δ ' ἀφαιρουμένου τοῦ ΑΒΕ λοιπὸν τὸ ΔΑΕ λοιπῷ τῷ ΑΓΕ ἐστιν ἴσον καί ἐστιν ἐπὶ τῆς αὐτῆς βάσεως .
ἡ ΓΒ πρὸς τὴν ΓΕ : τὸ ἄρα ὑπὸ τῶν ΑΓΕ ἴσον ἐστὶν τῷ ὑπὸ τῆς τῶν ΑΓ ΔΕ ὑπεροχῆς
8066865 ΑΕΖ
δὴ δείξομεν , ὅτι ἴση ἐστὶν ἡ ΑΔΖ περιφέρεια τῇ ΑΕΖ περιφερείᾳ . καὶ τετμήσθω ἡ ΑΖ περιφέρεια δίχα κατὰ
καὶ ἐν ταῖς αὐταῖς παραλλήλοις : τὸ δὲ ΗΕΖ τῷ ΑΕΖ ἴσον : τὸ ἄρα ΑΓΔ τοῦ ΑΕΖ μεῖζόν ἐστιν
7732087 ΓΑΒ
ποιουσῶν πρὸς τῇ ΒΑ γωνίας ἐλαχίστη ἐστὶν ἡ ὑπὸ τῶν ΓΑΒ . διήχθω γὰρ εὐθεῖα ἡ ΔΑΕ , καὶ ἤχθω
τῆς ὑπὸ ΑΔΒ , ὡς ἐδείχθη , ἡ δὲ ὑπὸ ΓΑΒ τῆς ὑπὸ ΔΑΒ , συνεστάτω τῇ μὲν ὑπὸ ΑΓΒ
7646562 ΓΗΖ
τὸ Κ . ἐπεὶ οὖν αἱ μὲν ὑπὸ ΑΖΗ καὶ ΓΗΖ δύο ὀρθῶν εἰσιν ἐλάσσους , αἱ δὲ ὑπὸ ΑΖΗ
τῶν Η , Θ παρὰ τὴν ΑΔ αἱ ΒΘΕ , ΓΗΖ , παρὰ δὲ τὴν ΘΚ διὰ τοῦ Λ ἡ
7623268 ΝΡ
ἐπὶ τὰ Ζ , Ν μέρη , ὁμοία ἐστὶν ἡ ΝΡ περιφέρεια τῇ ΓΣ περιφερείᾳ : ἡ ΝΡ ἄρα τῆς
Μ Ν , καὶ κάθετοι ἤχθωσαν αἱ ΜΞ ΜΟ ΝΠ ΝΡ , καὶ ἐπεζεύχθωσαν αἱ ΜΒ ΝΔ : ἴση ἄρα
7575353 ΑΓΔ
ἐκ τῶν ΑΓ Ε Ζ τρίγωνον συστήσασθαι . συνεστάτω τὸ ΑΓΔ * * * [ καὶ φανερὸν ὅτι εἰ μὲν
τομεὺς τοῦ ΑΓΕ τομέως : μείζονα ἄρα λόγον ἔχει ὁ ΑΓΔ τομεὺς πρὸς τὸ ΑΒΓ τρίγωνον ἤπερ ὁ ΑΓΕ τομεὺς
7524832 ΗΘΖ
ἀπὸ ΗΓ ἐστιν ἴσον , καί ἐστιν ὡς τὸ ὑπὸ ΗΘΖ πρὸς τὸ ἀπὸ ΘΕ , ἡ ὀρθία πρὸς τὴν
καί ἐστιν ὁ τοῦ ΕΘΠ πόλος μεταξὺ τῶν ΒΓ , ΗΘΖ , μείζων ἐστὶν ἡ ΠΥ περιφέρεια τῆς ΥΝΞ περιφερείας
7517366 ΓΔΘ
ΚΑΜ τῷ ὑπὸ ΛΒΝ : ἴσον ἄρα καὶ τὸ ὑπὸ ΓΔΘ τῷ ὑπὸ ΖΔΗ . ὁμοίως δὴ δειχθήσεται , κἂν
πρὸς τὸν ΓΔΚ κῶνον ἢ κύλινδρον . ὡς δὲ ὁ ΓΔΘ κῶνος ἢ κύλινδρος πρὸς τὸν ΓΔΚ κῶνον ἢ κύλινδρον
7500446 ΡΖ
αἵ γε ἀπὸ τοῦ Ρ ὄμματος ἀκτῖνες προσπίπτουσαι κατὰ τὰς ΡΖ , ΡΣ πεσοῦνται . ὥστε ὁρᾶται ὑπὸ μὲν τῆς
ΡΖ , ΖΚ , ΡΣ , ΣΚ . οὐκοῦν αἱ ΡΖ , ΡΣ καθ ' ἓν ἐφάπτονται τῆς σφαίρας .
7474528 ΒΖΔ
ΖΔΜ ὀρθογώνιον κύκλος τξ : ὥστε καὶ ἡ μὲν ὑπὸ ΒΖΔ γωνία τοιούτων ἐστὶν β μδ , οἵων αἱ β
εἰσὶν αἱ ΒΖ , ΖΔ περιέχουσαι ἀμβλεῖαν , ἡ ὑπὸ ΒΖΔ ἄρα γωνία ἡ λείπουσά ἐστιν εἰς τὰς δύο ὀρθὰς
7471458 ΒΠ
ΕΠ δυνάμεων νδ : περιέχεται γὰρ ὑπὸ τῶν ΕΒ , ΒΠ οὔσης τῆς ΕΒ θ , τῆς δὲ ΒΠ Ϛ
ἡ μὲν ΒΛ τῇ ΛΔ ἐστιν ἴση , ἡ δὲ ΒΠ τῇ ΠΔ . ἐπεὶ οὖν ἴση ἐστὶν ἡ ΑΕΚ
7411365 ΕΗΓ
κατὰ τὰ Ε , Γ σημεῖα , καί ἐστιν ἡ ΕΗΓ γραμμὴ ἐπὶ τῆς τοῦ κυλίνδρου ἐπιφανείας , ἡ ΕΘΓ
, ΖΔ γραμμάς . λέγω , ὅτι καὶ ἑκατέρα τῶν ΕΗΓ , ΔΖ γραμμῶν εὐθεῖά ἐστιν . εἰ γὰρ δυνατόν
7372724 ΑΒΔ
: τὸ Ζ ἄρα σημεῖον ἐντὸς ἔσται τῶν ἀσυμπτώτων τῆς ΑΒΔ τομῆς . καί ἐστιν αὐτῆς ἀντικειμένη ἡ ΓΕ :
κύκλου , διὰ δὲ τοῦ Β εὐθεῖά τις ἦκται ἡ ΑΒΔ , ἡ ΑΒΔ ἄρα διάμετρός ἐστι τοῦ ΑΕΖ κύκλου
7364057 ΡΘ
, ΘΣ ἐστι μείζων , μείζων ἄρα ἐστὶ καὶ ἡ ΡΘ περιφέρεια τῆς ΘΣ περιφερείας . ἀλλ ' ἡ μὲν
