δεῖ οὖν τὸν ι διελεῖν εἰς τρεῖς ⃞ους ὅπως ἑκάστου ⃞ου ἡ πλευρὰ πάρισος ᾖ Μο Ϛια / . ἀλλὰ | ||
. καὶ γίνεται ὁ συγκείμενος ἐκ τοῦ ἐμβαδοῦ καὶ τοῦ ⃞ου , ΔΥ κϚ Μο ι : ταῦτα ικις : |
λοιπὸν ʂ β # Μο γ ζον μέρος εἰσὶ τοῦ γου : αὐτὸς ἄρα ἔσται ʂ ιδ # Μο κα | ||
ποιῇ ⃞ον . λοιπόν ἐστι καὶ τὸν ὑπὸ βου καὶ γου προσλαβόντα συναμφότερον καὶ ἔτι τὸν ὑπὸ γου καὶ αου |
α . ωιϚ ΔΥ ση Μο α , μετὰ τοῦ αου , τουτέστι ΔΥ ιγ # Μο α , ποιεῖν | ||
, αἴρω τὴν Μο α , καὶ τάσσω τὸν ὑπὸ αου καὶ γου ΔΥ δ ʂ δ , ὧν ὁ |
γ : γίνονται θ ἔκ τε τῆς ἡμισείας καὶ τοῦ προσκειμένου ὡς ἀπὸ μιᾶς ἀναγραφέντα τετράγωνα β λϚ καὶ πα | ||
, ὁ ἐκ τοῦ ὅλου σὺν τῷ προσκειμένῳ καὶ τοῦ προσκειμένου ἐπίπεδος μετὰ τοῦ ἀπὸ τοῦ ἡμίσεος τετραγώνου ἴσος ἐστὶ |
ἀπὸ τῶν ρκ μονάδων καὶ τὰς ρ μονάδας . Ἐναπελείφθησαν Ϟοὶ ε ἴσοι μονάσιν κ . . Ἐπεὶ ἡ λεῖψις | ||
ιβ . Κοινὴ προσκείσθω ἡ λεῖψις . δυ ἄρα γ Ϟοὶ λ μο θ ἴσα δυνάμεσι δ μονάσιν θ . |
ἡ δὲ λοιπὴ μικτὴ σχέσις ἡ πολλαπλασιεπιμερὴς γεννᾶται ἐκ τῆς ἐπιμεροῦς , καὶ ἐκ μὲν τῆς ἐπιδιμεροῦς ἢ δὶς ἐπιτρίτου | ||
τῶν ἀριθμῶν ἐπὶ πέντε τούτων εἰδῶν θεωροῦνται : ἐπιμορίου , ἐπιμεροῦς , πολλαπλασίου , πολλαπλασιεπιμορίου , πολλαπλασιοεπιμεροῦς , ὧν ἕκαστον |
ἐν τῷ προειρημένῳ λόγῳ ἐλάσσων πρὸς τὸν μείζονα ἐξεταζόμενος . πολλαπλασιεπιμόριος δέ ἐστι λόγος , ὅταν ὁ μείζων ὅρος δὶς | ||
ἐλάσσονος μέρος : οἷον ὁ τῶν κϚʹ τοῦ τῶν ηʹ πολλαπλασιεπιμόριος λέγεται , ἐπειδήπερ ὁ ηʹ τρὶς καταμετρήσας τὸν κϚʹ |
δὲ ζητουμένων ὃν μὲν ΚΥ Κ ξγ , ὃν δὲ ΚΥ Κ ιε , ὃν δὲ ΚΥ Κ γ . | ||
τοὺς τρεῖς ἰσῶσαι ʂ α : γίνονται δὲ οἱ τρεῖς ΚΥ β δא : ταῦτα ἴσα ʂ α : ὅθεν |
τοῦ γου ποιεῖν ⃞ον : ἐὰν ἄρα ἀπό τινος ⃞ον ἀφέλω τὰς ΔΥ ιϚ , ἕξω τὸν γον : τάσσω | ||
ΒΓ ὄντος δ , ἐὰν ἀπὸ τοῦ ΑΓ τοῦ η ἀφέλω τὸ δοθὲν τὸ ΑΒ οἷον δ , τὸ λοιπὸν |
β μο α . ↑ οὖν τοῦ δευτέρου , ἤτοι Ϟῶν β μο α , γίνεται δυ μία , τουτέστι | ||
β : ἔσται Ϛ δʹ . Ὁ δὲ ἕτερος ταχθεὶς Ϟῶν ι ἔσται λ δʹ . Καὶ ποιοῦσι τὰ τῆς |
ἄρα η ἴσοι δυνάμεσι ε . Πάντα παρὰ ἀριθμόν . Μονάδες ἄρα ὅλαι εἰσὶν ἴσαι ἀριθμοῖς ε . Ἀναλυθέντων αἱ | ||
τουτέστι μο κδ , λοιπὸς γίνεται μο ριθ . . Μονάδες ἄρα ν ἴσαι Ϟ κγ . Ὁ Ϟὸς ἄρα |
: ἐὰν δὲ ὡϲ ὑπὸ ϲκόλοποϲ ἐμπεπαρμένου ἢ ὡϲ ὑπὸ τρυπάνου τιτρᾶϲθαι νομίζῃ , παχέοϲ ἐντέρου τὸ εἶδοϲ τῆϲ ὀδύνηϲ | ||
καὶ τότε μᾶλλον ἡ ἐνέργεια ὀξυτέρα γινέσθω , στρεφομένου τοῦ τρυπάνου τῇ ἀρίδι , ἕως ὅτου καταβιβασθῇ ἡ ἀκμὴ εἰς |
# Μο Ϛ . καὶ γίνεται ὁ ⃞ος ΔΥ δ Μο λϚ # Μο κδ ἴσ . ΔΥ δ ʂ | ||
α # Μο α , ἡ δὲ ὑποτείνουσα ΔΥ α Μο α . καὶ γίνεται ζητεῖν ΔΥ β ʂ β |
διὰ τοῦ Δ ἡμικύκλια , ἵνα ἡ ἐφαπτομένη ἑκάστου αὐτῶν προσεκβαλλομένη ἐπὶ τὴν τοῦ μείζονος ἡμικυκλίου περιφέρειαν τὴν μεταξὺ τῆς | ||
ἣν ἄγονται καὶ τῆς παρ ' ἣν δύνανται , καὶ προσεκβαλλομένη ἕως τοῦ ἑτέρου μέρους τῆς τομῆς δίχα τμηθήσεται ὑπὸ |
