴ προσκείσθω ἡ λεῖψις . δυ ἄρα γ Ϟοὶ λ μο θ ἴσα δυνάμεσι δ μονάσιν θ . |
| ὡς τῆς ὕλης ὑποστατική , εἴπερ ἀνάλογον ἕστηκε τῇ ἀορίστῳ δυάδι . ἔπειτα τίς ἀνάγκη τῆς αὐτῆς ὕλης οὔσης τὰ | ||
| σνϚψκθ / . καὶ ἐὰν δυάδα μερίσωμεν εἰς τὸν τοῦδε δυάδι ἐλάσσονα , εὑρήσομεν τὸν ʂ μονάδος σιζφιβ / , |
| οἱ Γ Δ Ε , ὧν ἕκαστος ἐλάσσων μὲν ἑκατοντάδος μετρούμενος δὲ ὑπὸ δεκάδος , καὶ ἄλλοι πάλιν ὁσοιδηποτοῦν ἀριθμοὶ | ||
| μετρούμενοι κοινῷ μέτρῳ . Σύνθετος ἀριθμός ἐστιν ὁ ἀριθμῷ τινι μετρούμενος . Σύνθετοι δὲ πρὸς ἀλλήλους ἀριθμοί εἰσιν οἱ ἀριθμῷ |
| δγ . καὶ ἐπεὶ ὁ δὶς ἐκ τῶν αδ , δβ μετὰ τοῦ συγκειμένου ἐκ τῶν ἀπὸ τῶν αδ , | ||
| δ κέντρου ἐπιζευχθεῖσαί εἰσιν εἰς αὐτὰς εὐθεῖαι αἱ δα , δβ , αἱ ἄρα ὑπὸ δαε , δβε ὀρθαί εἰσιν |
| στερεῶν σωμάτων λόγοι δῆλοι , ἐπεὶ καὶ ὁ τοῦ αʹ κύβος τοῦ αὐτοῦ ἐστιν αʹ , ὁ δ ' ἀπὸ | ||
| οἱ ἕνα διαλείποντες πάντες , ὁ δὲ τέταρτος ὁ Γ κύβος καὶ οἱ δύο διαλείποντες πάντες , ὁ δὲ ἕβδομος |
| Ὅτι δὲ περιλέλειπται τῶν ἀναλόγων δύο , ἅπερ ἐστὶ τῆς ἑκατοντάδος , τοσαυτάκις αὐξήσομεν τὸν εἰρημένον ἀριθμόν , ὥστε εἶναι | ||
| ὁ μὲν Α ὑποκείσθω ἐλάσσων μὲν χιλιάδος μετρούμενος δὲ ὑπὸ ἑκατοντάδος , οἷον μονάδες φʹ , ὁ δὲ Β ἐλάσσων |
| δὴ τοσούτων εἶναι μονάδων τοὺς δύο πρώτους ἀριθμούς , οἵπερ διπλάσιοι ἔσονται τῶν λοιπῶν δύο , ὄντων δηλονότι καὶ αὐτῶν | ||
| , ὀγδοήκοντα δὲ ἐκ Μυκηνῶν καὶ ἐκ Φλιοῦντος διακόσιοι , διπλάσιοι δὲ τούτων Κορίνθιοι : παρεγένοντο δὲ καὶ Βοιωτῶν ἑπτακόσιοι |
| μακροῦ ὄντων , ἐπαρθεὶς ὁ στρατηγὸς αὐτῶν , ὅτι καὶ πενταπλάσιοι τῶν πολεμίων ἦσαν οἱ σφέτεροι , τήν τε παρεμβολὴν | ||
| τὸν ε οὕτως ὡς ὁ ε πρὸς τὴν μονάδα : πενταπλάσιοι γὰρ ἀμφότεροι . Καὶ διὰ τοῦτο ὅσων ἐστὶν ἡ |
| , τριπλάσιόν ἐστι τοῦ ἀπὸ τῆς ΕΚ . καὶ ἐπεὶ τριπλασίων ἐστὶν ἡ ΑΒ τῆς ΒΓ , ὡς δὲ ἡ | ||
| τριπλασίων ἢ ἐλάσσων ἢ τριπλασίων . ἔστω πρότερον μείζων ἢ τριπλασίων , καὶ ἐγγεγράφθω εἰς τὸν ΑΒΓΔ κύκλον τετράγωνον τὸ |
| Ϛ , ἤτοι ϘϚ ιϚʹ , γίνεται πάλιν ὁ ὅλος Ϟὸς ρκα ιϚʹ , ὥστε ἀφαιρουμένων τῶν ϘϚ ιϚʹ , | ||
| γὰρ ἀπὸ τοῦ τρία καὶ δ ὑπερβάλλουσι τὸν κ . Ϟὸς μὲν εἷς μονάδες τρεῖς πολλαπλασιασθέντες ἐφ ' ἑαυτοὺς ποιοῦσι |
| γὰρ εἰκοσάεδρον καὶ τὸ ὀκτάεδρον καὶ ἡ πυραμὶς ἐκ τῶν ἰσοπλεύρων σύγκειται τριγώνων , ὁ δὲ κύβος ἐκ τῶν τετραγώνων | ||
| ἡ τοῦ ὅλου γένεσις κατὰ Πλάτωνα : ἐκ μὲν γὰρ ἰσοπλεύρων τριγώνων τρία σχήματα συνίσταται , πυραμὶς ὀκτάεδρον εἰκοσάεδρον , |
| δὲ προστιθέμενος , κύβος ἀπὸ τοῦ η , τουτέστι ΚΥ φιβ # ʂ ε , καὶ προστεθεὶς ʂ ε , | ||