διαμέτρου τῆς ἀπὸ τοῦ Ρ τμῆμα κύκλου ὀρθὸν ἐφέσταται τὸ ΡΘ καὶ τὸ τούτῳ συνεχές , καὶ ἀπείληπται περιφέρεια ἡ
7363717 ΧΩ
ΨΧ πρὸς τὴν ΧΠ , οὕτως ἡ ΠΧ πρὸς τὴν ΧΩ . καὶ διὰ τοῦτο πάλιν ἐὰν ἐπιζεύξωμεν τὴν ΠΨ
καὶ ἀπὸ περισπωμένων : ἰαχήσω , στεναχήσω . Τὰ εἰς ΧΩ ὑπερδισύλλαβα φύσει βραχείᾳ παραληγόμενα , ἢ παρ ' ὄνομα
7359754 ΣΒ
τῷ ΖΜΞ τριγώνῳ : ἔστιν ἄρα ὡς ἡ ΣΚ πρὸς ΣΒ , οὕτως ἡ ΞΜ πρὸς ΞΖ . ἀλλὰ μὴν
, ὡς ἡ ΛΣ πρὸς τὴν ΝΞ , οὕτως ἡ ΣΒ πρὸς τὴν ΞΖ . ἐδείχθη δὲ καὶ ὡς ἡ
7348031 ΨΣ
: δοθεῖσα ἄρα καὶ ἡ ΨΚ . ἀλλὰ καὶ ἡ ΨΣ δοθεῖσά ἐστιν , ἐπεὶ καὶ ὡς ἡ ΦΚ πρὸς
τῷ ΡΣ κύκλῳ : ἴση ἄρα ἐστὶν ἡ ΠΩ τῇ ΨΣ περιφερείᾳ . ἐπεὶ δὲ ἀσύμπτωτόν ἐστι τὸ ἀπὸ τοῦ
7343237 ἐρυσιπελατωδεις
ἐμβροχῶν χρήσεως . ἔτι καταχρίομεν τὰς πυρώδεις φλεγμονὰς καὶ τὰς ἐρυσιπελατώδεις , ἐρεθιζομένας ὑπό τε τῶν καταπλασμάτων καὶ τῶν ἐμβροχῶν
εἰ δ ' ἀγανακτοίη πρὸς τὰς θερμασίας ἡ φλεγμονὴ διαθέσεις ἐρυσιπελατώδεις ἔχουσα , τούτων μὲν τῶν καταπλασμάτων ἀποχωρεῖν προσήκει ,
7308497 ΑΗΒΖ
κύκλος ὁ ΑΕΒ κύκλον τινὰ τῶν ἐν τῇ σφαίρᾳ τὸν ΑΗΒΖ διὰ τῶν πόλων τέμνει , δίχα τε αὐτὸν τεμεῖ
ΕΛ ἑκατέρα τῶν ΑΒ , ΗΖ οὖσα ἐν τῷ τοῦ ΑΗΒΖ κύκλου ἐπιπέδῳ : ἡ ΕΛ ἄρα ὀρθή ἐστι πρὸς
7281295 ΞΝ
, τεταγμένως δὲ ἐπ ' αὐτὴν κατηγμέναι αἱ ΚΛ , ΞΝ , ΗΖ : ἔσται οὖν , ὡς ἡ ΑΒ
, ΜΛ . καί ἐστι τὰ ἀπὸ τῶν ΚΞ , ΞΝ μείζονα τῶν ἀπὸ τῶν ΚΜ , ΜΛ : ἡ
7280865 ΓΧ
καὶ τῆς ἀπολαμβανομένης ὑπὸ τῆς παραλλήλου ἴσον ἔσται τῷ ἀπὸ ΓΧ . διὰ δὲ τοῦτό ἐστιν , ὡς ἡ ΤΧ
τοῦ Χ πρὸς ὁποιανοῦν τῶν τομῶν προσπιπτέτω τις εὐθεῖα ἡ ΓΧ , καὶ τῇ ΓΧ παράλληλος ἤχθω τέμνουσα τὰς ἐφεξῆς
7258117 Πυτια
δυνάμεως γὰρ ἐπισπαστικῆς τε καὶ διαφορητικῆς ἐστιν ἡ ζύμη . Πυτία πᾶσα δριμείας ἐστὶ καὶ λεπτυντικῆς καὶ διαφορητικῆς δυνάμεως καὶ
ἀμυγδάλαιϲ πικραῖϲ ἀνάγει μὲν μᾶλλον , ἧττον δὲ πέττει . Πυτία Γαληνοῦ . Πυτία πᾶϲα δριμείαϲ ἐϲτὶ καὶ λεπτυντικῆϲ καὶ
7241328 ΑΠΟ
τὰς χρείας : ὠφείλεις δὲ ἐννοεῖν . ΑΔΙΑΠΤΩΤΟΝ ΚΡΟΚΟΝ ΠΟΙΗΣΑΙ ΑΠΟ ΧΩΝΗΣ . Λαβὼν ἀρσενίκου σχιστοῦ μέρη δʹ , σανδαράχης
ΤΩΝ ] ΕΜΠΡΟΣΘΕΝ ? ? [ ] Η [ Δ ΑΠΟ ΒΡΑΧΕΙΑΣ ] ΑΡΧΟΜΕΝΗ ΤΕΤΡΑΧΡΟΝΟΣ [ [ ΛΕΞΙΣ ] ΟΙΚΕΙΑ
7238551 ΕΗΔ
ἡμικυκλίου . ἀλλ ' ὑπὸ τῶν Β , Γ τὸ ΕΗΔ βλέπεται . μεῖζον ἄρα ἢ τὸ ἥμισυ ὀφθήσεται τοῦ
αἱ πρὸ τῆς Ν ἀνατολῆς μείζονές εἰσιν τῶν ἐν τῷ ΕΗΔ ἡμικυκλίῳ ἡμερῶν τῶν μετὰ τὴν Π δύσιν , νύκτες
7230603 ΚΖΛ
τῷ ΚΖΛ . καὶ φανερόν , ὅτι ἴσον γίνεται τὸ ΚΖΛ τρίγωνον τῷ ΜΗΚΔ τετραπλεύρῳ . Τῶν αὐτῶν ὑποκειμένων ἐὰν
ΑΒ ἡ ΕΜ . ἐπεὶ οὖν ἴσον ἐστὶ τὸ ὑπὸ ΚΖΛ τῷ ἀπὸ ΑΖ , ἔστιν , ὡς ἡ ΚΖ
7211714 ΗΖΘ
ἡ ΕΚ ἄρα τεταρτημορίου ἐστίν : ἰσημερινὸς ἄρα ἐστὶν ὁ ΗΖΘ . καὶ ἐπεὶ αἱ ΕΚ , ΚΛ ἴσον ἀπέχουσι
ὑπὸ ΚΖΔ ἴση τῇ ὑπὸ ΗΖΘ : καὶ ἡ ὑπὸ ΗΖΘ ἄρα ἴση ἐστὶ τῇ ὑπὸ ΗΘΖ . ἴση ἄρα
7211316 ΗΕΖ