. βʹ Ἐὰν ἀριθμὸς εἰς δύο ἀριθμοὺς διαιρεθῇ , δύο ἐπίπεδοι ἀριθμοὶ οἱ γενόμενοι ἔκ τε τοῦ ὅλου καὶ ἑκατέρου | ||
βέλεσιν αἱ βελοστάσεις κατασκευάζονται , αἱ μὲν [ ὀρυκταὶ ] ἐπίπεδοι [ καὶ κατώρυχοι ] , αἱ δὲ ὑπόγειοι πρὸς |
, γίνεται ⃞ος ; Πάλιν δὲ ὁ ἀπὸ τοῦ ΒΚ ⃞ος μεταβαίνει εἰς τὸν ἀπὸ τοῦ ΗΜ ⃞ον ἐπὶ τὸν | ||
ὀρθογώνιον καὶ ⃞ον ἀριθμὸν ὅπως ὁ ἀπὸ τοῦ ἐμβαδοῦ ἀρθῇ ⃞ος , καὶ τὰ λοιπὰ Ϛκις γενόμενα ποιῇ ⃞ον . |
ἀπὸ τῶν αγ , γδ . Ἐὰν ἄρα ἄρτιος ἀριθμὸς διαιρεθῇ δίχα , ἔτι δὲ διαιρεθῇ καὶ εἰς ἀνίσους ἀριθμούς | ||
γβ τετραγώνῳ . Ἐὰν ἄρα ἄρτιος ἀριθμὸς διαιρεθῇ δίχα , διαιρεθῇ δὲ καὶ εἰς ἀνίσους ἀριθμούς , ὁ ἐκ τῶν |
, ἐπεὶ ὁ ἀπὸ ʂ β Μο α ⃞ος ἐστι ΔΥ δ ʂ δ Μο α , ἐὰν ὁμοίως ἀφέλω | ||
# ʂ β˙͵δφος : καὶ πάντων τὸ Δον . γίνεται ΔΥ α ΜΥ ρδ˙͵ηφος # ʂ ͵Ϛρμδ ἴσ . ⃞ῳ |
τῶν πίλων μιτρηφόροι ἦσαν . Κισσίων δὲ ἦρχε Ἀνάφης ὁ Ὀτάνεω . Ὑρκάνιοι δὲ κατά περ Πέρσαι ἐσεσάχατο , ἡγεμόνα | ||
σμικρῇ . Ἡ ὦν δὴ Φαιδύμη αὕτη , ἡ τοῦ Ὀτάνεω θυγάτηρ , πάντα ἐπιτελέουσα τὰ ὑπεδέξατο τῷ πατρί , |
περισσὸν καὶ ἄρτιον , τρίτον δὲ ἀπ ' ἀμφοτέρων μειχθέντων ἀρτιοπέριττον : ἑκατέρω δὲ τῶ εἴδεος πολλαὶ μορφαί , ἃς | ||
, εἰ μὴ ἀμφοῖν τοῖν φυσέοιν μετεῖχε : διὸ καὶ ἀρτιοπέριττον καλεῖσθαι τὸ ἕν . συμφέρεται δὲ τούτοις καὶ Ἀ |
λείψας αὐτὸν ποιεῖ ΚΥ κζ ʂ Ϛ # ΔΥ κζ ἴσ . ʂ Ϛ # ΔΥ α , καὶ γίνεται | ||
ποιεῖν ἴσ . ⃞ῳ , καὶ ʂ β Μο α ἴσ . κύβῳ . καὶ γίνεται ζητεῖν τετράγωνον κύβου βπλ |
ἐπιτρίτου γίνεσθαι . πάλιν δὲ τὸ γεννηθὲν πρῶτον εἶδος τοῦ πολλαπλασίου , ὅ ἐστι τὸ διπλάσιον , μετὰ τοῦ ἡμιολίου | ||
: ἐξ ἡμιολίου ἄρα καὶ διπλασίου πρώτων εἰδῶν ἐπιμορίου καὶ πολλαπλασίου συνίσταται μιγέντων τὸ δεύτερον εἶδος τοῦ πολλαπλασίου τὸ τριπλάσιον |
προκείσθω εὑρεῖν πόσων ἐστὶν τὸ περιεχόμενον ὑπὸ τῶν ΑΔΓ , ΓΖΑ περιφερειῶν ἐμβαδὸν μέγεθος οἵων ἐστὶν τὸ ὅλον τοῦ ἡλιακοῦ | ||
τοῦ ὑπὸ ΓΖΑ : τὸ οὖν ὑπὸ ΒΖΕ τοῦ ὑπὸ ΓΖΑ ὑπερέχει τῷ ὑπὸ Η ΖΔ , ὥστε τὸ ὑπὸ |
' ἐπὶ τῶν προτέρων “ δίμετρον ἀκατάληκτον ἐξ ἐπιτρίτου τρίτου πεντασυλλάβου καὶ χοριάμβου : τὸ εʹ ” πρὸς οὖν τάδ | ||
ὅμοιον τῷ δʹ τῆς πρώτης στροφῆς ἐκ χοριάμβου καὶ διιάμβου πεντασυλλάβου . ἐπὶ τῷ τέλει παράγραφος καὶ διπλαῖ ἐν ἀρχῇ |
: διὸ καὶ οὐ δύναται εἶναι ὁ θ τοῦ δ τετραπλάσιος , ὡς ὁ ιϚ τοῦ δ καὶ ὁ λϚ | ||
δὲ ὦσι δύο ἀριθμοὶ ὁ μὲν ἕτερος αὐτῶν τοῦ αὐτοῦ τετραπλάσιος , ὁ δ ' ἕτερος διπλάσιος , ὁ τετραπλάσιος |
δέ τινες ἐν ἀριθμητικῇ λόγοι ἀριθμῶν οὐ μόνον πολλαπλάσιοι καὶ ἐπιμόριοι , ἀλλὰ καὶ ἐπιμερεῖς καὶ πολλαπλασιεπιμερεῖς καὶ ἔτι πλείους | ||
τεθέντων [ αʹ αʹ αʹ ] καὶ ὁμοίως πλαττομένων οἱ ἐπιμόριοι λόγοι καὶ αἱ ἐν τούτοις συστήσονται ἀναλογίαι , ἐκ |
ἐστι τὸν ὑπὸ αου καὶ γου μετὰ συναμφοτέρου : ποιεῖ ΔΥא ρμδ # Μο α : ταῦτα ἴσα Μο κδ | ||
δοθέντος ἀριθμοῦ , τουτέστιν ʂא γ . Μο Ϛ # ΔΥא ι [ ἴσ . ⃞ῳ ] , καὶ ϚκιϚ |