| ε : θέλομεν οὖν ταῦτα κυβικὴν εἶναι πλ . ΚΥ φιβ . ʂ ἄρα η ἴσοι εἰσὶ ΚΥ χλζ # |
| , ἀλλ ' ἰσοκρατῶς ἀμφότεροι πλευρικοί εἰσιν ἀριθμοὶ τοῦ Ϛʹ ἑτερομήκους ἐκ τοῦ δὶς τρία ἢ ἐκ τοῦ τρὶς βʹ | ||
| ἐπὶ τοῦ τετραγώνου καὶ τοῦ ῥόμβου , ἐπὶ δὲ τοῦ ἑτερομήκους καὶ τοῦ ῥομβοειδοῦς τὰ χωρία μόνον . καὶ ὅλως |
| τὰ τρία εἴδη ἄρτια καλοῦνται , καὶ γὰρ ὁ ἀρτιάκις ἄρτιος , ὁ ἀρτιοπέριττος καὶ ὁ περισσάρτιος . συμβέβηκε δὲ | ||
| εἶναι ἀριθμόν ; διότι πᾶς ἀριθμὸς ἢ περιττός ἐστιν ἢ ἄρτιος . καὶ πᾶς ἄρτιος δύναται εἶναι , ἡ δὲ |
| ὁ δὲ τετράγωνος τοὺς δυάδι μὲν διαφέροντας , ἕνα δὲ παραλείποντας , πεντάγωνος δὲ ἀκολούθως τοὺς τριάδι μὲν διαφέροντας , | ||
| καὶ τὸ κατιέναι ἡμᾶς διὰ τῶν διὰ μέσου , μηδὲν παραλείποντας ἐν ταῖς διαιρέσεσιν , οὐ σμικρόν τι συντελεῖ πρὸς |
| καὶ διλοχίτης ὁ τούτου ἡγούμενος : οἱ δὲ τέσσαρες λόχοι τετραρχία , καὶ ὁ τούτου ἡγούμενος τετράρχης τεσσάρων καὶ ἑξήκοντα | ||
| διλοχία καὶ πόσων ἀνδρῶν καὶ τίς ὁ διλοχίτης . Τί τετραρχία καὶ τίς ὁ τετράρχης καὶ ὁπόσων ἀνδρῶν . Τί |
| οἰκεῖα πληρώματα ὁ νοῦς , ἐξ ὧν ὁ σύμπας ὁμοῦ συμπληροῦται , ἐπιδεὴς ἂν εἴη αὐτὸς ἑαυτοῦ , οὐ μόνον | ||
| περιττοῦ φύσιν ἔχουσι : μὴν δὲ καθ ' ἑβδομάδας τέσσαρας συμπληροῦται , τῇ μὲν πρώτῃ ἑβδομάδι διχοτόμου τῆς σελήνης ὁρωμένης |
| λδʹ ͵ηψμη Ϡοβ . λεʹ ͵θσιϚ υξη . λϚʹ ατξη ͵αρνβ . τὸ πᾶν τετράκις διὰ πασῶν καὶ διὰ πέντε | ||
| ' αὐτοῦ τῷ ρμδ ἀριθμῷ , ὅς ἐστιν ὄγδοον τοῦ ͵αρνβ . πάλιν τοίνυν ἀπὸ τοῦ ͵αρνβ ἀνίεμεν τόνον καὶ |
| χρονικαῖς γ κʹ . λέγω δὴ ὅτι τῶν ἐν τοῖς αβ βγ δωδεκατημορίοις τριακοστημορίων τῶν ἑξῆς ἀλλήλοις κειμένων [ ἀρχομένων | ||
| γβ ἑαυτὸν πολλαπλασιάσας ποιείτω τὸν ζη . καὶ ἐπεὶ ὁ αβ τὸν γβ πολλαπλασιάσας ἐποίησε τὸν δ , ὁ ἄρα |
| , οἱ πρῶτοι κατὰ πλάτος καὶ οἱ ὑπ ' αὐτοὺς τετραπλάσιοι πάντες εἰσίν , οἱ δὲ ὑποκάτω τῶν ἐπάνω ἐπιτέταρτοι | ||
| ' αὐτῶν ἐπίτριτοι καὶ ἀπὸ τούτων ἐπιτριμερεῖς , εἰ δὲ τετραπλάσιοι ἐπιτέταρτοί τε καὶ ἐπιτετραμερεῖς καὶ ἀεὶ οἱ ἑξῆς , |
| στίχων ἀρχομένων ἀπὸ μονάδος ἐπί τε πλάτος καὶ ἐπὶ βάθος γαμμοειδῶς οἱ δεύτεροι ἐφ ' ἑκάτερα καὶ αὐτοὶ γαμμοειδῶς ἀπὸ | ||
| , τουτέστιν ἀπὸ διπλασίου . εἰ δὲ καὶ τοὺς ἑτερομήκεις γαμμοειδῶς παρασπίζοιμεν τοῖς τετραγώνοις ἅπαξ τοὺς ἄκρους συντιθέντες καὶ δὶς |
| τοιούτων οὐδέν . τὸ γὰρ αὐτὸ εἶδος τοῦ διπλασίου καὶ τριπλασίου ἔν τε τοῖς ἐλάττοσι καὶ ἐν τοῖς πλείοσιν ἀριθμοῖς | ||
| ►βασιλικός αʹ τιμοκρατικός βʹ ὀλιγαρχικός γʹ δημοκρατικός θʹ τυραννος Ϛʹ◄ τριπλασίου ἄρα κτλ . εἰλήφθω κατὰ τὴν μονάδα αὐτὴν ὁ |