τῇ ΟΛ καὶ τὸ τρίγωνον τῷ τριγώνῳ καὶ ἡ ὑπὸ ΗΕΖ ἴση τῇ ὑπὸ ΛΟΝ . ἐπεὶ οὖν εὐθειῶν τῶν
ὑπὸ ΘΕΖ ἴση ἐστίν . ὀρθὴ ἄρα ἑκατέρα τῶν ὑπὸ ΗΕΖ , ΘΕΖ γωνιῶν . ἡ ΖΕ ἄρα πρὸς τὴν
7209112 Δισκου
Δίσκου μεγίστου τάρροθος . οὐκ ἄλλη δὲ τῶν Νηρηίδων τοῦ Δίσκου ἤτοι τοῦ λίθου δηλονότι τοῦ Διὸς γέγονε βοηθός ,
μνίοις δὲ καὶ βρύοις σαπρὸν κρύψει κατοικτίσασα Νησαίας κάσις , Δίσκου μεγίστου τάρροθος Κυναιθέως . τύμβος δὲ γείτων ὄρτυγος πετρουμένης
7203460 ὁμογνωμων
ἐπιτήδειος , γνώριμος , προσηταιρισμένος , οἰκεῖος , ᾠκειωμένος , ὁμογνώμων , ὁμοήθης , ὁμότροπος , ὁμόσιτος , ὁμοτράπεζος ,
. τῷ μὲν οὖν πρώτῳ χρόνῳ ὁ Κριτίας τῷ Θηραμένει ὁμογνώμων τε καὶ φίλος ἦν : ἐπεὶ δὲ αὐτὸς μὲν
7200002 ΑΣ
ἐπεὶ ἴσον ἐστὶ τὸ ἀπὸ τῆς ΑΟ τῷ ἀπὸ τῆς ΑΣ , ἴσον δέ ἐστι τὸ ἀπὸ τῆς ΑΟ τοῖς
περιέχει τὰ εἰς Ξ καὶ εἰς Ρ καὶ τὰ εἰς ΑΣ . Τὸ δὲ τρίτον τὴν εἰς ΗΣ κατάληξιν .
7186748 Δυσεντεριη
κατὰ φλέβας ἐς κοιλίην ῥαγέντος τοῦ ὕδατος , λύσις . Δυσεντερίη ἀκαίρως ἐπιστᾶσα ἀπόστασιν ἐν πλευροῖσιν , ἢ σπλάγχνοισιν ,
, ἐπὶ φλογώδεσιν ἐξερύθροισι χρώμασι λυόμενα , ἐλπὶς ἐκμανῆναι . Δυσεντερίη σπληνώδεσι μὴ μακρὴ , χρήσιμον , μακρὴ δὲ ,
7180473 ΕΒΗ
τετραγώνοις , ὧν τὸ ὑπὸ ΖΒΔ ἴσον ἐστὶν τῷ ὑπὸ ΕΒΗ , λοιπὸν ἄρα τὸ ὑπὸ ΒΖΔ ἴσον ἐστὶν τῷ
. ἀλλὰ ἡ ὑπὸ ΑΒΖ γωνία ἴση ἐστὶν τῇ ὑπὸ ΕΒΗ , ἡ δὲ Γ τῇ Δ ἐναλλὰξ ἴση ἐστίν
7159021 ΤΦ
γωνία τῇ ἐναλλὰξ ὑπὸ ΡΠΤ ἴση . ἐὰν δὲ ἡ ΤΦ παράλληλος ᾖ τῇ ΡΠ , διὰ τὰς ἴσας ἐναλλὰξ
οὕτως ὁ ἀπὸ τοῦ ΡΦ παραλληλογράμμου κύλινδρος περὶ ἄξονα τὸν ΤΦ πρὸς τὸν ἀπὸ τοῦ ΞΦ παραλληλογράμμου κύλινδρον περὶ τὸν
7157643 μακα
] ς γὰρ τάδεσαμ ? [ [ ] ! φος μακα ! ! ! ! [ [ πάροιθεν ] βαρυνωι
! [ . . . . . . [ ] μακα ! [ [ ] ὅ ! ' εσδαλ [
7156402 ΑΤ
, ἔστιν ὡς ἡ ΑΣ πρὸς ΣΓ , οὕτως ἡ ΑΤ πρὸς ΤΞ , καὶ ὡς ἡ ΑΣ πρὸς ΣΒ
, ὁ δὲ τῆς ΑΤ πρὸς ΤΞ μετὰ τοῦ τῆς ΑΤ πρὸς ΤΟ ὁ τοῦ ἀπὸ ΑΤ πρὸς τὸ ὑπὸ
7144039 διαφορητικη
λάβῃ ἔλαιον , γίνεται διαφορητικώτερον . Ἡ δι ' ἀσπίδων διαφορητικὴ χοιράδων καὶ τῶν λοιπῶν σκληριῶν , ποιεῖ καὶ πρὸς
τὴν εἰρημένην αἰτίαν . ἡ δὲ διὰ τῆς σκάφης αἰώρα διαφορητικὴ μὲν εἶναι δύναται τῶν παχυμερῶν σωμάτων , τοῦ δὲ
7121698 ΔΠ
ὥστε καὶ ὡς ἡ ΑΞ πρὸς ΞΗ , οὕτως ἡ ΔΠ πρὸς ΠΘ . ἐπεζεύχθωσαν αἱ ΑΜ ΔΝ . ἀλλ
, οὕτως ἡ ΑΜ πρὸς ΜΣ , ὡς δὲ ἡ ΔΠ πρὸς ΠΘ , οὕτως ἡ ΔΝ πρὸς ΝΤ :
7116215 σκληρυνομενας
καὶ ἐπίβαλλε τὰ τηκτὰ καὶ χρῶ πρὸς πάσας φλεγμονὰς τὰς σκληρυνομένας . Ποιεῖ πρὸς φλεγμονάς , παρατρίμματα , ἐξανθήματα ,
τὰς τῶν μαστῶν φλεγμονὰς , Φιλουμένου ληʹ . Πρὸς τὰς σκληρυνομένας φλεγμονὰς μαστῶν , Φιλουμένου λθʹ . Περὶ ἀποστήματος ἐν
7110116 ΟΚ
ΔΟ τοῦ ὑπὸ τῶν ΘΟΚ , ἀνάλογον ἡ Λ πρὸς ΟΚ ἐλάσσονα λόγον ἔχει ἤπερ ἡ ΘΟ πρὸς ΟΔ .