καταγραφῆς Εὐθεῖα γάρ τις ἡ ΓΔ τμήματος ἑαυτῆς τοῦ ΔΑ πενταπλάσιον δυνάσθω , τῆς δὲ ΔΑ διπλῆ κείσθω ἡ ΑΒ | ||
, δῆλον : ἐπεὶ γὰρ τὸ μὲν ἀπὸ τῆς ΑΒ πενταπλάσιον τοῦ ἀπὸ τῆς ΜΝ ἐκ κέντρου οὔσης τοῦ κύκλου |
προϲαγορευόμενοϲ πυρετὸϲ μιχθέντοϲ τοῦ ϲηπομένου φλέγματοϲ τῷ ϲαπέντι πικροχόλῳ χυμῷ ϲύνθετοϲ ἐξ ἀμφοτέρων γίνεται : τοῦ μὲν οὖν ἀμφημερινοῦ μετὰ | ||
ἄλλοιϲ περικαέϲιν ἅπαϲι καὶ τοῖϲ ἐν θέρει καὶ θάλπει ϲφοδρῷ ϲύνθετοϲ ἡ διάθεϲιϲ ἐϲτὶν ἐκ θερμότητόϲ τε καὶ ξηρότητοϲ , |
τοίνυν τομὴν εἰϲ τὸ κάτω τοῦ μαϲτοῦ δόντεϲ καὶ ὑποδείραντεϲ ἀφελόντεϲ τὴν πιμελὴν ῥαφαῖϲ ζυγώϲομεν . εἰ δὲ καὶ ἀπονένευκε | ||
χοιράδοϲ ὄγκου πλεονάζοι τὸ τοῦ δέρματοϲ , μυρϲινοειδὲϲ αὐτοῦ μέροϲ ἀφελόντεϲ χρηϲώμεθα ταῖϲ ῥαφαῖϲ καὶ φάρμακον ἔναιμον ἐπιβάλωμεν . Τοῦ |
λοιποῦ ὑπερέχωσι δοθέντι ἀριθμῷ , ὁ μὲν αος μετὰ τοῦ βου , τοῦ γου , Μο δ : ὁ δὲ | ||
ἂν ἴση ἡ ὑπεροχή . ἀλλὰ Μο κε ἐκ τοῦ βου εἰσίν , αἱ δὲ Μο ι ἐκ τοῦ αου |
καὶ τριχίασις , ἡ ἐπιπόλαιος δηλονότι τῶν ὀστῶν ἐγχάραξις . ὑδροκεφάλων δὲ εἴδη τέσσαρα . τὸ μὲν μεταξὺ ἐγκεφάλου καὶ | ||
Ϙζ Περὶ πταρμικῶν Ϙη Περὶ τοῦ πλεονάζονταϲ πταρμοὺϲ παῦϲαι Περὶ ὑδροκεφάλων Λεωνίδου . τὸ ὑδροκέφαλον πάθοϲ προϲαγορεύεται ἀπὸ τοῦ ἐν |
καὶ τὸ φυλάττει , παρεμβάλλει . , . . † αὐτόκρατον λόγον : τὸν ἐξ ἑαυτοῦ τὸ τέλος ἐπιφέροντα . | ||
τὸ θεῶμαι θεᾷ καὶ ὁρῶμαι ὁρᾷ καὶ κατακλῶμαι κατακλᾷ . αὐτόκρατον : ἐπὶ τοῦ ἀμιγοῦς καὶ ἀκεράστου καὶ ἀκράτου οἴνου |
, ἀλλ ' ἰσοκρατῶς ἀμφότεροι πλευρικοί εἰσιν ἀριθμοὶ τοῦ Ϛʹ ἑτερομήκους ἐκ τοῦ δὶς τρία ἢ ἐκ τοῦ τρὶς βʹ | ||
ἐπὶ τοῦ τετραγώνου καὶ τοῦ ῥόμβου , ἐπὶ δὲ τοῦ ἑτερομήκους καὶ τοῦ ῥομβοειδοῦς τὰ χωρία μόνον . καὶ ὅλως |
ἀδιάστατον ἀπολείψουσι τὸ σημεῖον , ὅ γε διχάζεται πρὸς τοῦ τέμνοντος . ὁ δὲ αὐτὸς λόγος καὶ ἐπειδὰν φῶσι τὸν | ||
ἐπιφανείᾳ τοῦ κώνου τὴν ΔΖΕ : κοινὴ δὴ τομὴ τοῦ τέμνοντος ἐπιπέδου καὶ τοῦ ΑΒΓ τριγώνου ἡ ΖΗ . καὶ |
τῶν ρπ μοιρῶν τῆς ἀναφορᾶς συμπληρουμένης ἢ καὶ ἕως ἑτέρας τετραγώνου ἢ συμπληρουμένου παντὸς τοῦ κύκλου , ἢν δὲ καὶ | ||
πλευρὰ μονὰς ἔσται πανταχόθι , ὅσηπερ καὶ ἡ τῆς δυνάμει τετραγώνου μονάδος . καθόλου δὲ ἕκαστος τετράγωνος ἓν μὲν ἐπίπεδόν |
δι ' αἰγείρων καὶ αἱ λοιπαὶ ἐπιϲπαϲτικαί . Τοῦ μὲν ὀϲχέου τὴν φλεγμονὴν διαγνωϲτέον ἐκ τοῦ κατὰ τὴν πρώτην τῆϲ | ||
τῇ δεξιᾷ χειρὶ τὸ πέραϲ ἐνδιπλοῦντεϲ ἐπὶ τὰ ἔνδον τοῦ ὀϲχέου ὁμοῦ τε τῇ ἀριϲτερᾷ τὸν περιτόναιον ἀνέλκοντεϲ πρὸϲ τὴν |
ἕλειοι ὄντες τὰς ἑλείους ἐλλοχῶσιν . εἰσὶ γὰρ τῷ γένει τριτταί : καὶ αἳ μὲν αὐτῶν οἵας προεῖπον , αἳ | ||
πρὸς τὰς μεταβολὰς εὔτρεπτον . Ὅτι αἱ τοῦ μέλιτος γενέσεις τριτταί : ἢ ἀπὸ τῶν ἀνθῶν καὶ ἐν οἷς ἄλλοις |
ὁ ἐπίτριτός ἐστιν . Ὁ δὲ διὰ πέντε , ὁ ἡμιόλιος . Ὁ δὲ διὰ πασῶν , ὁ διπλάσιος . | ||
τὰ λοιπά . καὶ ἐγίνετο ἐκ μὲν τοῦ διπλασίου ὁ ἡμιόλιος , ἐκ δὲ τοῦ ἡμιολίου ὁ ἐπιμερής , καὶ |