| ἡ Μακεδονικὴ φάλαγξ ἐν τούτοις παρετάσσετο . Τί παρέχει ὁ οὐραγός . Περὶ τῶν ψιλῶν : πῶς αὐτοὺς δεῖ τετάχθαι | ||
| καὶ ὅταν τέλος ἡ σκηνὴ ἔχῃ , ἐξάγει μὲν ὁ οὐραγός , ἔφη , ὁ τοῦ τελευταίου λόχου τὸν λόχον |
| ὁ εη ἄρα ἐπίπεδός ἐστιν ὁ ἐκ τῶν βα , αγ . ὁμοίως δὴ δείξομεν , ὅτι καὶ ὁ ηκ | ||
| , τὴν γδ , καὶ προσθεὶς τῇ δα , τὴν αγ ἴσην ἐποίησε τῇ γβ καὶ εὗρε τὴν διχοτομίαν τῆς |
| τὰ δὲ παʹ τρὶς σμγʹ : ηʹ θʹ ξδʹ οβʹ παʹ ρϞβʹ σιϚʹ σμγʹ : εἶτα προστίθεμεν τοῖς σμγʹ ἀπὸ | ||
| θʹ , κατὰ δὲ ἐμβαδομετρίαν ὡς ὁ κεʹ πρὸς τὸν παʹ , κατὰ δὲ στερεομετρίαν ὡς ὁ ρκεʹ πρὸς τὸν |
| ἐστιν , ἀλλ ' οὐκέτι ἐπαληθές , ὅτι πᾶς τρίγωνος ἑξάγωνός ἐστιν . τὸ μὲν γὰρ αὐτῶν κοινότερον , τὸ | ||
| ἐστιν , ἀλλ ' οὐκέτι ἐπαληθές , ὅτι πᾶς τρίγωνος ἑξάγωνός ἐστιν . τὸ μὲν γὰρ αὐτῶν κοινότερον , τὸ |
| αὐτοῦ τελάρχης . αἱ δὲ δύο μεραρχίαι φαλαγγαρχία , ἀνδρῶν ͵δϘϚ , λόχων σνϚ , καὶ ὁ τούτων ἀφηγούμενος φαλαγγάρχης | ||
| τεταγμένοι λοχαγοί , δῆλον , ὅτι τεταγμένοι μὲν καθέξουσι πήχεις ͵δϘϚ τοῦ μήκους , τοῦτ ' ἔστι στάδια δέκα καὶ |
| καὶ οἱ ἕνα διαλείποντες πάντες οὕτως ἐστίν : ὅτι ἀριθμῶν ἐκτεθέντων ἀπὸ μονάδος κατὰ ἀναλογίαν οἷον διπλάσιος ὡς ἡ μονὰς | ||
| τὸ πλῆθος αὐτῶν ποιοῦσιν ἀριθμὸν διπλάσιον τοῦ συγκειμένου ἐκ τῶν ἐκτεθέντων . Ἔστωσαν γὰρ ἀριθμοὶ ὁποσοιοῦν , οἱ Α , |
| καὶ ὁ η καὶ ὁ ι καὶ πάντες οἱ εὐτάκτως ἄρτιοι . πρόλογος δὲ τοῦ μὲν β ὁ γ , | ||
| δὶς μέρος τὸν δὲ λβ δύναμιν : καὶ ἀμφότεροι ἀρτιάκις ἄρτιοι : καὶ πάλιν τὸν λβ ἐπὶ τὸν β πολλαπλασιάζεις |
| ' ἂν γένοιό γ ' ἀθλιωτάτη γυνή . ἴτω : περισσοὶ πάντες οὑν μέσωι λόγοι . ἀλλ ' εἶα χώρει | ||
| μὲν οὖν ἄρτιον δεῖ εἶναι , ὅπως ἴσοι ἐνῶσιν οἱ περισσοὶ καὶ ἄρτιοι καὶ μὴ ἑτερομερῶς : ἐπεὶ γὰρ πρότερος |
| τρισκαιδεκακισμυριοστοτριακοσιοστοεικοστοπρώτων . Λείψει γοῦν τῶν ριβ τριακοσιοστοεξηκοστοπρώτων ἀναλυθέντων εἰς τετρακισμύρια υλβ τρισκαιδεκακισμυριοστοτριακοσιοστοεικοστόπρωτα , λοιπὰ πεντακισμύρια χίλια Ϡπδ , ἅτινά εἰσιν | ||
| τοῖς οὖν ἐν αὐτῷ γινομένοις μετρεῖται . τκδ τξδ τπδ υλβ υπϚ φιβ φοϚ χμη ψκθ ψξη ωξδ Ϡοβ ͵ακδ |
| ἑζέσθην , Τρώων δὲ πρὸς οὐρανὸν εὐρὺν ἄερθεν . Ἡ ἑξὰς πρώτη τέλειος : τοῖς γὰρ αὑτῆς μέρεσιν ἀριθμεῖται , | ||
| ὑπεροχὴν ἔχῃ : οἷον Ϛʹ γʹ βʹ : ἡ γὰρ ἑξὰς πρὸς τὴν δυάδα τριπλασία ἐστί : καὶ ἡ ὑπεροχὴ |
| α # Μο β : ὅθεν ὁ ʂ γίνεται μονάδος δγ / . τὰ λοιπὰ δῆλα . κδ . Εὑρεῖν | ||
| , ὅτι ἡ δγ μείζων ἐστὶ τῆς εα τῇ τε δγ καὶ τῇ γζ . εἰ τοίνυν δεήσει τῶν ἄκρων |
| τὸν γ καὶ τὸ τρίτον αὐτοῦ . ὡσαύτως ἐστὶ καὶ ἐπιτέταρτος καὶ ἐπίπεμπτος , καὶ ἐπ ' ἄπειρον οὕτως . | ||