περιφέρεια πρὸς τὴν ΞΟΠ . Καταληφθήσεται δὲ καὶ ἡ μὲν ΟΚ τοῦ μεσημβρινοῦ διάστασις , τουτέστιν ἡ ἀπὸ τοῦ διὰ
7105057 ΕΠΕΙ
ἤγουν αὐθαίρετοι : λεληθότως γὰρ ἐπέρχεται τὰ κακά . . ΕΠΕΙ ΦΩΝΗΝ . Ἀθετεῖται δὲ ὁ στίχος ὁ λέγων ,
ποιοῦντες τὴν μετὰ τῶν σωμάτων αὐτῶν ζωήν . . ΑΥΤΑΡ ΕΠΕΙ ΚΕΝ . Ἐπειδὴ δέ . Τὸ ΚΕ δὲ μακρὸν
7103456 ΟΤ
ΤΠ . ἐπεὶ οὖν τὸ ἀπὸ ΟΕ πρὸς τὸ ἀπὸ ΟΤ μείζονα λόγον ἔχει ἤπερ τὸ ἀπὸ ΕΠ πρὸς τὸ
ἡμέρας χρόνῳ τὸ μὲν Κ ἀρξάμενον ἀπὸ τοῦ Ο τὴν ΟΤ περιφέρειαν διελθὸν ἐπὶ τὸ Τ παραγίγνεται , τὸ δὲ
7097732 ΑΗΘ
δύο ὀρθαῖς ἴσαι εἰσίν , εἰσὶ δὲ καὶ αἱ ὑπὸ ΑΗΘ , ΒΗΘ δυσὶν ὀρθαῖς ἴσαι , αἱ ἄρα ὑπὸ
κοινὴ ἀφῃρήσθω ἡ ὑπὸ ΒΗΘ : λοιπὴ ἄρα ἡ ὑπὸ ΑΗΘ λοιπῇ τῇ ὑπὸ ΗΘΔ ἐστιν ἴση : καί εἰσιν
7096346 ἐγχεομενος
. ἀγαθὸν δὲ καὶ ὁ τοῦ ἄλικος χυλὸς ἢ πτισάνης ἐγχεόμενος , καὶ τὸ ῥόδινον καθ ' αὑτὸ καὶ μετὰ
χλιαρὸς ἐγχυματιζόμενος τοῖς ῥώθωσιν , ἢ καλαμίνθης χυλὸς ὁμοίως χλιαρὸς ἐγχεόμενος , ἢ σμύρνα λειωθεῖσα σὺν γάλακτι γυναικείῳ καὶ ἐγχεομένη
7091002 ΕΑΒ
ὡς συναμφότερος ἡ ΕΛΒ πρὸς ΒΛ , οὕτως συναμφότερος ἡ ΕΑΒ πρὸς ΒΑ , καὶ ἐναλλάξ : μείζων δὲ συναμφότερος
ἔχει ἢ πρὸς τὸ ΑΒΓ τρίγωνον : πολλῷ ἄρα ὁ ΕΑΒ τομεὺς πρὸς τὸν ΒΑΗ τομέα μείζονα λόγον ἔχει ἢ
7088802 αεʹ
: ὥστε καὶ τὴν αεʹ : τοῦ ἄρα ἡλίου τὴν αεʹ περιφέρειαν διαπορευομένου ἐν τῷ ὑπὸ γῆν , τὸ βʹ
ἐν τῷ ὑπὸ γῆν αὐτὴν διελεύσεται : ὥστε καὶ τὴν αεʹ : τοῦ ἄρα ἡλίου τὴν αεʹ περιφέρειαν διαπορευομένου ἐν
7085116 εὐπαιδευσια
ἡ παρὰ Ξενοφῶντι εὐποδία , καὶ ἡ παρ ' Εὐριπίδῃ εὐπαιδευσία , καὶ ἡ παρὰ Κριτίᾳ εὐξυνεσία , καὶ ἡ
ἀστύτριψ . καὶ ἡ παρ ' Εὐριπίδηι [ . ] εὐπαιδευσία καὶ ἡ παρὰ Κίαι εὐξυνεσία . . . οὐ
7081113 τριγραμμον
ὁ ΕΑΒ τομεὺς πρὸς τὸν ΑΗΒ τομέα ἤπερ τὸ ΔΑΒ τρίγραμμον πρὸς τὸν ΑΗΒ τομέα . τὸ δὲ ΔΑΒ τρίγραμμον
ΑΗΒ τομέα , ὁ ἄρα ΔΘΕ τομεὺς πρὸς τὸ ΔΕΚ τρίγραμμον μείζονα λόγον ἔχει ἤπερ ὁ αὐτὸς τομεὺς πρὸς τὸν
7079467 ΔΜΕ
πρὸς τὸ ὑπὸ ΞΜΕ . καὶ ὡς ἄρα τὸ ὑπὸ ΔΜΕ πρὸς τὸ ὑπὸ ΠΜΡ , οὕτως τὸ ὑπὸ ΔΜΕ
. τὸ ἄρα ὑπὸ τῶν ΝΜΞ ἴσον ἐστὶ τῷ ὑπὸ ΔΜΕ . ἔστιν ἄρα ὡς ἡ ΜΝ πρὸς ΜΔ ,
7072973 ρογ
καὶ ὡρῶν ἰσημερινῶν ιγ ∠ ʹ δʹ , μοιρῶν δὲ ρογ λειπουσῶν τὸ ὄγδοον μέρος μιᾶς μοίρας . τὴν δὲ
μζ λϚ , ἡ δὲ ἐπ ' αὐτῆς περιφέρεια τοιούτων ρογ ιζ ἔγγιστα , οἵων ἐστὶν ὁ περὶ τὸ ΔΚΝ
7072282 ΠΜΡ
τὸ ὑπὸ ΠΜΡ τῷ ὑπὸ ΞΜΕ . τὸ δὲ ὑπὸ ΠΜΡ ἴσον ἐδείχθη τῷ ἀπὸ τῆς ΛΜ : καὶ τὸ
ἄρα ὡς τὸ ὑπὸ τῶν ΕΜΔ πρὸς τὸ ὑπὸ τῶν ΠΜΡ , οὕτως ἡ ΔΕ πρὸς τὴν ΕΘ , τουτέστιν
7057688 ΒΔΓ
ἴση ἡ ΔΕ , τῇ δὲ ΓΖ ἡ ΖΗ τῆς ΒΔΓ περιφερείας κατὰ τὸ Δ δίχα τετμημένης . λέγω ,
ΒΑΓ . ἀλλὰ τῆς ὑπὸ ΓΕΒ μείζων ἐδείχθη ἡ ὑπὸ ΒΔΓ : πολλῷ ἄρα ἡ ὑπὸ ΒΔΓ μείζων ἐστὶ τῆς
7050664 ΓΝ
τῆς αὐτῆς βάσεως τῆς ΑΒ στερεὰ παραλληλεπίπεδα τὰ ΓΜ , ΓΝ ὑπὸ τὸ αὐτὸ ὕψος , ὧν αἱ ἐφεστῶσαι αἱ
ὧν αὐτὸ ἔσται βαρύτατον , τὰ ΑΒ καὶ ΒΓ καὶ ΓΝ . Ὅτι μὲν οὖν παρακειμένης τοῖς διεζευγμένοις τελείοις συστήμασι
7050071 ΒΗΕ
δὲ τὸ Β , ὄψεις δὲ ἀνακλώμεναι αἱ ΒΖΔ , ΒΗΕ . λέγω , ὅτι αἱ ΖΔ , ΕΗ οὔτε
ὑπὸ ΔΗΕ γωνίᾳ . ὀρθὴ ἄρα ἐστὶν ἑκατέρα τῶν ὑπὸ ΒΗΕ , ΔΗΕ γωνιῶν : ἡ ΕΗ ἄρα τῇ ΒΔ
7045537 ΠΟΛΥ
ΕΛΑΒΕ ] ΜΟΝΟ [ ΔΑΚΤΥΛΙΚΩΙ ] ΣΠΑ [ ΕΠΙ ] ΠΟΛΥ [ ] [ ] ! [ ] Σ ?