ΔΥ α ποιῶμεν ἴσας ⃞ῳ , πλάσσομεν τὴν τοῦ ⃞ου πλ . ἀπὸ Μο γ # ʂ τινος , καὶ | ||
ʂ γ Μο α : ταῦτα ἴσα ⃞ῳ τῷ ἀπὸ πλ . Μο α # ʂ β . γίνεται ὁ |
γλαυκώϲεωϲ Δημοϲθένουϲ . γλαύκωϲιϲ λέγεται διττῶϲ : ἡ μὲν γὰρ κυρίωϲ γλαύκωϲιϲ μεταβολή ἐϲτι πρὸϲ τὸ γλαυκὸν καὶ ξηρότηϲ καὶ | ||
καὶ ἡ Ἔϲδρα ἀντίδοτοϲ οὐδὲν ἧττον τῶν εἰρημένων . Ἡ κυρίωϲ πλευρῖτιϲ φλεγμονὴ τοῦ τὰϲ πλευρὰϲ ὑπεζωκότοϲ ὑμένοϲ ἐϲτίν , |
, ἡ δὲ τοῦ ἑτέρου ἀπὸ διαφορᾶς ʂ β καὶ ʂא α ∠ ʹ . καὶ μένει ὁ ἀπὸ ἑκατέρου | ||
δὲ πολλαπλασιαζόμενος ἀριθμὸς ἔστω ἀριθμοστῶν κυβικῶν ὁσωνδήποτε : ἔστω δὴ ʂא η . ἐπὶ μὲν οὖν τὴν ΔΥ α πολλαπλασιάσαντες |
, οἵ γε , ὑμᾶς ἂν ἐκφεύγωσιν , ὕστερον οὐχὶ ληφθήσονται . πρὸς Διὸς , πόσου ποτ ' ἂν ἐπρίασθε | ||
γῆς αἱ πρὸς τὸν λοξὸν κύκλον γινόμεναι περιφέρειαι καὶ γωνίαι ληφθήσονται . Ὁ δὲ τρόπος τῆς λήψεως αὐτῶν τοιοῦτός ἐστιν |
θέλω ἴσους εἶναι Μο π : ἀλλ ' οἱ δύο συντεθέντες ʂ εἰσι δ καὶ Μο δ . ʂ ἄρα | ||
ἄρα ὁ αος ἔσται ʂ δ . καὶ οἱ τρεῖς συντεθέντες ποιοῦσι τὸν ἐπιταχθέντα ⃞ον , ΔΥ α ʂ β |
καὶ τῆς ἀπολαμβανομένης ὑπὸ τῆς παραλλήλου ἴσον ἔσται τῷ ἀπὸ ΓΧ . διὰ δὲ τοῦτό ἐστιν , ὡς ἡ ΤΧ | ||
τοῦ Χ πρὸς ὁποιανοῦν τῶν τομῶν προσπιπτέτω τις εὐθεῖα ἡ ΓΧ , καὶ τῇ ΓΧ παράλληλος ἤχθω τέμνουσα τὰς ἐφεξῆς |
μὴ ὑπὸ θορύβου τῶν διωκόντων ἀποτραπείη τῆς κατὰ δαίμονα ὁ δοῦ . καὶ ἡ μὲν ἀμφὶ τοὺς εἴκοσι καὶ τέτταρας | ||
: ἐδέου , ἐδοῦ : καὶ τὸ προστακτικὸν δέου , δοῦ , καὶ μετὰ τῆς περί προθέσεως περιδοῦ , τουτέστι |
ὅταν οὖν θερμανθῶσιν αἱ φλέβες καὶ τὸ αἷμα ἐν αὐτῇσι ζέσῃ , διαδιδοῦσιν αἱ μὲν ἀπὸ τῆς κεφαλῆς ἐς τὰς | ||
θλασθέντα βρέχεται ἐφ ' ἡμέρας δ καὶ ἕψεται , ἄχρι ζέσῃ τρίτον ἢ τέταρτον , κινοῦντος σπάθῃ κυπαρισσίνῃ : εἶτα |
. ἰδοὺ γεγόνασιν ἐπιδιμερεῖς : ὁ γὰρ κε τοῦ ιε ἐπιδιμερής : ἔχει γὰρ αὐτὸν καὶ δύο αὐτοῦ μέρη : | ||
πάλιν ὡς ἐν ἐπιμερέσι κατὰ τὴν οἰκειότητα τῆς δυάδος ὁ ἐπιδιμερής . εἰ δὲ οἱ πρῶτοι ἐν τριπλασίῳ λόγῳ , |
. ἴση ἄρα ἡ ΔΞ τῇ ΔΖ . Κοινοῦ ἄρα προσληφθέντος λόγου τοῦ τῆς ΒΔ πρὸς τὴν ΔΖ , ἔσται | ||
, σύστημα δύο τόνων καὶ τοῦ λεγομένου ἡμιτονίου . εἶτα προσληφθέντος ἄλλου τόνου , τουτέστι τοῦ μεσεμβοληθέντος , ἡ διὰ |
ταὐτὸν ἀγέτω δικαστήριον : ὅτι δ ' ἂν ὄφλῃ , τετραπλασίαν μὲν τούτου τίνειν , γιγνέσθω δὲ τὸ μὲν ἥμισυ | ||
ἡμιόλιον τὴν διὰ πέντε καὶ διπλασίαν τὴν διὰ πασῶν καὶ τετραπλασίαν τὴν δὶς διὰ πασῶν , ἔχει δὲ καὶ τὸν |
Μο κα ἀφελεῖν Μο θ # ΔΥ α καὶ ποιεῖν ⃞ον . ἀλλ ' ἐὰν ἀπὸ Μο κα ἀφέλω Μο | ||
Μο β , δεήσει καὶ ΔΥ λ ʂ ε εἶναι ⃞ον : οὐκ ἔστιν δέ . ἀπάγεται οὖν εἰς τὸ |
πολὺ δ ' ἂν καὶ ἡ ϲικύα κολληθεῖϲα μετὰ πολλῆϲ φλογὸϲ παράϲχοι ὄφελοϲ , ὥϲτε ταῖϲ ὕλαιϲ ὁμοῦ καὶ τὴν | ||
διαυγάζεϲθαι : ἀλλὰ ὁλκιμώτεραι μᾶλλόν εἰϲιν αἱ χαλκαῖ πλείονοϲ ἀνεχόμεναι φλογὸϲ τῶν ὑαλίνων ἑτοίμωϲ καταγνυμένων . ἀλλὰ καὶ ὅϲοι διὰ |