| ἡμιόλιος , τρίτος δὲ τρίτου ἐπίτριτος , τέταρτος δὲ τετάρτου ἐπιτέταρτος , εἶτα ἐπίπεμπτος καὶ ἔφεκτος καὶ τοῦτο ἐπ ' |
| ὁ ἐπίτριτός ἐστιν . Ὁ δὲ διὰ πέντε , ὁ ἡμιόλιος . Ὁ δὲ διὰ πασῶν , ὁ διπλάσιος . | ||
| τὰ λοιπά . καὶ ἐγίνετο ἐκ μὲν τοῦ διπλασίου ὁ ἡμιόλιος , ἐκ δὲ τοῦ ἡμιολίου ὁ ἐπιμερής , καὶ |
| ὑπὸ τοῦ ὀγδόου τοῖς σνϚ . εʹ [ ἡμιόλιος ] φοϚ ξδ : ἔστι δὲ καὶ ἡμιόλιος τοῦ πράτου ὁ | ||
| ρμδ , μύστρα μεγάλα σπη , ὀξύβαφα τπδ , κυάθους φοϚ , χήμας μικρὰς ͵αρνβ : ὁ μὲν γὰρ χοῦς |
| ὁ γ συνεχὴς προσσωρευθεὶς καὶ ἐξαπλωθείς γε εἰς μονάδα καὶ συντεθεὶς τὸν Ϛ ἀποδίδωσι δεύτερον ἐνεργείᾳ τρίγωνον καὶ προσέτι σχηματογραφεῖ | ||
| δ ὁ ἀπὸ τοῦ αβ τετράγωνος , ὁ δὲ εη συντεθεὶς ἐκ δύο ἐπιπέδων ἀριθμῶν τῶν ἐκ τῶν αβ βγ |
| τετράγωνοι , ἐκ δὲ τῶν τετραγώνων καὶ τῶν τριγώνων οἱ πεντάγωνοι , ἐκ δὲ τῶν πενταγώνων καὶ τῶν τριγώνων οἱ | ||
| μηδένα συντεθέντων τῶν γνωμόνων , τετράγωνοι δὲ παρὰ ἕνα , πεντάγωνοι δὲ παρὰ δύο καὶ ἀεὶ οὕτως . τὸν αὐτὸν |
| καὶ οἱ λοιποί . λέγονται οὕτως ἐκεῖνοι μὲν πρῶτοι καὶ ἀσύνθετοι , ἐπειδὴ ὑπὸ μόνης τῆν μονάδος μετροῦνται , ἐπεὶ | ||
| ὡσαύτως καὶ ὁ λθ καὶ ὅμως οὐκ εἰσὶ πρὸς ἀλλήλους ἀσύνθετοι , πρὸς δὲ ἑαυτοὺς σύνθετοι : ἀμφότεροι γὰρ ὑπὸ |
| ὁμοίου . ὁ πέμπτος ὅμοιος τῷ γʹ . ὁ Ϛʹ ἀναπαιστικὸς δίμετρος βραχυκατάληκτος . ὁ ζʹ ἀσυνάρτητος ἐξ ἀναπαιστικῆς βάσεως | ||
| ποιητοῦ δὲ ὁ λόγος . κορωνίς : ὁ δὲ στίχος ἀναπαιστικὸς τετράμετρος καταληκτικός . κεκώλισται ἐκ τῶν Ἡλιοδώρου , παραγέγραπται |
| εἷς μο δ ἐφ ' ἑαυτοὺς πολλαπλασιασθέντες ποιοῦσι δύναμιν μίαν Ϟοὺς η μο ιϚ . Ἀφαιρουμένων οὖν τῶν δυνάμεων , | ||
| ἑτέρων ι μο . Καὶ τῆς δείξεως προβάσεως δεήσει τοὺς Ϟοὺς ιβ μο λϚ τριπλασίονας εἶναι μο Ϛ καὶ ἔτι |
| καὶ ἐφεξῆς ὁμοίως . ἀπὸ δὲ δυάδος τῶν ἐφεξῆς πάντων ἀρτίων . εἰ δὲ θέλεις εὑρεῖν πάντας τοὺς διπλασιεφημιολίους , | ||
| δύναμιν ἀρχῆς . Ὥστε ἐν τῷ διαιρεῖσθαι δίχα πολλοὶ τῶν ἀρτίων εἰς περισσοὺς τὴν ἀνάλυσιν λαμβάνουσιν , ὡς ὁ τεσσαρεσκαίδεκα |
| , καί εἰσι πάλιν ἀρτιάκις ἄρτιοι . γένεσις δὲ τοῦ ἀρτιάκις ἀρτίου . περὶ τῆς γενέσεως τοῦ ἀρτιάκις ἀρτίου λέγει | ||
| ἓξ ἀριθμὸν ἔλεγον κρίσιν , ὃς καὶ ἔστιν ἀρτιοπέριττος . ἀρτιάκις γὰρ ἄρτιός ἐστιν ἀριθμὸς ὁ ἀναλυόμενος μέχρι μονάδος αὐτῆς |
| γιγνόμενος ποιεῖ τὸν ἡμιόλιον λόγον , ἐξ ὧν ἀμφοτέρων ὁ διπλάσιος σύγκειται λόγος , τοῦ δʹ φμηὶ πρὸς τὸν βʹ | ||
| τῆς Α τετραγώνου πρὸς τὸ ἀπὸ τῆς Β τετράγωνον ἤτοι διπλάσιος ἤτοι δὶς δίς , ὅπερ ἐδήλωσεν εἰπών : τὰ |