τὸ ἀργύριον τῆς γῆς γενεαλογεῖ . . ΔΕΥΤΕΡΟΝ ΑΥΤΕ ΓΕΝΟΣ ΠΟΛΥ ΧΕΙΡΟΤΕΡΟΝ . Γένους τοῦ χρυσοῦ πολὺ χειρότερον , ἤγουν
7037586 Βιθυνοπολις
Βιθυνιαπολίτης παρὰ Ἀρριανῷ ἐν πέμπτῳ Βιθυνικῶν . δεῖ δὲ τοῦ Βιθυνόπολις εἶναι Βιθυνοπολίτης . . . , . , .
Βιθυνιαπολίτης παρὰ Ἀρριανῶι ἐν ε Βιθυνιακῶν . δεῖ δὲ τοῦ Βιθυνόπολις εἶναι Βιθυνοπολίτης . . . . Μεγαρικόν : πολίχνιον
7037343 ΕΘΠΟ
ΑΒΓ τρίγωνον πρὸς τὸ ΔΕΖ τρίγωνον , οὕτως τὸ τοῦ ΕΘΠΟ στερεοῦ ὕψος πρὸς τὸ τοῦ ΒΗΜΛ στερεοῦ ὕψος .
τοῦ καθ ' ἑαυτὸ παραλληλογράμμου . ἀλλὰ τὸ μὲν τοῦ ΕΘΠΟ . , ] ἰσουψεῖς γάρ εἰσιν . ἀλλ '
7037284 ΤΟΙ
[ ] Σ ? ΕΠΕΙ [ ] ΛΟΓΟΝ [ ] ΤΟΙ ? [ ] ΟΥΝ [ ] Υ ! [
ὕλης χαρακτηρίζει τὸ γένος . . ΕΙ ΔΕ ΘΕΛΕΙΣ ἙΤΕΡΟΝ ΤΟΙ ΕΓΩ ΛΟΓΟΝ . Τὸ σχῆμα προκατάστασις , καὶ προκατασκευὴ
7032019 Δραγγιανης
ἐκτρέπεται μικρὸν ἀπὸ τῆς Ἀρίας πρὸς νότον εἰς Προφθασίαν τῆς Δραγγιανῆς : εἶτα πάλιν ἡ λοιπὴ μέχρι τῶν ὅρων τῆς
Σηρικῆς . [ Πίναξ ἔννατος ] Ἀρείας , Παροπανισαδῶν , Δραγγιανῆς , Ἀραχωσίας , Γεδρωσίας . [ Γίνονται ἐπαρχίαι κα
7026969 ΒΣΓ
πρὸς ΣΒ ὁ τοῦ ἀπὸ ΑΣ ἐστι πρὸς τὸ ὑπὸ ΒΣΓ , ὁ δὲ τῆς ΑΤ πρὸς ΤΞ μετὰ τοῦ
: ἔστιν ἄρα ὡς τὸ ἀπὸ ΑΣ πρὸς τὸ ὑπὸ ΒΣΓ , οὕτως τὸ ἀπὸ ΑΤ πρὸς τὸ ὑπὸ ΞΤΟ
7025341 ΑΛΛ
τοῦ σώματος ὅμοιον , οὔτε κατὰ τὴν γνώμην . . ΑΛΛ ' ἙΚΑΤΟΝ ΜΕΝ ΠΑΙΣ . Ὀρθῶς τοῦ κακοῦ βίου
λογογράφοις ἐφεῖται τῷ γένει χρῆσθαι ἀντὶ τοῦ εἴδους . . ΑΛΛ ' ΕΠΙ ΓΑΙΑΝ . ἀντὶ τοῦ κατὰ τὴν γῆν
7024527 ΒΘΚ
ΚΘ περιφερειῶν τοιούτων ἐστὶν Ϙ , οἵων ὁ περὶ τὸ ΒΘΚ ὀρθογώνιον κύκλος τξ . καὶ τῶν ὑπ ' αὐτὰς
τῷ ἀπὸ τῆς ΑΜ . διὰ γὰρ τὴν ὁμοιότητα τῶν ΒΘΚ ΖΛΓ τριγώνων ἐστὶν ὡς ἡ ΒΚ πρὸς ΚΘ ,
7019924 ἰασπιδος
πλάκα σαπφείροιο ἐξεδάη περὶ κόλπον Ἐρυθραίων Ἀριηνῶν . τῆς βαθυχλοιάοντος ἰάσπιδος ἢ ἀμεθύστου πορφυρόεντος ἄγαλμα , μελαγκράτης θ ' ὑάκινθος
σαρδίῳ , πη δὲ τῷ σμαράγδῳ , καὶ τοῦ μὲν ἰάσπιδος τὸ ὑελῶδες ἔχει , τοῦ δὲ σαρδίου τὸ αἱματῶδες
7018626 ἀκονη
. ἐστὶ δὲ καὶ γένος λίθου φάγρος . ἡ γὰρ ἀκόνη κατὰ Κρῆτας φάγρος , ὥς φησι Σιμίας . χάνναι
. ὃ δοκῶ περὶ τῶν ἀνδρῶν , τοῦτό μοι ἡ ἀκόνη ἡ παροξύνουσα καὶ παρορμῶσα . δόξαν ἔχω ἕως ἔτικτεν
7018029 ὀλομενον
αἱμάτων ; τάλαιν ' ἐγὼ τάλαινα , πότερον ἄρα νέκυν ὀλόμενον ἀχήσω ; φεῦ δᾶ φεῦ δᾶ , δίδυμοι θῆρες