νε Ψυχροτέραϲ κράϲεωϲ ϲημεῖα νϚ Ξηροτέραϲ κράϲεωϲ ϲημεῖα νζ Ϲκληροτέραϲ ἕξεωϲ ϲημεῖα νη Ὑγροτέραϲ κράϲεωϲ ϲημεῖα νθ Θερμῆϲ καὶ ὑγρᾶϲ | ||
τούτοιϲ ὑφαιρετέον , καὶ τὰϲ τροφὰϲ ἐκ προϲαγωγῆϲ ϲυϲταλτέον τῆϲ ἕξεωϲ αὐτῶν ἀρχὴν ἤδη ψύξεωϲ λαμβανούϲηϲ . μέγιϲτον δὲ γνώριϲμα |
μέρος ληφθῇ ἀρτιακῶς ὀνομάζεται . καὶ πάλιν ἡ ἑκάστῳ μέρει ἐμπεριεχομένη δύναμις , τουτέστιν αἱ μονάδες , ἄρτιοι καὶ αὐταὶ | ||
γὰρ τοιοῦτον διεζευγμένον καὶ ἀληθὲς καὶ ἀναγκαῖον . Ἡ γῆ ἐμπεριεχομένη τῷ κόσμῳ ἤτοι πρὸς ἀνατολῇ ἐστιν ἢ πρὸς δύσει |
μο οβ . Οἱ τρεῖς τρίς , θ , καὶ ἐννάκις ἐννέα , πα . . Ηὕρηνται ἄρα οἱ β | ||
τοῦ τρὶς τρεῖς γίνεται θ τετράγωνος , καὶ ἐκ τοῦ ἐννάκις ἐννέα τοῦ μείζονος καὶ τριπλασίου ὁ τετράγωνος γίνεται μο |
στρατιῶται ἐβάδιζον ἐπὶ πόλεμον . Γ τὴν κίστην ] τὴν ὀψοθήκην . Γ ἅλας θυμίτας : ἐκ θύμων κατεσκευασμένους . | ||
δρᾶμα γνώσῃ . γυλιὸν ] ἀγγεῖον πλεκτόν , ἤγουν τὴν ὀψοθήκην . νίφει : βαβαιάξ : οἱ γὰρ ἐπὶ πόλεμον |
χοίνικες , δʹ χοινίκων ἐστίν , τὸ δυσχερέστατον μέτρον . ἡμιεκτέον ] τὸ ἥμισυ τῶν ὀκτώ , τὸ ἥμισυ τοῦ | ||
ἐν Μυρμιδόσι . σκυλάκια σιαλώδεα : κύνεια κρέα λιπαρά . ἡμιεκτέον : τὸ ἥμισυ τοῦ ἑκτέως . ἑκτεὺς δὲ λέγεται |
ἑκάστους ἕκαστον μηκύνῃ ἢ ὑπὸ ἑκάστου μηκύνοιτο , ὁμοίως γενήσονται εὔτακτοι κύβοι . ἔτι οἱ περισσοὶ ἐπειδὴ ἔτι ὁμοποιοί εἰσι | ||
τῶν ἀπὸ μονάδος ἑαυτὸν πολλαπλασιάσαντος καὶ τὸν ἐξ αὐτοῦ γίνονται εὔτακτοι κύβοι . καὶ εἰ τάξει οἱ ἀπὸ τετράδος τετράγωνοι |
] Βασιλεύειν τοῦ Διός . : Ἐλιννύω , ἀπὸ τοῦ ἑλίσσω καὶ τοῦ ἀνύω : εἰώθασι γὰρ οἱ μέλλοντες ἀνύσαι | ||
δέ ἐστιν ἡ λεγομένη τοῦ κλήματος ψαλὶς , ἀπὸ τοῦ ἑλίσσω τὸ συστρέφω γινομένη : συνεστραμμένη γάρ ἐστι καὶ ἐπικαμπής |
πρῶτος τετράγωνος ᾖ καὶ ὁ τρίτος ἔσται τετράγωνος , καὶ μετροῦντος τετράγωνον τετραγώνου καὶ πλευρὰ πλευρὰν μετρήσει , καὶ πᾶς | ||
' ὃν μετρεῖται , καὶ ἀπὸ τοῦ μείζονος , τοῦ μετροῦντος καὶ καθ ' ὃν μετρεῖ , ἀφέλωμεν τὸν ἐλάσσονα |
ζʹ , ἀκρωτήριον ἐπίσημον αʹ . Οἱ πάντες ἀπὸ τοῦ Σηκοάνα ποταμοῦ μέχρι τοῦ Ῥήνου ποταμοῦ , [ τουτέστι ] | ||
καὶ Ἀμβιανοὶ καὶ Σουεσσίωνες καὶ Κάλετοι μέχρι τῆς ἐκβολῆς τοῦ Σηκοάνα ποταμοῦ . ἐμφερὴς δ ' ἐστὶ τῇ τῶν Μεναπίων |
ἀπὸ μὲν τοῦ σιϚ ἐπιτείνουσιν τόνον καὶ ποιοῦσι τὸν σμγ ἐπόγδοον ὄντα τοῦ σιϚ καὶ τῷ κζ ὑπερέχοντα . ἐπεὶ | ||
ἐπιτείνουσι τόνον καὶ ποιοῦσι τὸ ἐπόγδοον αὐτοῦ τὸν ψκθ , ἐπόγδοον ὄντα τοῦ χμη , ἐπειδὴ περιέχει αὐτὸν καὶ τὸν |
τορείᾳ , καὶ τὴν τῶν λίθων ἀνὰ μέσον τῶν φολίδων σύνδεσιν πολυτέχνως ἔχοντες . Εἶτα μαίανδρος ἐπέκειτο πηχυαῖος ὕψει , | ||
. ὅτε φαμὲν οὕτως ἆρα ἡμέρα ἐστὶν ἢ νύξ , σύνδεσιν ἐποιησάμεθα οὐ διὰ τοῦ ἆρα , διὰ δὲ τοῦ |
καὶ τοῦ τόνου . τί δὲ μᾶλλον αὗταί εἰσιν αἱ μετατιθέμεναι ἤπερ τὰ μόρια ἃ πρὸς αὐτὰς ἤρτηντο ; τὸ | ||