| μερῶν τι σημαντικόν ἐστιν ὡς φάσις , πρὸς διάκρισιν τῶν συντεθέντων μερῶν καὶ κατὰ ἀπόφανσιν ἤδη λεγομένων , ὡς ἂν | ||
| ὅτι , ἐὰν ἀπὸ τοῦ συγκειμένου λόγου εἷς ὁποιοσοῦν τῶν συντεθέντων ἀφαιρεθῇ , ἑνὸς τῶν ἄκρων ἀφανισθέντος ὁ λοιπὸς τῶν |
| δὴ μεταξὺ τούτων τῶν τετραγώνων πείπτοντες ἀριθμοί εἰσιν προμήκεις : ἀνισάκις [ ] γὰρ ἄνισοι , ὡς οἱ ? μεταξὺ | ||
| ? [ ] οὖν ἀνισάκις ? ? ἄνισοι [ ] ἀνισάκις σφηνίσκοι [ καλοῦνται ] . , οἱ [ δέ |
| ἀναδεχομένη καὶ ὑπομένουσα τὴν περίθεσιν , ἄνευ δὲ αὐτῆς οὐ φύσονται ἑτερομήκεις : εἴτε κατὰ τὸν αὐτὸν δίαυλον οἱ ἐφεξῆς | ||
| ὑποτείνουσαν . ἐκ μὲν γὰρ διπλασίων τριπλάσιοί τε καὶ ἡμιόλιοι φύσονται , ἐκ δὲ τριπλασίων τετραπλάσιοί τε καὶ ἐπίτριτοι , |
| οὐκ ἄν προύβη τὰ τῆς ἀποδείξεως . Ὁ γὰρ ἀπὸ Ϟοῦ α ↑ μονάδων τριῶν τετράγωνος γίνεται δυ μία μο | ||
| , ὥστε οὐ προβήσεται ἡ ἀπόδειξις . Ἐὰν δὲ ἀπὸ Ϟοῦ ἑνὸς ↑ μο δ πλασθῇ ὁ τετράγωνος , ἡ |
| μάγαδιν , ὁ δὲ κλεψίαμβος , ἔτι δ ' ὁ τρίγωνος καὶ ὁ ἔλυμος καὶ τὸ ἐννεάχορδον ἀμαυρότερα τῇ χρείᾳ | ||
| : Ἄρεως δὲ ἐπιμαρτυρήσαντος μείζων ἡ ἐπίτασις . Σελήνη Ἀφροδίτῃ τρίγωνος ἐν ἰδίῳ οἴκῳ ἢ τετράγωνος , μάλιστα ἐπίκεντροι , |
| , καὶ οἱ τούτοις ὑπεναντίοι ὅ τε ὑποδιπλάσιος καὶ ὁ ὑποτριπλάσιος καὶ ὁ ὑποτετραπλάσιος καὶ ὁ ὑφημιόλιος καὶ ὁ ὑπεπίτριτος | ||
| κ τὸ τρίτον αὐτῆς : ἀπὸ γὰρ τοῦ τρία ὁ ὑποτριπλάσιος παρωνόμασται . καὶ ποιῶ τὰ λ ἐπὶ τὰ κ |
| οὓς κῆρες φορέουσι μελαινάων ἐπὶ νηῶν . ἀθετεῖται , ὅτι περισσός : ἐν γὰρ τῷ κηρεσσιφορήτους τὸ αὐτὸ συντόμως εἴρηκεν | ||
| λοιπὸς ὁ ΓΑ ἄρτιός ἐστιν . Ἐπεὶ γὰρ ὁ ΑΒ περισσός ἐστιν , ἀφῃρήσθω μονὰς ἡ ΒΔ : λοιπὸς ἄρα |
| δὲ μετ ' ἐπιτρίτου τετραπλασιότητος , τετραπλάσιος δὲ μετ ' ἐπιτετάρτου πενταπλασιότητος καί , ἕως προχωρεῖν θέλεις , οὐδὲν ὑπεναντίον | ||
| , ἀπὸ δὲ τοῦ ἐπιτρίτου ἐπιτριμερὴς καὶ ἐπιτετραμερὴς ἐκ τοῦ ἐπιτετάρτου καὶ ἐπ ' ἄπειρον τῇ αὐτῇ ἀναλογίᾳ . μὴ |
| ΒΓ τοῦ ΔΖ ἡμιόλιος , ὁ δὲ ΔΖ τοῦ Θ ἐπίτριτος : φημὶ τὸν ΒΓ τοῦ Θ διπλάσιον εἶναι . | ||
| τὸ τρίτον αὐτοῦ , ἤγουν τὸ Γ . Ὁ Η ἐπίτριτος τοῦ Ϛʹ . Περιέχει γὰρ ὅλον τὸν Ϛʹ , |
| ' ὧν τὰ Β στερεὸς ἴσος ἐστὶν τῷ διὰ τῶν ἑκατοντάδων στερεῷ ἐπὶ τὸν ἐκ τῶν πυθμένων στερεόν , τουτέστιν | ||
| καὶ τεσσαράκοντα γίνονται ἑκατόν , ὁμοίως δὲ καὶ χιλιάδα ἐξ ἑκατοντάδων καὶ μυριάδα ἐκ χιλιάδων , μονὰς δὲ καὶ δεκὰς |
| καὶ δʹ διαστήματος : ὑπερέχει γὰρ αὐτοῦ τπδ . ιϚʹ ͵αψκη ρϘβ : ἁμιόλιος τοῦ ͵αρνβ , ὃς ἦν μέσος | ||
| κδʹ καὶ ἁρμονικὸς τῶν τελευταίων διαστημάτων : ὑπερέχει δὲ αὐτοῦ ͵αψκη . ὁ δ ' αὐτὸς κατ ' ἀριθμητικὰν μέσος |