ἄστυ καὶ καλλίβωλον Ἴδας ὄρος ἱερόν , ὥς ς ' ὀλόμενον στένω [ ἁρμάτειον ἁρμάτειον μέλος ] βαρβάρωι βοᾶι †
7012067 ΕΠ
ὀρθὴ πρὸς τὸ αὐτὸ ἐπίπεδον ἀντὶ τῆς ἰσημερινῆς διαμέτρου ἡ ΕΠ . ὅτι μὲν οὖν ὀρθῆς οὔσης καὶ τῆς ΛΜ
. καὶ ἔστιν τὸ μὲν ἀπὸ ΕΟ ἴσον τοῖς ἀπὸ ΕΠ ΠΟ , τὸ δὲ ἀπὸ ΤΟ τοῖς ἀπὸ ΤΠ
7009011 αἱμοπτοϊκους
κοχλιάρια βʹ , δυσεντερικούς τε καὶ κοιλιακοὺς καὶ ἰκτερικοὺς καὶ αἱμοπτοϊκοὺς ὠφελεῖ . σὺν δὲ γάλακτι γυναικείῳ ἀρρενοτόκῳ καὶ ὀφθαλμῶν
δὲ τὴν κάτω βλέπουσαν καρδίαν ὑποκλείσῃς , ἔσται φυλακτήριον πρὸς αἱμοπτοϊκοὺς καὶ τὰς ἐκ ῥινῶν αἱμορραγίας , καὶ ὅσα πάθη
7008149 ΗΘΓ
ἐπαφὰς τῶν κυρτῶν ἐπιφανειῶν , διὰ τὸ τὰς ΕΖΒ καὶ ΗΘΓ καθέτους γίνεσθαι καὶ πρὸς αὐτήν . ἐφαρμόσαντες δὴ τῇ
πλευραὶ ἀνάλογόν εἰσιν : ἰσογώνιον ἄρα τὸ ΕΒΓ τρίγωνον τῷ ΗΘΓ τριγώνῳ : ἴσαι ἄρα εἰσὶν αἱ ὑπὸ ΑΓΕ ΗΓΘ
7007782 ηζθʹ
ἐφέστηκεν τὸ ηζθʹ , καὶ ἡ τοῦ ἐφεστῶτος τμήματος τοῦ ηζθʹ περιφέρεια εἰς ἄνισα τέτμηται κατὰ τὸ ζʹ σημεῖον ,
Ἐπεζεύχθωσαν γὰρ αἱ αβʹ γδʹ κμʹ λνʹ : ἐπεὶ ὁ ηζθʹ κύκλος τοὺς αβʹ γδʹ αβδγʹ κύκλους διὰ τῶν πόλων
7007158 συζυγης
δέδοται τῷ μεγέθει . δῆλον δ ' ὅτι καὶ ἡ συζυγὴς αὐτῇ : δέδοται γὰρ ὁ τῆς ΕΖ πλαγίας πρὸς
οὖσα καὶ τὸν τῆς ὕλης λόγον ἀναδεδεγμένη , καὶ ἐπεὶ συζυγὴς οὖσα τῇ μονάδι δι ' ἐκείνην ἐκωλύθη τῆς εἰρημένης
7006323 ἐκβληθεισων
καὶ ἔστω ὀρθὴ ἡ ὑπὸ ΒΔΜ , τῶν ΗΓ ΜΔ ἐκβληθεισῶν καὶ συμπιπτουσῶν κατὰ τὸ Ν . ἐπεὶ οὖν τὸ
συμπτώσεως , τὸ δὲ ΔΕ ἐκτὸς τῆς συμπτώσεως . οὐκοῦν ἐκβληθεισῶν τῶν ὄψεων καθάπερ ἐν τοῖς ἐπιπέδοις καὶ κυρτοῖς ἐνόπτροις
6999379 ΕΣΤΙ
οἱ Στωϊκοὶ Διὸς νοῦν προσηγορεύκασι , . ΟΥΤΩΣ ΟΥΤΙ ΠΟΥ ΕΣΤΙ . Τὸ σχῆμα ἐπιλογικὸν καὶ συμπερασματικώτατον : κατὰ δὲ
. . ἙΚΤΗ Δ ' Ἡ ΜΕΣΣΗ ΜΑΛ ' ΑΣΥΜΦΟΡΟΣ ΕΣΤΙ ΦΥΤΟΙΣΙΝ . Ἡ ἑκκαιδεκάτη μετέχει ψυχρότητος : τότε γὰρ
6996764 ΒΗΜΛ
, οὕτως τὸ τοῦ ΕΘΠΟ στερεοῦ ὕψος πρὸς τὸ τοῦ ΒΗΜΛ στερεοῦ ὕψος . ἀλλὰ τὸ μὲν τοῦ ΕΘΠΟ στερεοῦ
ἐπιπέδων ἴσων τὸ πλῆθος περιέχεται . ὅμοιον ἄρα ἐστὶ τὸ ΒΗΜΛ στερεὸν τῷ ΕΘΠΟ στερεῷ . τὰ δὲ ὅμοια στερεὰ
6995132 ΠΛΡ
ὑπὸ ΚΘΟ , συνεστάτω τῇ ὑπὸ ΚΘΟ ἴση ἡ ὑπὸ ΠΛΡ . ἡ ἄρα ΠΛ κάθετός ἐστιν ἰσοπλεύρου τριγώνου ,
Λ σημείων παράλληλοι κύκλοι γεγράφθωσαν οἱ ΜΘΝ , ΞΚΟ , ΠΛΡ . λέγω , ὅτι μείζων ἐστὶν ἡ ΠΞ περιφέρεια
6994952 ΓΕΔ
Ξ τῇ πρὸς τῷ Ε , περιεχομένῃ δὲ ὑπὸ τῶν ΓΕΔ , ἐλάσσων ἄρα φανήσεται ἡ ΓΔ τῆς ΗΘ .