γελοῖον οὖν μοι δοκεῖ τὸ ζητεῖν πότερον αὗταί εἰσιν αἱ μετατιθέμεναι ἢ τὰ ταύταις δευτερεύοντα μόρια . . Ἔστι δὲ |
ἀριθμῷ δέ τε πάντ ' ἐπέοικε . τοῦ μὲν οὖν αὐτοζῴου , τουτέστι τοῦ κόσμου τοῦ νοητοῦ , στοιχεῖα τὰ | ||
αὐτοάνθρωπος παράδειγμα μὲν τοῦ ἐνταῦθα ἀνθρώπου , εἰκὼν δὲ τοῦ αὐτοζῴου . φαμὲν οὖν πρὸς ταῦτα ὅτι ἡ μὲν ψυχὴ |
καὶ συμβήσεται τὸν ἀπὸ τοῦ συγκειμένου ἐκ τῶν τριῶν κύβον λείψαντα ἕκαστον ποιεῖν κύβον . λοιπόν ἐστι τοὺς τρεῖς ἰσῶσαι | ||
. Ἔστω δὴ Μο δ . Ἐπεὶ οὖν τὸν αον λείψαντα αὑτοῦ τὴν πλ . , καὶ τὸν βον λείψαντα |
. Κοισύρα γυνὴ ἦν διαβεβοημένη ἐπὶ τρυφῇ καὶ σπατάλῃ . ἐγάμουν ] εἰς γυναῖκα ἐλάμβανον , γυναῖκα ⌈ ἐλάμβανον . | ||
σημῆναι . παρασημήναιτο δὲ ἄν τις , διὰ τί πανσελήνοις ἐγάμουν . τοὶ δ ' ἐπὶ γλεφάροις νεῦσαν ἀθανάτοισιν : |
ΑΔΕ γωνία λϚ νβ : καὶ λοιπὴ ἄρα ἡ ὑπὸ ΔΑΕ τῶν αὐτῶν ἐστιν ρμε νϚ . ὥστε καὶ ἡ | ||
τοῦ Α ἐν τῷ ὑποκειμένῳ ἐπιπέδῳ εὐθεῖαν . ποιείτω τὴν ΔΑΕ : αἱ ἄρα ΑΒ , ΑΓ , ΔΑΕ εὐθεῖαι |
. Τερεβινθίνηϲ ⋖ κ , νάρδου ⋖ ιϚ , ϲμύρνηϲ ϲτακτῆϲ ⋖ Ϛ , καρδαμώμου , βολβῶν ἀνὰ ⋖ Ϛ | ||
ὧν ἁπλούϲτερον μέν ἐϲτιν τὸ λαμβάνον ἀϲβέϲτου καὶ ϲάπωνοϲ καὶ ϲτακτῆϲ κονίαϲ , ποικιλώτερον δὲ καὶ φυλάττεϲθαι δυνάμενον ἀποθέϲει τοῦτο |
ὀθονίῳ καὶ καταβάπτειν εἰϲ χυλὸν ἀκακίαϲ ἢ ὑποκιϲτίδοϲ οἴνῳ διειμένηϲ προϲτιθέναι τε τῇ ὑϲτέρᾳ καὶ δίχα βίαϲ ἀναβιβάζειν ἅπαν τὸ | ||
εἶτα καταχεῖν αὐτῶν τήξαντα ϲὺν ῥοδίνῳ κηροῦ ⋖ β καὶ προϲτιθέναι ἐν πεϲϲῷ χρίϲαντα ῥοδίνῳ . ποιεῖ δὲ καὶ τὸ |
μὲν ἐλλεβόρου , ἧττον δὲ καθαίρει . Χαμελαίαϲ ⋖ δ ἑψηθεῖϲαι ἐν μελικράτου κοτύλαιϲ β ὡϲ εἰϲ τὸ δʹ καθεψηθεῖϲαι | ||
μέλιτοϲ λι . δ : αἱ ῥίζαι ϲὺν τῷ ὄξει ἑψηθεῖϲαι ἐκθλίβονται καὶ ῥίπτονται , τὸ δὲ μέλι ἐπιβληθὲν ἕψεται |
' εὐθέως ἐξ ἀρχῆς οὕτως σκευάζειν : τῷ ὀξυμέλιτι μιγνύσθω τετραπλάσιον ὕδατος καλλίστου , κἄπειτα ἑψείσθω μετρίως , ἕως ἂν | ||
ΚΓ , διπλῆ ἄρα καὶ ἡ ΘΚ τῆς ΚΓ . τετραπλάσιον ἄρα ἐστὶ τὸ ἀπὸ τῆς ΘΚ τοῦ ἀπὸ τῆς |
Ἀπορήσειέ τις δι ' ἣν αἰτίαν ἐλάσσονα ἔταξε τὸν ρ λείψει Ϟοῦ ἑνός , μείζονα δὲ τὸν κ καὶ τὸν | ||
κζ . Εὑρεῖν δύο ἀριθμοὺς ὅπως ὁ ὑπ ' αὐτῶν λείψει ἑκατέρου ποιῇ τετράγωνον , τῶν δὲ τετραγώνων αἱ πλευραὶ |
. Κυδαθηναιεύϲ : Ὑπ . ἐν τῷ ὑπὲρ τοῦ Ἱππέως κλ . . Τριακάϲ : τοῖς τετελευτηκόσιν ἤγετο ἡ τριακοστὴ | ||
τὰς ἐν τῷ γδ μονάδας . ἐμέτρει δὲ καὶ τὸν κλ κατὰ τὰς ἐν ἑαυτῷ μονάδας : ὅλον ἄρα τὸν |
πα Ϟ ρ ἐκ δὲ τῶν ἐπιμορίων οἵ τ ' ἐπιμερεῖς καὶ οἱ πολλαπλασιεπιμόριοι , πάλιν δ ' ἐκ τῶν | ||
σπανιότητα τῶν ἐπιδεξομένων τὸ μόριον ἀριθμῶν καθ ' ὃ ἐπιμόριον ἐπιμερεῖς γενήσονται , πολὺ μᾶλλον σπανιώτεραι αἱ ἀναλογίαι γενήσονται διὰ |
τοῦ εἰς τὸν μέγιστον κύκλον ἐγγραφομένου . καί ἐστιν ἡ ΝΛΩ ἴση τῇ , ὑφ ' ἣν ὑποτείνει ἡ τοῦ | ||
Π , Ν , Τ σημείων μέγιστοι κύκλοι γεγράφθωσαν οἱ ΝΛΩ , ΠΛΧ , ΤΛΨ . καὶ ἐπεὶ ἴση ἐστὶν |