| ὁπλίτῃσι καὶ ψιλοῖσι τοῖσι μαχίμοισι ἕνδεκα μυριάδες ἦσαν , μιῆς χιλιάδος , πρὸς δὲ ὀκτακοσίων ἀνδρῶν καταδέουσαι . Σὺν δὲ | ||
| Ἴβηρος ” . ἀφ ' οὗ παρὰ Κουαδράτῳ ἐν Ῥωμαϊκῆς χιλιάδος εʹ ἐστὶν Ἰβήροισιν οὕτως ” καί τοι Λίγυσί θ |
| μο οβ . Οἱ τρεῖς τρίς , θ , καὶ ἐννάκις ἐννέα , πα . . Ηὕρηνται ἄρα οἱ β | ||
| τοῦ τρὶς τρεῖς γίνεται θ τετράγωνος , καὶ ἐκ τοῦ ἐννάκις ἐννέα τοῦ μείζονος καὶ τριπλασίου ὁ τετράγωνος γίνεται μο |
| ὅτι ὁ τριάκοντα ἀριθμὸς φυσικώτατός ἐστιν , ὃ γὰρ ἐν μονάσι τριάς , τοῦτο ἐν δεκάσι τριακοντάς . . . | ||
| λείψει ἀριθμοῦ ἐνός , ἰστέον ὅτι ἐπεὶ ταῖς μὲν κ μονάσι πρόσεστι καὶ ἀριθμὸς εἷς , ἀπὸ δὲ τῶν ρ |
| Χαβηρὶς ἐμπόριον . . . . . . . . ρκη ∠ ʹ ιε γοʹ Σαβούρας ἐμπόριον . . . | ||
| . . . . . . . . . . ρκη δʹ λβ γʹ Ὀστοβαλάσαρα . . . . . |
| ὑποδιαίρεσιν ἂν πειραθείης συγχωρήσας ἀνελεῖν , εἶτα ἀνελὼν ἐπενέγκοις , πολλαπλασιάσεις τὸν λόγον δριμέως λέγων οὕτως εἰ μὲν τόδε ἐποίησας | ||
| σμγ . Ὡσαύτως καὶ εἴτε τὸν κύβον ἐφ ' ἑαυτὸν πολλαπλασιάσεις , εἴτε τὴν πλευρὰν αὐτοῦ ἐπὶ τὸν δυναμόκυβον , |
| . ἐπὶ δὲ τοῦ βʹ λήμματος ὁ ἑκατὸν τοῦ εἴκοσι πολλαπλάσιός ἐστι κατὰ τὸν ε , καὶ ὁ κ τοῦ | ||
| Γ πολλαπλάσιον εἶναι . ἐπεὶ γὰρ ὁ Β τοῦ Γ πολλαπλάσιός ἐστι , μετρεῖ ἄρα ὁ Γ τὸν Β . |
| τὴν λυπέουσαν ἀπὸ τοῦ σώματος ἢ ἐν ἄλλῃ τινὶ τῶν περισσῶν ἡμερέων κατὰ τὸν πρότερον εἰρημένον λόγον : οὐ γὰρ | ||
| πάλιν αἱ διαλύσεις . Ἔτι δὲ τῇ μονάδι τῶν ἐφεξῆς περισσῶν γνωμόνων περιτιθεμένων , ὁ γινόμενος ἀεὶ τετράγωνός ἐστι τῶν |
| δύο καμπτῆρες ὅ τε γʹ καὶ ὁ δʹ , ιβʹ τετράκι γʹ ἀποτελεῖται . καὶ μὴν ἐκ τοῦ αʹ βʹ | ||
| τέσσαρές εἰσιν πλευραί , ὧν ἑκάστη - ἐστὶν πέντε , τετράκι τὰ πέντε εἴκοσι . καὶ λοιπὸν ἀεὶ προιόντι τὸ |
| ἀλλήλων διαφέροντες , διπλάσιοι ἄρτιοι περισσῶν , ἐπίπλαστος περισσάρτιοι εὔτακτοι εὐτάκτων . εἶτ ' ἀπ ' ἄλλης ἀρχῆς οἱ αὐτῶν | ||
| δὲ ἐπὶ τούτοις γενήσονται καθεξῆς προσσωρευομένων τῶν κατὰ τριάδος ὑπεροχὴν εὐτάκτων μετὰ τὴν ἑβδομάδα ὄντων , οἷον τοῦ ι , |
| τῶν ἐπιτετάρτων οἱ ἐπιτετραμερεῖς , καὶ ἐφεξῆς . οἷόν εἰσιν ἡμιόλιοι δ , Ϛ , θ . λαβὲ ἀπὸ τῶν | ||
| πρὸς τὸ δεύτερον καὶ τὸ τρίτον πρὸς τὸ τέταρτον : ἡμιόλιοι γὰρ ἀμφότεροι ἀμφοτέρων . καὶ τὰ ἰσάκις τοίνυν πολλαπλάσια |
| ἀπὸ τοῦ γδ ἴσος ἐστὶ τοῖς ἀπὸ τῶν δβ , βγ μετὰ τοῦ δὶς ἐκ τῶν δβ , βγ , | ||
| ἀπὸ τῶν βγ , γα καὶ τῷ δὶς ἐκ τῶν βγ , γα , κοινὸς προσκείσθω ὁ ἀπὸ τοῦ αγ |
| ιδ πρὸς τὸν δ καὶ ἁπλῶς οἱ καθ ' ἑβδομάδα προχωροῦντες πρὸς τοὺς ἀπὸ δυάδος εὐτάκτους ἀρτίους . εἶτα πάλιν | ||