τῇ ὑπὸ ΔΗΓ , καὶ συναμφότεραι ἄρα ἥ τε ὑπὸ ΓΕΔ καὶ ἡ ὑπὸ ΓΗΒ ἴσαι εἰσὶν τῇ ὑπὸ ΔΕΖ
6994585 Μυρικη
δευτέραν τάξιν , θερμότητα δ ' οὐδεμίαν ἐπιφανῆ κέκτηται . Μυρίκη τμητικῆς ἐστι καὶ ῥυπτικῆς δυνάμεως ἄνευ τοῦ ξηραίνειν ἐπιφανῶς
νῆσοι δύο . . . . πδ β ∠ ʹ Μυρίκη νῆσος . . . πε ∠ ʹ α Τὸ
6993825 ΒΓΔ
τὸ ΒΓ διὰ παντὸς φαίνεται τοῦ ὄμματος μεθισταμένου ἐπὶ τῆς ΒΓΔ περιφερείας . μγʹ . Ἔστι τις τόπος , οὗ
τῇ ὑπὸ ΒΓΖ . δύο δὴ τρίπλευρά ἐστιν τό τε ΒΓΔ καὶ τὸ ΒΓΖ τὰς δύο πλευρὰς ταῖς δυσὶ πλευραῖς
6988841 ΘΑΗ
διὰ τοῦ Α κέντρου ἤχθω κάθετος ἐπὶ τὴν ΖΗ ἡ ΘΑΗ , καὶ διὰ τῆς ΘΑ καὶ τοῦ ἄξονος ἐκβεβλήσθω
περιφέρεια μοιρῶν ἐστιν λ , εἴη ἂν καὶ ἡ ὑπὸ ΘΑΗ γωνία , οἵων μέν εἰσιν αἱ δ ὀρθαὶ τξ
6985634 ΤΞ
ἡ μὲν ΘΥ τῆς ΥΤ , ἡ δὲ ΥΤ τῆς ΤΞ , καὶ τῶν παραλλήλων ἄρα τῷ μεγίστῳ αἱ περιφέρειαι
ἄρα ἴσον ἐστὶ τῷ ΝΣ . ἀλλὰ τὸ ΤΥ τῷ ΤΞ ἐστιν ἴσον , κοινὸν δὲ τὸ ΤΣ : ὅλον
6985487 ἐσχεθον
ἀμύμονος ἀντιθέοιο δῆσαν ἐπισταμένως , ἐπαοιδῇ δ ' αἷμα κελαινὸν ἔσχεθον , αἶψα δ ' ἵκοντο φίλου πρὸς δώματα πατρός
ὤρνυντ ' , ἰθύνειν λελιημένοι . ἀλλ ' ἄρα τούσγε ἔσχεθον , Ἀγκαίῳ δὲ πολεῖς ᾔνησαν ἑταίρων . Ἠῷοι δἤπειτα
6982062 ΕΑΖ
τουτέστιν ἡ φαινομένη τοῦ ζῳδιακοῦ περιφέρεια , καὶ ἡ ὑπὸ ΕΑΖ , τουτέστιν ἡ ΕΖ τοῦ ἐπικύκλου περιφέρεια . πάλιν
ΕΔ ΔΓ ΓΒ ΒΖ , καὶ τὸ δὶς ὑπὸ τῶν ΕΑΖ ἄρα ἴσον ἐστὶν τῷ δὶς ὑπὸ τῶν ΕΔΓ μετὰ
6980590 ἰϲχιαδικουϲ
Τροχίϲκοϲ . οὐ μόνον τοὺϲ ἡμικρανικοὺϲ ὠφελῶν ἀλλὰ καὶ τοὺϲ ἰϲχιαδικούϲ . θαψίαϲ ⋖ γ εὐφορβίου ⋖ δ ὀποῦ Μηδικοῦ
Τροχίϲκοϲ . οὐ μόνον τοὺϲ ἡμικρανικοὺϲ ὠφελῶν ἀλλὰ καὶ τοὺϲ ἰϲχιαδικούϲ . θαψίαϲ ⋖ γ εὐφορβίου ⋖ δ ὀποῦ Μηδικοῦ
6980227 ΕΒΖ
ἀλλήλων οἱ κύκλοι : ἐφάψεται ἄρα ὁ ΑΒ κύκλος τοῦ ΕΒΖ κύκλου . διὰ ἄρα τοῦ δοθέντος σημείου τοῦ Β
τὸ ΓΑΔ πρὸς τὸ ΕΚΖ . εἶχε δὲ καὶ τὸ ΕΒΖ πρὸς τὸ ΕΚΖ διπλασίονα λόγον ἤπερ τὸ ΓΑΔ πρὸς
6976961 ἐρασθαι
ὡς νῦν ᾕρηκεν : οὐ γάρ μοι δοκεῖ ἐρᾶν τοῦ ἐρᾶσθαι . καὶ τὸ μὲν ἀνειλημμένον τῶν τριχῶν αἰδοῖ κεκόσμηται
, ἐῴκει γοῦν ἀθλητῇ καλῷ καὶ ἐλευθερίῳ τὸ εἶδος . ἐρᾶσθαι δὲ τὸν Μένιππον οἱ πολλοὶ ᾤοντο ὑπὸ γυναίου ξένου
6972502 ἱετ
μετὰ παρθενικῶν ? [ παίδων ἰαχῆς ] μέλος οἰμώξασα , ἵετ ' ἐπ [ ' ] ἀκτὰς ? ? [
ἣ μέν ? ῥα ? ποδώκης [ δῖ ' Ἀταλάντη ἵετ ' ἀναινομένη δῶρα ? ? [ χρυσῆς Ἀφροδίτης ,
6972230 μικροψυχια
κατάφωροι γίνονται . ὅτι δὲ ἀντίκειται μᾶλλον τῇ μεγαλοψυχίᾳ ἡ μικροψυχία τῆς χαυνότητος καὶ δι ' ὅ , σαφῶς εἶπε
δικαιοσύνη , ἐλευθεριότης , ἀσωτία , ἀνελευθερία : μεγαλοψυχία , μικροψυχία , χαυνότης : μεγαλοπρέπεια , μικροπρέπεια , σαλακωνία .
6969093 ἰαλεμων
ἱππικὴ Δαρδανία . ἢ ἱπποσύνου Γανυμήδους , τουτέστιν ἱππικοῦ : ἰαλέμων : τῶν θρήνων , ἀπὸ Ἰαλέμου τοῦ Καλλιόπης καὶ
' : Ἀπόλλων δ ' εἰκότως κλῄζῃ βροτοῖς : ὀτοτοῖ ἰαλέμων : ὀτοτοῖ ἐπίφθεγμά ἐστι θρηνητικόν . ἰάλεμος θρῆνος .