μὴ δῆλά οἱ ᾖ , ἐκτείνασα τὰ σκέλεα καὶ ἐπαλλάξασα ἠρεμείτω . Νηστείη δὲ ὄφελος ἐν ταύτῃ τῇ ἡμέρῃ , | ||
, ὕϲτερον δὲ ϲυμμέτρωϲ πρὸϲ τὴν τοῦ πώρου γένεϲιν : ἠρεμείτω τε μέχρι πωρώϲεωϲ . πωροῦται δὲ ὁ βραχίων καὶ |
φοϚα . Πάλιν τὰ α̈ ͵εωοϚ τοιαῦτα μόρια προσλαβόντα τὰ τκδ φοϚʹ ἀναλυθέντα καὶ ταῦτα εἰς τοιαῦτα μόρια καὶ γεγονότα | ||
δύναται μετρῆσαι , τοῖς οὖν ἐν αὐτῷ γινομένοις μετρεῖται . τκδ τξδ τπδ υλβ υπϚ φιβ φοϚ χμη ψκθ ψξη |
πλασματικὰ πολλὰ συλλέξας καὶ διάφορα ἕτερα εἰς τὸ τέλος τοῦ ἕκτου λόγου καταντήσεις . . Δημοσθένου ] | κατὰ [ | ||
οὐ πολλοῦ χρόνου ἐπὶ μέγα ἐχώρησαν δυνάμεως . Τέλος τοῦ ἕκτου λόγου Νικολάου Δαμασκηνοῦ . . . : Ὅτι Κύψελος |
ʂ α : ὁ δὲ πολλαπλασιαζόμενος ἀριθμὸς ἔστω ἀριθμοστῶν κυβικῶν ὁσωνδήποτε : ἔστω δὴ ʂא η . ἐπὶ μὲν οὖν | ||
τὸν ὑπὸ αου καὶ βου . πλάσσω ⃞ον ἀπὸ ʂ ὁσωνδήποτε καὶ Μο α : ἔστω ʂ α Μο α |
αὐτῆϲ γοῦν τὰ τῆϲ χρείαϲ ἀποτελεϲθείη . ταῦτα μὲν οὖν μεγέθουϲ τε καὶ τάχουϲ καὶ πυκνότητοϲ καὶ τῶν ἐναντίων αὐτοῖϲ | ||
: ὅτι οὐκ ἔϲτιν ἀποτυχεῖν τοῦ ἀγγείου . Ἀντύλλου περὶ μεγέθουϲ διαιρέϲεωϲ . Ἐπὶ μὲν τῶν κενώϲεωϲ ἀθρόωϲ δεομένων μεγάλην |
δευτέραν τάξιν , θερμότητα δ ' οὐδεμίαν ἐπιφανῆ κέκτηται . Μυρίκη τμητικῆς ἐστι καὶ ῥυπτικῆς δυνάμεως ἄνευ τοῦ ξηραίνειν ἐπιφανῶς | ||
νῆσοι δύο . . . . πδ β ∠ ʹ Μυρίκη νῆσος . . . πε ∠ ʹ α Τὸ |
ἡ ἀπὸ τοῦ Θ κάθετος ἐπὶ τὸ ΔΕΖ ἐπίπεδον δίχα τμηθήσεται ὑπὸ τοῦ ΣΤΥ ἐπιπέδου . καί εἰσιν ἴσαι αἱ | ||
παραλληλογράμμου καὶ προσεκβαλλομένη μέχρι τοῦ ἑτέρου μέρους τῆς ἐπιφανείας δίχα τμηθήσεται ὑπὸ τοῦ παραλληλογράμμου . ἤχθω διὰ τοῦ Ε σημείου |
τῶν ΑΒ , ΑΓ τοῦ ἀπὸ τῆς ΔΕ . Τούτου δεδειγμένου δεικτέον , ὅτι ὁ αὐτὸς κύκλος περιλαμβάνει τό τε | ||
ἀνάγεται τῆς φιλοσοφίας διὰ τὸ εἰδέναι ποῦ μάλιστα συντελεῖ . δεδειγμένου δὲ τίνος ἕνεκα ταῦτα προλέγουσιν οἱ φιλόσοφοι , καιρὸς |
. } οὐδὲ μὰν οὐδ ' αἰ ποτὶ μέτρον παχυαῖον ποτθέμειν λῆι τις ἕτερον μᾶκος ἢ τοῦ πρόσθ ' ἐόντος | ||
ἀριθμόν τις περισσόν , αἰ δὲ λῆις , πὸτ ἄρτιον ποτθέμειν λῆι ψᾶφον ἢ καὶ τᾶν ὑπαρχουσᾶν λαβεῖν , ἦ |
ἰᾶται δὲ καὶ οἶνοϲ ὕδατι κεκραμένοϲ τὰϲ ἐπὶ ταῖϲ ἀθρόαιϲ κενώϲεϲιν ἐκλύϲειϲ , εἰ μὴ φλεγμονὴ ϲπλάγχνων ἢ κεφαλῆϲ ἄλγημα | ||
μόνηϲ ἐνοχλούϲηϲ καθαρτέον : ϲυνελθόντων δὲ ἀμφοῖν ἀμφοτέραιϲ χρήϲῃ ταῖϲ κενώϲεϲιν φλεβοτομήϲαϲ πρότερον . εἰ δὲ τούτων γενομένων ἐπιμένοι τὸ |
καὶ τῇ διὰ νάπυος κηρωτῇ καὶ αὐτῷ τῷ νάπυι . Σκευασία τῆς διὰ νάπυος κηρωτῆς * Καταπότιον λειεντερικοῖς καὶ κοιλιακοῖς | ||
Σαμίου ἀστέρος ἀλόης λαδάνου ἀνὰ ταρʹ α οἴνῳ ἀναλάμβανε . Σκευασία τοῦ κλειδίου Ὀριβασίου : κηκῖδος ὀμφακίτιδος ⋖ η ὀπίου |
εἶτα παράγωγον , ἀμαρύσσω : καὶ πλεονασμῶ τοῦ α , ἀμαρύσσω : ἐξ οὗ καὶ ἀμάρυγμα . ἀμιχθαλόεσσα , ἡ | ||
λάμπω , γίνεται μαρμαίρω ἐν διπλασιασμῶ : εἶτα παράγωγον , ἀμαρύσσω : καὶ πλεονασμῶ τοῦ α , ἀμαρύσσω : ἐξ |