| καὶ ἀπὸ ἑξαγώνου καὶ ἑπταγώνου βάσεως καὶ ἐπὶ πλεῖον ἀεὶ προχωροῦντες πυραμίδας συστησόμεθα τοὺς ἀναλογοῦντας ἑκάστῃ πολυγώνους ἐπισωρεύοντες ἀλλήλοις ἀπὸ |
| ῥήματι : πᾶσα γὰρ λέξις ῥηματικὴ ἢ ἁπλῆ ἐστι καὶ ἀσύνθετος ἤγουν μονόλεξος , ἢ σύνθετος καὶ δίλεξος , ἢ | ||
| ἀλλ ' ἐπισωρεύσεις τὸν ἑξῆς , ἐὰν δὲ πρῶτος καὶ ἀσύνθετος , τῷ ἐσχάτῳ εἰς τὴν σύνθεσιν παραληφθέντι πολλαπλασιάσεις αὐτὸν |
| καὶ ψυχρῶν καὶ ξηρῶν καὶ ὑγρῶν ἀντιλαμβάνεται , καὶ ἔστι πεντὰς αὕτη συζυγιῶν ἀνώνυμος ἑνὶ καθάπερ εἶπον ὀνόματι . οὐ | ||
| ἀριθμητικὴν ἀναλογίαν , ὡς δηλοῖ τὸ διάγραμμα . ὅτι ἡ πεντὰς πρώτη μεσότητος τῆς ἀρίστης καὶ φυσικωτάτης ἐμφαντικὴ κατὰ διάζευξιν |
| τριάδος καὶ ἡ δυὰς τῷ ἑαυτῆς ἡμίσει ὑπερέχεται ὑπὸ τῆς τριάδος . καὶ τοὺς ἄκρους δὲ συντεθέντας ἀλλήλοις καὶ ὑπὸ | ||
| τοῦ γ πρῶτος διπλασιεπίτριτος ἦν , λάμβανε πάντας τοὺς ἀπὸ τριάδος τριάδι διαφέροντας καὶ τοὺς ἀπὸ ἑπτάδος ἑπτάδι , καὶ |
| μέσων χρωματική μέση τρίτη συνημμένων παρανήτη συνημμένων χρωματική νήτη συνημμένων παραμέση τρίτη διεζευγμένων παρανήτη διεζευγμένων χρωματική νήτη διεζευγμένων τρίτη ὑπερβολαίων | ||
| λιχανός . Ἑρμοῦ δὲ τὸ μεταίχμιον Ἀφροδίτης καὶ Ἡλίου κατέχοντος παραμέση . περὶ ὧν ἀκριβέστερον καὶ μετὰ γραμμικῶν καὶ ἀριθμητικῶν |
| ἢ τριπλάσιος . ἐδείχθη δέ , ὅτι οὐδὲ μείζων ἢ τριπλάσιος : τριπλάσιος ἄρα ὁ κύλινδρος τοῦ κώνου : ὥστε | ||
| δὲ διπλάσιον τὸν τοῦ Ϛ : ἐὰν δὲ καὶ ὁ τριπλάσιος οὗτος δεύτερον εἶδος ὢν τοῦ πολλαπλασίου συντεθῇ ἐπιτρίτῳ δευτέρῳ |
| ὅπερ ἔδει δεῖξαι . Ἐὰν ἀριθμὸς μήτε τῶν ἀπὸ δυάδος διπλασιαζομένων ᾖ μήτε τὸν ἥμισυν ἔχῃ περισσόν , ἀρτιάκις τε | ||
| τέτταρες ἔσονται ἢ ἄλλο τι πλῆθος τῶν ἀφ ' ἑνὸς διπλασιαζομένων : τοσαῦτα δὲ καὶ τὰ εἴδη . ἔστι δ |
| , καθ ' ἣν ἕκαστον τῶν ὄντων ἓν λέγεται . Ἀριθμὸς δὲ τὸ ἐκ μονάδων συγκείμενον πλῆθος . Μέρος ἐστὶν | ||
| μερῶν ἐπιπέδῳ σὺν τῷ ἀπὸ τοῦ προειρημένου μέρους τετραγώνῳ . Ἀριθμὸς γὰρ ὁ αβ διῃρήσθω εἰς δύο ἀριθμοὺς τοὺς αγ |
| μὲν κατ ' ἀριθμὸν ὑπερέχουσαν , ἴσῳ δὲ ὑπερεχομένην : ἡμιολίων δὲ καὶ ἐπιτρίτων διαστάσεων διὰ πασῶν τῷ τοῦ ἐπογδόου | ||
| μαλακὸν χρῶμα : τὸ δὲ τρίτον χαρακτηρίζεται μὲν ἐκ διέσεων ἡμιολίων τῆς ἐναρμονίου διέσεως , καλεῖται δὲ ἡμιολίου χρώματος : |
| . Γαϲτρὸϲ κράϲεωϲ γνωρίϲματα . ξεʹ . Πνεύμονοϲ διάγνωϲιϲ . ξϚʹ . Καρδίαϲ γνωρίϲματα . ξζʹ . Ἥπατοϲ κράϲεωϲ διάγνωϲιϲ | ||
| καʹ , κϚʹ , λϚʹ , μγʹ , μϚʹ , ξϚʹ , πδʹ , Ϙβʹ . ὁ δὲ τὸν γʹ |
| ἐν τῷ ἀπὸ τῆς μονάδος ἀριθμῷ εὐτάκτῳ τῶν ἐφεξῆς πάντων τριπλάσιοί εἰσι προχωροῦντες , ἐφ ' ὅσον βούλεταί τις παρακολουθεῖν | ||