6968137 ΓΣ
τμηθήσεται ὑπὸ τῶν τοῦ κύβου διαμέτρων . ἐπεζεύχθωσαν γὰρ αἱ ΓΣ , ΣΑ , ΒΤ , ΤΗ . ἐπεὶ ἴση
τῶν ΑΣ , ΣΠ , τουτέστι πρὸς τὸ ὑπὸ τῶν ΓΣ , ΣΒ , οὕτως τὸ ἀπὸ τῆς ΑΤ πρὸς
6967494 ΛΕ
σελήνη κατὰ τὸ Λ σημεῖον , καὶ ἐπεζεύχθωσαν μὲν αἱ ΛΕ καὶ ΛΒ , κάθετοι δ ' ἤχθωσαν ἐπὶ τὴν
καὶ ἀφῄρηται ἀπ ' αὐτῶν δεδομένα μεγέθη τὰ ΘΑ , ΛΕ . τὰ ΑΒ , ΕΖ ἄρα ἤτοι πρὸς ἄλληλα
6965421 πεντηκοντας
. § : ἔστι δὲ προέορτος μεγίστης ἑορτῆς , ἣν πεντηκοντὰς ἔλαχεν , ἁγιώτατος καὶ φυσικώτατος ἀριθμῶν , ἐκ τῆς
αὐτὴν ἴσασιν . ἔστι δὲ προέορτος μεγίστης ἑορτῆς , ἣν πεντηκοντὰς ἔλαχεν , ἁγιώτατος καὶ φυσικώτατος ἀριθμῶν , ἐκ τῆς
6963721 δολωσις
. ἡ γὰρ ἐκ θεοῦ , φησίν , ἀμαύρωσις καὶ δόλωσις ἄφυκτός ἐστιν . ἅμα γὰρ δολοῖ καὶ προσαίνει καὶ
“ ἡ γὰρ ἐκ θεοῦ , φησὶν , ἀμαύρωσις καὶ δόλωσις ἄφυκτός ἐστιν . ἅμα γὰρ δολοῖ καὶ προσαίνει καὶ
6960897 ΒΟ
ΨΣ , κοινὴ δὲ ἡ ΨΟ , βάσις δὲ ἡ ΒΟ βάσεως τῆς ΣΟ μείζων ἐστίν , καὶ γωνία ἡ
ἐστὶ τῷ ΜΠ . καὶ κοινοῦ προστεθέντος ἢ ἀφαιρουμένου τοῦ ΒΟ τὸ ΒΠ ἴσον ἐστὶ τῷ ΞΣ . Ἐὰν ἐν
6959168 ΒΗΘ
ΒΗΘ : αἱ ἄρα ὑπὸ ΑΗΘ , ΒΗΘ τῶν ὑπὸ ΒΗΘ , ΗΘΔ μείζονές εἰσιν . ἀλλὰ αἱ ὑπὸ ΑΗΘ
τῇ ὑπὸ ΗΘΔ ἐστιν ἴση . κοινὴ προσκείσθω ἡ ὑπὸ ΒΗΘ : αἱ ἄρα ὑπὸ ΕΗΒ , ΒΗΘ ταῖς ὑπὸ
6955870 ἀποκοπος
Ἱππῶναξ δὲ ἡμίανδρον τὸν οἷον ἡμιγύναικα . λέγεται δὲ καὶ ἀπόκοπος καὶ βάκηλος καὶ ἀνδρόγυνος καὶ γάλλος καὶ γύννις καὶ
καὶ ῥοώδεις εἰλίγγους . Ὁ δὲ βυθὸς ἔν τισι μὲν ἀπόκοπος ἔν τισι δὲ πετρώδης καὶ ἀπόξυρος , ὥστε τέμνεσθαι
6950456 τηλινου
καὶ λελειωμένων , μυούρου βοτάνης καὶ αὐτῆς κεκομμένης , ἐλαίου τηλίνου , ἐλαίου πηγανίνου , ἐλαίου ἀνηθίνου . εἰς τὸ
ἀνὰ # β , νίτρου ἐρυθροῦ # β , ἀλεύρου τηλίνου # α , χαμαιλέοντος μέλανος τῆς ῥίζης λειοτάτης #
6949621 Μαρκε
τῆς ἀληθείας ἐμμέτρως ἐπιβεβόηκέ σοι , εἰπὼν οὔτως : Εἰδωλοποιὲ Μάρκε , καὶ τερατοσκόπε , ἀστρολογικῆς ἔμπειρε καὶ μαγικῆς τεχνῆς
τὴν δ ' ἐξουσίαν τοῦ κωλύειν τοὺς ἀκοσμοῦντας , ὦ Μάρκε Ὁράτιε , παρὰ τοῦ δήμου λαβόντες ἔχομεν , ὅτε
6949431 ἐπαοιδος
συγκείμενα τὴν αὐτὴν φυλάττει γραφήν : οἷον , ὑμναοιδός : ἐπαοιδός : κελαοιδός : ἀπὸ γοῦν τοῦ ἀοιδὸς γίνεται κατὰ
δ ' ἄρα τῶν ἀπέκλινεν ὁ λαξόος ἐννομολέσχης , Ἑλλήνων ἐπαοιδός , ἀκριβολόγους ἀποφήνας , μυκτὴρ ῥητορόμυκτος , ὑπαττικὸς εἰρωνευτής
6947969 αὐλησις
καὶ ἡ ἑκάστου αὐτῶν ἑρμηνεία , οἷον ἥ τ ' αὔλησις καὶ ἡ ᾠδὴ καὶ τὰ λοιπὰ τῶν τοιούτων :
ξένους : ἔνθεν Ἀριστοφάνης τὸν συκοφάντην Ἀβυδοκόμην εἶπεν . Ἀγαθώνιος αὔλησις : ἡ μαλακὴ , καὶ μήτε πικρὰ μήτε χαλαρὰ
6943555 ٣٩
٤٩ ٤٢ ἡ Β ٧ ٤٩ ٢٤ ἡ ΓΖ ٣ ٣٩ ٥٠ ٣١ ٢١ ἡ ΓΔ ٤ ἡ ΖΘ ١٤
τὴν ἁρμόζουσαν λαμβάνειν καὶ προστιθέναι . Ἡ ΛΝ ٨ ٥٢ ٣٩ ἡ ΑΓ δ ἡ ΑΔ ٢٠ τὸ ΑΒ χωρίον
6940977 ἀσκητοιο
δάμαρ . τόν ῥά οἱ ἀμφίπολος Φυλὼ παρέθηκε φέρουσα νήματος ἀσκητοῖο βεβυσμένον : αὐτὰρ ἐν αὐτῷ ἠλακάτη τετάνυστο ἰοδνεφὲς εἶρος
κεκράαντο . τόν ῥά οἱ ἀμφίπολος Φυλὼ παρέθηκε φέρουσα νήματος ἀσκητοῖο βεβυσμένον : αὐτὰρ ἐπ ' αὐτῷ ἠλακάτη τετάνυστο ἰοδνεφὲς
6937200 ΑΜΒ
καὶ ἐπεζεύχθω ἡ ΛΖ . ἐπεὶ οὖν αἱ ΑΗΒ , ΑΜΒ τομαὶ κατὰ τὰ Α , Β ἐφάπτονται , κατ
πλαγία πρὸς τὴν ὀρθίαν : καὶ ὡς ἄρα τὸ ὑπὸ ΑΜΒ πρὸς τὸ ἀπὸ ΜΝ , ἡ πλαγία πρὸς τὴν
6935901 Ἰτεα
μιγάδος . οἱ πολῖται Ἰτάνιοι . ἔστι καὶ ἄκρα . Ἰτέα , δῆμος τῆς Ἀκαμαντίδος φυλῆς . ὁ δημότης Ἰτεαῖος
φύλλα ροα Ἵππουριϲ ροβ Ἰϲάτιϲ βαφική ρογ Ἰϲάτιϲ ἀγρία ροδ Ἰτέα ροε Καλαμίνθη ροϚ Κάλαμοϲ ἀρωματικόϲ ροζ Κάλαμοϲ φραγμίτηϲ ροη

Back