. ξυναλλάσσοντος ] τοῦ συνάγοντος . ξυναλλάσσοντος ] ἑνοῦντος . ξυναλλάσσοντος ] τοῦ συνάγοντος καὶ τοῦ ἑνοῦντος . ξυναλλάσσοντος ] | ||
] ἀποδέχομαι . δεινὸς ] δεξιός . . φεῦ τοῦ ξυναλλάσσοντος ] τοῦ συνάγοντος . ἀπὸ μεταφορᾶς τῶν τὰς συναλλαγὰς |
τὸ ὑγρόν : ὅταν οὖν τὸ ἐν τῷ ἀέρι ὑγρὸν ἐπικρατήσῃ τοῦ ἐν τῷ πυρὶ ξηροῦ , μεταβάλλει τὸ πῦρ | ||
ἐν τῷ ἀέρι θερμοῦ τὸ δὲ ἐν τῇ γῇ ξηρὸν ἐπικρατήσῃ τοῦ ἐν τῷ ἀέρι ὑγροῦ , γίνεται ἐξ ἀέρος |
ὁ εη ἄρα ἐπίπεδός ἐστιν ὁ ἐκ τῶν βα , αγ . ὁμοίως δὴ δείξομεν , ὅτι καὶ ὁ ηκ | ||
, τὴν γδ , καὶ προσθεὶς τῇ δα , τὴν αγ ἴσην ἐποίησε τῇ γβ καὶ εὗρε τὴν διχοτομίαν τῆς |
μονάδες ὡς ὅλον ταῖς δυσὶ δυάσιν , ἢ ἑκατέρα τῶν δυάδων ταῖς τέσσαρσι μονάσι καθάπαξ οὐκ ἴσαι . καὶ πάλιν | ||
δὲ προστάγμασι τούτοις πάλιν ἀπὸ ἰσότητος πρῶτον ἐκ μονάδων εἶτα δυάδων εἶτα τριάδων καὶ ἐφεξῆς : πρῶτον ἐκ πρώτου καὶ |
ἀναπληρώσεις φύσεως , ἤτοι λίαν [ καὶ ] ἐνδεοῦς ἤτοι ἐλλιποῦς , οἷον ἰατρεῖαι , ἤτοι αἱ ἀναπληρώσεις τῆς γαστρὸς | ||
αἴτιον , καὶ τούτῳ ἐνίστασθαι . ἐὰν μὲν οὖν , ἐλλιποῦς τῆς ἐκκοπῆς γεγενημένης , ὀξεῖα προὔχουσα καὶ νύσσουσα τὴν |
χρή , μέχριϲ ἂν εἰϲ ὄγκον αἴρηται τὸ ϲῶμα καὶ εὐανθὲϲ ὑπάρχῃ , καὶ αἱ κινήϲειϲ εὔτονοί τε καὶ ὁμαλεῖϲ | ||
, δηλοῖ τὸν ἐγκέφαλον κατὰ πάντα ἐρρῶϲθαι : τὸ δὲ εὐανθὲϲ τοῦ προϲώπου καὶ ἡ εὔπνοια καὶ ἡ εὐϲφυξία δηλοῖ |
ἀπό τινος ⃞ου ἀφέλω Μο α , ἕξω αον : πλάσσω τινὰ ⃞ον ἀπὸ ʂ ὁσωνδήποτε καὶ Μο α : | ||
γ ʂ ιη Μο θ . ταῦτα ἴσα ⃞ῳ . πλάσσω τὸν ⃞ον ἀπὸ ʂ β # Μο γ , |
] ὑπερέχεται δὲ ͵αψκη . ιζʹ ͵αϠμδ σιϚ . ιηʹ ͵βμη ρδ : ἐπίτριτος τῶ ιεʹ : ὑπερέχει γὰρ αὐτοῦ | ||
χιλιάρχης . αἱ δὲ δύο χιλιαρχίαι μεραρχία καλεῖται , ἀνδρῶν ͵βμη , καὶ ὁ τοῦ μέρους τούτου ἡγούμενος καλεῖται μεράρχης |
τῶν ἐκκαλυψόντων , ἀλλ ' οὐκ αὐτὸ ἑτέρων δεῖ ὑπάρχειν ἐκκαλυπτικόν . καὶ μὴν εἰ τὸ σημεῖον κατ ' αὐτοὺς | ||
ἐν αὑτῷ ἡγούμενον ἀξίωμα σημεῖον τοῦ λήγοντος : οὐδὲ γὰρ ἐκκαλυπτικόν ἐστι τοῦ ” φῶς ἔστιν “ τὸ ” ἡμέρα |
οὐκ ἄν προύβη τὰ τῆς ἀποδείξεως . Ὁ γὰρ ἀπὸ Ϟοῦ α ↑ μονάδων τριῶν τετράγωνος γίνεται δυ μία μο | ||
, ὥστε οὐ προβήσεται ἡ ἀπόδειξις . Ἐὰν δὲ ἀπὸ Ϟοῦ ἑνὸς ↑ μο δ πλασθῇ ὁ τετράγωνος , ἡ |
Γρʹ α πεπέρεωϲ ⋖ γ φύλλου ναρδοϲτάχυοϲ ἀνὰ Γρʹ α ϲιλφίου Γρʹ α ϲελίνου ϲπέρματοϲ ⋖ β γλήχωνοϲ ⋖ α | ||
, πηγάνου φύλλων , ἡδυόϲμου χλωροῦ ἀνὰ ⋖ δ , ϲιλφίου ⋖ α , φοινίκων # ε , μέλιτοϲ # |
ἐγγεγράφθω τὸ ΑΒΓΔΕ . λέγω , ὅτι ἡ τοῦ ΑΒΓΔΕ πενταγώνου πλευρὰ δύναται τήν τε τοῦ ἑξαγώνου καὶ τὴν τοῦ | ||
καὶ ἐγγεγράφθω εἰς αὐτὸν τριγώνου μὲν πλευρὰ ἡ ΒΕ , πενταγώνου δὲ ἡ ΓΔ , καὶ ἔστωσαν παράλληλοι , καὶ |
ῥόδων ξηρῶν ἀνὰ ⋖ δ , κιναμώμου ⋖ β , ϲκορδίου ⋖ η , πετροϲελίνου , πολίου ⋖ η , | ||
β : κυκλαμίνου τῆϲ ῥίζηϲ ⋖ α ϲὺν ὑδρομέλιτι : ϲκορδίου ⋖ β ϲὺν μέλιτι : χαμαίπιτυϲ λεανθεῖϲα καὶ ἐν |