| τὸ βάθος καὶ τὴν ὑποτείνουσαν . ἐκ μὲν γὰρ διπλασίων τριπλάσιοί τε καὶ ἡμιόλιοι φύσονται , ἐκ δὲ τριπλασίων τετραπλάσιοί |
| κενωθῆναι ἅπαν τὸ ἄχρηστον , τοιοῦτον ἐκτίθεται βοήθημα ἐκλεκτόν . Μύρτων μελάνων χωρὶς τῶν γιγάρτων ἰταλικὸν ξέστην ἕνα , ῥόδων | ||
| στυππίῳ μετὰ ῥοδίνου . [ Πρὸς κοιλιακοὺς ἐργαλεῖον . ] Μύρτων χλωρῶν , ῥόδων ξηρῶν , σιδίων ῥοιᾶς , βαλαύστια |
| τετράκις δʹ ιϚʹ . οἱ μὲν οὖν τετράγωνοι πάντες τοὺς ἑτερομήκεις περιλαμβάνουσι κατὰ τὴν γεωμετρικὴν ἀναλογίαν καὶ μέσους αὐτοὺς ποιοῦσι | ||
| πρὸς ἑαυτοὺς διαφορὰς τοὺς περισσοὺς μόνον ἔχουσιν , οἱ δὲ ἑτερομήκεις τοὺς ἀρτίους : ἂν δὲ καὶ τὸν πρῶτον ἑτερομήκη |
| δὲ οὕτως ὥστε ἵστασθαι μέχρι τοῦ γένους . οἷον τῇ τριάδι ὑπάρχει μὲν [ ἀριθμὸς καὶ ] τὸ ὄν , | ||
| ἀριθμός ἐστιν , οἱ δὲ δεύτεροι κοινῇ μὲν διαφορᾷ χρώμενοι τριάδι , τάξει δὲ οἱ ἐπιμόριοι ἀφ ' ἡμιολίου ἀρχόμενοι |
| δ ' ἡ Θρᾴκη σύμπασα ἐκ δυεῖν καὶ εἴκοσιν ἐθνῶν συνεστῶσα : δύναται δὲ στέλλειν καίπερ οὖσα περισσῶς ἐκπεπονημένη μυρίους | ||
| συναλείφουσα τὰ δύο συλλαβή , ἐξ ἀφώνου τε καὶ δυεῖν συνεστῶσα φωνηέντων : εἰ γοῦν τις αὐτῆς ἀφέλοι τὸ τ |
| ἥμισυ μὲν αὐτῆς ἐστιν ἡ μεραρχία , τέταρτον δὲ ἡ χιλιαρχία : τὴν μὲν ἀρίστην χιλιαρχίαν τῆς δεξιᾶς μεραρχίας τάξομεν | ||
| ὁ τούτων ἀφηγούμενος πεντακοσιάρχης . αἱ δὲ δύο πεντακοσιαρχίαι καλεῖται χιλιαρχία , ἀνδρῶν ͵ακδ , λόχων ξδ , καὶ ὁ |
| , καὶ ὁ ἡγεμὼν πάλαι μὲν στρατηγός , νῦν δὲ φαλαγγάρχης : τὸ δὲ τῆς φαλαγγαρχίας ἤτοι ἀποτομῆς διπλοῦν διφαλαγγία | ||
| ὁ τῶν δύο καὶ τριάκοντα , ὁ δὲ τῶν διπλασιόνων φαλαγγάρχης , καὶ ὁμωνύμως τὸ σύστημα καθ ' ἑκάστην ἀρχὴν |
| ὅτι αὐτῷ , καὶ φανερὸν πεποιήκατε ὅτι οὐδ ' ἂν δεκάκις ἀποθάνῃ , οὐδὲν μᾶλλον κινήσεσθε . τί οὖν πρεσβεύετε | ||
| τίκτουσι δὲ πᾶσαν ὥραν τοῦ ἔτους : διὸ δὴ καὶ δεκάκις τοῦ ἐνιαυτοῦ τιθέασιν , ἐν Αἰγύπτῳ δὲ δωδεκάκις . |
| τὰ ἑξῆς . . . . : καὶ περιέχει ὁ δωδέκατος λόγος περί τε Ἀκώριος τοῦ Αἰγυπτίων βασιλέως ὡς πρός | ||
| : οἵ τε λοιποὶ δύο ὅ τε ἕκτος καὶ ὁ δωδέκατος κάκιστοι . Πρὸς τὸν Ἄρεα τρίγωνος ὢν ὁ Κρόνος |
| ἰδέα οὐδέποτε ἥξει . Οὐ δῆτα . Ἄμοιρα δὴ τοῦ ἀρτίου τὰ τρία . Ἄμοιρα . Ἀνάρτιος ἄρα ἡ τριάς | ||
| τοιούτοις . ἔοικε γὰρ ὁ γεωμέτρης πάντα ἀριθμὸν τὸν ὑπὸ ἀρτίου ἀριθμοῦ μετρούμενον κατὰ ἄρτιον ἀριθμὸν ἀρτιάκις ἄρτιον ὀνομάζειν , |
| προτίθεται , ἡ δὲ ἀντωνυμία καθ ' ἑαυτὴν λέγεται . Ἕκτη ἡ πρόθεσις , καὶ προτέτακται τοῦ ἐπιρρήματος , ὅτι | ||
| ὀλιγίστη . Ἐκ τοῦ εἰσορᾶν γίνετ ' ἀνθρώποις ἐρᾶν . Ἕκτη ἡμέρα : ἐπὶ τῶν ἀγαθῶν : ἐν ταύτῃ γὰρ |